
www.free-ebooks-download.org

ASP.NET AJAX Programmer’s Reference
with ASP.NET 2.0 or ASP.NET 3.5

Dr. Shahram Khosravi

Wiley Publishing, Inc.

ffirs.indd vffirs.indd v 8/25/07 2:41:01 AM8/25/07 2:41:01 AM

ffirs.indd ivffirs.indd iv 8/25/07 2:41:00 AM8/25/07 2:41:00 AM

ASP.NET AJAX Programmer’s Reference
with ASP.NET 2.0 or ASP.NET 3.5

Acknowledgments . xi

Introduction . xxix

Chapter 1: AJAX Technologies . 1

Chapter 2: JavaScript Base Type Extensions. 27

Chapter 3: Built-In and Custom Exception Types. 53

Chapter 4: JavaScript Object-Oriented Programming and
Type Reflection Extensions . 77

Chapter 5: Event Programming Extensions . 131

Chapter 6: DOM Extensions . 161

Chapter 7: Component Development Infrastructure. 219

Chapter 8: Developing Client Controls . 281

Chapter 9: Event Bubbling and Button Client Control 323

Chapter 10: Type Description Extensions . 349

Chapter 11: Data Classes . 407

Chapter 12: Client-Server Communications. 457

Chapter 13: Consuming Web Services Via Soap Messages 511

Chapter 14: Consuming Web Services Via JSON Messages 535

Chapter 15: Proxy Classes. 597

Chapter 16: Behaviors . 659

Chapter 17: Script and Extender Server Controls 707

Chapter 18: Web Services Bridges and Transformers 773

Chapter 19: UpdatePanel and ScriptManager . 857

Chapter 20: Using UpdatePanel in User Controls and Custom Controls . . . 911

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering . . . 965

Chapter 22: ASP.NET AJAX Client-Side PageRequestManager 1033

Continues

ffirs.indd iffirs.indd i 8/25/07 2:41:00 AM8/25/07 2:41:00 AM

Chapter 23: Asynchronous Partial Page Rendering:
 Server Side Processing . 1105

Chapter 24: Asynchronous Partial Page Rendering:
 Client-Side Processing . 1179

Appendix A: XML Script . 1275

Appendix B: Binding . 1325

Appendix C: Actions . 1341

Appendix D: Data Control. 1357

Appendix E: Templated Controls. 1381

Appendix F: ListView . 1409

Index . 1481

ffirs.indd iiffirs.indd ii 8/25/07 2:41:00 AM8/25/07 2:41:00 AM

ASP.NET AJAX Programmer’s Reference
with ASP . NET 2.0 or ASP.NET 3.5

ffirs.indd iiiffirs.indd iii 8/25/07 2:41:00 AM8/25/07 2:41:00 AM

ffirs.indd ivffirs.indd iv 8/25/07 2:41:00 AM8/25/07 2:41:00 AM

ASP.NET AJAX Programmer’s Reference
with ASP.NET 2.0 or ASP.NET 3.5

Dr. Shahram Khosravi

Wiley Publishing, Inc.

ffirs.indd vffirs.indd v 8/25/07 2:41:01 AM8/25/07 2:41:01 AM

ASP.NET AJAX Programmer’s Reference
with ASP.NET 2.0 or ASP.NET 3.5
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-10998-4

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
 Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for per-
mission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianap-
olis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or
 extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for
every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal,
 accounting, or other professional services. If professional assistance is required, the services of a competent profes-
sional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom.
The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further
information does not mean that the author or the publisher endorses the information the organization or Website
may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in
this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact our
 Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data:

Khosravi, Shahram, 1963-
 ASP.NET Ajax programmer’s reference / Shahram Khosravi.
 p. cm.
 Includes index.
 ISBN 978-0-470-10998-4 (paper/website)
 1. Active server pages. 2. Internet programming. 3. Web site development.
4. Ajax (Web site development technology) 5. Microsoft .NET. I. Title.
 TK5105.8885.A26K538 2007

 005.2'76--dc22
 2007024239

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and
other countries, and may not be used without written permission. All other trademarks are the property of their
 respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

ffirs.indd viffirs.indd vi 8/25/07 2:41:01 AM8/25/07 2:41:01 AM

www.wiley.com

About the Author
 Shahram Khosravi, Ph.D. , is a senior software engineer, consultant, author, and instructor specializing
in ASP.NET, Windows Communications Foundation (WCF), ASP.NET AJAX, Windows Workflow Foun-
dation (WF), IIS7 and ASP.NET Integrated Programming, ADO.NET, Web services, .NET, and XML tech-
nologies such as XSD, XSLT, XPath, SOAP, and WSDL. He also has years of experience in object-oriented
analysis, design, and programming, architectural and design patterns, service-oriented analysis, design,
and programming, 3D computer graphics programming, user interface design, and usability.

 Shahram is the author of the following four books: Professional ASP.NET 3.5 and .NET 3.5 Programming
(ASP.NET Internals plus ASP.NET AJAX, IIS 7.0, Enterprise Library Application Blocks, Windows Workflow
Foundation, and Windows Communication Foundation) , ASP.NET AJAX Programmer’s Reference with ASP.
NET 2.0 or ASP.NET 3.5 , Professional IIS7 and ASP.NET Integrated Programming , and Professional ASP.NET
Server Control and Component Development . He has written articles on the ASP.NET, ADO.NET, .NET, and
XML technologies for the industry’s leading magazines, such as Dr. Dobb’s Journal , asp.netPRO magazine,
and Microsoft MSDN Online .

ffirs.indd viiffirs.indd vii 8/25/07 2:41:01 AM8/25/07 2:41:01 AM

ffirs.indd viiiffirs.indd viii 8/25/07 2:41:02 AM8/25/07 2:41:02 AM

Credits
Senior Acquisitions Editor
Jim Minatel

Development Editor
Brian MacDonald

Technical Editors
Alexei Gorkov
Darren J. Kindberg
Sam Judson
Dan Maharry
Cody Reichenau

Production Editor
Eric Charbonneau

Copy Editors
Kathryn Duggan
S. B. Kleinman

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Adrienne Martinez

Proofreader
Ian Golder

Indexer
Jack Lewis

Anniversary Logo Design
Richard Pacifico

ffirs.indd ixffirs.indd ix 8/25/07 2:41:02 AM8/25/07 2:41:02 AM

ffirs.indd xffirs.indd x 8/25/07 2:41:02 AM8/25/07 2:41:02 AM

Acknowledgments

 First and foremost, I would like to greatly thank Jim Minatel, the senior acquisitions editor on the book,
for giving me the opportunity to work on this exciting project and for all his support and guidance
throughout the process. Huge thanks go to Brian MacDonald, the book’s development editor. I greatly
appreciate all your input, comments, and advice. Thanks, Brian, for everything! Special thanks go to the
book’s technical editors; Alexei Gorkov, Darren J. Kindberg, Sam Judson, Dan Maharry and
Cody Reichenau. Thank you gentlemen, for all your input and comments.

 Additional thanks go to Eric Charbonneau, the book’s production editor. Thanks also go to
Kathi Duggan and S.B. Kleinman, the copy editors; as well as Ian Golder, the proofreader.

ffirs.indd xiffirs.indd xi 8/25/07 2:41:02 AM8/25/07 2:41:02 AM

ffirs.indd xiiffirs.indd xii 8/25/07 2:41:02 AM8/25/07 2:41:02 AM

Contents

Acknowledgments xi
Introduction xxix

Chapter 1: AJAX Technologies 1

Google Suggest 1
XMLHttpRequest 4
XML 16
JSON 20

object 20
array 20
string 20
number 21
null, true, and false 21

ASP.NET AJAX 24
Installing the ASP.NET AJAX Extensions and ASP.NET Futures 25
Summary 25

Chapter 2: JavaScript Base Type Extensions 27

ASP.NET AJAX Array Type Extensions 28
add 28
addRange 29
clear 29
clone 30
contains 30
enqueue and dequeue 31
forEach 33
indexOf 34
insert 35
parse 36
remove 36
removeAt 37

ASP.NET AJAX Boolean Type Extensions 37
ASP.NET AJAX Date Type Extensions 38
ASP.NET AJAX Object Type Extensions 38

ftoc.indd xiiiftoc.indd xiii 8/20/07 8:54:40 PM8/20/07 8:54:40 PM

xiv

ASP.NET AJAX String Type Extensions 39
endsWith 39
startsWith 40
trim 40
Formatting 41

ASP.NET AJAX Error Type Extensions 41
create 41
popStackFrame 45
Under the Hood of popStackFrame 48

Summary 52

Chapter 3: Built-In and Custom Exception Types 53

ASP.NET AJAX Built-In Exception Types 53
ArgumentException 53
ArgumentNullException 56
ArgumentOutOfRangeException 58
ArgumentTypeException 60
ArgumentUndefinedException 64
InvalidOperationException 66
NotImplementedException 66
ParameterCountException 68

Implementing Custom Exception Types 70
Recipe for Implementing Custom Exception Types 70
Using the Recipe 71

Summary 76

Chapter 4: JavaScript Object-Oriented Programming
and Type Reflection Extensions 77

JavaScript Functions 78
JavaScript Classes 79
Type 80
registerClass 81
getName 83
isClass 84
registerNamespace 85
isNamespace 88
registerInterface 89
getInterfaces 92
isInterface 95
Inheritance 96

Contents

ftoc.indd xivftoc.indd xiv 8/20/07 8:54:40 PM8/20/07 8:54:40 PM

Contents

xv

getBaseType 100
initializeBase 102
resolveInheritance 103
callBaseMethod 104
getBaseMethod 110
implementsInterface 113
inheritsFrom 118
isImplementedBy 121
getRootNamespaces 123
parse 125
registerEnum 127
isEnum 129
isFlags 129
Summary 130

Chapter 5: Event Programming Extensions 131

Event Programming 131
Sys.EventArgs 132
Sys.CancelEventArgs 132
EventHandlerList 133

Using Event Programming 138
Base Classes 138
Events 144

Summary 159

Chapter 6: DOM Extensions 161

DomElement 161
getElementById 161
addCssClass 166
containsCssClass 167
removeCssClass 167
toggleCssClass 169
getLocation 171
setLocation 172
getBounds 175

MouseButton 176
Key 176
Delegates 177

Namespace 183
Mover 184

ftoc.indd xvftoc.indd xv 8/20/07 8:54:40 PM8/20/07 8:54:40 PM

Contents

xvi

TextProvider 184
ImageProvider 185

DomEvent 185
Constructor 186

Static Methods 189
Instance Methods 198

Using the DomEvent Class 203
Mover 209
TableProvider 216

Summary 217

Chapter 7: Component Development Infrastructure 219

Interfaces 220
IDisposable 220
INotifyDisposing 224
INotifyPropertyChanged 228

Component 235
IContainer 238
Application 239

addComponent 240
removeComponent 241
getComponents 242
findComponent 242

Application Lifecycle 243
Component 248
Continuing the Application Journey 253

endCreateComponents 253
raiseLoad 256
Summary of the Application Lifecycle 257

Application Level Events 258
init 258
load 259
unload 260

Disposable Objects 260
Using the Application Object and Component Base Class 263

dispose 264
initialize 267
id 269
raisePropertyChanged 270
get_events 271

ftoc.indd xviftoc.indd xvi 8/20/07 8:54:41 PM8/20/07 8:54:41 PM

Contents

xvii

INotifyPropertyChange 272
INotifyDisposing 272

Summary 280

Chapter 8: Developing Client Controls 281

Control 281
Definition 281
get_element 283
get_id 283
set_id 284
set_parent 284
get_parent 285
get_visibilityMode 286
get_visible 286
set_visibilityMode 286
set_visible 287
addCssClass 288
removeCssClass 288
toggleCssClass 288
dispose 288
onBubbleEvent 289
raiseBubbleEvent 290

Developing Custom Client Controls 290
Label Client Control 291

Constructor 291
htmlEncode 291
text 292
prototype 294
descriptor 294

Using Label Client Control 295
Image Client Control 297

Constructor 298
prototype 298
imageURl 299
width 299
height 299
alternateText 300

Using the Image Client Control 300
Extending Image Client Control 302

Constructor 306
prototype 307

ftoc.indd xviiftoc.indd xvii 8/20/07 8:54:41 PM8/20/07 8:54:41 PM

Contents

xviii

imageURL 307
mouseOverImageURL 308
mouseOverCallback 308
mouseOutCallback 309
Duration 309
transition 310
Transition Enumeration 310
initialize 311
dispose 312

Using Image2 Client Control 312
HyperLink Client Control 314

Constructor 314
prototype 315
navigateURL 315
initialize 315
add_click 316
remove_click 317
_onClick 317
dispose 318
descriptor 318

Using the HyperLink Client Control 319
Summary 321

Chapter 9: Event Bubbling and Button Client Control 323

CommandEventArgs 323
Button Client Control 325

Constructor 325
prototype 325
argument 326
command 326
initialize 327
add_click 328
_onClick 328
dispose 329
descriptor 330

Using Button Client Control 330
Catching a Bubbled Event 330
Bubbling an Event 337

Summary 348

ftoc.indd xviiiftoc.indd xviii 8/20/07 8:54:41 PM8/20/07 8:54:41 PM

Contents

xix

Chapter 10: Type Description Extensions 349

TypeDescriptor 350
Constructor 350
getTypeDescriptor 369
getProperty 374
getAttribute 376

setProperty 377
invokeMethod 382
getPropertyType 384
Using the ASP.NET AJAX Type Description Capabilities 385

StringBuilder 385
CustomTable 389

Dynamic Injection of Metadata Information 399
addProperty 400
addMethod 401
addEvent 402
addAttribute 403

ICustomTypeDescriptor 403
Summary 405

Chapter 11: Data Classes 407

IData 407
DataColumn 409
DataRow 412

Constructor 412
descriptor 413
ICustomTypeDescriptor 414
Owner 419
INotifyPropertyChange 420

DataTable 422
Constructor 422
IData 424
Descriptor 432
INotifyPropertyChange 434

INotifyCollectionChanged 436
createRow 439
getChanges 441
getColumn 442
raiseRowChanged 443
parseFromJson 443

ftoc.indd xixftoc.indd xix 8/20/07 8:54:42 PM8/20/07 8:54:42 PM

Contents

xx

Using DataColumn, DataRow, and DataTable 446
Summary 456

Chapter 12: Client-Server Communications 457

WebRequest 457
Constructor 457
Target URL 458
HTTP Verb 458
Body 459
Timeout 459
Web Request Executor 460
Headers 460
Completed Event 461
Invoking a Web Request 462

WebRequestExecutor 463
Constructor 463
WebRequest 463
get_started 464
get_responseAvailable 464
get_timedOut 465
get_aborted 465
get_responseData 465
get_statusCode 466
get_statusText 466
get_xml 466
get_object 466
executeRequest 467
abort 467
getResponseHeader 467
getAllResponseHeaders 468

WebRequestManager 468
Constructor 468
Default Timeout 469
Default Executor Type 469
Events 470
Executing a Web Request 471
NetworkRequestEventArgs 473

XMLHttpRequest 474
XMLDOM 474
XMLHttpExecutor 475

Constructor 475
get_timedOut 479

ftoc.indd xxftoc.indd xx 8/20/07 8:54:42 PM8/20/07 8:54:42 PM

Contents

xxi

get_started 479
get_responseAvailable 479
get_aborted 479
Executing the Request 480
getResponseHeader 482
getAllResponseHeaders 483
get_responseData 484
get_statusCode 484
get_statusText 484
get_xml 485
abort 486

Using WebRequest, WebRequestManager, and XMLHttpExecutor 487
Summary 510

Chapter 13: Consuming Web Services Via Soap Messages 511

Building the Web Service 511
WSDL Documents 512

Argument Names, Types, and Order 514
Return Value Types and Order 515
Describing the Method 515
Describing the Communication Protocol for Accessing the Method 516
Specifying the Site for Method Access 517
Specifying the Method Class 518

SOAP Messages 518
Summary 533

Chapter 14: Consuming Web Services Via JSON Messages 535

WebServiceProxy 535
Timeout 535
Default Succeeded Callback 536
Default Failed Callback 536
Path 537
Invoking a Web Method 537

Using WebServiceProxy 549
WebServiceError 553
Using WebServiceError 557
Calling Page Methods 561
Calling Custom Methods 564
Under the Hood 570

ScriptHandlerFactory 571
RestHandlerFactory 574

ftoc.indd xxiftoc.indd xxi 8/20/07 8:54:42 PM8/20/07 8:54:42 PM

Contents

xxii

RestHandler 577
HandlerWrapper 582
Page Methods Demystified 583
Web Services Bridges Demystified 590
Using the Replicas 593

Summary 595

Chapter 15: Proxy Classes 597

What’s a Proxy, Anyway? 597
Proxy Class 599

Proxy Classes Associated with Web Services 600
Proxy Classes Associated with Page Methods 605
Proxy Classes Associated with Custom Classes 608

Automatic Proxy Class Generation 608
Declarative Approach 608
Imperative Approach 618
Parent/Child Pages 621

Under the Hood 623
ScriptManager 624
ServiceReference 627
ClientProxyGenerator 630
RestClientProxyHandler 648

Using the Replicas 650
Summary 658

Chapter 16: Behaviors 659

What is a Behavior, Anyway? 659
The Behavior Class 661

Properties 668
Instance Methods 672
Static Methods 674

ClickBehavior 675
descriptor 676
The click Event 677
initialize 677
Using the ClickBehavior 678

The ASP.NET AJAX Control Toolkit 680
BehaviorBase 681
The TextBoxWatermarkBehavior 687

Summary 706

ftoc.indd xxiiftoc.indd xxii 8/20/07 8:54:42 PM8/20/07 8:54:42 PM

Contents

xxiii

Chapter 17: Script and Extender Server Controls 707

Why You Need Script and Extender Server Controls 707
Extender Server Controls 709

IExtenderControl 709
ExtenderControl 710

Script Server Controls 713
IScriptControl 713
ScriptControl 714

ScriptDescriptor 716
ScriptComponentDescriptor 717
ScriptControlDescriptor 730
ScriptBehaviorDescriptor 731

ScriptReference 733
ScriptReferenceCollection 735
ScriptManager 735

Scripts 741
LoadScriptsBeforeUI 741
ScriptControls 741
RegisterScriptControl 741
ExtenderControls 742
RegisterExtenderControl 742
GetCurrent 742
OnInit 742
Page_PreRenderComplete 743
CollectScripts 744
AddScriptReferencesForScriptControls 745
RegisterScriptDescriptors For Extender Controls 746

ResolveScriptReference Event 747
Putting it All Together 750
Developing a Custom Extender Server Control 751

WatermarkText 755
WatermarkCssClass 755
ClientState 755
ClientStateFieldID 756
CreateClientStateField 756
BehaviorID 756
GetScriptReferences 756
GetScriptDescriptors 756
OnInit 758
Page_PreLoad 759
OnLoad 759

ftoc.indd xxiiiftoc.indd xxiii 8/20/07 8:54:43 PM8/20/07 8:54:43 PM

Contents

xxiv

OnPreRender 761
Render 763
Using the Extender Server Control 763

Developing a Script Control 764
PreRender 768
Render 769
Using the Script Server Control 769

Script Server Controls versus Extender Server Controls 770
Summary 771

Chapter 18: Web Services Bridges and Transformers 773

Amazon Web Services 773
ItemSearch 774

Developing Web Services Bridge-Enabled Script Server Controls 781
AspNetAjaxAmazonSearch 781
AmazonSearchScriptControl 789
HtmlGenerator 798
HtmlGeneratorScriptControl 803
Using the Components 811

Transformers 813
Using Transformers 823

XmlBridgeTransformer 823
XsltBridgeTransformer 848

Summary 855

Chapter 19: UpdatePanel and ScriptManager 857

Enabling Asynchronous Partial Page Rendering 857
Conditional Updates 860

Children as Triggers 863
Inclusion of One UpdatePanel in another UpdatePanel 864
Using Triggers 877
Imperative Update 878

Developing Partial-Rendering Enabled Custom Composite Server Controls 881
BaseMasterDetailControl 882
BaseMasterDetailControl2 906

Summary 910

ftoc.indd xxivftoc.indd xxiv 8/20/07 8:54:43 PM8/20/07 8:54:43 PM

Contents

xxv

Chapter 20: Using UpdatePanel in User Controls and Custom Controls 911

MasterDetailControl 911
CreateBaseDataBoundControlMaster 913
RegisterMasterEventHandlers 914
Properties 916

Using MasterDetailControl in a Web Page 916
MasterDetailControl2 921

CreateBaseDataBoundControlMaster 923
RegisterMasterEventHandlers 923
Master_SelectedIndexChanged 923
Master_DataBound 923
Properties 924

Using MasterDetailControl2 924
MasterDetailControl3 927
Using MasterDetailControl3 928
MasterDetailControl4 930
Developing Partial-Rendering-Enabled Data Control Fields 931

Extending BoundField 932
Overriding InitializeDataCell 937
Handling the DataBound Event 938
Extracting Values from Cells 939
Appearance Properties 939
Using MasterDetailField 940

Developing Partial-Rendering-Enabled User Controls 945
Displaying all Messages 957
Displaying the Details of a Message 958
Deleting a Message 959
Updating a Message 960
Replying to a Message 961
Starting a New Thread 963

Summary 964

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering 965

Processing a Request 966
The Page Life Cycle 969
The First Visit to a Partial-Page-Rendering-Enabled Web Page 971
InitRecursive 971

The OnInit Method of ScriptManager 972
The OnInit Method of UpdatePanel 980
Templated Controls 987

ftoc.indd xxvftoc.indd xxv 8/20/07 8:54:43 PM8/20/07 8:54:43 PM

Contents

xxvi

LoadRecursive 995
The Initialize Method of the UpdatePanel 998

Rendering 1019
The Render Method of ScriptManager 1020
The Render Method of the UpdatePanel 1028

Summary 1029

Chapter 22: ASP.NET AJAX Client-Side PageRequestManager 1033

Instantiating and Initializing the Client-Side PageRequestManager 1034
The getInstance Method of the Client-Side PageRequestManager 1036
The Constructor of the Client-Side PageRequestManager Class 1037
The _initializeInternal Method of the Client-Side PageRequestManager 1040

_updateControls 1046
The _pageLoadedInitialLoad Method of the Client-Side PageRequestManager 1050

The _pageLoaded Method of the Client-Side PageRequestManager 1050
The pageLoaded Event 1052

Using the pageLoaded Event 1055
Making an Asynchronous Page Postback 1071

Helper Methods 1071
_doPostBack 1077
_onFormSubmit 1081

The initializeRequest Event 1090
Using the initializeRequest Event 1092

The beginRequest Event 1099
Using the beginRequest Event 1101

Summary 1104

Chapter 23: Asynchronous Partial Page Rendering:
Server Side Processing 1105

RetrievePostData 1105
LoadScrollPosition 1109
InitRecursive 1111

The IsAsyncPostBackRequest Method of the PageRequestManager 1111
The OnInit Method of PageRequestManager 1112

Load Post Data 1113
UpdatePanel 1117

ScriptManager 1117
The LoadPostData Method of PageRequestManager 1118
The Raise Post Data Changed Event 1120

ftoc.indd xxviftoc.indd xxvi 8/20/07 8:54:43 PM8/20/07 8:54:43 PM

Contents

xxvii

PreRender 1121
The OnPreRender Method of PageRequestManager 1121

Rendering 1122
The Encode Method of PageRequestManager 1123
The RenderPageCallback Method of PageRequestManager 1124

Server Response 1162
Summary 1178

Chapter 24: Asynchronous Partial Page Rendering:
Client-Side Processing 1179

Arrival of the Server Response Text 1179
The _updatePanel Method of PageRequestManager 1207
The registerDisposeScript Method of PageRequestManager 1209
_destroyTree 1209
_ScriptLoader 1210

readLoadedScripts 1210
getInstance 1211
queueScriptBlock 1212
queueCustomScriptTag 1212
isScriptLoaded 1212
_getLoadedScript 1213
queueScriptReference 1213
loadScripts 1213
_loadScriptsInternal 1215
_createScriptElement 1217
The Constructor of the _ScriptLoader Class 1218
_scriptLoaderHandler 1218

_ScriptLoaderTask 1219
The Constructor of the_ScriptLoaderTask Class 1219
execute 1220
_scriptLoadHandler 1221

_scriptsLoadComplete 1221
_pageLoaded 1223

_endPostBack 1224
pageLoading 1231

Using the pageLoading Event 1242
pageLoaded 1253
endRequest 1255

Using the endRequest Event 1257
Summary 1273

ftoc.indd xxviiftoc.indd xxvii 8/20/07 8:54:44 PM8/20/07 8:54:44 PM

Contents

xxviii

Appendix A: XML Script 1275

Appendix B: Binding 1325

Appendix C: Actions 1341

Appendix D: Data Control 1357

Appendix E: Templated Controls 1381

Appendix F: ListView 1409

Index 1481

ftoc.indd xxviiiftoc.indd xxviii 8/20/07 8:54:44 PM8/20/07 8:54:44 PM

Introduction

 Welcome to ASP.NET AJAX Programmer’s Reference with ASP.NET 2.0 or ASP.NET 3.5 . The ASP.NET AJAX
framework consists of two frameworks: the ASP.NET AJAX client-side framework and the ASP.NET
AJAX server-side framework.

 It’s a well-known fact that client-side programming is very different from server-side programming. The
main difference lies in the fact that client-side programming lacks a feature-rich programming frame-
work like the ASP.NET/.NET framework. Wouldn’t be great if you could write your client-side code in a
framework with programming styles and capabilities like those of the ASP.NET/.NET framework? Enter
the ASP.NET AJAX client-side framework. It simulates the rich programming features of the ASP.NET/
.NET framework on the client side as much as possible. The capabilities of these simulations are only
limited by the fundamental limitations of client-side technologies such as JavaScript.

 The ASP.NET AJAX server-side framework extends the ASP.NET Framework to provide server-side sup-
port for Ajax-enabled Web applications. The ASP.NET AJAX client-side and server-side frameworks
work hand in hand to meet both the client-side and server-side needs of your Ajax-enabled applications.
That said, the ASP.NET AJAX client-side framework can also work alongside server technologies other
than the ASP.NET Framework.

 This book uses a unique approach characterized by the following attributes to provide you with an
in-depth coverage of both the ASP.NET AJAX client-side and server-side frameworks:

 ❑ Practical real-world examples: The discussions in this book are presented in the context of
 numerous practical real-world examples that you can use in your own ASP.NET AJAX
applications.

❑ Under-the-hood looks: This book takes you under the hood of both ASP.NET AJAX client-side
and server-side frameworks, where you can see for yourself how they work from the inside out
and how you can extend them to meet your application requirements.

❑ Code walkthroughs: I’ll use numerous code walkthroughs to help you gain the skills, experience,
and knowledge you need to implement similar features in your own ASP.NET AJAX
applications.

 Who This Book Is For
 This book is aimed at the ASP.NET developer who wants to learn ASP.NET AJAX for the first time. No
knowledge of ASP.NET AJAX is assumed.

flast.indd xxixflast.indd xxix 8/25/07 2:41:53 AM8/25/07 2:41:53 AM

xxx

 What This Book Covers
 This book is divided into 24 chapters and six appendices, as follows:

 ❑ Chapter 1, “Ajax Technologies,” provides an overview of the main technologies used in Ajax-
enabled Web applications, such as XMLHttpRequest , XML , and JSON, in the context of examples.

 ❑ Chapter 2, “JavaScript Base Type Extensions,” explains the JavaScript base type extensions.
You’ll learn how these extensions enhance the JavaScript base types such as Array , Boolean ,
 Date , Error , Object , and String to enable you to experience these types — as much as
 possible — as you would their .NET counterparts.

❑ Chapter 3, “Built-In and Custom Exception Types,” first covers the ASP.NET AJAX
built-in exception types, including ArgumentException , ArgumentNullException ,
ArgumentOutOfRangeException , ArgumentTypeException , ArgumentUndefinedException ,
 InvalidOperationException , NotImplementedException , and ParameterCountException ,
in depth. Then it provides you with a recipe for developing custom exception types, uses this
recipe to implement a custom exception type named DuplicateItemException , and imple-
ments a page that uses this custom exception type.

❑ Chapter 4, “JavaScript Object-Oriented Programming and Type Reflection Extensions,” first
examines those JavaScript technologies that the ASP.NET AJAX object-oriented programming
(OOP) and type reflection extensions use under the hood to extend JavaScript to add OOP and
type reflection support. Then it provides a comprehensive coverage of the Type and its methods,
where you’ll learn through numerous examples how to define namespaces, interfaces, classes,
and enumeration types, how to implement classes that implement one or more interfaces, and
how to implement classes that derives from other classes.

❑ Chapter 5, “Event Programming Extensions,” provides you with a detailed step-by-step recipe
for implementing and adding events to your custom ASP.NET AJAX client classes to enable the
clients of your classes to extend their functionality to execute application-specific logic. It then
presents and discusses a practical example that uses this recipe. This chapter also describes the
 EventArgs , CancelEventArgs , and EventHandlerList classes and their methods and prop-
erties in detail.

 ❑ Chapter 6, “DOM Extensions,” shows you how the ASP.NET AJAX DOM extensions extend tra-
ditional DOM programming to add support for .NET-like methods and properties, and how to
use these extensions in your own DOM programming. It covers the ASP.NET AJAX delegates
and the DomElement and DomEvent client classes and their methods and properties.

 ❑ Chapter 7, “Component Development Infrastructure,” covers the ASP.NET AJAX component
development infrastructure and its main constituent interfaces, including IDisposable ,
INotifyDisposing , INotifyPropertyChanged , and IContainer and its main constituent
classes, including Component and Application . You’ll also learn through numerous examples
how to implement these interfaces and how to implement a custom component that derives
from the Component base class. This chapter also covers the application and component life
 cycles and application level events in detail.

❑ Chapter 8, “Developing Client Controls,” describes the Control , Label , Image , and HyperLink
client controls and their methods and properties, and presents examples that use these client
 controls. This chapter also presents and discusses the implementation of a custom Image
 client control that extends the functionality of the ASP.NET AJAX Image client control.

Introduction

flast.indd xxxflast.indd xxx 8/25/07 2:41:53 AM8/25/07 2:41:53 AM

Introduction

xxxi

❑ Chapter 9, “Event Bubbling and Button Client Control,” first covers the CommandEventArgs
event data class and the Button client control. Then it discusses ASP.NET AJAX event bubbling
and shows you how to implement custom controls that bubble their events up to their parents,
and how to implement custom controls that capture events bubbled up by their children. This
chapter implements a client control named GridView , which uses ASP.NET AJAX event bubbling.

❑ Chapter 10, “Type Description Extensions,” provides comprehensive coverage of the
TypeDescriptor class and ICustomTypeDescriptor interface, from which you’ll learn how
to take advantage of the ASP.NET type description capabilities in your own applications in
order to isolate your client code from the specifics of the types of the objects that your client
code deals with. This will allow your code to interact with different types of objects without code
change. This chapter implements three Web pages that you can use to generically inspect the
properties, events, and methods of any ASP.NET AJAX type. This chapter also implements a
custom client control named CustomTable that uses the ASP.NET AJAX type description capa-
bilities to display any type of data records. Finally, this chapter shows you how to dynamically
inject metadata information.

❑ Chapter 11, “Data Classes,” first discusses the IData interface and then dives into the ASP.NET
AJAX DataColumn , DataRow , and DataTable data classes. It also implements a custom client
control that can display data from any data source, such as DataTable , and that implements the
 IData interface.

❑ Chapter 12, “Client-Server Communications,” covers the client-server communications layer of
the ASP.NET AJAX framework and its constituent classes, including detailed discussions of
 WebRequest , WebRequestExecutor , WebRequestManager , NetworkRequestEventArgs , and
 XMLHttpExecutor , and presents several examples that show you how to use these classes in
your own ASP.NET AJAX applications.

❑ Chapter 13, “Consuming Web Services Via SOAP Messages,” first discusses WSDL documents
and SOAP messages in detail and then presents an example that uses the classes in the client-
server communications layer of the ASP.NET AJAX framework to exchange SOAP messages
with a Web service.

❑ Chapter 14, “Consuming Web Services Via JSON Messages,” provides in-depth coverage of
the WebServiceProxy and WebServiceError classes and teaches you three different ways to
invoke server-side methods from your client code: calling page methods, Web service methods,
and Web services bridges. It also covers .asbx files in detail. This chapter then presents and
 implements fully functional replicas of the main components of the ASP.NET AJAX REST
method call-request-processing infrastructure, including the ScriptHandlerFactory ,
RestHandlerFactory , RestHandler , HandlerWrapper , and ScriptModule classes, and
 implements an example in which these replicas are used. This chapter also uses these replicas to
demystify page method calls and Web services bridges.

❑ Chapter 15, “Proxy Classes,” first covers proxy classes associated with page methods,
Web services bridges, and Web services methods in detail. Next, it discusses ScriptManager
and ScriptManagerProxy server controls and the role of ScriptManagerProxy server
 controls in parent/child page scenarios. This chapter then implements fully functional
replicas of the main components of the ASP.NET AJAX automatic proxy-class-generation infra-
structure, such as ScriptManager , ServiceReferenceCollection , ServiceReference ,
ClientProxyGenerator , and RestClientProxyHandler , and you’ll see for yourself how this
infrastructure generates the proxy classes associated with page methods, Web services bridges,
and Web services methods. This chapter then implements an example that uses these replicas.

flast.indd xxxiflast.indd xxxi 8/25/07 2:41:54 AM8/25/07 2:41:54 AM

Introduction

xxxii

❑ Chapter 16, “Behaviors,” begins by providing in-depth coverage of the Behavior base class
and its methods and properties, and shows you how to derive from this base class to implement
your own custom behaviors. It then discusses the ASP.NET AJAX control toolkit behavior base
class named BehaviorBase , and shows you how to derive from the BehaviorBase class to
 implement your own custom toolkit behavior.

❑ Chapter 17, “Script and Extender Server Controls,” implements fully functional replicas of
those components of the ASP.NET AJAX server-side framework that are deeply involved in
the internal functioning of two important types of server controls, known as script controls
and extender controls, to help you gain a solid understanding of these server controls, how
they interact with their associated client-side components, how they differ from one another,
and how to implement your own custom script controls and extender controls. The components
of the ASP.NET AJAX server-side framework whose replicas these chapter implements include
 IExtenderControl , ExtenderControl , IScriptControl , ScriptControl ,
 ScriptDescriptor , ScriptComponentDescriptor , ScriptBehaviorDescriptor ,
ScriptControlDescriptor , ScriptReference , ResolveScriptReference ,
ScriptReferenceCollection , and ScriptManager . This chapter then implements custom
script and extender server controls, and you’ll gain the skills you need to develop your own
 custom script and extender server controls.

❑ Chapter 18, “Web Services Bridges and Transformers,” first walks you through the implemen-
tation of a Web services bridge–enabled script server control that uses the Amazon Web services.
Then it discusses ASP.NET AJAX transformers in detail, including XmlBridgeTransformer and
 XsltBridgeTransformer , and uses them to enhance the Web services bridge–enabled script
server control. This chapter also shows you how to implement your own custom transformers.

❑ Chapter 19, “UpdatePanel and ScriptManager,” uses numerous examples in which you learn
how to enable asynchronous partial page rendering, how to use triggers, and several different
ways to conditionally update an UpdatePanel server control, including by setting its
ChildrenAsTrigger property, by directly adding it to another UpdatePanel server control, by
indirectly adding it to another UpdatePanel server control via a user control, by indirectly
 adding it to another UpdatePanel server control via a content page, and by explicitly
calling its Update method from your code. This chapter then implements two base custom
 partial-page-rendering-enabled server controls named BaseMasterDetailControl and
 BaseMasterDetailControl2 .

❑ Chapter 20, “Using UpdatePanel in User Controls and Custom Controls,” implements three
custom partial-page-rendering-enabled server controls named MasterDetailControl ,
 MasterDetailControl2 , and MasterDetailControl3 , a custom partial-page-rendering-
 enabled data control field named MasterDetailField , and a partial-page-rendering-enabled
threaded discussion forum user control. This chapter also implements pages that use these
 partial-page-rendering-enabled custom server controls, data control field, and user control.

❑ Chapter 21, “Page Life Cycle and Asynchronous Partial Page Rendering,” follows the Page
 object through its life cycle phases to process the first request to a partial-page-rendering-
 enabled Web page to help you gain a solid understanding of the ASP.NET AJAX asynchronous
partial-page-rendering infrastructure and its main components, such as the ScriptManager
and server-side PageRequestManager , UpdatePanel , UpdatePanelTrigger ,
 UpdatePanelControlTrigger , and AsyncPostBackTrigger classes. This chapter also
 implements a custom UpdatePanel server control named CustomUpdatePanel and a custom
trigger named AsyncMultiPostBackTrigger .

flast.indd xxxiiflast.indd xxxii 8/25/07 2:41:54 AM8/25/07 2:41:54 AM

Introduction

xxxiii

❑ Chapter 22, “ASP.NET AJAX Client-Side PageRequestManager,” first provides a comprehen-
sive coverage of the instantiation and initialization process of the current client-side
PageRequestManager instance, where you also learn about this instance’s pageLoaded event
and its associated PageLoadedEventArgs event data class. It also shows an example in which
this event is used. This chapter then dives into the process through which the current client-side
 PageRequestManager instance makes an asynchronous page postback request to the server,
and you also learn about this instance’s initializeRequest and beginRequest events. It also
shows examples in which you’ll learn how to use these events in your own ASP.NET AJAX
applications.

 ❑ Chapter 23, “Asynchronous Partial Page Rendering: Server-Side Processing,” follows the Page
object through its life cycle phases to process an asynchronous page postback request where
you’ll learn about the role of the server-side PageRequestManager , RetrievePostData ,
 ScriptManager , UpdatePanel , ScriptRegisterationManager , and triggers in generating
the final response text. This chapter also implements a page that enables you to inspect the
server response text.

❑ Chapter 24, “Asynchronous Partial Page Rendering: Client-Side Processing,” follows the
 client-side PageRequestManager instance through its life cycle phases to process the server
 response to an asynchronous page postback request where you’ll see for yourself how the
 current client-side PageRequestManager manages to parse the server response text,
download the required scripts, and update the required UpdatePanel server controls on
the client side. You’ll also learn about the pageLoading and endRequest events of the current
client-side PageRequestManager instance and their associated PageLoadingEventArgs
and EndRequestEventArgs event data classes. This chapter shows examples in
which these events and their associated event data classes are used. It also covers the
 PageRequestManagerTimeoutException , PageRequestManagerServerErrorException ,
 PageRequestManagerParserErrorException , and InvalidOperationException excep-
tions that the current client-side PageRequestManager instance raises. Finally, it implements a
custom error handler and a page that uses this error handler.

❑ Appendix A, “XML Script,” provides comprehensive coverage of the ASP.NET AJAX xml-
script, which enables you to program declaratively with little or no imperative or procedural
 JavaScript code. This appendix covers the main components of the ASP.NET AJAX xml-script
parsing infrastructure, such as MarkupContext and MarkupParser , and you’ll learn through
numerous examples how to enable the clients of your client classes to declaratively instantiate
and initialize instances of your classes in xml-script without writing any procedural JavaScript
code. You’ll also learn how to extend the ASP.NET AJAX xml-script parsing infrastructure to
add support for custom parsing of your own client classes.

❑ Appendix B, “Binding,” covers ASP.NET AJAX binding in detail. The BindingBase client class,
built-in and custom transformers, and the Binding client class are discussed in depth.

❑ Appendix C, “Actions,” discusses the ASP.NET AJAX actions including the IAction
client interface, the Action base class, actions in xml-script, and built-in actions such as
 InvokeMethodAction , SetPropertyAction , and PostBackAction in detail.

❑ Appendix D, “Data Control,” first provides a comprehensive coverage of the ASP.NET AJAX
 DataControl base class and its methods, properties, and events. Then it implements a custom
data control named CustomTable that derives from the DataControl base class, and uses the
ASP.NET AJAX type description capabilities to display any type of data records.

flast.indd xxxiiiflast.indd xxxiii 8/25/07 2:41:55 AM8/25/07 2:41:55 AM

Introduction

xxxiv

❑ Appendix E, “Templated Controls,” first covers the ITemplate client interface,
TemplateInstance client class, and Template client class in detail. Then it develops a custom
template named TemplateField that derives from the Template class and supports its own
 parseFromMarkup static method, which tells the ASP.NET AJAX xml-script parsing infrastruc-
ture how to parse an instance of the TemplateField class declared in xml-script. Finally, it
 develops a custom templated data control that enables its clients to use TemplateField
 instances in xml-script to specify different types of HTML markup texts for rendering different
types of database fields.

❑ Appendix F, “ListView,” begins by providing an overview of the ASP.NET AJAX ListView
 client control and its methods, properties, and events, and goes on to present examples in which
this client control is used to display data records downloaded from a backend Web service. Then
it dives into the internals of the ListView client control and its methods, properties, events, and
surrounding classes and interfaces such as ITask , _TaskManager , and ListViewRenderTask .
You’ll learn the skills you need to develop a custom templated data control as complex as the
 ListView client control.

 What You Need To Use This Book
 You’ll need the following items to run the code samples in this book:

 ❑ ASP.NET AJAX Extensions 1.0

 ❑ ASP.NET Futures

❑ Windows Server 2003, Windows 2000, Windows XP, or Windows Vista

❑ Visual Studio 2005, Visual Studio 2005 Express Edition, Visual Studio 2008, or Visual Studio 2008
Express Edition

❑ SQL Server 2005 or SQL Server 2005 Express Edition

 You can download free copies of Visual Studio 2005 Express Edition or Visual Studio 2008 Express Edi-
tion and SQL Server 2005 Express Edition from http://msdn.microsoft.com/vstudio/express/
and ASP.NET AJAX Extensions 1.0 and ASP.NET Futures from http://ajax.asp.net/downloads/ .

 Conventions
 To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

 Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

 Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

flast.indd xxxivflast.indd xxxiv 8/25/07 2:41:55 AM8/25/07 2:41:55 AM

Introduction

xxxv

 As for styles in the text:

❑ We highlight new terms and important words when we introduce them.

❑ We show keyboard strokes like this: Ctrl+A.

❑ We show file names, URLs, and code within the text like so: persistence.properties .

❑ We present code in two different ways:

In code examples we highlight new and important code with a gray background.

 The gray highlighting is not used for code that’s less important in the present
context, or that has been shown before.

 Source Code
 As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All the source code used in this book is available
for download at http://www.wrox.com . Once at the site, simply locate the book’s title (either by using
the Search box or by using one of the title lists) and click the Download Code link on the book’s detail
page to obtain all the source code for the book.

 Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-10998-4.

 Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

 Errata
 We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher-quality
information.

 To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can
view all errata that have been submitted for this book and posted by Wrox editors. A complete book list
 including links to each’s book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml .

 If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

flast.indd xxxvflast.indd xxxv 8/25/07 2:41:56 AM8/25/07 2:41:56 AM

Introduction

xxxvi

 P 2 P . WROX . COM
 For author and peer discussion, join the P2P forums at p2p.wrox.com . The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

 At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional information you wish to
 provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and complete
the joining process.

 You can read messages in the forums without joining P2P, but in order to post your own messages you
must join.

 Once you join, you can post new messages and respond to messages other users post. You can read
 messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxxviflast.indd xxxvi 8/25/07 2:41:56 AM8/25/07 2:41:56 AM

 AJAX Technologies
 Traditional Web pages use server-side technologies and resources to operate and deliver their
 features and services to end users. These Web pages require end users to perform full-page
 postbacks to the server, where these pages can run the required server-side code to deliver the
requested service or feature. In other words, these Web pages use the click-and-wait, user-
unfriendly interaction pattern, which is characterized by waiting periods that disrupt user
 workflow and degrade the user experience. This click-and-wait user interaction pattern is what
makes the traditional Web applications act and feel very different from their desktop counterparts.

 Asynchronous JavaScript And XML (abbreviated AJAX) is a popular Web application development
approach that uses client-side technologies such as HTML, XHTML, CSS, DOM, XML, XSLT,
 Javascript, and asynchronous client-callback techniques such as XMLHttp requests and hidden-frame
techniques to develop more sophisticated and responsive Web applications that break free from the
click-and-wait pattern and, consequently, act and feel more like a desktop application. In other
words, AJAX is closing the gap between Web applications and their desktop counterparts.

 This chapter begins by discussing the main characteristics of AJAX-enabled Web pages in the con-
text of an example.

 Google Suggest
 The Google Suggest Web page (www.google.com/webhp?complete=1) contains an AJAX-enabled
search box that completes your search items as you type them in, as shown in Figure 1-1 . Under
the hood, this AJAX-enabled search box uses AJAX techniques to asynchronously download the
required data from the Web server and to display them to the end user without interrupting the
user’s interaction with the page. All the client-server communications are performed in the back-
ground as the end user types into the search box.

 An AJAX-enabled component such as the Google Suggest search box exhibits the following four
important characteristics:

❑ It uses HTML, XHTML, CSS, DOM, and JavaScript client-side technologies to implement
most of its functionalities where the code runs locally on the client machine to achieve the

c01.indd 1c01.indd 1 8/20/07 5:40:00 PM8/20/07 5:40:00 PM

Chapter 1: AJAX Technologies

2

same response time as its desktop counterpart. This allows an AJAX-enabled component to
break free from the click-and-wait user-interaction pattern.

❑ It uses asynchronous client-callback techniques such as XMLHttpRequest to communicate with
the server. The main goal of this asynchronous communication model is to ensure that the com-
munication with the server doesn’t interrupt what the user is doing. This asynchronous commu-
nication model is another step that allows an AJAX-enabled component to break free from the
click-and-wait pattern.

❑ AJAX-enabled components normally send data to and receive data from the server in either XML
or JSON format (discussed in detail later in this chapter). This characteristic enables the client-
side code to exchange data with any type of server-side code, and vice versa, because almost all
platforms have built-in support for reading, writing, and manipulating XML or JSON data.

❑ The asynchronous communication between the client-side code and the server-side code are
normally governed by AJAX communication patterns. These patterns enable AJAX components
to take full advantage of the asynchronous nature of the communication between the client-side
code and the server-side code to determine the best time for uploading the data to or download-
ing the data from the server so the data exchange with the server won’t interrupt the user work-
flow and degrade the user experience.

 In a traditional Web page, the end users trigger synchronous communications with the Web server, and
they then have to wait until the required data is downloaded from the server and the entire page is

Figure 1-1

c01.indd 2c01.indd 2 8/20/07 5:40:02 PM8/20/07 5:40:02 PM

Chapter 1: AJAX Technologies

3

 As this figure shows, the AJAX engine consists of the following three main components:

❑ Scheduler: The scheduler uses AJAX technologies such as XMLHttpRequest to send data to and
receive data from the server in an asynchronous fashion. As the name suggests, the scheduler
schedules and makes the client requests to the server.

❑ Renderer: The renderer component of the AJAX engine uses DHTML to dynamically update
only those portions of the current page that need refreshing without re-rendering or re-loading
the entire page.

❑ JSON/XML Serializer: The client and server exchange data in JSON or XML format. The JSON/
XML serializer has two main responsibilities:

❑ Serialize the client data, which are JavaScript objects, into their JSON or XML representa-
tions before these objects are sent to the server

❑ Deserialize JavaScript objects from the JSON or XML data received from the server

Ajax Engine

Renderer
(DHTML)

JSON/XML Serializer

Internet

Scheduler
(XMLHttpRequest)

Figure 1-2

 rendered all over again to display the new information. AJAX changes all that. As you can see in
 Figure 1-2 , the Ajax engine takes complete control over the client-server communications and the
 rendering of the new information to ensure that these communications and renderings do not interrupt
the user interactions.

c01.indd 3c01.indd 3 8/20/07 5:40:02 PM8/20/07 5:40:02 PM

Chapter 1: AJAX Technologies

4

 This chapter provides an overview of the following client-side technologies that form the foundations of
the above three main AJAX engine components in the context of an example:

 ❑ XMLHttpRequest

❑ DHTML

❑ XML

❑ JSON

 XML HttpRequest
 XMLHttpRequest is one of the main AJAX technologies that the scheduler component of an AJAX
engine uses to make asynchronous requests to the server. The instantiation process of the
 XMLHttpRequest object is browser-dependent. Listing 1-1 encapsulates the browser-dependent nature
of this instantiation process in a class named XMLHttpRequest .

 Listing 1-1: Instantiating XMLHttpRequest

 if (!window.XMLHttpRequest)
 {
 window.XMLHttpRequest = function window$XMLHttpRequest()
 {
 var progIDs = [‘Msxml2.XMLHTTP’, ‘Microsoft.XMLHTTP’];
 for (var i = 0; i < progIDs.length; i++)
 {
 try
 {
 var xmlHttp = new ActiveXObject(progIDs[i]);
 return xmlHttp;
 }
 catch (ex) {}
 }
 return null;
 }
 }

 This script first checks whether the window object already contains a definition for this class. If not, it
defines the constructor of the class. The constructor contains the following array of program ids:

 var progIDs = [‘Msxml2.XMLHTTP’, ‘Microsoft.XMLHTTP’];

 This array covers all the possible instantiation scenarios on Internet Explorer. The constructor iterates
through the program ids array and takes the following steps for each enumerated program id:

1. It instantiates an ActiveXObject , passing in the enumerated program id.

2. If the instantiation succeeds, it returns this ActiveXObject instance.

3. If the instantiation fails, the try block throws an exception, which the catch block catches and
forces the loop to move to the next iteration, where the next program id is used.

c01.indd 4c01.indd 4 8/20/07 5:40:03 PM8/20/07 5:40:03 PM

Chapter 1: AJAX Technologies

5

 The XMLHttpRequest object exposes the following methods and properties:

❑ open : This method takes up to five parameters, but only the first two parameters are required.
The first required parameter is a string that contains the HTTP verb (POST or GET) being used to
make the request to the server. The second required parameter is a string that contains the target
URL, which is the URL of the resource for which the request is made. The third optional param-
eter is a Boolean value that specifies whether the request is asynchronous. If you don’t specify a
value for this parameter, it defaults to true . The fourth and fifth optional parameters specify the
requester’s credentials — the username and password.

❑ readyState : The XMLHttpRequest exposes an integer property named readyState with
 possible values of 0 , 1 , 2 , 3 , or 4 . The XMLHttpRequest goes through different states during its
 lifecycle, and each state is associated with one of these five possible values.

❑ onreadystatechange : You must assign a reference to a JavaScript function to this property. The
 XMLHttpRequest invokes this JavaScript function every time its state changes, which is every
time its readyState property changes value. Every time your JavaScript function is invoked, it
must check the value of the XMLHttpRequest ’s readyState property to determine the state of
the XMLHttpRequest . The current request is completed only when XMLHttpRequest enters the
state associated with the readyState property value of 4 . As a result, the typical implementa-
tion of the JavaScript function assigned to the onreadystatechange property is as follows:

 function readyStateChangeCallback()
 {
 if (request.readyState == 4 && request.status == 200)
 {
 // Process the server response here
 }
 }

 The global variable named request in this code fragment references the XMLHttpRequest object.
This JavaScript function checks whether the readyState property of the XMLHttpRequest is 4 ,
meaning the request is completed. If so, it processes the server response. If not, it simply returns.

❑ status : This property contains the HTTP status code of the server response. The JavaScript
function that you assign to the onreadystatechange property must also check whether the sta-
tus property of the XMLHttpRequest is 200 , as shown in the boldface portion of the following
code fragment. If the status code is a not 200 , this is an indication that a server-side error has
occurred.

 function readyStateChangeCallback()
 {
 if (request.readyState == 4 && request.status == 200)
 {
 // Process the server response here
 }
 }

 Strictly speaking, any status code within the 200–299 range is considered a success. However, a status
code of 200 is good enough in this case.

c01.indd 5c01.indd 5 8/20/07 5:40:04 PM8/20/07 5:40:04 PM

Chapter 1: AJAX Technologies

6

 ❑ statusText : This property contains the HTTP status text of the server response. The text
 describes the HTTP status code. For example, the status text for status code 200 is OK .

❑ setRequestHeader : This method sets a specified HTTP request header to a specified value. As
such, this method takes two parameters: the first parameter is a string that contains the name of
the HTTP request header whose value is being set, and the second parameter is a string that
contains the value of this HTTP request header.

❑ send : This is the method that actually sends the request to the server. It takes a string parameter
that contains the request body. If you’re making a GET HTTP request, pass null as the value of
this parameter. If you’re making a POST HTTP request, generate a string that contains the body
of the request and pass this string into the send method.

❑ responseText : This property contains the server response in text format.

❑ responseXML : This property contains the server response in XML format (an XML Document to
be exact). This property is set only when the Content-Type response header is set to the value
 text/xml . If the server-side code does not set the response header to this value, the response-
XML property will be null even when the actual data is in XML format. In such cases, you must
load the content of the responseText property into an XML document before you can use the
client-side XML API to read the XML data.

 The overrideMimeType property of XMLHttpRequest in Mozilla browsers enables you to override
the MIME type of the server response. However, this is a browser-specific issue that the current discus-
sion does not need to address.

 ❑ getResponseHeader : This method returns the value of a response header with a specified
name. As such, it takes the name of the response header as its only argument.

❑ getAllResponseHeaders : This method returns the names and values of all response headers.

❑ abort : Use this method to abort a request.

 Listing 1-2 presents an example that uses XMLHttpRequest to make an asynchronous request to the
server. If you access this page, you see the result shown in Figure 1-3 . This page consists of a simple user
interface with two text boxes and a button. If you enter the text “ username ” in the top text box and the
text “ password ” in the bottom text box and then click the button, you get the result shown in Figure 1-4 .

 Listing 1-2: A page that uses XMLHttpRequest

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<script runat=”server”>
 void Page_Load(object sender, EventArgs e)
 {
 if (Request.Headers[“MyCustomHeader”] != null)
 {
 if (Request.Form[“passwordtbx”] == “password” &&
 Request.Form[“usernametbx”] == “username”)
 {
 Response.Write(“Shahram|Khosravi|22223333|Some Department|”);
 Response.End();
 }
 else

c01.indd 6c01.indd 6 8/20/07 5:40:04 PM8/20/07 5:40:04 PM

Chapter 1: AJAX Technologies

7

 throw new Exception(“Wrong credentials”);
 }
 }
</script>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 var request;

 if (!window.XMLHttpRequest)
 {
 window.XMLHttpRequest = function window$XMLHttpRequest()
 {
 var progIDs = [‘Msxml2.XMLHTTP’, ‘Microsoft.XMLHTTP’];

 for (var i = 0; i < progIDs.length; i++)
 {
 try
 {
 var xmlHttp = new ActiveXObject(progIDs[i]);
 return xmlHttp;
 }
 catch (ex) {}
 }

 return null;
 }
 }

 window.employee = function window$employee(firstname, lastname,
 employeeid, departmentname)
 {
 this.firstname = firstname;
 this.lastname = lastname;
 this.employeeid = employeeid;
 this.departmentname = departmentname
 }

 function deserialize()
 {
 var delimiter=”|”;
 var responseIndex = 0;
 var delimiterIndex;
 var response = request.responseText;

 delimiterIndex = response.indexOf(delimiter, responseIndex);
 var firstname = response.substring(responseIndex, delimiterIndex);
 responseIndex = delimiterIndex + 1;
 delimiterIndex = response.indexOf(delimiter, responseIndex);
 var lastname = response.substring(responseIndex, delimiterIndex);
 responseIndex = delimiterIndex + 1;

 delimiterIndex = response.indexOf(delimiter, responseIndex);

(continued)

c01.indd 7c01.indd 7 8/20/07 5:40:05 PM8/20/07 5:40:05 PM

Chapter 1: AJAX Technologies

8

 Listing 1-2 (continued)

 var employeeid = response.substring(responseIndex, delimiterIndex);
 responseIndex = delimiterIndex + 1;

 delimiterIndex = response.indexOf(delimiter, responseIndex);
 var departmentname = response.substring(responseIndex, delimiterIndex);

 return new employee(firstname, lastname, employeeid, departmentname);
 }

 function readyStateChangeCallback()
 {
 if (request.readyState == 4 && request.status == 200)
 {
 var credentials = document.getElementById(“credentials”);
 credentials.style.display=”none”;
 var employeeinfotable = document.getElementById(“employeeinfo”);
 employeeinfotable.style.display=”block”;

 var employee = deserialize();

 var firstnamespan = document.getElementById(“firstname”);
 firstnamespan.innerText = employee.firstname;
 var lastnamespan = document.getElementById(“lastname”);
 lastnamespan.innerText = employee.lastname;

 var employeeidspan = document.getElementById(“employeeid”);
 employeeidspan.innerText = employee.employeeid;

 var departmentnamespan = document.getElementById(“departmentname”);
 departmentnamespan.innerText = employee.departmentname;
 }
 }

 window.credentials = function window$credentials(username, password)
 {
 this.username = username;
 this.password = password;
 }

 function serialize(credentials)
 {
 var requestBody=””;
 requestBody += “usernametbx”;
 requestBody += “=”;
 requestBody += encodeURIComponent(credentials.username);
 requestBody += “&”;
 requestBody += “passwordtbx”;
 requestBody += “=”;
 requestBody += encodeURIComponent(credentials.password);
 return requestBody;
 }

 function submitCallback()

c01.indd 8c01.indd 8 8/20/07 5:40:05 PM8/20/07 5:40:05 PM

Chapter 1: AJAX Technologies

9

 {
 var usernametbx = document.getElementById(“usernametbx”);
 var passwordtbx = document.getElementById(“passwordtbx”);
 var credentials1= new credentials(usernametbx.value, passwordtbx.value);
 var body = serialize(credentials1);

 request = new XMLHttpRequest();
 request.open(“POST”, document.form1.action);
 request.onreadystatechange = readyStateChangeCallback;
 request.setRequestHeader(“MyCustomHeader”, “true”);
 request.setRequestHeader(‘Content-Type’, ‘application/x-www-form-urlencoded’);
 request.send(body);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <table id=”credentials”>
 <tr>
 <td align=”right” style=”font-weight: bold”>
 Username:
 </td>
 <td align=”left”>
 <asp:TextBox runat=”server” ID=”usernametbx” /></td>
 </tr>
 <tr>
 <td align=”right” style=”font-weight: bold”>
 Password:
 </td>
 <td align=”left”>
 <asp:TextBox runat=”server” ID=”passwordtbx”
 TextMode=”Password” />
 </td>
 </tr>
 <tr>
 <td align=”center” colspan=”2”>
 <button id=”Button1” type=”button”
 onclick=”submitCallback()”>Submit</button>
 </td>
 </tr>
 </table>
 <table id=”employeeinfo”
 style=”background-color: LightGoldenrodYellow;
 border-color: Tan; border-width: 1px;
 color: Black; display: none” cellpadding=”2”>
 <tr style=”background-color: Tan; font-weight: bold”>
 <th colspan=”2”>
 Your Information</th>
 </tr>
 <tr>
 <td style=”font-weight: bold”>
 First Name</td>
 <td>

 </td>

(continued)

c01.indd 9c01.indd 9 8/20/07 5:40:06 PM8/20/07 5:40:06 PM

Chapter 1: AJAX Technologies

10

 Listing 1-2 (continued)

 </tr>
 <tr style=”background-color: PaleGoldenrod”>
 <td style=”font-weight: bold”>
 Last Name</td>
 <td>

 </td>
 </tr>
 <tr>
 <td style=”font-weight: bold”>
 Employee ID</td>
 <td>

 </td>
 </tr>
 <tr style=”background-color: PaleGoldenrod”>
 <td style=”font-weight: bold”>
 Department
 </td>
 <td>

 </td>
 </tr>
 </table>
 </form>
</body>
</html>

Figure 1-3 Figure 1-4

 Note that Listing 1-2 registers a JavaScript function named submitCallback as an event handler for the
 click event of the button. This function encapsulates the logic that schedules and makes the asynchronous
request to the server. This logic is what is referred to as the Scheduler in Figure 1-2 .

c01.indd 10c01.indd 10 8/20/07 5:40:06 PM8/20/07 5:40:06 PM

Chapter 1: AJAX Technologies

11

 Now let’s walk through the submitCallback function in the listing. First, submitCallback calls the
 getElementbyId method on the document object to return a reference to the username text box DOM
element:

 var usernametbx = document.getElementById(“usernametbx”);

 Next, it calls the getElementById method again to return a reference to the password text box DOM
element:

 var passwordtbx = document.getElementById(“passwordtbx”);

 Next, it creates an instance of a class named credentials :

 var credentials1 = new credentials(usernametbx.value, passwordtbx.value);

 Listing 1-2 defines the credentials class as follows:

 window.credentials = function window$credentials(username, password)
 {
 this.username = username;
 this.password = password;
 }

 The next order of business is to serialize this credentials object into a format that the server-side code
understands. This is exactly what the following JavaScript function named serialize does:

 var body = serialize(credentials1);

 This function basically contains the logic referred to as the Serializer in Figure 1-2 . The serialize func-
tion is discussed in more detail shortly, but for now it suffices to say that this function serializes the
 specified credentials object into a string with a specific format.

 Next, the submitCallback function creates an instance of the XMLHttpRequest class previously
defined in Listing 1-1 :

 request = new XMLHttpRequest();

 As previously discussed, this class encapsulates the browser-dependent logic that instantiates the appro-
priate object.

 Then, the submitCallback function invokes the open method on this XMLHttpRequest object, passing
in two parameters. The first parameter is the string “POST” because the function is making a POST HTTP
request to the server. The second parameter is the value of the action property of the form element. The
 action property contains the URL of the current page. The page is basically posting back to itself in
asynchronous fashion.

 request.open(“POST”, document.form1.action);

c01.indd 11c01.indd 11 8/20/07 5:40:07 PM8/20/07 5:40:07 PM

Chapter 1: AJAX Technologies

12

 Next, submitCallback assigns a reference, which references a JavaScript function named
 readyStateChangeCallback, to the onreadystatechange property of the XMLHttpRequest object:

 request.onreadystatechange = readyStateChangeCallback;

 Then, it invokes the setRequestHeader method on the XMLHttpRequest object to add a custom header
named MyCustomHeader with the value true :

 request.setRequestHeader(“MyCustomHeader”, “true”);

 As you’ll see later, when the page finally posts back to itself, the server-side code uses this header to dis-
tinguish between ansynchronous and normal synchronous postback requests.

 Next, the submitCallback function invokes the setRequestHeader method again, this time to set the
value of the Content-Type header request to application/x-www-form-urlencoded :

 request.setRequestHeader(‘Content-Type’, ‘application/x-www-form-urlencoded’);

 As you’ll see later, this will allow you to use the Request object to access the posted data.

 Finally, submitCallback invokes the send method on the XMLHttpRequest object, passing in the string
that contains the post data to make an HTTP POST request to the server:

 request.send(body);

 As previously discussed, this string is the return value of the serialize method.

 Now let’s walk through the implementation of the serialize function:

 function serialize(credentials)
 {
 var requestBody=””;
 requestBody += “usernametbx”;
 requestBody += “=”;
 requestBody += encodeURIComponent(credentials.username);
 requestBody += “&”;
 requestBody += “passwordtbx”;
 requestBody += “=”;
 requestBody += encodeURIComponent(credentials.password);
 return requestBody;
 }

 The serialize function generates a string that consists of two substrings separated by the &
character. The first substring itself consists of two substrings separated by the equal sign (=), where
the first substring contains the name HTML attribute value of the username text box DOM element
and the second substring contains the value that the end user has entered into this text box:

 var requestBody = ””;
 requestBody += “usernametbx”;
 requestBody += “=”;
 requestBody += usernametbx.value;

c01.indd 12c01.indd 12 8/20/07 5:40:07 PM8/20/07 5:40:07 PM

Chapter 1: AJAX Technologies

13

 The second substring itself consists of two substrings separated by the equal sign (=), where the first
 substring contains the name HTML attribute value of the password text box DOM element and the
 second substring contains the value that the end user has entered into this text box:

 requestBody += “passwordtbx”;
 requestBody += “=”;
 requestBody += passwordtbx.value;

 When this HTTP POST request arrives at the server, ASP.NET automatically loads the body of the request
into the Request object’s Form collection property because the Content-Type request header is set to
the value application/x-www-form-urlencoded . When the Page_Load method shown in Listing 1-2
is finally invoked, it first checks whether the current request contains an HTTP header named
 MyCustomHeader :

 if (Request.Headers[“MyCustomHeader”] != null)

 If so, this is an indication that the current page postback is an asynchronous page postback and,
 consequently, the Page_Load method first validates the user’s credentials. To keep the current
 discussion focused, this method hardcodes the valid credentials as shown here:

 if (Request.Form[“passwordtbx”] == “password” &&
 Request.Form[“usernametbx”] == “username”)

 If the validation succeeds, Page_Load generates a string that contains the server data (which is again
hardcoded to keep this discussion focused), invokes the Write method on the Response object to write
this string into the response output stream, and invokes the End method on the Response object to end
the current response and, consequently, to send the server response to the client:

 Response.Write(“Shahram|Khosravi|22223333|Some Department|”);
 Response.End();

 Ending the current response ensures that the current page will not go through its normal rendering rou-
tine where it renders the entire page all over again. That is the reason behind adding the custom HTTP
request header “ MyCustomHeader ”.

 The arrival of the server response changes the state of the XMLHttpRequest object to the completed
state, which in turn changes the value of the readyState property of the object to 4 . This change in
value automatically invokes the readyStateChangeCallback JavaScript function assigned to the
 onreadystatechange property of the object.

 The readyStateChangeCallback JavaScript function encapsulates the logic that uses DHTML to
dynamically update those portions of the page that need refereshing without re-rendering and reloading
the entire page all over again. This logic is what is referred to as the Renderer in Figure 1-2 .

 The readyStateChangeCallback JavaScript function first checks whether the readyState and
 status properties of the XMLHttpRequest object are set to 4 and 200 , respectively. If so, it invokes the
 getElementById method on the document object to return a reference to the table DOM element that

c01.indd 13c01.indd 13 8/20/07 5:40:08 PM8/20/07 5:40:08 PM

Chapter 1: AJAX Technologies

14

displays the login dialog box, and sets the display property of this DOM element’s style property to
 none to hide the dialog box:

 var credentials = document.getElementById(“credentials”);
 credentials.style.display=”none”;

 Next, readyStateChangeCallback invokes the getElementById method again, this time to return a
reference to the table DOM element that displays the server data, and sets the display property of this
DOM element’s style property to block to show this DOM element:

 var employeeinfotable = document.getElementById(“employeeinfo”);
 employeeinfotable.style.display=”block”;

 Then, it invokes the responseText property on the XMLHttpRequest object to return a string that con-
tains the server data:

 var response = request.responseText;

 Keep in mind that the server data is in the following format:

 Shahram|Khosravi|22223333|Some Department|

 The next order of business is to deserialize an employee object from the server data. The following
excerpt from Listing 1-2 defines the employee class:

 window.employee = function window$employee(firstname, lastname,
 employeeid, departmentname)
 {
 this.firstname = firstname;
 this.lastname = lastname;
 this.employeeid = employeeid;
 this.departmentname = departmentname
 }

 As you can see in the following excerpt from Listing 1-2 , the readyStateChangeCallback function
invokes a JavaScript function named deserialize :

 var employee = deserialize();

 This deserialize JavaScript function encapsulates the logic that deserializes an employee object from the
server data (described in more detail later). This logic is what is referred to as the Serializer in Figure 1-2 .

 Next, the readyStateChangeCallback function uses DHTML to update the relevant parts of the page
with employee information in the employee object. First, it calls the getElementyById method on the
 document object to return a reference to the DOM element with the id HTML attribute of

c01.indd 14c01.indd 14 8/20/07 5:40:08 PM8/20/07 5:40:08 PM

Chapter 1: AJAX Technologies

15

 firstname , and assigns the firstname property of the employee object to the innerText property of
this DOM element to display the first name of the employee:

 var firstnamespan = document.getElementById(“firstname”);
 firstnamespan.innerText = employee.firstname;

 Next, it calls the getElementyById method again, this time to return a reference to the DOM
element with the id HTML attribute of lastname , and assigns the lastname property of the employee
object to the innerText property of this DOM element to display the last name of the employee:

 var lastnamespan = document.getElementById(“lastname”);
 lastnamespan.innerText = employee.lastname;

 It then repeats the same process to display the employee’s id and department name:

 var employeeidspan = document.getElementById(“employeeid”);
 employeeidspan.innerText = employee.employeeid;

 var departmentnamespan = document.getElementById(“departmentname”);
 departmentnamespan.innerText = employee.departmentname;

 As mentioned, the deserialize JavaScript function deserializes an employee object from the server data:

 function deserialize(response)
 {
 var delimiter=”|”;
 var responseIndex = 0;
 var delimiterIndex;

 delimiterIndex = response.indexOf(delimiter, responseIndex);
 var firstname = response.substring(responseIndex, delimiterIndex);
 responseIndex = delimiterIndex + 1;
 delimiterIndex = response.indexOf(delimiter, responseIndex);
 var lastname = response.substring(responseIndex, delimiterIndex);
 responseIndex = delimiterIndex + 1;

 delimiterIndex = response.indexOf(delimiter, responseIndex);
 var employeeid = response.substring(responseIndex, delimiterIndex);
 responseIndex = delimiterIndex + 1;

 delimiterIndex = response.indexOf(delimiter, responseIndex);
 var departmentname = response.substring(responseIndex, delimiterIndex);

 return new employee(firstname, lastname, employeeid, departmentname);
 }

 The deserialize function basically contains the logic that knows how to parse a string with the follow-
ing format into an employee object:

 Shahram|Khosravi|22223333|Some Department|

c01.indd 15c01.indd 15 8/20/07 5:40:08 PM8/20/07 5:40:08 PM

Chapter 1: AJAX Technologies

16

 XML
 As you saw earlier, Listing 1-2 contains a JavaScript function named serialize that serializes a given
credentials object into a string with the following format before this object is sent over the wire to
the server:

 usernametbx=username&passwordtbx=password

 Listing 1-2 also contains a JavaScript function named deserialize that deserializes an employee object
from a string with the following format:

 Shahram|Khosravi|22223333|Some Department|

 The serialize and deserialize methods encapsulate the logic that was referred to as the Serializer in
Figure 1-2 .

 The great thing about the XML format is that the server- and client-side technologies provide built-in
support for serializing objects into XML and deserializing objects from XML. Listing 1-3 presents a new
version of Listing 1-2 where the Page_Load server-side method serializes the server data into XML,
which is then sent over the wire to the client, where the deserialize JavaScript function deserializes an
 employee object from the XML.

 Listing 1-3: A version of Listing 1-2 that uses XML format

 <%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Xml” %>

<%@ Import Namespace=”System.IO” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<script runat=”server”>
 void Page_Load(object sender, EventArgs e)
 {
 if (Request.Headers[“MyCustomHeader”] != null)
 {
 if (Request.Form[“passwordtbx”] == “password” &&
 Request.Form[“usernametbx”] == “username”)
 {
 string xml=””;
 using (StringWriter sw = new StringWriter())
 {
 XmlWriterSettings settings = new XmlWriterSettings();
 settings.Indent = true;
 settings.OmitXmlDeclaration = true;
 using (XmlWriter xw = XmlWriter.Create(sw, settings))
 {
 xw.WriteStartDocument();
 xw.WriteStartElement(“employeeInfo”);
 xw.WriteElementString(“firstName”, “Shahram”);
 xw.WriteElementString(“lastName”, “Khosravi”);
 xw.WriteElementString(“employeeId”, “22223333”);
 xw.WriteElementString(“departmentName”, “Some Department”);
 xw.WriteEndElement();

c01.indd 16c01.indd 16 8/20/07 5:40:09 PM8/20/07 5:40:09 PM

Chapter 1: AJAX Technologies

17

 xw.WriteEndDocument();
 }
 xml = sw.ToString();
 }
 Response.ContentType = ”text/xml”;
 Response.Write(xml);
 Response.End();
 }
 else
 throw new Exception(“Wrong credentials”);
 }
 }
</script>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 var request;

 if (!window.XMLHttpRequest)
 {
 // Same as Listing 2
 }

 window.employee = function window$employee(firstname, lastname,
 employeeid, departmentname)
 {
 // Same as Listing 2
 }

 function deserialize()
 {
 var response = request.responseXML;
 var employeeInfo = response.documentElement;
 var firstNameElement = employeeInfo.childNodes[0];
 var firstname = firstNameElement.firstChild.nodeValue;

 var lastNameElement = employeeInfo.childNodes[1];
 var lastname = lastNameElement.firstChild.nodeValue;

 var employeeIdElement = employeeInfo.childNodes[2];
 var employeeid = employeeIdElement.firstChild.nodeValue;

 var departmentNameElement = employeeInfo.childNodes[3];
 var departmentname = departmentNameElement.firstChild.nodeValue;

 return new employee(firstname, lastname, employeeid, departmentname);
 }

 function readyStateChangeCallback()
 {
 // Same as Listing 2
 }

 window.credentials = function window$credentials(username, password)

(continued)

c01.indd 17c01.indd 17 8/20/07 5:40:09 PM8/20/07 5:40:09 PM

Chapter 1: AJAX Technologies

18

 Listing 1-3 (continued)

 {
 // Same as Listing 2
 }

 function serialize(credentials)
 {
 // Same as Listing 2
 }

 function submitCallback()
 {
 // Same as Listing 2
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <!- Same as Listing 2 ->
 </form>
</body>
</html>

 Now let’s walk through the implementations of the Page_Load server-side method and the
 deserialize JavaScript function in this listing, starting with the Page_Load method.

 The Page_Load method begins by instantiating a StringWriter into which the XML data will be
written:

 string xml = ””;
 using (StringWriter sw = new StringWriter())

 Then it instantiates an XmlWriterSettings object that specifies the settings for the XML document. In
this case, the XML document will be indented and it will not contain the XML declaration:

 XmlWriterSettings settings = new XmlWriterSettings();
 settings.Indent = true;
 settings.OmitXmlDeclaration = true;

 Next, it instantiates an XmlWriter object with the specified settings and wraps the StringWriter . In
other words, this XmlWriter will write the XML into the StringWriter :

 using (XmlWriter xw = XmlWriter.Create(sw, settings))

 Then, it invokes the WriteStartDocument method on the XmlWriter to mark the beginning of the
XML document:

 xw.WriteStartDocument();

c01.indd 18c01.indd 18 8/20/07 5:40:10 PM8/20/07 5:40:10 PM

Chapter 1: AJAX Technologies

19

 Next, it invokes the WriteStartElement method on the XmlWriter to write a new element named
 employeeInfo into the XmlWriter , which in turn writes this element into the StringWriter :

 xw.WriteStartElement(“employeeInfo”);

 This element will act as the document element of the XML document. Every XML document must have a
single element known as the document element that encapsulates the rest of the XML document.

 Page_Load then invokes the WriteElementString method four times to write three elements named
 firstName , lastName , employeeId , and departmentName with the specified values into the
 XmlWriter , which in turn writes these elements into the StringWriter :

 xw.WriteElementString(“firstName”, “Shahram”);
 xw.WriteElementString(“lastName”, “Khosravi”);
 xw.WriteElementString(“employeeId”, “22223333”);
 xw.WriteElementString(“departmentName”, “Some Department”);

 Next, Page_Load invokes the ToString method on the StringWriter to return a string that contains
the entire XML document:

 xml = sw.ToString();

 Then, it sets the Content-Type HTTP response header to the value text/xml to signal the client code
that the server response contains XML data:

 Response.ContentType=”text/xml”;

 Next, it writes the string that contains the XML data into the server response output stream:

 Response.Write(xml);

 Finally, it invokes the End method on the Response object to end the response right away and, consequently,
to send the XML document to the client, bypassing the normal rendering routine of the current page:

 Response.End();

 Now let’s walk through the implementation of the deserialize JavaScript function in Listing 1-3 . This
function invokes the responseXML property on the XMLHttpRequest object to return the XML
document:

 var response = request.responseXML;
 var employeeInfo = response.documentElement;

 Then, it uses the XML API to extract the employee’s firstname , lastname , employeeid , and
 departmentname from the XML document:

c01.indd 19c01.indd 19 8/20/07 5:40:10 PM8/20/07 5:40:10 PM

Chapter 1: AJAX Technologies

20

 var firstNameElement = employeeInfo.childNodes[0];
 var firstname = firstNameElement.firstChild.nodeValue;

 var lastNameElement = employeeInfo.childNodes[1];
 var lastname = lastNameElement.firstChild.nodeValue;

 var employeeIdElement = employeeInfo.childNodes[2];
 var employeeid = employeeIdElement.firstChild.nodeValue;

 var departmentNameElement = employeeInfo.childNodes[3];
 var departmentname = departmentNameElement.firstChild.nodeValue;

 Finally, it instantiates and returns an employee object with the returned firstname , lastname ,
 employeeid , and departmentname :

 return new employee(firstname, lastname, employeeid, departmentname);

 JSON
 One of the main tasks in an AJAX-enabled application is to serialize client/server-side objects into the
 appropriate format before data is sent over the wire and to deserialize client/server-side objects
from an appropriate format after data is received over the wire. In general there are two common
data- interchange formats: XML and JSON. XML format was discussed in the previous section. Now let’s
move on to the second common data-interchange format: JSON.

 JavaScript Object Notation (JSON) is a data-interchange format based on a subset of the JavaScript lan-
guage. The following sections present the fundamental JSON concepts and terms.

 object
 A JSON object is an unordered, comma-separated list of name/value pairs enclosed within a pair of
braces. The name and value parts of each name/value pair are separated by a colon (:). The name part
of each name/value pair is a string; and the value part is an array, another object, a string, a number,
 true , false , or null .

 array
 A JSON array is an ordered, comma-separated list of values enclosed within a pair of square brackets
([]). Each value is an array, another object, a string, a number, true , false , or null .

 string
 A JSON string is a collection of zero or more Unicode characters enclosed within double quotes (“ “).
You must use a JSON string to represent a single character, and the character must be in double
quotes. You must use the backslash character (\) to escape the following characters:

 ❑ Quotation mark (\")

❑ Solidus (\/)

c01.indd 20c01.indd 20 8/20/07 5:40:11 PM8/20/07 5:40:11 PM

Chapter 1: AJAX Technologies

21

❑ Reverse solidus (\\)

❑ Backspace (\b)

❑ Formfeed (\f)

❑ Newline (\n)

❑ Carriage return (\r)

❑ Horizontal tab (\t)

 number
 A JSON number is very similar to a C# number with one major exception: JSON does not support octal
and hexadecimal formats.

 null, true, and false
 JSON supports null , true , and false as valid values.

 JSON is a simple-yet-powerful, data-interchange format. It has the same hierarchical nature as XML,
without the extra angle brackets, as shown in the following example:

 {
 “departments”:[
 {“departmentName”:”department1”,
 “departementManager”:{“name”:”someName1”,
 “employeeID”:1,
 “managesMultipleDepts”:true
 },
 “sections”:[
 {“sectionName”:”section1”,
 “sectionManager”:{“name”:”someName2”,
 “employeeID”:2
 },
 “employees”:[
 {“name”:”someName3”,
 “employeeID”:3
 },
 {“name”:”someName4”,
 “employeeID”:4
 }
]
 },
 {“sectionName”:”section2”,
 “sectionManager”:{“name”:”someName5”,
 “employeeID”:5
 },
 “employees”:[
 {“name”:”someName6”,
 “employeeID”:6
 },

(continued)

c01.indd 21c01.indd 21 8/20/07 5:40:11 PM8/20/07 5:40:11 PM

Chapter 1: AJAX Technologies

22

 {“name”:”someName7”,
 “employeeID”:7
 }
]
 }
]
 }
]
}

 One of the great things about JSON is that JavaScript provides easy, built-in support for parsing a JSON
representation, as shown in Listing 1-4 . This example is a version of Listing 1-2 that uses JSON.

 Listing 1-4: A version of Listing 1-2 that uses JSON

 <%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Xml” %>
<%@ Import Namespace=”System.IO” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<script runat=”server”>
 void Page_Load(object sender, EventArgs e)
 {
 if (Request.Headers[“MyCustomHeader”] != null)
 {
 if (Request.Form[“passwordtbx”] == “password” &&
 Request.Form[“usernametbx”] == “username”)
 {
 string json=”{\”firstname\”: \”Shahram\”,”;
 json += “\”lastname\”: \”Khosravi\”,”;
 json += “\”employeeid\”: 22223333,”;
 json += “\”departmentname\”: \”Some Department\”}”;
 Response.Write(json);
 Response.End();
 }
 else
 throw new Exception(“Wrong credentials”);
 }
 }
</script>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 var request;

 if (!window.XMLHttpRequest)
 {
 // Same as Listing 2
 }

 function readyStateChangeCallback()
 {
 if (request.readyState == 4 && request.status == 200)
 {

c01.indd 22c01.indd 22 8/20/07 5:40:11 PM8/20/07 5:40:11 PM

Chapter 1: AJAX Technologies

23

 var credentials = document.getElementById(“credentials”);
 credentials.style.display=”none”;
 var employeeinfotable = document.getElementById(“employeeinfo”);
 employeeinfotable.style.display=”block”;

 var response = request.responseText;
 eval(“var employee = ” + response + “;”);

 var firstnamespan = document.getElementById(“firstname”);
 firstnamespan.innerText = employee.firstname;
 var lastnamespan = document.getElementById(“lastname”);
 lastnamespan.innerText = employee.lastname;

 var employeeidspan = document.getElementById(“employeeid”);
 employeeidspan.innerText = employee.employeeid;

 var departmentnamespan = document.getElementById(“departmentname”);
 departmentnamespan.innerText = employee.departmentname;
 }
 }

 window.credentials = function window$credentials(username, password)
 {
 // Same as Listing 2
 }

 function serialize(credentials)
 {
 // Same as Listing 2
 }

 function submitCallback()
 {
 // Same as Listing 2
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 // Same as Listing 2
 </form>
</body>
</html>

 In this listing, the Page_Load method generates a string that contains the JSON representation of the
employee object. This method writes the JSON representation into the response output stream and ends
the response as usual:

 string json=”{\”firstname\”: \”Shahram\”,”;
 json += “\”lastname\”: \”Khosravi\”,”;
 json += “\”employeeid\”: 22223333,”;
 json += “\”departmentname\”: \”Some Department\”}”;

 Response.Write(json);
 Response.End();

c01.indd 23c01.indd 23 8/20/07 5:40:12 PM8/20/07 5:40:12 PM

Chapter 1: AJAX Technologies

24

 Things are pretty simple on the client side, as you can see in the following code fragment from Listing 1-4 :

 var response = request.responseText;
 eval(“var employee=” + response + “;”);

 This simply calls the eval JavaScript function to deserialize an employee object in the JSON string
received from the server. As you can see, the messy XML deserialization code presented in Listing 1-3 is
all gone and replaced with a simple call into the eval JavaScript function. However, this simplicity
comes with a price. Because the eval JavaScript function basically trusts the scripts that it runs, it intro-
duces serious security issues. This is not a problem in this example because the JSON representation is
coming from a trusted server. However, in general, you must be very careful about what gets passed
into eval .

 ASP.NET AJAX
 The ASP.NET AJAX framework brings to the world of AJAX-enabled Web application development
what ASP.NET and the .NET Framework brought to the world of server-side Web application
 development over the past few years. The biggest advantage of ASP.NET over the earlier server-side
Web development technologies such as the classic ASP is that you get to program in the .NET Frame-
work, which provides the following benefits among many others:

 ❑ The .NET Framework is a full-fledged, object-oriented framework that enables you to take full
advantage of all the well-known benefits of object-oriented programming such as classes, inter-
faces, namespaces, polymorphism, inheritance, and the like.

❑ The .NET Framework comes with a large set of managed classes with convenient methods,
properties, and events that save you from having to write lots of infrastructure and generic code
that have nothing to do with the specifics of your application.

❑ The .NET Framework includes a full-fledged typing and type-reflection system that enables you
to perform runtime type inspections, discoveries, instantiations, invocations, and the like.

❑ The .NET Framework provides you with groundbreaking facilities and capabilities such as the
following:

❑ Application lifecycle and its events: The HttpApplication object that represents an ASP.NET
application goes through a set of steps or phases collectively known as the application life-
cycle. This object raises events before and/or after each lifecycle phase to allow you to cus-
tomize the application lifecycle.

❑ Page lifecycle and its events: Every ASP.NET page goes through a set of steps or phases
 collectively known as the page lifecycle. The Page object that represents the ASP.NET page
raises events before and/or after each lifecycle phase to allow you to customize the page
lifecycle.

❑ Server controls: Server controls enable you to program against the underlying markup
using the .NET Framework and its rich, object-oriented class library. This gives you the
same programming experience as these server controls desktop counterparts provide.

c01.indd 24c01.indd 24 8/20/07 5:40:12 PM8/20/07 5:40:12 PM

Chapter 1: AJAX Technologies

25

❑ Control architecture: Every server control goes through a set of steps or phases collectively
known as the control lifecycle, and raises events before and/or after each lifecycle phase to
allow you to customize the control lifecycle.

❑ Declarative programming: The ASP.NET declarative programming enables you to program
declaratively without writing a single line of imperative code. The ASP.NET runtime
 automatically parses the declarative code, dynamically generates the associated imperative
code, dynamically compiles the imperative code, caches the compiled imperative code for
future use, and instantiates and initializes the associated compiled .NET types.

 Thanks to ASP.NET and the .NET Framework, the server-side Web application development world can
take full advantage of these important programming benefits to enormously boost productivity and to
write more reliable and architecturally sound programs.

 As you’ll see throughout this book, the ASP.NET AJAX framework provides similar programming
 benefits to developers of AJAX-enabled Web applications. The ASP.NET AJAX Framework consists of
two frameworks: the ASP.NET AJAX client-side framework and the ASP.NET AJAX server-side frame-
work. The ASP.NET AJAX server-side framework is an extension of the ASP.NET Framework, which
 provides all the server-side support that an AJAX-enabled Web application needs.

Installing the ASP.NET AJAX Extensions
and ASP.NET Futures

Make sure both the ASP.NET AJAX Extensions and ASP.NET Futures are installed on your computer.
You can download free copies of the ASP.NET AJAX Extensions and ASP.NET Futures from the official
Microsoft ASP.NET AJAX site at

 Summary
 This chapter first discussed the main AJAX technologies. Then it provided a brief description of the ASP.
NET AJAX framework. As mentioned, the ASP.NET AJAX framework consists of two main frameworks:
the ASP.NET AJAX client-side framework and ASP.NET AJAX server-side framework.

 The next chapter begins your journey of the ASP.NET AJAX client-side framework, where you’ll learn a
great deal about the ASP.NET AJAX JavaScript base type extensions.

c01.indd 25c01.indd 25 8/20/07 5:40:12 PM8/20/07 5:40:12 PM

c01.indd 26c01.indd 26 8/20/07 5:40:13 PM8/20/07 5:40:13 PM

 JavaScript Base Type
Extensions

 The main goal of the ASP.NET AJAX client-side framework is to emulate the ASP.NET and .NET
Framework as much as possible to bring similar .NET-style programming to your client-side
 scripting. The ASP.NET AJAX JavaScript base type extensions are the first step toward achieving
this goal.

 These extensions extend the functionality of the JavaScript base types such as Array , Boolean ,
 Date , Error , Number , Object , and String to add support for .NET-like methods and properties.
As such, the ASP.NET AJAX JavaScript base type extensions make client-side programming
against these JavaScript base types more like server-side programming against their .NET counter-
parts as much as possible .

 The code samples presented in this chapter use a new JavaScript function named pageLoad and a
new server control named ScriptManager as shown in the boldfaced portion of Listing 2-1 .

 Listing 2-1: The ASP . NET Page Used by the Examples

 <%@ Page Language = “C#” %>
<html xmlns = “http://www.w3.org/1999/xhtml”>
<head runat = “server”>
 <title>Untitled Page</title>
 <script language = “JavaScript” type = “text/javascript”>
 function pageLoad() {
 . . .
 }
 </script>
</head>
<body>
 <form id = “form1” runat = “server”>
 <asp:ScriptManager ID = “ScriptManager1” runat = “server” />
 </form>
</body>
</html>

c02.indd 27c02.indd 27 8/20/07 5:42:26 PM8/20/07 5:42:26 PM

Chapter 2: JavaScript Base Type Extensions

28

 I’ll discuss the pageLoad JavaScript function and ScriptManager server control in detail in future
 chapters. For now, here are two key concepts:

 ❑ One of the responsibilities of the ScriptManager server control is to download the ASP.NET
AJAX client-side framework to the requesting browser to make it available to the browser’s
 JavaScript engine.

❑ The ASP.NET AJAX client-side framework automatically calls the pageLoad JavaScript function
after the page and the related client-side scripts are completely loaded.

 ASP . NET AJAX Array Type Extensions
 The .NET Array type features methods such as Clone , Add , Clear , Contains , IndexOf , Insert ,
 Remove , and RemoveAt . The ASP.NET AJAX client-side framework extends the JavaScript Array type to
add support for similar methods. These extensions allow the JavaScript Array type to emulate its .NET
counterpart as much as possible to make you feel like you’re programming against the .NET Array type.

 Keep in mind that these new methods are static methods, which means that you must call these methods
directly on the Array class itself.

 add
 The add method takes two arguments of type Array and Object , respectively and adds the Object to
the end of the Array as shown in the following code. Because the second argument is of type Object ,
you can add any type of object to the specified array.

 <%@ Page Language = “C#” %>
<html xmlns = “http://www.w3.org/1999/xhtml”>
<head runat = “server”>
 <title>Untitled Page</title>
 <script language = “JavaScript” type = “text/javascript”>

 function pageLoad() {
 var a = [‘m1’,’m2’];
 Array.add(a, ‘m3’);
 for (var i = 0; i<a.length; i++)
 alert(a[i]);
 }
 </script>
</head>
<body>
 <form id = “form1” runat = “server”>
 <asp:ScriptManager ID = “ScriptManager1” runat = “server” />
 </form>
</body>
</html>

c02.indd 28c02.indd 28 8/20/07 5:42:27 PM8/20/07 5:42:27 PM

Chapter 2: JavaScript Base Type Extensions

29

 add Range
 The addRange method takes two arguments of type Array and adds the contents of the second Array
object to the end of the first Array object, as shown in the following code:

 <%@ Page Language = “C#” %>
<html xmlns = “http://www.w3.org/1999/xhtml”>
<head runat = “server”>
 <title>Untitled Page</title>
 <script language = “JavaScript” type = “text/javascript”>

 function pageLoad() {
 var a1 = [‘m1’,’m2’];
 var a2 = [‘m3’,’m4’,’m5’];
 Array.addRange(a1, a2);
 for (var i = 0; i<a1.length; i++)
 alert(a1[i]);
 }
 </script>
</head>
<body>
 <form id = “form1” runat = “server”>
 <asp:ScriptManager ID = “ScriptManager1” runat = “server” />
 </form>
</body>
</html>

 clear
 The clear method clears the specified Array object and sets its length property to zero, as shown in
the following code fragment:

 <%@ Page Language = “C#” %>
<html xmlns = “http://www.w3.org/1999/xhtml”>
<head runat = “server”>
 <title>Untitled Page</title>
 <script language = “JavaScript” type = “text/javascript”>

 function pageLoad() {
 var a1 = [‘m1’,’m2’];
 alert(a1.length);
 Array.clear(a1);
 alert(a1.length);
 }
 </script>
</head>
<body>
 <form id = “form1” runat = “server”>
 <asp:ScriptManager ID = “ScriptManager1” runat = “server” />
 </form>
</body>
</html>

c02.indd 29c02.indd 29 8/20/07 5:42:27 PM8/20/07 5:42:27 PM

Chapter 2: JavaScript Base Type Extensions

30

 clone
 The clone method clones the specified Array object. This cloning operation is a shallow copy , which
means that the object referenced in the Array object and its clone reference the same objects. That is, the
 references are copied, but the objects being referenced are not copied, as shown in the following code:

 <%@ Page Language = “C#” %>
<html xmlns = “http://www.w3.org/1999/xhtml”>
<head runat = “server”>
 <title>Untitled Page</title>
 <script language = “JavaScript” type = “text/javascript”>

 function pageLoad() {
 var a1 = [‘m1’,’m2’];
 var a2 = Array.clone(a1);
 alert(“a1[0] = “ + a1[0] + “\n” + “a2[0] = “ + a2[0]);
 alert(“a1[1] = “ + a1[1] + “\n” + “a2[1] = “ + a2[1]);
 }
 </script>
</head>
<body>
 <form id = “form1” runat = “server”>
 <asp:ScriptManager ID = “ScriptManager1” runat = “server” />
 </form>
</body>
</html>

 contains
 The contains method returns a Boolean value that indicates whether the specified Array object
 contains the specified element. For example:

 <%@ Page Language = “C#” %>
<html xmlns = “http://www.w3.org/1999/xhtml”>
<head runat = “server”>
 <title>Untitled Page</title>
 <script language = “JavaScript” type = “text/javascript”>

 function pageLoad() {
 var a1 = [‘m1’,’m2’];
 alert(Array.contains(a1,’m2’));
 alert(Array.contains(a1,’m4’));
 }
 </script>
</head>
<body>
 <form id = “form1” runat = “server”>
 <asp:ScriptManager ID = “ScriptManager1” runat = “server” />
 </form>
</body>
</html>

c02.indd 30c02.indd 30 8/20/07 5:42:27 PM8/20/07 5:42:27 PM

Chapter 2: JavaScript Base Type Extensions

31

 enqueue and dequeue
 The JavaScript Array type can be used as a stack. The standard JavaScript Array type exposes two
methods named push and pop . The push method pushes a specified item onto the top of the stack, and
the pop method pops up the item at the top of the stack. Here is an example:

 <%@ Page Language = “C#” %>
<html xmlns = “http://www.w3.org/1999/xhtml”>
<head runat = “server”>
 <title>Untitled Page</title>
 <script language = “JavaScript” type = “text/javascript”>

 function pageLoad() {
 var a = [];
 a.push(‘m1’);
 a.push(‘m2’);
 a.push(‘m3’);
 alert(a.pop());
 }
 </script>
</head>
<body>
 <form id = “form1” runat = “server”>
 <asp:ScriptManager ID = “ScriptManager1” runat = “server” />
 </form>
</body>
</html>

 This example respectively pushes the m1 , m2 , and m3 items onto the top of the stack. Note that the last
pushed item—that is, m3 —sits on the top of the stack. The call into the pop method pops up the topmost
item—that is, m3 . Figure 2-1 presents the stack before and after the call into the pop method.

Stack (Before Calling pop) Stack (After Calling pop)

‘m3’

‘m2’

‘m2’

‘m1’

‘m1’

Figure 2-1

 The JavaScript Array type can also be used as a queue. A queue is the opposite of a stack. A queue uses a
FIFO (first in, first out) algorithm where the first item added to the queue is the first item to be served.
The JavaScript Array type includes a method named shift that allows you to access the first item

c02.indd 31c02.indd 31 8/20/07 5:42:28 PM8/20/07 5:42:28 PM

Chapter 2: JavaScript Base Type Extensions

32

added to the list. Here is an example of a queue in JavaScript:

 <%@ Page Language = “C#” %>
<html xmlns = “http://www.w3.org/1999/xhtml”>
<head runat = “server”>
 <title>Untitled Page</title>
 <script language = “JavaScript” type = “text/javascript”>

 function pageLoad() {
 var a = [];
 a[0] = ‘m1’;
 a[1] = ‘m2’;
 a[2] = ‘m3’;
 alert(a.shift());
 }
 </script>
</head>
<body>
 <form id = “form1” runat = “server”>
 <asp:ScriptManager ID = “ScriptManager1” runat = “server” />
 </form>
</body>
</html>

 As you can see, JavaScript already supports the concept of queueing. However, the way this is done in
JavaScript is quite different from the way it’s done in the .NET Framework. The main problem is
that JavaScript uses an unintuitive approach to implement a queue. The ASP.NET AJAX client-side
framework extends the functionality of the JavaScript Array type to add support for two
convenient .NET-like methods named enqueue and dequeue , as shown here:

 <%@ Page Language = “C#” %>
<html xmlns = “http://www.w3.org/1999/xhtml”>
<head runat = “server”>
 <title>Untitled Page</title>
 <script language = “JavaScript” type = “text/javascript”>

 function pageLoad() {
 var a = [];
 Array.enqueue(a,’m1’);
 Array.enqueue(a,’m2’);
 Array.enqueue(a,’m3’);
 alert(Array.dequeue(a));
 }
 </script>
</head>
<body>
 <form id = “form1” runat = “server”>
 <asp:ScriptManager ID = “ScriptManager1” runat = “server” />
 </form>
</body>
</html>

 Figure 2-2 presents the queue before and after the call into the dequeue method.

c02.indd 32c02.indd 32 8/20/07 5:42:28 PM8/20/07 5:42:28 PM

Chapter 2: JavaScript Base Type Extensions

33

 for Each
 The ASP.NET AJAX client-side framework extends the functionality of the JavaScript Array type to add
support for a method named forEach . The best way to understand what this method does is to look at
the internal implementation of this method as shown in Listing 2-2 .

 Listing 2-2: The Internal Implementation of the for Each Method

 Array.forEach = function(b, e, d)
{
 for(var a = 0, f = b.length; a < f; a ++)
 {
 var c = b[a];
 if(typeof c !== “undefined”)
 e.call(d, c, a, b);
 }
}

 The forEach method takes the following three parameters:

❑ b : This parameter references a JavaScript Array object.

❑ e : This parameter references a JavaScript function that takes three parameters, which will be dis-
cussed shortly .

❑ d : This parameter references a JavaScript object.

 As Listing 2-2 shows, the forEach function iterates through the elements of the Array object (b), calls
the JavaScript function (e) once for each enumerated element, and passes the following parameters
into the call method of this JavaScript function (e):

 ❑ The JavaScript object (d)

❑ The value of the enumerated element (c)

❑ The index of the enumerated element (a)

❑ The JavaScript Array itself (b)

 It’s completely up to the implementation of the JavaScript function (e) and the JavaScript object (d) what
to do with the enumerated element of the specified array object (b) when the JavaScript function (e) is
called. Listing 2-3 shows an example.

Queue (Before Calling dequeue) Queue (After Calling dequeue)

‘m3’

‘m2’

‘m3’

‘m2’

‘m1’

Figure 2-2

c02.indd 33c02.indd 33 8/20/07 5:42:28 PM8/20/07 5:42:28 PM

Chapter 2: JavaScript Base Type Extensions

34

 Listing 2-3: Demonstration of the for Each Method

 <%@ Page Language = “C#” %>
<html xmlns = “http://www.w3.org/1999/xhtml”>
<head runat = “server”>
 <title>Untitled Page</title>
 <script language = “JavaScript” type = “text/javascript”>
 function multiply(val,index,ar)
 {
 ar[index] = val * this.get_c();
 }

 function myClass(c)
 {
 this.c = c;
 this.get_c = function ()
 {
 return this.c;
 };
 }

 function pageLoad() {
 var a = [1, 2, 3, 4];
 var myObj = new myClass(6);
 Array.forEach(a, multiply, myObj);
 for (var j = 0; j<a.length; j++)
 alert(a[j]);
 }
 </script>
</head>
<body>
 <form id = “form1” runat = “server”>
 <asp:ScriptManager ID = “ScriptManager1” runat = “server” />
 </form>
</body>
</html>

 In this case, the forEach function calls the multiply JavaScript function once for each element of the
 Array (a). Note that Listing 2-3 also defines a class named myClass with a simple field and a getter
method that returns the value of this field. In this case, the forEach function simply multiplies the value
of each element of the array by the number 6.

 index Of
 The ASP.NET AJAX client-side framework extends the functionality of the JavaScript Array type
to add support for a method named indexOf . As the name implies, this method returns the index of a
specified element of a specified array. As such, it takes the following three parameters:

 ❑ The JavaScript array to be searched

❑ The array element to search for

❑ The index at which to start searching the array

c02.indd 34c02.indd 34 8/20/07 5:42:29 PM8/20/07 5:42:29 PM

Chapter 2: JavaScript Base Type Extensions

35

 Here is an example:

 <%@ Page Language = “C#” %>
<html xmlns = “http://www.w3.org/1999/xhtml”>
<head runat = “server”>
 <title>Untitled Page</title>
 <script language = “JavaScript” type = “text/javascript”>

 function pageLoad() {
 var a = [1, 2, 3, 4];
 alert (Array.indexOf(a, 3, 1));
 }
 </script>
</head>
<body>
 <form id = “form1” runat = “server”>
 <asp:ScriptManager ID = “ScriptManager1” runat = “server” />
 </form>
</body>
</html>

 insert
 The ASP.NET AJAX client-side framework extends the JavaScript Array type to add support for a
method named insert , which inserts a specified object into a specified array at the specified index. The
following code fragment inserts the number 5 into the specified array at position 1 , which means that
after the insertion, the array will contain these elements: 1 , 5 , 2 , 3 , and 4 .

 <%@ Page Language = “C#” %>
<html xmlns = “http://www.w3.org/1999/xhtml”>
<head runat = “server”>
 <title>Untitled Page</title>
 <script language = “JavaScript” type = “text/javascript”>

 function pageLoad() {
 var a = [1, 2, 3, 4];
 Array.insert(a, 1, 5);
 for (var i = 0; i<a.length; i++)
 alert(a[i]);
 }
 </script>
</head>
<body>
 <form id = “form1” runat = “server”>
 <asp:ScriptManager ID = “ScriptManager1” runat = “server” />
 </form>
</body>
</html>

c02.indd 35c02.indd 35 8/20/07 5:42:29 PM8/20/07 5:42:29 PM

Chapter 2: JavaScript Base Type Extensions

36

 parse
 The parse extension method allows you to parse the content of a string into an array. The string must
follow this format: “[m1, m2, m3, m4, m5]” . Here is an example:

 <%@ Page Language = “C#” %>
<html xmlns = “http://www.w3.org/1999/xhtml”>
<head runat = “server”>
 <title>Untitled Page</title>
 <script language = “JavaScript” type = “text/javascript”>

 function pageLoad() {
 var str = “[1, 2, 3, 4]”;
 var a = Array.parse(str);
 for (var i = 0; i<a.length; i++)
 alert(a[i]);
 }
 </script>
</head>
<body>
 <form id = “form1” runat = “server”>
 <asp:ScriptManager ID = “ScriptManager1” runat = “server” />
 </form>
</body>
</html>

 remove
 The remove extension method allows you to remove a specified item from a specified array. The follow-
ing code fragment removes the number 3 from the specified array:

 <%@ Page Language = “C#” %>
<html xmlns = “http://www.w3.org/1999/xhtml”>
<head runat = “server”>
 <title>Untitled Page</title>
 <script language = “JavaScript” type = “text/javascript”>

 function pageLoad() {
 var a = [1, 2, 3, 4];
 Array.remove(a,3);
 for (var i = 0; i<a.length; i++)
 alert(a[i]);
 }
 </script>
</head>
<body>
 <form id = “form1” runat = “server”>
 <asp:ScriptManager ID = “ScriptManager1” runat = “server” />
 </form>
</body>
</html>

c02.indd 36c02.indd 36 8/20/07 5:42:30 PM8/20/07 5:42:30 PM

Chapter 2: JavaScript Base Type Extensions

37

 remove At
 The removeAt method removes an item with the specified index from the specified array. The following
code listing removes the item with an index of 2 (that is, the number 3) from the specified array:

 <%@ Page Language = “C#” %>
<html xmlns = “http://www.w3.org/1999/xhtml”>
<head runat = “server”>
 <title>Untitled Page</title>
 <script language = “JavaScript” type = “text/javascript”>

 function pageLoad() {
 var a = [1, 2, 3, 4];
 Array.removeAt(a,2);
 for (var i = 0; i<a.length; i++)
 alert(a[i]);
 }
 </script>
</head>
<body>
 <form id = “form1” runat = “server”>
 <asp:ScriptManager ID = “ScriptManager1” runat = “server” />
 </form>
</body>
</html>

 ASP . NET AJAX Boolean Type Extensions
 The ASP.NET AJAX client-side framework extends the JavaScript Boolean type to add support for a
new .NET-like method named parse that parses the string values of “true” and “false” into a valid
JavaScript Boolean value. Here’s an example:

 <%@ Page Language = “C#” %>
<html xmlns = “http://www.w3.org/1999/xhtml”>
<head runat = “server”>
 <title>Untitled Page</title>
 <script language = “JavaScript” type = “text/javascript”>

 function pageLoad() {
 var b = Boolean.parse(“false”);
 alert(b);
 }
 </script>
</head>
<body>
 <form id = “form1” runat = “server”>
 <asp:ScriptManager ID = “ScriptManager1” runat = “server” />
 </form>
</body>
</html>

c02.indd 37c02.indd 37 8/20/07 5:42:30 PM8/20/07 5:42:30 PM

Chapter 2: JavaScript Base Type Extensions

38

 ASP . NET AJAX Date Type Extensions
 The ASP.NET AJAX Date type extensions extend the JavaScript Date type to add support for two new
methods named format and localeFormat , which format a date using the invariant and current cul-
tures, respectively. Here is an example of both methods:

 <%@ Page Language = “C#” %>
<html xmlns = “http://www.w3.org/1999/xhtml”>
<head runat = “server”>
 <title>Untitled Page</title>
 <script language = “JavaScript” type = “text/javascript”>

 function pageLoad() {
 var d = new Date();
 var f1 = d.format(“hh:mm:ss”);
 alert(f1);
 var f2 = d.localeFormat(“d”);
 alert(f2);
 }
 </script>
</head>
<body>
 <form id = “form1” runat = “server”>
 <asp:ScriptManager ID = “ScriptManager1” runat = “server” />
 </form>
</body>
</html>

 ASP . NET AJAX Object Type Extensions
 The .NET Object class exposes a method named GetType that you can call on an object to query its type
at runtime. The ASP.NET AJAX client-side framework extends the JavaScript Object type to add
 support for two .NET-like methods named getType and getTypeName , which return the type of the
object and the fully qualified name of the type, respectively. Here’s an example:

 <%@ Page Language = “C#” %>
<html xmlns = “http://www.w3.org/1999/xhtml”>
<head runat = “server”>
 <title>Untitled Page</title>
 <script language = “JavaScript” type = “text/javascript”>
 function Person (firstName, lastName)
 {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 function pageLoad() {
 var p = new Person(“Shahram”, “Khosravi”);
 var b = Object.getType(p);
 var name = Object.getTypeName(b);
 alert(name);
 }

c02.indd 38c02.indd 38 8/20/07 5:42:30 PM8/20/07 5:42:30 PM

Chapter 2: JavaScript Base Type Extensions

39

 </script>
</head>
<body>
 <form id = “form1” runat = “server”>
 <asp:ScriptManager ID = “ScriptManager1” runat = “server” />
 </form>
</body>
</html>

 This code fragment first defines a new class named Person and instantiates an instance of this class.
Next, it calls the getType method of the Object class, passing in the new Person instance to return a
reference to the type of the instance; that is, the constructor of the Person class. Then, it calls the
 getTypeName method of the Object class to return the name of the instance type.

 ASP . NET AJAX String Type Extensions
 The ASP.NET AJAX client-side framework extends the functionality of the JavaScript String type
to add support for the .NET-like methods discussed in the following sections. These extensions make
programming against the JavaScript String type more like programming against the .NET String type.
This is yet another attempt on the part of the ASP.NET AJAX framework to make client-side program-
ming feel more like server-side .NET programming.

 ends With
 The endsWith .NET-like extension method returns a Boolean value that specifies whether a specified
string ends with the specified substring. Note that any leading or trailing white space of the substring is
considered part of the substring itself. In other words, the endsWith method does not trim the substring.
For example, the second call to the endsWith method in the following code fragment returns false ,
because the string passed into the method contains a trailing white space:

 <%@ Page Language = “C#” %>
<html xmlns = “http://www.w3.org/1999/xhtml”>
<head runat = “server”>
 <title>Untitled Page</title>
 <script language = “JavaScript” type = “text/javascript”>

 function pageLoad() {
 var str = “Programming ASP.NET”;
 alert(str.endsWith(“.NET 3.0”));
 alert(str.endsWith(“.NET 3.0 “));
 }
 </script>
</head>
<body>
 <form id = “form1” runat = “server”>
 <asp:ScriptManager ID = “ScriptManager1” runat = “server” />
 </form>
</body>
</html>

c02.indd 39c02.indd 39 8/20/07 5:42:30 PM8/20/07 5:42:30 PM

Chapter 2: JavaScript Base Type Extensions

40

 starts With
 The startsWith method returns a Boolean value that specifies whether a specified string starts with the
specified substring. Again, leading or trailing white space of the substring is considered part of the
 substring itself. In this example, just like the previous one, the second call to startsWith returns false
because the string passed into the method contains extra leading white space:

 <%@ Page Language = “C#” %>
<html xmlns = “http://www.w3.org/1999/xhtml”>
<head runat = “server”>
 <title>Untitled Page</title>
 <script language = “JavaScript” type = “text/javascript”>

 function pageLoad() {
 var str = “Programming ASP.NET”;
 alert(str.startsWith(“Programming “));
 alert(str.startsWith(“ Programming “));
 }
 </script>
</head>
<body>
 <form id = “form1” runat = “server”>
 <asp:ScriptManager ID = “ScriptManager1” runat = “server” />
 </form>
</body>
</html>

 trim
 The trim method trims the specified string — that is, it removes the leading and trailing white space.
For example, the following code fragment returns true in both cases even though the second case
 contains trailing white space because the call to trim removes this white space:

 <%@ Page Language = “C#” %>
<html xmlns = “http://www.w3.org/1999/xhtml”>
<head runat = “server”>
 <title>Untitled Page</title>
 <script language = “JavaScript” type = “text/javascript”>

 function pageLoad() {
 var str = “Programming ASP.NET”;
 alert(str.startsWith(“Programming “));
 alert(str.startsWith(“ Programming “.trim()));
 }
 </script>
</head>
<body>
 <form id = “form1” runat = “server”>
 <asp:ScriptManager ID = “ScriptManager1” runat = “server” />
 </form>
</body>
</html>

c02.indd 40c02.indd 40 8/20/07 5:42:31 PM8/20/07 5:42:31 PM

Chapter 2: JavaScript Base Type Extensions

41

 The ASP.NET AJAX client-side framework also adds two new methods named trimEnd and trimStart
that respectively remove only the trailing and leading white space from the specified string.

 Formatting
 The ASP.NET AJAX client-side framework extends the String JavaScript type to add support for
two formatting methods named format and localeFormat , which use the invariant and current
 culture to format the specified string, respectively. The first argument of these two methods contains the
formatting string, very similar to the .NET formatting strings. Here is an example of both methods:

 <%@ Page Language = “C#” %>
<html xmlns = “http://www.w3.org/1999/xhtml”>
<head runat = “server”>
 <title>Untitled Page</title>
 <script language = “JavaScript” type = “text/javascript”>

 function pageLoad() {
 var a = 5, b = 8;
 var str = String.format(“a = {0}\nb = {1}”, a, b);
 alert(str);
 }
 </script>
</head>
<body>
 <form id = “form1” runat = “server”>
 <asp:ScriptManager ID = “ScriptManager1” runat = “server” />
 </form>
</body>
</html>

 ASP . NET AJAX Error Type Extensions
 One of the highly recommended programming practices is to wrap critical parts of the code in a
 try-catch-finally block to trap and handle runtime exceptions. The .NET Framework includes a
set of convenient exception classes such as ArgumentException , ArgumentNullException , and
ArgumentOutOfRangeException for server-side exception programming. The ASP.NET AJAX Error
type extensions extend the functionality of the JavaScript Error type to add support for similar
.NET-like exception programming facilities on the client side.

 create
 The create function is a new static function of the JavaScript Error type that allows you to create a new
 Error object with additional error information. This function takes two arguments. The first argument is
the error message. The second argument is an optional object with properties that provide more informa-
tion about the error. This object must contain a property named name that uniquely identifies the error
type. The rest of the properties can have any name and values that make sense to your application. For
example, you may want to assign a unique integer number to each error type.

c02.indd 41c02.indd 41 8/20/07 5:42:31 PM8/20/07 5:42:31 PM

Chapter 2: JavaScript Base Type Extensions

42

 The following page code presents an example where the create function is used:

 <%@ Page Language = “C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns = “http://www.w3.org/1999/xhtml”>
<head runat = “server”>
 <title>Untitled Page</title>
 <script language = “javascript” type = “text/javascript”>
 function validateInput(input)
 {
 var reg = new RegExp(“(\\d\\d)[-/](\\d\\d)[-/](\\d\\d(?:\\d\\d)?)”);
 var date = reg.exec(input);
 if (date == null)
 {
 var err = Error.create(“Please enter a valid date!”,
 {name : “MyError”, errorNumber : 234});
 throw err;
 }
 }

 function clickCallback()
 {
 var date = document.getElementById(“date”);
 try
 {
 validateInput(date.value);
 }
 catch (e)
 {
 alert(“Error Message: “ + e.message +
 “\nError Number: “ + e.errorNumber);
 date.value = “”;
 }
 }

 </script>
</head>
<body>
 <form id = “form1” runat = “server”>
 <asp:ScriptManager runat = “server” ID = “ScriptManager1” />
 Enter date: <input type = “text” id = “date” />
 <input type = “button” value = “Validate” onclick = “clickCallback()” />
 </form>
</body>
</html>

 Figure 2-3 shows what you’ll see in your browser when you access this page.

c02.indd 42c02.indd 42 8/20/07 5:42:32 PM8/20/07 5:42:32 PM

Chapter 2: JavaScript Base Type Extensions

43

 As you can see, this is a simple page that consists of a text box and a button. When you enter a date in
the text box and click the button, the clickCallback function is invoked as follows:

 function clickCallback()
 {
 var date = document.getElementById(“date”);
 try
 {
 validateInput(date.value);
 }

 catch (e)
 {
 alert(“Error Message: “ + e.message +
 “\nError Number: “ + e.errorNumber);
 date.value = “”;
 }
 }

 This function first accesses the text box element, like this:

 var date = document.getElementById(“date”);

 Notice that the clickCallback function wraps the call to a function named validateInput in a try
block and catches the exceptions that the validateInput function raises in the associated catch block.
As the name implies, the validateInput function validates the value you entered in the textbox. For
example:

 function validateInput(input)
 {
 var reg = new RegExp(“(\\d\\d)[-/](\\d\\d)[-/](\\d\\d(?:\\d\\d)?)”);
 var date = reg.exec(input);
 if (date == null)
 {
 var err = Error.create(“Please enter a valid date!”,
 {name : “MyError”, errorNumber : 234});
 throw err;
 }
 }

Figure 2-3

c02.indd 43c02.indd 43 8/20/07 5:42:32 PM8/20/07 5:42:32 PM

Chapter 2: JavaScript Base Type Extensions

44

 This function first creates a RegExp JavaScript object, passing in the regular expression pattern that
 specifies the valid date formats:

 var reg = new RegExp(“(\\d\\d)[-/](\\d\\d)[-/](\\d\\d(?:\\d\\d)?)”);

 The validateInput function then calls the exec method on the RegExp object to execute the regular
expression passing in the date you entered in the text box:

 var date = reg.exec(input);

 If the entered value does not match a valid date format specified in the regular expression pattern, the
 exec function returns null, and consequently the validateInput function calls the create static
method of the Error class to create a new Error object:

 var err = Error.create(“Please enter a valid date!”,
 {name : “MyError”, errorNumber : 234});

 Finally, the validateInput function throws the exception:

 throw err;

 As discussed earlier, the clickCallback function catches this error in its catch block and calls the
 alert function to display the values of the message and errorNumber properties of the error object, as
shown in the following code. Recall that the errorNumber property was defined in the validateInput
function when the create function was called.

 catch (e)
 {
 alert(“Error Message: “ + e.message +
 “\nError Number: “ + e.errorNumber);
 date.value = “”;
 }

 Now take a look at the internal implementation of the create function as shown in the following code
fragment:

 Error.create = function(d, b)
{
 var a = new Error(d);
 a.message = d;
 if(b)
 for(var c in b)
 a[c] = b[c];
 a.popStackFrame();
 return a
};

 As this code shows, the create function creates a new Error object, passing in its first argument:

 var a = new Error(d);

c02.indd 44c02.indd 44 8/20/07 5:42:32 PM8/20/07 5:42:32 PM

Chapter 2: JavaScript Base Type Extensions

45

 Next, it assigns the properties of the object or array passed in as its second argument to the newly
 created Error object:

 for(var c in b)
 a[c] = b[c];

 Finally, it calls the popStackFrame function, which will be thoroughly discussed in the next section.

 pop StackFrame
 The JavaScript Error type features two properties named fileName and lineNumber . Some browsers
set the values of these properties to respectively specify the URL of the document and the line number in
the document where the error occurred.

 These two properties provide great debugging information for developers. Some browsers set these
properties to the URL of the document and the line number in the document where the error was created
as opposed to the URL of the document and the line number in the document where the error occurred.
To help you understand the difference between these two scenarios, let’s revisit the previous example. In
the previous example, the error is created in the validateInput function, but it occurs in the
 clickCallback function at the point where the validateInput function is invoked. To see how this
works, first you need to modify the clickCallback method to add the highlighted code shown in the
following code fragment. The highlighted code simply displays the values of the fileName and
 lineNumber properties.

 function clickCallback()
{
 var date = document.getElementById(“date”);
 try
 {
 validateInput(date.value);
 }
 catch (e)
 {
 alert(“Error Message: “ + e.message +
 “\nError Number: “ + e.errorNumber +

 “\nDocument: “ + e.fileName +
 “\nLine Number: “ + e.lineNumber);

 date.value = “”;
 }
}

 As mentioned in the previous section, the Error.create method contains a call into the popStack-
Frame method. You want to see the effect of the popStackFrame method, so you also need to comment
out the line of code in the Error.create method that calls the popStackFrame method. This means
that you need to use the following implementation instead of the standard implementation.

c02.indd 45c02.indd 45 8/20/07 5:42:33 PM8/20/07 5:42:33 PM

Chapter 2: JavaScript Base Type Extensions

46

To distinguish between the Error.create standard method and the following version, give your
 version a different name, MyErrorCreate :

 Function MyErrorCreate(d, b)
{
 var a = new Error(d);
 a.message = d;
 if(b)
 for(var c in b)
 a[c] = b[c];
 //a.popStackFrame();
 return a
};

 The following code presents a new version of the previous example, which uses your own
 MyErrorCreate method:

 <%@ Page Language = “C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns = “http://www.w3.org/1999/xhtml”>
<head id = “Head1” runat = “server”>
 <title>Untitled Page</title>
 <script language = “javascript” type = “text/javascript”>
 function MyErrorCreate(d, b)
 {
 var a = new Error(d);
 a.message = d;
 if(b)
 for(var c in b)
 a[c] = b[c];
 //a.popStackFrame();
 return a
 };

 function validateInput(input)
 {
 var reg = new RegExp(“(\\d\\d)[-/](\\d\\d)[-/](\\d\\d(?:\\d\\d)?)”);
 var date = reg.exec(input);
 if (date == null)
 {
 var err = MyErrorCreate(“Please enter a valid date!”,
 {name : “MyError”, errorNumber : 234});
 throw err;
 }
 }

 function clickCallback()
 {
 var date = document.getElementById(“date”);
 try
 {
 validateInput(date.value);

c02.indd 46c02.indd 46 8/20/07 5:42:33 PM8/20/07 5:42:33 PM

Chapter 2: JavaScript Base Type Extensions

47

 }
 catch (e)
 {
 alert(“Error Message: “ + e.message +
 “\nError Number: “ + e.errorNumber +
 “\nDocument: “ + e.fileName +
 “\nLine Number: “ + e.lineNumber);
 date.value = “”;
 }
 }

 </script>
</head>
<body>
 <form id = “form1” runat = “server”>
 <asp:ScriptManager runat = “server” ID = “ScriptManager1” />
 Enter date: <input type = “text” id = “date” />
 <input type = “button” value = “Validate” onclick = “clickCallback()” />
 </form>
</body>
</html>

 Next, you need to run this example in a browser such as Mozilla Firefox that supports the fileName and
 lineNumber properties. If you run this example in Mozilla Firefox and enter an invalid value in the text
box, you’ll get the pop-up message shown in Figure 2-4 .

Figure 2-4

 According to this message, the error occurred in line number 10. Select the Page Source option from the
browser’s View menu to view the page source. As the page source shows, the line number 10 is the code
line highlighted in the following code fragment:

 function MyErrorCreate(d, b)
{
 var a = new Error(d);
 a.message = d;
 if(b)
 for(var c in b)
 a[c] = b[c];
 //a.popStackFrame();
 return a
};

c02.indd 47c02.indd 47 8/20/07 5:42:33 PM8/20/07 5:42:33 PM

Chapter 2: JavaScript Base Type Extensions

48

 In other words, according the pop-up message shown in Figure 2-4 , the error occurred where the Error
object was created. This isn’t right because the error occurred where the MyErrorCreate function was
actually called, as shown in the highlighted portion of the following code:

 function validateInput(input)
{
 var reg = new RegExp(“(\\d\\d)[-/](\\d\\d)[-/](\\d\\d(?:\\d\\d)?)”);
 var date = reg.exec(input);
 if (date == null)
 {
 var err = MyErrorCreate(“Please enter a valid date!”,
 {name : “MyError”, errorNumber : 234});
 throw err;
 }
}

 As this example shows, browsers such as Mozilla Firefox set the fileName and lineNumber properties
of the Error object to the URL of the document and the line in the document where the Error object
was created.

 To correct this misbehavior of browsers such as Mozilla Firefox, the ASP.NET AJAX client-side
framework extends the functionality of the JavaScript Error type to add support for a function named
 popStackFrame . To illustrate how this function works, uncomment the line of code in MyErrorCreate
that invokes popStackFrame . Now if you run the example again, you’ll get the pop-up message shown
in Figure 2-5 .

Figure 2-5

 According to this message, the error occurred at line 26. Now if you view the page source again, you’ll
notice that line 26 contains the highlighted code shown in the previous code listing. In other words,
thanks to the popStackFrame function, the pop-up message reports that the error occurred where the
 MyCreateError method (which is the Error.create method) was actually called.

 Under the Hood of pop StackFrame
 You may be wondering how the popStackFrame function manages to fix this problem. To answer this
question, first you need to understand an important property of the JavaScript Error object named
 stack , which is a string that contains a list of substrings separated by “\n” , where each substring con-
tains the information about a particular stack frame. Each stack frame corresponds to a particular func-
tion call. To help you understand what an error stack and a stack frame are, run the page shown in
Listing 2-4 .

c02.indd 48c02.indd 48 8/20/07 5:42:34 PM8/20/07 5:42:34 PM

Chapter 2: JavaScript Base Type Extensions

49

 Listing 2-4: A Web Page that Displays an Error Stack

 <%@ Page Language = “C#” %>

<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns = “http://www.w3.org/1999/xhtml”>
<head runat = “server”>
 <title>Untitled Page</title>
 <script language = “javascript” type = “text/javascript”>
 function getStack(err)
 {
 var a = err.stack.split(“\n”);
 Array.forEach(a, function(item, i, array)
 {
 array[i] = String.format(“a[{0}] = {1}”, i, item);
 });
 alert(a.join(“\n”));
 }

 function validateInput(input)
 {
 var reg = new RegExp(“(\\d\\d)[-/](\\d\\d)[-/](\\d\\d(?:\\d\\d)?)”);
 var date = reg.exec(input);
 if (date == null)
 {
 var err = Error.create(“Please enter a valid date!”,
 {name : “MyError”, errorNumber : 234});
 getStack(e);
 err.popStackFrame();
 throw err;
 }
 }

 function clickCallback()
 {
 var date = document.getElementById(“date”);
 try
 {
 validateInput(date.value);
 }
 catch (e)
 {
 getStack(err);
 date.value = “”;
 }
 }

 </script>
</head>

(continued)

c02.indd 49c02.indd 49 8/20/07 5:42:34 PM8/20/07 5:42:34 PM

Chapter 2: JavaScript Base Type Extensions

50

 Listing 2-4 (continued)

 <body>
 <form id = “form1” runat = “server”>
 <asp:ScriptManager runat = “server” ID = “ScriptManager1” />
 Enter date: <input type = “text” id = “date” /> <input type = “button”
 value = “Validate” onclick = “clickCallback()” />

 </form>
</body>
</html>

 As the first boldfaced portion of Listing 2-4 shows, this page takes these steps:

 1. It splits the stack string into its constituent substrings, where each substring represents a stack
frame:

 var a = err.stack.split(“\n”);

 2. It iterates through the substrings, or stack frames, to display each stack frame on a single line in
the pop-up message shown in Figure 2-6 .

Figure 2-6

 As Figure 2-6 shows, this error stack consists of three main stack frames, where each frame represents a
particular function call. For example, the first stack frame represents the call to the validateInput
function. Also note that each stack frame consists of two main parts, separated by the @ character, where
the first part is the function call. The second part itself consists of two parts separated by a colon (:),
where the first part is the URL of the document that contains the function and the second part is the line
number in the document.

 Figure 2-6 displays the contents of the stack before the call into the popStackFrame function. The second
boldfaced portion of Listing 2-4 displays the contents of the stack after the call into the popStackFrame
function, as shown in Figure 2-7 . Comparing Figures 2-6 and 2-7 clearly shows that the popStackFrame
function removes the stack frame that represents the call into the validateInput function. In other
words, the new stack now reports line 31 of the clickCallback function as the place where the error
occurred as opposed to the line 15 of the validateInput function where the error object was created.

c02.indd 50c02.indd 50 8/20/07 5:42:34 PM8/20/07 5:42:34 PM

Chapter 2: JavaScript Base Type Extensions

51

 Now let’s look at the internal implementation of the popStackFrame function to see how this function
removes the previously mentioned stack frame. Listing 2-5 presents the internal implementation of the
 popStackFrame function.

 Listing 2-5: The Internal Implementation of the popStackFrame Function

 Error.prototype.popStackFrame = function()
{
 if(typeof this.stack === “undefined” || this.stack === null ||
 typeof this.fileName === “undefined” || this.fileName === null ||
 typeof this.lineNumber === “undefined” || this.lineNumber === null)
 return;
 var a = this.stack.split(“\n”),
 c = a[0],
 e = this.fileName + “:” + this.lineNumber;
 while(typeof c !== “undefined” && c !== null && c.indexOf(e) === - 1)
 {
 a.shift();
 c = a[0]
 }
 var d = a[1];
 if(typeof d === “undefined” || d === null)
 return;
 var b = d.match(/@(.*):(\d+)$/);
 if(typeof b === “undefined” || b === null)
 return;
 this.fileName = b[1];
 this.lineNumber = parseInt(b[2]);
 a.shift();
 this.stack = a.join(“\n”)
};

 The popStackFrame function first splits the stack string into its constituent substrings as expected
(remember that each substring represents a stack frame):

 var a = this.stack.split(“\n”)

Figure 2-7

c02.indd 51c02.indd 51 8/20/07 5:42:35 PM8/20/07 5:42:35 PM

Chapter 2: JavaScript Base Type Extensions

52

 In the case of Listing 2-5 , the array that the split function returns contains the elements shown in
 Figure 2-6 . popStackFrame then evaluates the following string:

 e = this.fileName + “:” + this.lineNumber;

 Note that the current values of the fileName and lineNumber are the values set by the Mozilla Firefox
browser. As discussed previously, the browser sets the value of the lineNumber property to a line num-
ber at which the Error object was created. In the case of Listing 2-3 , this value is 15 (see Figure 2-6). The
correct value should be 31. To fix this problem, you need to first locate the stack frames that contain the
wrong line number and remove them from the stack. This is exactly what the popStackFrame does:

 while(typeof c !== “undefined” && c !== null && c.indexOf(e) === - 1)
{
 a.shift();
 c = a[0]
}

 In the case of Figure 2-6 , this removes the top stack frame — that is, the one that represents the call to the
 validateInput function. After removing this stack frame, you have to access the stack frame that repre-
sents the clickCallback function:

 var d = a[1];
if(typeof d === “undefined” || d === null)
 return;
var b = d.match(/@(.*):(\d+)$/);
if(typeof b === “undefined” || b === null)
 return;

 You can now retrieve the correct line number from this stack frame and assign it the lineNumber
 property of the Error object, as follows:

 this.fileName = b[1];
this.lineNumber = parseInt(b[2]);

 Summary
 In this chapter, you learned a great deal about the ASP.NET AJAX JavaScript base type extensions, which
make programming against these JavaScript base types more like programming against their .NET coun-
terparts. In the next chapter, you learn how the ASP.NET AJAX client-side framework uses the
 create and popStackFrame JavaScript extension functions of the JavaScript Error type to add support
for .NET-like exception types. You also learn how to use these two JavaScript extension functions to
build your own custom exception types.

c02.indd 52c02.indd 52 8/20/07 5:42:35 PM8/20/07 5:42:35 PM

 Built-In and Custom
Exception Types

 The previous chapter discussed two important ASP.NET AJAX JavaScript Error type extension
functions named create and popStackFrame . This chapter shows you how the ASP.NET AJAX
client-side script framework uses these two JavaScript functions to provide you with a set of .NET-
like exception types. The chapter then presents you with a recipe for developing your own custom
exception types in the ASP.NET AJAX client-side framework, and shows you how to use the recipe
to implement a custom exception type.

 ASP.NET AJAX Built-In Exception Types
 One of the great things about the .NET Framework is that it comes with a rich set of exception
types that address different programming scenarios. For example, you can use the
 ArgumentNullException type in your method to raise an exception to inform the callers if your
method does not accept null values for a particular parameter. Exception programming is one of
the fundamental aspects of any modern programming framework.

 The ASP.NET AJAX client-side framework presents a rich set of exception types that emulate many
of the .NET exception types to make client-side exception programming more like server-side
.NET exception programming. This section provides in-depth coverage of the ASP.NET AJAX
 client-side framework’s built-in exception types.

 ArgumentException
 The .NET Framework comes with an exception type named ArgumentException . This exception
is raised when a method is invoked and one of the parameters passed into the method does not
meet the requirements that the method expects of the parameter. The .NET ArgumentException
exposes a read-only property named ParamName that specifies the name of the parameter that
caused the exception to occur.

c03.indd 53c03.indd 53 8/20/07 5:50:28 PM8/20/07 5:50:28 PM

Chapter 3: Built-In and Custom Exception Types

54

 The ASP.NET AJAX client-side framework extends JavaScript to add support for a similar exception type
named ArgumentException , which belongs to a namespace called Sys . (I discuss namespaces in future
chapters.) This JavaScript ArgumentException exposes two properties named paramName and name . The
 name property, like the name property of any JavaScript exception, contains the string that uniquely identi-
fies the exception type. The paramName property is the equivalent of the .NET ArgumentException
type’s ParamName property.

 The ASP.NET AJAX client-side framework also extends the functionality of the JavaScript Error type
to add support for a static method named argument that automatically creates an instance of the
Sys.ArgumentException exception and returns the instance to its caller. The best way to understand
what this function does is to take a look at its internal implementation:

 Error.argument = function(a, c)
{
 var b = ”Sys.ArgumentException: “ +
 (c ? c : Sys.Res.argument);
 if(a)
 b += “\n” + String.format(Sys.Res.paramName, a);
 var d = Error.create(b,
 { name : “Sys.ArgumentException”,
 paramName : a});
 d.popStackFrame();
 return d;
};

 Notice that the argument static method takes two arguments. The first argument is a string that contains
the name of the parameter that caused the exception to occur. The second argument is a string that con-
tains the error message. The argument function internally calls the create static method discussed in
Chapter 2 :

 var d = Error.create(b,
 { name : “Sys.ArgumentException”,
 paramName : a});

 The create static method takes an object as its second parameter. This object provides extra information
about the Error object being created. Note that the argument method passes an object literal as the sec-
ond parameter of the create method. This object literal specifies the string that uniquely identifies the
exception and the parameter that caused the exception.

 The Sys.ArgumentException does not come with a constructor function, so you cannot instantiate it
using the new operator. Instead, you must use the argument static function of the JavaScript Error
object to instantiate an instance of this exception.

 The validateInput function in the following page code raises a Sys.ArgumentException exception if
the parameter passed into it does not meet the requirement specified in the regular expression. The
 clickCallback function catches this exception in its catch block and displays the value of the excep-
tion object’s message property.

c03.indd 54c03.indd 54 8/20/07 5:50:30 PM8/20/07 5:50:30 PM

Chapter 3: Built-In and Custom Exception Types

55

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script language=”javascript” type=”text/javascript”>
 function validateInput(input)
 {
 var reg = new RegExp(“(\\d\\d)[-/](\\d\\d)[-/](\\d\\d(?:\\d\\d)?)”);
 var date = reg.exec(input);
 if (date == null)
 {
 var err = Error.argument(“input”, “Invalid date!”);
 throw err;
 }
 }

 function clickCallback()
 {
 var date = document.getElementById(“date”);
 try
 {
 validateInput(date.value);
 }
 catch (e)
 {
 alert(e.message);
 date.value=””;
 }
 }

 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server”
 ID=”ScriptManager1” />
 Enter date: <input type=”text” id=”date” />
 <input type=”button” value=”Validate”
 onclick=”clickCallback()” />
 </form>
</body>
</html>

 As Figure 3-1 shows, the message property displays the type of the exception (which in this case is
Sys.ArgumentException), the exception message, and the name of the parameter that caused the
exception to occur.

c03.indd 55c03.indd 55 8/20/07 5:50:31 PM8/20/07 5:50:31 PM

Chapter 3: Built-In and Custom Exception Types

56

 ArgumentNullException
 The .NET Framework includes an exception type named ArgumentNullException . This exception is
raised when a method is invoked and one of the parameters passed into it is null . As you can see,
 ArgumentNullException is more specific than ArgumentException .

 The ASP.NET AJAX client-side framework follows this .NET pattern and introduces an exception type
named Sys.ArgumentNullException , which is more specific than Sys.ArgumentException . Just like
its .NET counterpart, Sys.ArgumentNullException is raised only when one of the parameters passed
into a JavaScript function is null .

 The ASP.NET AJAX client-side framework also extends the JavaScript Error type to add support for a new
static method named argumentNull , which hides the instantiation of the Sys.ArgumentNull Exception
object from its callers. As the following code shows, the internal implementation of the argumentNull
method is the same as the argument method:

 Error.argumentNull = function(a, c)
{
 var b = ”Sys.ArgumentNullException: “ +
 (c ? c : Sys.Res.argumentNull);
 if(a)
 b += “\n” + String.format(Sys.Res.paramName, a);
 var d = Error.create(b,
 { name : “Sys.ArgumentNullException”,
 paramName : a });
 d.popStackFrame();
 return d;
};

 As you can see, the argumentNull static method takes the same arguments as the argument static
method discussed in the previous section. The only difference between the two methods is the value part
of the first name/value pair of the object literal passed into the Error type’s create static method. This
value is a string that uniquely identifies an exception type for other exception types.

 The validateInput function in the following code uses the argumentNull static method of the Error
object to create and raise a Sys.ArgumentNullException when the user does not enter a date into the
text box. The clickCallback function catches this exception in its catch block and displays the value
of the exception object’s message property.

Figure 3-1

c03.indd 56c03.indd 56 8/20/07 5:50:32 PM8/20/07 5:50:32 PM

Chapter 3: Built-In and Custom Exception Types

57

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script language=”javascript” type=”text/javascript”>
 function validateInput(input)
 {
 if (input == null || input.trim() == “”)
 {
 var er = Error.argumentNull(“input”, “Date cannot be null!”);
 throw er;
 }
 var reg = new RegExp(“(\\d\\d)[-/](\\d\\d)[-/](\\d\\d(?:\\d\\d)?)”);
 var date = reg.exec(input);
 if (date == null)
 {
 var err = Error.argument(“input”,“Invalid date!”);
 throw err;
 }
 }

 function clickCallback()
 {
 var date = document.getElementById(“date”);
 try
 {
 validateInput(date.value);
 }
 catch (e)
 {
 alert(e.message);
 date.value=””;
 }
 }

 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server”
 ID=”ScriptManager1” />
 Enter date: <input type=”text” id=”date” />
 <input type=”button” value=”Validate”
 onclick=”clickCallback()” />
 </form>
</body>
</html>

c03.indd 57c03.indd 57 8/20/07 5:50:33 PM8/20/07 5:50:33 PM

Chapter 3: Built-In and Custom Exception Types

58

 As Figure 3-2 shows, the message property contains the exception type (Sys.ArgumentNullException),
the exception message passed into the argumentNull function, and the name of the parameter that
caused the exception to occur.

Figure 3-2

 ArgumentOutOfRangeException
 The .NET Framework includes an exception of type ArgumentOutOfRangeException . This exception is
raised when a method is invoked and one of the parameters passed into it is out of the range of valid
values. ArgumentOutOfRangeException features two important properties named ParamName and
 ActualValue , which contain the name and value of the parameter that caused the exception to occur,
respectively.

 Following the same .NET pattern, the ASP.NET AJAX client-side script framework includes an exception
of type Sys.ArgumentOutOfRangeException , which exposes the same two paramName and actual-
Value properties. In addition, the ASP.NET AJAX client-side framework extends the JavaScript Error
type to add support for a new static method named argumentOutOfRange that hides the instantiation of
the Sys.ArgumentOutOfRangeException . The following code presents the internal implementation
of this static method:

 Error.argumentOutOfRange = function(c, a, d)
{
 var b=”Sys.ArgumentOutOfRangeException: “ +
 (d ? d : Sys.Res.argumentOutOfRange);
 if(c)
 b += “\n” + String.format(Sys.Res.paramName, c);
 if(typeof a !== “undefined” && a !== null)
 b += “\n” + String.format(Sys.Res.actualValue, a);

 var e = Error.create(b,
 {name : “Sys.ArgumentOutOfRangeException”,
 paramName : c, actualValue : a});
 e.popStackFrame();
 return e;
};

 The argumentOutOfRange method takes three arguments. The first and second arguments are the name
and value of the parameter that caused the exception to occur. The third argument is the exception

c03.indd 58c03.indd 58 8/20/07 5:50:33 PM8/20/07 5:50:33 PM

Chapter 3: Built-In and Custom Exception Types

59

 message that provides more information about the exception. The argumentOutOfRange method first
creates a string that contains the values of the three arguments:

 var b=”Sys.ArgumentOutOfRangeException: “ +
 (d ? d : Sys.Res.argumentOutOfRange);
 if(c)
 b += “\n” + String.format(Sys.Res.paramName, c);
 if(typeof a !== “undefined” && a !== null)
 b += “\n” + String.format(Sys.Res.actualValue, a);

 Then, it calls the create static method of the JavaScript Error type, passing in two parameters to create
the associated Error object. The first parameter is the previously mentioned string. The second parameter
is a JavaScript object literal that contains information about the Sys.ArgumentOutOfRangeException
exception. Finally, the argumentOutOfRange function calls the popStackFrame function to reset the val-
ues of the Error object’s fileName and lineNumber properties (discussed in Chapter 2).

 As the boldfaced portion of the following code shows, if the date entered in the text box is not in the
specified range, the validateInput function invokes the argumentOutOfRange function to create a
 Sys.ArgumentOutOfRangeException . The clickCallback function catches this exception in its
 catch block and displays the pop-up message shown in Figure 3-3 . The message property of the Error
object displays the exception type (Sys.ArgumentOutOfRangeException), the exception message
passed into the argumentOutOfRange function, and the name and value of the parameter that caused
the exception to occur.

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script language=”javascript” type=”text/javascript”>
 function validateInput(input)
 {
 if (input == null || input.trim() == “”)
 {
 var er = Error.argumentNull(“input”,“Date cannot be null!”);
 throw er;
 }
 var reg = new RegExp(“(\\d\\d)[-](\\d\\d)[-](\\d\\d\\d\\d)”);
 var date = reg.exec(input);
 if (date == null)
 {
 var err = Error.argument(“input”,“Invalid date!”);
 throw err;
 }

 var ar = input.split(“-”);

 if (ar[2] < 1900 || ar[2] > 2008)

(continued)

c03.indd 59c03.indd 59 8/20/07 5:50:34 PM8/20/07 5:50:34 PM

Chapter 3: Built-In and Custom Exception Types

60

 {
 var err2=Error.argumentOutOfRange(“input”,input);
 throw err2;
 }
 }

 function clickCallback()
 {
 var date = document.getElementById(“date”);
 try
 {
 validateInput(date.value);
 }
 catch (e)
 {
 alert(e.message);
 date.value=””;
 }
 }

 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”/>
 Enter date: <input type=”text” id=”date” />
 <input type=”button” value=”Validate”
 onclick=”clickCallback()” />
 </form>
</body>
</html>

Figure 3-3

 ArgumentTypeException
 When you implement a method in the .NET Framework with a given set of parameters of specific types,
you can rest assured that the Framework will ensure that users call your method with only the types of
parameters that your method expects.

c03.indd 60c03.indd 60 8/20/07 5:50:34 PM8/20/07 5:50:34 PM

Chapter 3: Built-In and Custom Exception Types

61

 The ASP.NET AJAX client-side framework includes an exception type named Sys.ArgumentTypeEx
ception that you can call from within your JavaScript functions to make programming against your
functions more like programming against .NET methods.

 The Sys.ArgumentTypeException exception is raised when a method is invoked and one of the
parameters passed into it is not of the type that the method expects. This exception, just like all other
exceptions in the ASP.NET AJAX client-side framework, does not come with a constructor function. This
means that you cannot use the new operator to instantiate it. Instead, the ASP.NET AJAX client-side
framework includes a new static method named argumentType to the JavaScript Error type that auto-
matically instantiates this exception under the hood.

 This method takes four arguments. The first, second, and third arguments contain the name, actual type,
and expected type of the parameter that caused the exception to occur. The last argument is the excep-
tion message that provides more information about the exception.

 The validateInput function in the following code throws a Sys.ArgumentTypeException exception
when the input is not a valid date value. The clickCallback function then catches this exception in its
 catch block and displays the message shown in Figure 3-4 . Note that the catch block uses the value of
the exception object’s name property to determine the type of the exception.

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script language=”javascript” type=”text/javascript”>
 function validateInput(input)
 {
 if (input == null || input.trim() == “”)
 {
 var er = Error.argumentNull(“input”,“Date cannot be null!”);
 throw er;
 }
 var reg = new RegExp(“(\\d\\d)[-/](\\d\\d)[-/](\\d\\d(?:\\d\\d)?)”);
 var date = reg.exec(input);
 if (date == null)
 {
 var err = Error.argumentType(“input”, null, Date, “Invalid type!”);
 throw err;
 }

 var ar = input.split(“-”);

 if (ar[2] < 1900 || ar[2] > 2008)
 {

(continued)

c03.indd 61c03.indd 61 8/20/07 5:50:35 PM8/20/07 5:50:35 PM

Chapter 3: Built-In and Custom Exception Types

62

 var err2=Error.argumentOutOfRange(“input”,input);
 throw err2;
 }
 }

 function clickCallback()
 {
 var date = document.getElementById(“date”);
 try
 {
 validateInput(date.value);
 }
 catch (e)
 {
 if (e.name == “Sys.ArgumentTypeException ”)
 alert(e.message + “\nExpected Type : “ +
 e.expectedType.getName());
 else
 alert(e.message);
 date.value=””;
 }
 }

 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”/>
 Enter date: <input type=”text” id=”date” />
 <input type=”button” value=”Validate”
 onclick=”clickCallback()” />
 </form>
</body>
</html>

Figure 3-4

c03.indd 62c03.indd 62 8/20/07 5:50:36 PM8/20/07 5:50:36 PM

Chapter 3: Built-In and Custom Exception Types

63

 Now take a look at the internal implementation of the argumentType function in the following code:

 Error.argumentType = function(d, c, b, e)
{
 var a = ”Sys.ArgumentTypeException: “ +
 (e ? e : “”);
 if(c && b)
 a += String.format(Sys.Res.argumentTypeWithTypes, c.getName(), b.getName());
 else
 a += Sys.Res.argumentType;
 if(d)
 a += “\n” + String.format(Sys.Res.paramName, d);
 var f = Error.create(a,
 {name : “Sys.ArgumentTypeException”,
 paramName : d, actualType : c,
 expectedType : b});
 f.popStackFrame();
 return f
};

 The argumentType method first builds a string that contains the following:

❑ The error message:

 var a=”Sys.ArgumentTypeException: “ + (e ? e : “”);

❑ The names of the actual and expected types (if any):

 if(c && b)
 a += String.format(Sys.Res.argumentTypeWithTypes,
 c.getName(), b.getName());

 It then calls the create static function of the Error type, passing the following parameters to create the
 Error object:

❑ The string built in the first step

❑ An object literal that provides more information about the exception. Note that this object con-
tains the following properties: name , paramName , actualType , and expectedType :

 var f = Error.create(a,
 {name : “Sys.ArgumentTypeException”,
 paramName : d, actualType : c,
 expectedType : b});

 Finally, the exception calls the popStackFrame function on the Error object to reset the values of the
 fileName and lineNumber properties (discussed previously).

c03.indd 63c03.indd 63 8/20/07 5:50:36 PM8/20/07 5:50:36 PM

Chapter 3: Built-In and Custom Exception Types

64

 ArgumentUndefinedException
 The ASP.NET AJAX client-side framework includes an exception type named Sys.ArgumentUndefined-
Exception . This exception is raised when a function is invoked and one of the parameters passed into it
is undefined. This exception, like all other exceptions in the ASP.NET AJAX client-side framework, does
not come with a constructor function and therefore cannot be instantiated using the new operator. The
ASP.NET AJAX client-side framework includes a static method on the Error type named
 argumentUndefined that instantiates this exception for you. This method takes two arguments. The
first argument is the name of the parameter that caused the exception. The second argument is an
 exception message that provides more information about the exception. The internal implementation of
the argumentUndefined static method follows the same implementation pattern as any other static
method of the ASP.NET AJAX Framework’s Error type that instantiates an exception object.

 The method first builds a string that contains the exception message and the name of the parameter that
caused the exception, as follows:

 var b = ”Sys.ArgumentUndefinedException: “ +
 (c ? c : Sys.Res.argumentUndefined);
 if(a)
 b += “\n” + String.format(Sys.Res.paramName, a);

 It then calls the Error object’s create static method, passing in two arguments, as shown in the follow-
ing code. The first argument is the string built in the first step. The second argument is the JavaScript
object literal that provides more information about the Sys.ArgumentUndefinedException exception.

 var d = Error.create(b,
 {name : “Sys.ArgumentUndefinedException”,
 paramName : a});

 Next, it calls the popStackFrame JavaScript function to reset the values of the fileName and
 lineNumber properties of the Error object:

 d.popStackFrame();

 Finally, it returns the exception object to its caller:

 Error.argumentUndefined = function(a, c)
{
 var b=”Sys.ArgumentUndefinedException: “ +
 (c ? c : Sys.Res.argumentUndefined);
 if(a)
 b += “\n” + String.format(Sys.Res.paramName, a);
 var d = Error.create(b,
 {name : “Sys.ArgumentUndefinedException”,
 paramName : a});
 d.popStackFrame();
 return d;
};

 The validateInput function in the following example calls the argumentUndefined static method on
the Error type to raise a Sys.ArgumentUndefinedException exception when the end user enters an

c03.indd 64c03.indd 64 8/20/07 5:50:37 PM8/20/07 5:50:37 PM

Chapter 3: Built-In and Custom Exception Types

65

undefined value into the text box. The clickCallback function then catches this exception and displays
the pop-up message shown in Figure 3-5 .

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script language=”javascript” type=”text/javascript”>
 function validateInput(input)
 {
 if (input == null || input.trim() == “”)
 {
 var er = Error.argumentNull(“input”,“Date cannot be null!”);
 throw er;
 }
 var reg = new RegExp(“(\\d\\d)[-](\\d\\d)[-](\\d\\d\\d\\d)”);
 var date = reg.exec(input);
 if (date == null)
 {
 var err = Error.argumentUndefined(“input”, “Undefined value!”);
 throw err;
 }

 var ar = input.split(“-”);

 if (ar[2] < 1900 || ar[2] > 2008)
 {
 var err2=Error.argumentOutOfRange(“input”,input);
 throw err2;
 }
 }

 function clickCallback()
 {
 var date = document.getElementById(“date”);
 try
 {
 validateInput(date.value);
 }
 catch (e)
 {
 alert(e.message);
 date.value=””;
 }
 }

(continued)

c03.indd 65c03.indd 65 8/20/07 5:50:37 PM8/20/07 5:50:37 PM

Chapter 3: Built-In and Custom Exception Types

66

 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”/>
 Enter date: <input type=”text” id=”date” />
 <input type=”button” value=”Validate”
 onclick=”clickCallback()” />
 </form>
</body>
</html>

Figure 3-5

 InvalidOperationException
 Sys.InvalidOperationException is raised when a method call fails due to reasons other than the
argument problems discussed in the previous sections. This exception object, like any other exception in
the ASP.NET AJAX client-side script framework, features a property called name whose value uniquely
identifies the exception type. The JavaScript Error object’s invalidOperation static method encapsu-
lates the logic that instantiates a Sys.InvalidOperationException . This function takes a single argu-
ment that contains the exception message. Here is the internal implementation of this function:

 Error.invalidOperation = function(a)
{
 var c = ”Sys.InvalidOperationException: “ +
 (a ? a : Sys.Res.invalidOperation),
 b = Error.create(c,
 {name : “Sys.InvalidOperationException”});
 b.popStackFrame();
 return b;
};

 NotImplementedException
 When you’re implementing a base class in the .NET Framework, you have two options when it comes to
the implementation of a virtual method or property of your base class. You can either provide a default
implementation for the method or property, or raise a .NET exception named NotImplementedException .
The ASP.NET AJAX client-side script framework provides you with the same type of exception, which is
called Sys.NotImplementedException and exposes a single name property.

c03.indd 66c03.indd 66 8/20/07 5:50:38 PM8/20/07 5:50:38 PM

Chapter 3: Built-In and Custom Exception Types

67

 It shouldn’t come as a surprise that the ASP.NET AJAX client-side framework also extends the
 Error object to add a static method named notImplemented to instantiate and return an instance
of the Sys.NotImplementedException exception. This method takes a single argument, which con-
tains the exception message. As the following code shows, the internal implementation of this method
has the same implementation pattern as the internal implementation of any other ASP.NET AJAX
method on the Error type that instantiates an exception:

 Error.notImplemented = function(a)
{
 var c = ”Sys.NotImplementedException: “ +
 (a ? a : Sys.Res.notImplemented),
 b = Error.create(c,
 {name : “Sys.NotImplementedException”});
 b.popStackFrame();
 return b;
};

 The following example defines a JavaScript class named Validator , which exposes a method named
 validateInput . Note that the Validator class’s implementation of the validateInput function
 simply raises a Sys.NotImplementedException exception to inform its caller that this class does not
implement this method. In subsequent chapters, you learn how to use a subclass of this class that
 implements this method.

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script language=”javascript” type=”text/javascript”>
 function Validator (name)
 {
 var _name = name;
 this.getName = function() {return _name;};
 }

 Validator.prototype.validateInput = function(input)
 {
 var err = Error.notImplemented(“Input validation is not supported!”);
 throw err;
 };

 function clickCallback()
 {
 var date = document.getElementById(“date”);
 try
 {
 var v = new Validator(“MyValidator”);
 v.validateInput(date.value);

(continued)

c03.indd 67c03.indd 67 8/20/07 5:50:38 PM8/20/07 5:50:38 PM

Chapter 3: Built-In and Custom Exception Types

68

 }
 catch (e)
 {
 alert(e.message);
 date.value=””;
 }
 }

 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”/>
 Enter date: <input type=”text” id=”date” />
 <input type=”button” value=”Validate”
 onclick=”clickCallback()” />
 </form>
</body>
</html>

 ParameterCountException
 When you write a method in the .NET Framework that takes a specific number of parameters of specific
types, you can rest assured that the Framework will not allow anyone to call your method with fewer
parameters than your method expects. That’s why your method does not need to check whether the
required number of parameters is passed into it.

 JavaScript functions, on the other hand, allow their callers to call them with fewer parameters or no
parameters at all. To make programming against JavaScript functions more like programming against
.NET methods, the ASP.NET AJAX client-side Framework features an exception of type Sys.Parame-
terCountException that you can raise from within the body of your JavaScript functions to ensure that
no one can call your function with fewer parameters than expected. This exception features a single name
property that contains the name of the exception type — Sys.ParameterCountException .

 The ASP.NET AJAX client-side Framework also extends the JavaScript Error type to add a new member
static method named parameterCount that encapsulates the logic that instantiates the Sys.Parame-
terCountException exception. This method takes a single argument, which contains the exception
message. As the following code shows, the internal implementation of this exception has the same
implementation pattern as other exception-generating methods on the Error type:

 Error.parameterCount = function(a)
{
 var c=”Sys.ParameterCountException: “ +
 (a ? a : Sys.Res.parameterCount),
 b = Error.create(c,
 {name : “Sys.ParameterCountException”});
 b.popStackFrame();
 return b;
};

 The validateInput function in the following page code throws a Sys.ParameterCountException
exception if the number of parameters passed into the function is not equal to the number of parameters

c03.indd 68c03.indd 68 8/20/07 5:50:39 PM8/20/07 5:50:39 PM

Chapter 3: Built-In and Custom Exception Types

69

that the function expects. The clickCallback function catches this exception and displays the value of
the Error object’s message property in the pop-up message box shown in Figure 3-6 .

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script language=”javascript” type=”text/javascript”>
 function validateInput(input)
 {
 if (arguments.length != arguments.callee.length)
 {
 var err3=Error.parameterCount(“Invalid argument count!”);
 throw err3;
 }

 if (input == null || input.trim() == “”)
 {
 var er = Error.argumentNull(“input”, “Date cannot be null!”);
 throw er;
 }
 var reg = new RegExp(“(\\d\\d)[-](\\d\\d)[-](\\d\\d\\d\\d)”);
 var date = reg.exec(input);
 if (date == null)
 {
 var err = Error.argumentUndefined(“input”, “Undefined value!”);
 throw err;
 }

 var ar = input.split(“-”);

 if (ar[2] < 1900 || ar[2] > 2008)
 {
 var err2=Error.argumentOutOfRange(“input”,input);
 throw err2;
 }
 }

 function clickCallback()
 {
 var date = document.getElementById(“date”);
 try
 {
 validateInput(date.value, 3);
 }

(continued)

c03.indd 69c03.indd 69 8/20/07 5:50:39 PM8/20/07 5:50:39 PM

Chapter 3: Built-In and Custom Exception Types

70

 catch (e)
 {
 alert(e.message);
 date.value=””;
 }
 }

 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”/>
 Enter date: <input type=”text” id=”date” />
 <input type=”button” value=”Validate”
 onclick=”clickCallback()” />
 </form>
</body>
</html>

Figure 3-6

 Implementing Custom Exception Types
 The previous section walked you through the internal implementation of the built-in exception types of
the ASP.NET AJAX client-side framework. This section builds on the skills you learned in the previous
section to show you how to implement your own custom exception types.

 Recipe for Implementing Custom Exception Types
 To implement your own custom exception type in the ASP.NET AJAX client-side script framework, the
first thing you need to do is choose an appropriate name for your custom exception type. This name
must be unique. Make sure you don’t use the exception type names of the ASP.NET AJAX built-in excep-
tion types. Also make sure you use Pascal casing and end the type name with the word Exception .

 Next, decide how many and what types of properties you want your exception type to support. Choose
appropriate names for these properties. Your exception type must expose a name property. This is the
only required property.

c03.indd 70c03.indd 70 8/20/07 5:50:39 PM8/20/07 5:50:39 PM

Chapter 3: Built-In and Custom Exception Types

71

 Next, extend the functionality of the JavaScript Error type to add support for a static JavaScript
 method that encapsulates the logic that instantiates your custom exception type. Follow these steps to
implement this static method:

 1. Choose an appropriate name for the method. Use the same name as the name of your exception
type except for two differences: use camel casing instead of Pascal casing, and drop the word
 Exception from the end of the name.

2. Decide on how many and what types of parameters you want this method to support. This nor-
mally consists of two sets of parameters. The first set consists of a single string parameter that
contains the error message. The second set contains one parameter for each property of your
custom exception type. In other words, the second set must provide the values for the properties
of your custom exception type.

 3. Build a string that contains the values of all the parameters passed into the method.

4. Call the create static function on the JavaScript Error type, passing in two arguments to create
an Error object. The first argument must contain the string you built in step 3. The second argu-
ment must be a container of the properties that describe your custom exception. This container
is normally an object literal.

5. Call the popStackFrame method on the Error object you created in step 4 to reset the values of
the fileName and lineNumber properties of the Error object.

6. Return the Error object to the caller of the function.

 Using the Recipe
 In this section, you use the recipe to develop a custom ASP.NET AJAX exception type. This exception
type is raised when a duplicate item is added to a collection. First you need to pick a name for your
 custom exception type that meets the requirements specified in step 1 of the recipe. I think you’ll agree
with me that DuplicateItemException is an appropriate name for this custom exception type. Follow-
ing step 1 of the recipe, this name uses Pascal casing and ends with the word Exception . Next, you
need to decide on how many and what types of properties you want the DuplicateItemException
exception to support. Every exception type in the ASP.NET AJAX client-side framework must expose a
 name property; therefore, one of the properties of your custom exception must be the name property. It’s
also a good idea to present the catch block that will catch your exception with more information about
the duplicated item. So, your exception type should also support a second property named item that
 references the duplicated item. You’re done with the second step of the recipe.

 Next you need to extend the JavaScript Error type to add support for a static method that encapsulates
the logic that instantiates the DuplicateItemException exception type. According to the recipe, the
name of this method must be the camel-casing version of the exception name. You must also drop the
keyword Exception from the end of the method name. So, the name of your exception-generating
method should be duplicateItem .

 Following the recipe, the duplicateItem static method must take two arguments. The first argument
contains the optional exception message. The second argument references the duplicated item. Now, let’s
get down to the implementation of the duplicateItem static method:

c03.indd 71c03.indd 71 8/20/07 5:50:40 PM8/20/07 5:50:40 PM

Chapter 3: Built-In and Custom Exception Types

72

 Error.duplicateItem = function(e, myitem)
{
 var a=”Sys.DuplicateItemException: “ +
 (e ? e : “Duplicate item!”) + “\n”;
 if (myitem)
 for (var c in myitem)
 a += (c + “: “ + myitem[c] + “\n”);
 var f = Error.create(a,
 {name: “Sys.DuplicateItemException”,
 item: myitem});
 f.popStackFrame();
 return f;
};

 Following the recipe, the duplicateItem method first builds a string that contains the string represen-
tation of all the parameters passed into the method. The first parameter is the optional string that
 contains the error message:

 var a=”Sys.DuplicateItemException: “ +
 (e ? e : “Duplicate item!”) + “\n”;

 The second parameter is an object that references the duplicated item. The duplicateItem method iter-
ates through the properties of this object and adds the name and value of each enumerated property to
the string being built:

 if (myitem)
 for (var c in myitem)
 a += (c + “: “ + myitem[c] + “\n”);

 Next, the duplicateItem calls the create static method on the JavaScript Error type and passes the
two arguments into it to create a new Error object. The first argument is the string you just built. The
second argument is the object literal that provides more information about your Sys.DuplicateItem
Exception . Note that this object literal defines two properties for your custom exception as expected:

 var f = Error.create(a,
 {name: “Sys.DuplicateItemException”,
 item: myitem});

 Next, the duplicateItem calls the popStackFrame function on the newly created Error object to reset
the values of the fileName and lineNumber properties of the object:

 f.popStackFrame();

 Now you can use your custom exception in a page as shown in the following code:

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

c03.indd 72c03.indd 72 8/20/07 5:50:41 PM8/20/07 5:50:41 PM

Chapter 3: Built-In and Custom Exception Types

73

<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script language=”javascript” type=”text/javascript”>
 Error.duplicateItem = function(e,myitem)
 {
 var a=”Sys.DuplicateItemException: “ + (e ? e : “Duplicate item!”) + “\n”;
 if (myitem)
 for (var c in myitem)
 a += (c + “: “ + myitem[c] + “\n”);
 var f = Error.create(a,
 {name: “Sys.DuplicateItemException”, item: myitem});
 f.popStackFrame();
 return f;
 };

 var products = {};
 function validateInput(pname, pcategory, pdistributor)
 {
 if (products[pname])
 {
 var err = Error.duplicateItem(“Duplicate item!”,
 {name: pname,
 category: pcategory,
 distributor: pdistributor});
 throw err;
 }
 }

 function clickCallback()
 {
 var name = document.getElementById(“name”);
 var category = document.getElementById(“category”);
 var distributor = document.getElementById(“distributor”);
 try
 {
 validateInput(name.value, category.value,
 distributor.value);
 products[name.value] = {name: name.value,
 category: category.value,
 distributor: distributor.value};
 }
 catch (e)
 {
 alert(e.message);
 }
 }

 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”/>
 <table style=”background-color:LightGoldenrodYellow;
 border-color:Tan; border-width:1px;
 color:Black;” cellpadding=”2”>

(continued)

c03.indd 73c03.indd 73 8/20/07 5:50:41 PM8/20/07 5:50:41 PM

Chapter 3: Built-In and Custom Exception Types

74

 <tr style=”background-color:Tan; font-weight:bold”>
 <th colspan=”2”>Product Description</th>
 </tr>
 <tr>
 <td align=”right”>Name:</td>
 <td align=”left”>
 <input type=”text” id=”name” />
 </td>
 </tr>
 <tr>
 <td align=”right”>Category:</td>
 <td align=”left”>
 <input type=”text” id=”category” />
 </td>
 </tr>
 <tr>
 <td align=”right”>Distributor:</td>
 <td align=”left”>
 <input type=”text” id=”distributor” />
 </td>
 </tr>
 <tr style=”background-color:PaleGoldenrod”>
 <td align=”center” colspan=”2”>
 <input type=”button” value=”Add Product”
 onclick=”clickCallback()” />
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

 Figure 3-7 shows what you’ll see in your browser when you access this page. Note that the page consists
of three simple text boxes and a button. This page allows you to add a product with a specified name,
category, and distributor to an internal collection.

Figure 3-7

c03.indd 74c03.indd 74 8/20/07 5:50:41 PM8/20/07 5:50:41 PM

Chapter 3: Built-In and Custom Exception Types

75

 If you attempt to add a product with the same name as an existing product, the pop-up message shown
in Figure 3-8 is displayed to warn you that the specified item already exists in the collection. As
 Figure 3-8 shows, the warning message also displays the names and values of the duplicate item. The
item features three properties: name , category , and distributor .

Figure 3-8

 Now, let’s walk through the previous code listing.

 clickCallback
 When the end user clicks the Add Product button, the clickCallback JavaScript function is invoked as
follows:

 function clickCallback()
 {
 var name = document.getElementById(“name”);
 var category = document.getElementById(“category”);
 var distributor = document.getElementById(“distributor”);
 try
 {
 validateInput(name.value, category.value, distributor.value);
 products[name.value] =
 {name: name.value,
 category: category.value,
 distributor: distributor.value};
 }
 catch (e)
 {
 alert(e.message);
 }
 }

 This function first retrieves the values that the end user has entered for the name, category, and distribu-
tor of the product being added, and then passes these values to the validateInput JavaScript function
to ensure that the product with the same name does not already exist in the internal collection:

 validateInput(name.value, category.value,
 distributor.value);

c03.indd 75c03.indd 75 8/20/07 5:50:43 PM8/20/07 5:50:43 PM

Chapter 3: Built-In and Custom Exception Types

76

 Note that the clickCallback function wraps the calls into the validateInput function in a try block
because the validateInput function could raise an exception.

 If the validation succeeds, the clickCallback function uses the JavaScript object literal representation
to instantiate a new product and adds the product to the internal collection:

 products[name.value] = {name: name.value,
 category: category.value,
 distributor: distributor.value};

 If the validation fails, the validateInput function raises a DuplicateItemException exception,
which is then caught by the clickCallback function in the catch block.

 validateInput
 The validateInput function takes the name, category, and distributor of the new product as its
 arguments as shown in the following code:

 function validateInput(pname, pcategory, pdistributor)
 {
 if (products[pname])
 {
 var err = Error.duplicateItem(“Duplicate item!”,
 {name: pname, category: pcategory,
 distributor: pdistributor});
 throw err;
 }
 }

 The validateInput function calls the duplicateItem static method on the Error object, passing in
the following parameters to create a new Error object if the products object already contains an object
with the specified name:

❑ The “Duplicate item!” error message.

❑ The object literal representation of the duplicate product. Notice that this representation exposes
three properties: name , category , and distributor .

 Summary
 This chapter provided you with an in-depth coverage of the ASP.NET AJAX built-in exception types. It
then gave you a recipe for building your own custom exception types and showed you how to use the
recipe to implement a custom exception type named DuplicateItemException .

 The ASP.NET AJAX JavaScript base type extensions and exception types are only part of the ASP.NET
AJAX client-side framework. The next chapter discusses two other important parts of this framework:
ASP.NET AJAX JavaScript object-oriented programming (OOP) and type reflection extensions.

c03.indd 76c03.indd 76 8/20/07 5:50:44 PM8/20/07 5:50:44 PM

 JavaScript Object-Oriented
Programming and Type
Reflection Extensions

 The .NET Framework comes with the following two important programming capabilities:

 ❑ Fully fledged typing and type reflection capabilities, allowing you to perform
 runtime-type inspections, discoveries, invocations, instantiations, and the like

❑ Fully fledged object-oriented capabilities, allowing you to take full advantage of all the
well-known benefits of object-oriented programming (OOP) such as classes, interfaces,
 inheritance, and the like

 Because the main goal of the ASP.NET AJAX client-side framework is to emulate the ASP.NET and
.NET Frameworks as much as possible, the ASP.NET AJAX client-side framework comes with a set
of extensions — known as the ASP.NET AJAX OOP and type reflection extensions — that add .NET-
like OOP and type reflection capabilities to JavaScript as much as possible.

 You’ve already seen some reflection capabilities in Chapter 2 where the ASP.NET AJAX client-side
Framework extends the JavaScript Object type to add support for the getType and getTypeName
methods.

 The .NET Framework comes with an important class named Type that provides most of the reflec-
tion capabilities of the Framework. Following the same pattern, the ASP.NET AJAX client-side
framework introduces a type named Type , which provides both OOP and type reflection capabili-
ties, which I’ll discuss in this chapter.

 First, I’ll examine the JavaScript technologies that the ASP.NET AJAX OOP and type reflection
extensions use under the hood to extend JavaScript to add OOP and type reflection support. This
examination will put you in a much better position to understand and to use the ASP.NET AJAX
client-side framework.

c04.indd 77c04.indd 77 8/20/07 6:00:31 PM8/20/07 6:00:31 PM

Chapter 4: JavaScript Object-Oriented Programming

78

 JavaScript Functions
 Every JavaScript function is an instance of a JavaScript type named Function and supports the follow-
ing properties:

 ❑ arguments : This property contains the parameters of a JavaScript function, which also includes
the parameters that the original definition of the function does not contain. You can use this
property to access the parameters of a function within the body of the function. As the following
code shows, you can even define a function without any parameters and use the arguments
property to access the parameters. However, this is not a recommended practice.

 function MyFunction()
 {
 for (var i = 0; i<arguments.length; i++)
 alert (arguments[i]);
 }

 window.onload = function()
 {
 MyFunction(‘info1’);
 MyFunction(‘info1’,’info2’);
 }

 ❑ constructor : The constructor property references the function or constructor that was invoked
to create an object. For example, if you run the following code, the alert will show function
Function () { [native code] } :

 <%@ Page Language=”C#” %>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script language=”JavaScript” type=”text/javascript”>
 function MyFunction()
 {
 // Body of the function goes here
 }

 window.onload = function() {
 alert(MyFunction.constructor);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 </form>
</body>
</html>

❑ prototype : The prototype property allows you to extend the functionality of a type to add sup-
port for new instance properties and methods. JavaScript guarantees that all instances of the type
will automatically inherit these new properties and methods. As you’ll see later, the ASP.NET AJAX
client-side framework makes extensive use of this property to add OOP support to JavaScript.

c04.indd 78c04.indd 78 8/20/07 6:00:31 PM8/20/07 6:00:31 PM

Chapter 4: JavaScript Object-Oriented Programming

79

 Every JavaScript function also supports two methods, call and apply , that you can use to invoke a
function object. Using these methods to invoke a function may sound redundant because you can invoke
a function by simply naming it. For example, you can invoke the MyFunction JavaScript function
defined in the previous code fragment by simply calling MyFunction(); . Why would anyone then call
 MyFunction.call() to invoke the function when you can directly call the function itself?

 The call and apply methods enable you to specify the this value used inside a JavaScript function. As
you can see, JavaScript enables you to specify not only the parameters passed into a JavaScript function
but also the this value. As such, the first parameter of the call and apply methods references a
 JavaScript object, which is used to set this value. Note that this JavaScript object does note have to own
the JavaScript function on which the call or apply method is invoked. As you’ll see later, the ASP.NET
AJAX client-side framework uses this feature when it’s adding OOP support to JavaScript.

 Based on the fact that both the call and apply methods do the same thing — that is, invoke their asso-
ciated method — you may be wondering why there are two methods. The main difference between these
two methods is in how the parameters of their associated JavaScript functions are passed into these two
methods. If your parameters are already loaded into an array, you can call the apply method and pass
the array directly to this method. Otherwise, you can call the call method, passing the parameters as a
list of comma-separated items.

 JavaScript Classes
 JavaScript is inherently an object-based programming language, not an object-oriented programming
language. As such, it has limited OOP support, which is discussed in this section. There is no JavaScript
keyword equivalent to the C# or VB.NET class keyword. The constructor of a JavaScript class also
defines the class itself. Listing 4-1 presents an example of a JavaScript class named Employee .

 Listing 4-1: A JavaScript Class

 <%@ Page Language=”C#” %>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>

 <script language=”JavaScript” type=”text/javascript”>
 function Employee (firstName, lastName)
 {
 this._firstName = firstName;
 this._lastName = lastName;
 }

 Employee.prototype =
 {
 get_firstName : function () {return this._firstName;},
 set_firstName : function (value) {this._firstName = value;},
 get_lastName : function() {return this._lastName;},
 set_lastName : function (value) {this._lastName = value;}
 }

(continued)

c04.indd 79c04.indd 79 8/20/07 6:00:32 PM8/20/07 6:00:32 PM

Chapter 4: JavaScript Object-Oriented Programming

80

 Listing 4-1: (continued)

 window.onload = function()
 {
 var e = new Employee (“Shahram”, “Khosravi”);
 alert(e.get_firstName());
 e.set_firstName(“Shahram1”);
 alert(e.get_firstName());
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 </form>
</body>
</html>

 Type
 As mentioned earlier, the ASP.NET AJAX client-side framework introduces a new type or class named
 Type . Let’s take a look under the hood to see what the Type class is:

 window.Type = Function;

 As you can see, Type is basically a new alias for the Function class. This aliasing is done because
“Type” makes more sense in the context of the .NET Framework. Keep in mind that the main goal of
ASP.NET AJAX is to make the client-side framework act like the .NET Framework as much as possible.
Aliasing Function to Type is just a simple first step toward this goal. The next step is to extend the Type
(formerly known as Function) class to add support for new methods and properties that will help make
the client-side programming more like server-side .NET programming.

 As discussed previously, Type (or Function) features a property named prototype . The JavaScript
engine guarantees that every instance of Type automatically inherits every method and property
assigned to the prototype property. This means that every JavaScript function will automatically inherit
or pick up every method and property assigned to the prototype property of the Type or Function
class. Because the constructor of every JavaScript class, including your own custom classes such as
 Employee , is nothing but a JavaScript function, this also means that every JavaScript class, including
your own custom classes, will automatically inherit every method and property assigned to the
 prototype property of the Type or Function class.

 Next, you’ll learn how the ASP.NET AJAX client-side framework takes full advantage of this powerful
feature of JavaScript to extend Type to add support for common OOP features such as namespaces,
classes, inheritance, interfaces, and the like. Each of the following sections covers one of the new meth-
ods or properties that the ASP.NET AJAX client-side framework has added to Type (or Function). Each
section consists of three parts. The first part describes what the method does. The second part presents
an example where the method is used. The third part looks under the hood to show you how the method
is implemented internally. Knowing the internals of these methods and properties will put you in a
much better position to understand and to extend the ASP.NET AJAX client-side framework.

c04.indd 80c04.indd 80 8/20/07 6:00:32 PM8/20/07 6:00:32 PM

Chapter 4: JavaScript Object-Oriented Programming

81

 register Class
 The ASP.NET AJAX client-side framework extends the functionality of Type to add support for a new
method named registerClass . As the name implies, this method registers a specified class with the
ASP.NET AJAX client-side framework.

 To add a new class to the ASP.NET AJAX client-side framework, you first need to implement the class.
For example, the following code implements a class named Employee :

 Employee = function (firstName, lastName)
 {
 this_firstName = firstName;
 this_lastName = lastName;

 }

 Employee.prototype =
 {
 get_firstName : function () {return this._firstName;},
 set_firstName : function (value) {this._firstName = value;},
 get_lastName : function() {return this._lastName;},
 set_lastName : function (value) {this._lastName = value;}
 }

 Then, call the registerClass function of the Employee class to register your new class with the
ASP.NET AJAX client-side framework, as follows:

 Employee.registerClass(“Employee”);

 Listing 4-2 presents a page that defines, registers, and uses the new Employee class.

 Listing 4-2: Registering the Employee Class

 <%@ Page Language=”C#” %>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />

 <script language=”JavaScript” type=”text/javascript”>
 Employee = function (firstName, lastName)
 {
 this._firstName = firstName;
 this._lastName = lastName;
 }

(continued)

c04.indd 81c04.indd 81 8/20/07 6:00:33 PM8/20/07 6:00:33 PM

Chapter 4: JavaScript Object-Oriented Programming

82

 Listing 4-2 (continued)

 Employee.prototype =
 {
 get_firstName : function () {return this._firstName;},
 set_firstName : function (value) {this._firstName = value;},
 get_lastName : function() {return this._lastName;},
 set_lastName : function (value) {this._lastName = value;}
 }

 Employee.registerClass(“Employee”);

 var e = new Employee (“Shahram”, “Khosravi”);
 alert(e.get_firstName());
 e.set_firstName(“Shahram1”);
 alert(e.get_firstName());
 </script>
 </form>
</body>
</html>

 The following line of code seems to suggest that the Employee class has a method named
 registerClass :

 Employee.registerClass(“Employee”);

 However, as Listing 4-2 shows, the Employee class does not contain this method. To understand how
this is possible, you need to look at the internal implementation of the registerClass method
shown in Listing 4-3 . As this code listing shows, the registerClass is assigned to the prototype
property of the Type or Function class. As discussed before, every JavaScript class, including your
own custom classes, automatically inherits any method or property assigned to the prototype
 property of Type .

 Listing 4-3: The Portion of the Internal Implementation of the register Class Function

 Type.prototype.registerClass = function(c, b, d)
{
 . . .
 this.prototype.constructor = this;
 this.__typeName = c;
 this.__class = true;
 . . .
 if(!window.__classes)
 window.__classes = {};

 window.__classes[c.toUpperCase()] = this;
 . . .
 return this;
};

 Note that Listing 4-3 presents a portion of the internal implementation of the registerClass function.
You’ll see the rest of the implementation of this function in the following sections. Also notice that

c04.indd 82c04.indd 82 8/20/07 6:00:33 PM8/20/07 6:00:33 PM

Chapter 4: JavaScript Object-Oriented Programming

83

 registerClass takes three arguments. The second and third arguments are discussed later. As
 Listing 4-3 shows, the registerClass method takes these actions:

 1. It assigns its first parameter to an internal field named __typeName :

 this.__typeName = c;

 As Listing 4-2 shows, this parameter contains the name of the class being registered — for
 example, “Employee” .

2. It sets an internal Boolean field named __class to true to specify that the entity being
 registered is a class:

 this.__class = true;

 3. It instantiates a global object named _classes , if it hasn’t already been instantiated:

 if(!window.__classes)
 window.__classes = {};

 4. It uses the name of the class as an index to store the current class in the _classes object:

 window.__classes[c.toUpperCase()] = this;

 This means that the ASP.NET AJAX client-side framework maintains an internal object that contains all
the classes registered with the framework. This allows you to perform runtime class reflection queries,
similar to .NET class reflection queries.

 This also means that every class registered with the ASP.NET AJAX client-side framework maintains
metadata information, such as the type name, in its internal fields, such as _typeName . This enables you
to perform runtime object reflections similar to .NET object reflections on registered classes. You’ll see an
example of this reflection in the next section.

 get Name
 The getName method returns the name of the specified type, as shown in the following example. This is
a simple example of the reflection capabilities of the ASP.NET AJAX client-side framework.

 <%@ Page Language=”C#” %>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />

 <script language=”JavaScript” type=”text/javascript”>

(continued)

c04.indd 83c04.indd 83 8/20/07 6:00:33 PM8/20/07 6:00:33 PM

Chapter 4: JavaScript Object-Oriented Programming

84

 Employee = function (firstName, lastName)
 {
 this_firstName = firstName;
 this._lastName = lastName;
 }

 Employee.prototype =
 {
 get_firstName : function () {return this._firstName;},
 set_firstName : function (value) {this._firstName = value;},
 get_lastName : function() {return this._lastName;},
 set_lastName : function (value) {this._lastName = value;}
 }

 Employee.registerClass(“Employee”);
 alert(Employee.getName());
 </script>
 </form>
</body>
</html>

 Once again, note that the getName method is called directly on the Employee class, implying that this
class contains this method. As the following code shows, this is possible because the getName method is
assigned to the prototype property of Type :

 Type.prototype.getName = function()
{
 return typeof this.__typeName === “undefined” ? “” : this.__typeName;
};

 Notice that the getName function simply returns the value of the __typeName field discussed
previously.

 is Class
 The isClass method is a static method of the Type class, which means that you must call this method
directly on the Type itself. This method returns a Boolean value that specifies whether the parameter
passed into it is a class. For example, the call into the isClass function in the boldfaced portion of the
following code listing returns true, because Employee is registered as a class:

 <%@ Page Language=”C#” %>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />
 <script language=”JavaScript” type=”text/javascript”>

c04.indd 84c04.indd 84 8/20/07 6:00:34 PM8/20/07 6:00:34 PM

Chapter 4: JavaScript Object-Oriented Programming

85

 Employee = function (firstName, lastName)
 {
 this._firstName = firstName;
 this._lastName = lastName;
 }

 Employee.prototype =
 {
 get_firstName : function () {return this._firstName;},
 set_firstName : function (value) {this._firstName = value;},
 get_lastName : function() {return this._lastName;},
 set_lastName : function (value) {this._lastName = value;}
 }

 Employee.registerClass(“Employee”);
 alert(Type.isClass(Employee));
 </script>
 </form>
</body>
</html>

 As the following code shows, the isClass method is a static method because it’s not defined on the
 prototype property. Note that this method simply returns the value of the _class private field dis-
cussed in Listing 4-3 . The isClass method is yet another example of the ASP.NET AJAX client-side
framework’s type reflection capabilities.

 Type.isClass = function(a)
{
 if(typeof a === “undefined” || a === null)
 return false;
 return !!a.__class;
};

 register Namespace
 The idea of a namespace is one of the fundamental OOP concepts, but JavaScript does not support
namespaces. The ASP.NET AJAX client-side framework extends the functionality of Type to add support
for a static method named registerNamespace that makes it possible to define namespaces in
 JavaScript. Because this method is static, you must call it directly on the Type itself. Here is an example:

 <%@ Page Language=”C#” %>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />
 <script language=”JavaScript” type=”text/javascript”>
 Type.registerNamespace(“MyNamespace”);

(continued)

c04.indd 85c04.indd 85 8/20/07 6:00:34 PM8/20/07 6:00:34 PM

Chapter 4: JavaScript Object-Oriented Programming

86

 MyNamespace.Employee = function (firstName, lastName)
 {
 this._firstName = firstName;
 this._lastName = lastName;
 }

 MyNamespace.Employee.prototype =
 {
 get_firstName : function () {return this._firstName;},
 set_firstName : function (value) {this._firstName = value;},
 get_lastName : function() {return this._lastName;},
 set_lastName : function (value) {this._lastName = value;}
 }

 MyNamespace.Employee.registerClass(“MyNamespace.Employee”);
 alert(Type.isClass(MyNamespace.Employee));
 </script>
 </form>
</body>
</html>

 This example first registers a namespace named MyNamespace :

 Type.registerNamespace (“MyNamespace”);

 Then it defines a class named Employee that belongs to this namespace:

 MyNamespace.Employee = function (firstName, lastName)
 {
 this._firstName = firstName;
 this._lastName = lastName;
 }

 MyNamespace.Employee.prototype =
 {
 get_firstName : function () {return this._firstName;},
 set_firstName : function (value) {this._firstName = value;},
 get_lastName : function() {return this._lastName;},
 set_lastName : function (value) {this._lastName = value;}
 }

 Finally, it registers the class with the ASP.NET AJAX client-side framework:

 MyNamespace.Employee.registerClass(“MyNamespace.Employee”);

 Note that the namespace of a class is part of the name of the class.

 Listing 4-4 presents the internal implementation of the registerNamespace method. As the first
line of code shows, the ASP.NET AJAX client-side framework adds a new global array named
_rootNamespaces to the window object. As you’ll see shortly, the registerNamespace method
adds the global namespace being registered to this global array. In other words, this global array
 contains all the global namespaces registered with the ASP.NET AJAX client-side framework.

c04.indd 86c04.indd 86 8/20/07 6:00:34 PM8/20/07 6:00:34 PM

Chapter 4: JavaScript Object-Oriented Programming

87

 Listing 4-4: The Internal Implementation of the register Namespace Function

 window.__rootNamespaces = [];

Type.registerNamespace = function(f)
{
 var d = window, c = f.split(“.”);
 for(var b = 0; b < c.length; b ++)
 {
 var e = c[b], a = d[e];
 if(! a)
 {
 a = d[e] = {};
 if(b === 0)
 window.__rootNamespaces[window.__rootNamespaces.length] = a;

 a.__namespace = true;
 a.__typeName = c.slice(0, b + 1).join(“.”);
 a.getName = function()
 {
 return this.__typeName;
 };
 }
 d = a;
 }
}

 Now, I’ll walk through the code shown in Listing 4-4 to examine how the ASP.NET AJAX client-side
framework manages to add a namespace capability to JavaScript. In general, there are two types of
namespaces: global and local. A local namespace is one that is a subset of another namespace. A global
namespace is a namespace that does not belong to any other namespace. For example, you could have a
global namespace named Department , which in turn may contain one or more local namespaces, such
as Section , as in Department.Section . The Section sub-namespace in turn may contain one or more
namespaces, such as SubSection , as in Department.Section.SubSection .

 As Listing 4-4 shows, the ASP.NET AJAX client-side framework maintains all global namespaces in the
 _rootNamespaces array. In the following section of the listing, the object that represents a namespace
features a Boolean field named _namespace that specifies that this object is a namespace, a string field
named _typeName that contains the fully qualified name of the namespace such as Department
. Section , and a getter method named getName that returns the fully qualified name of the namespace:

 a.__namespace = true;
 a.__typeName = c.slice(0, b + 1).join(“.”);
 a.getName = function()
 {
 return this.__typeName
 }

 The object that represents a namespace, such as Department , also acts as a container (hash) for the
objects that represent its sub-namespaces, such as Section .

c04.indd 87c04.indd 87 8/20/07 6:00:35 PM8/20/07 6:00:35 PM

Chapter 4: JavaScript Object-Oriented Programming

88

 is Namespace
 The isNamespace method is a static method of the Type class. This method returns a Boolean value that
specifies whether the specified object is a namespace. For example, the call into the isNamespace function in
the boldfaced portion of the following code returns true because MyNamespace is registered as a namespace:

 <%@ Page Language=”C#” %>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />

 <script language=”JavaScript” type=”text/javascript”>
 Type.registerNamespace(“MyNamespace”);
 MyNamespace.Employee = function (firstName, lastName)
 {
 this._firstName = firstName;
 this._lastName = lastName;
 }

 MyNamespace.Employee.prototype =
 {
 get_firstName : function () {return this._firstName;},
 set_firstName : function (value) {this._firstName = value;},
 get_lastName : function() {return this._lastName;},
 set_lastName : function (value) {this._lastName = value;}
 }

 MyNamespace.Employee.registerClass(“MyNamespace.Employee”);
 alert(Type.isNamespace(MyNamespace));
 </script>
 </form>
</body>
</html>

 Listing 4-5 presents the internal implementation of the isNamespace method. This method simply
returns the value of the _namespace field of the object. As you may recall from Listing 4-4 , the
 registerNamespace method sets the _namespace field of the object that represents the namespace to
 true to signal that the object is a namespace. This is yet another example of the type reflection capabili-
ties of the ASP.NET AJAX client-side framework.

 Listing 4 -5: The Internal Implementation of is Namespace

 Type.isNamespace = function(a)
{
 if(typeof a === “undefined” || a === null)
 return false;
 return ! ! a.__namespace;
};

c04.indd 88c04.indd 88 8/20/07 6:00:35 PM8/20/07 6:00:35 PM

Chapter 4: JavaScript Object-Oriented Programming

89

 register Interface
 The ASP.NET AJAX client-side framework extends Type to add support for a new method named
 registerInterface , which enables you to register an interface with the framework. The best way to
understand this is to walk through the example shown in Listing 4-6 .

 Listing 4 -6: An Example that uses the register Interface

 <%@ Page Language=”C#” %>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />

 <script language=”JavaScript” type=”text/javascript”>
 Type.registerNamespace(“Department”);
 Department.IEmployee = function Department$IEmployee()
 {
 throw Error.notImplemented();
 };

 function Department$IEmployee$get_employeeID ()
 {
 throw Error.notImplemented();
 };

 function Department$IEmployee$set_employeeID ()
 {
 throw Error.notImplemented();
 };

 Department.IEmployee.prototype =
 {
 get_employeeID : Department$IEmployee$get_employeeID,
 set_employeeID: Department$IEmployee$set_employeeID
 }

 Department.IEmployee.registerInterface(“Department.IEmployee”);

 Department.Employee = function (firstName, lastName)
 {
 this._firstName = firstName;
 this._lastName = lastName;
 }

 Department.Employee.prototype =
 {
 get_firstName : function () {return this._firstName;},

(continued)

c04.indd 89c04.indd 89 8/20/07 6:00:35 PM8/20/07 6:00:35 PM

Chapter 4: JavaScript Object-Oriented Programming

90

 Listing 4-6 (continued)

 set_firstName : function (value) {this._firstName = value;},
 get_lastName : function() {return this._lastName;},
 set_lastName : function (value) {this._lastName = value;},
 get_employeeID : function () {return this._employeeID;},
 set_employeeID : function (value) {this._employeeID = value;}
 }

 Department.Employee.registerClass(“Department.Employee”, null,
 Department.IEmployee);
 </script>
 </form>
</body>
</html>

 Obviously, you have to first define the interface before you can register it. Defining an interface is pretty
much like defining a class, with one big difference: The constructors, methods, and properties raise
exceptions.

 Next, you need to register the interface, as follows:

 Department.IEmployee.registerInterface(“Department.IEmployee”);

 Listing 4-6 shows you how to write a class that implements the interface. First you need to define the
class. As the boldfaced portion of the following code shows, the Employee class implements the
get_employeeID and set_employeeID methods of the IEmployee interface:

 Department.Employee = function (firstName, lastName)
 {
 this._firstName = firstName;
 this._lastName = lastName;
 }

 Department.Employee.prototype =
 {
 get_firstName : function () {return this._firstName;},
 set_firstName : function (value) {this._firstName = value;},
 get_lastName : function() {return this._lastName;},
 set_lastName : function (value) {this._lastName = value;},
 get_employeeID : function () {return this._employeeID;},
 set_employeeID : function (value) {this._employeeID = value;}
 }

 Next, you need to register your class, like this:

 Department.Employee.registerClass(“Department.Employee”, null, Department .IEmployee);

 Note that the registerClass method takes a third parameter, which references the interface. Passing
this parameter into the registerClass tells the ASP.NET AJAX client-side framework that the class

c04.indd 90c04.indd 90 8/20/07 6:00:36 PM8/20/07 6:00:36 PM

Chapter 4: JavaScript Object-Oriented Programming

91

being registered implements the specified interface, as you can see here:

 Department.Employee.prototype.getEmployeeID = function ()
{
 return this._employeeID;
};

Department.Employee.prototype.setEmployeeID = function (value)
{
 this._employeeID = value;
};

 Listing 4-7 presents the internal implementation of the registerInterface method. This method
 simply sets the _typeName string field to the name of the interface being registered and the _interface
Boolean field to true to specify that the current object is an interface. As you can see, the registration
simply creates the metadata necessary for .NET-like reflection.

 Listing 4 -7: The Internal Implementation of registerInterface

 Type.prototype.registerInterface = function(a)
{
 this.prototype.constructor = this;
 this.__typeName = a;
 this.__interface = true;
 window.__registeredTypes[a] = true;
 return this;
};

 Listing 4-3 presented a portion of the implementation of the registerClass function. The first parame-
ter of the registerClass method contains the fully qualified name of the class being registered, includ-
ing its namespace hierarchy — for example, Department.Employee . The second parameter is discussed
in later sections of this chapter. The third optional parameter of registerClass contains the interfaces
that the class being registered implements. The highlighted portion of Listing 4-8 shows the internal
implementation of the registerClass method that handles the third parameter.

 Listing 4 -8: The Portion of the Internal Implementation of the register Class Function

 Type.prototype.registerClass = function(c, b, d)
{
 this.prototype.constructor = this;
 this.__typeName = c;
 this.__class = true;
 . . .
 if(!window.__classes)
 window.__classes = [];

 window.__classes[c.toUpperCase()] = this;

 if(d)
 {
 this.__interfaces = [];
 for(var a = 2; a < arguments.length; a ++)

(continued)

c04.indd 91c04.indd 91 8/20/07 6:00:36 PM8/20/07 6:00:36 PM

Chapter 4: JavaScript Object-Oriented Programming

92

 Listing 4-8 (continued)

 {
 var e = arguments[a];
 this.resolveInheritance();
 for (var methodName in interfaceType.prototype)
 {
 var method = interfaceType.prototype[methodName];
 if (!this.prototype[methodName])
 {
 this.prototype[methodName] = method;
 }
 }
 this.__interfaces.push(e)
 }
 }

 return this
 };

 The highlighted portion of Listing 4-8 takes these steps:

 1. It defines and instantiates a new array field named _interfaces . As you’ll see shortly, the
 registerClass method uses this array field as a stack, which JavaScript implements as an array.

 this.__interfaces = [];

 2. It iterates through the interfaces that the third parameter of registerClass contains and
pushes each enumerated interface onto the top of the stack:

 var e = arguments[a];
this.__interfaces.push(e)

 As these steps show, each class maintains an internal stack that contains the interfaces that the class
implements. As you’ll see in the next sections, this internal stack enables you to perform .NET-like
 interface-related reflections on a given type or class. This stack is an example of .NET-like metadata.

 get Interfaces
 The getInterfaces method enables you to query a type for all the interfaces that the type and its
ancestor types implement. The boldfaced portion of the following code first calls the getInterfaces
function on the Department.Employee type to return an array that contains all the interfaces that
this type and its ancestor types implement, and then iterates through these interfaces and displays
their names:

 <%@ Page Language=”C#” %>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>

c04.indd 92c04.indd 92 8/20/07 6:00:36 PM8/20/07 6:00:36 PM

Chapter 4: JavaScript Object-Oriented Programming

93

<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />

 <script language=”JavaScript” type=”text/javascript”>
 Type.registerNamespace(“Department”);
 Department.IEmployee = function Department$IEmployee()
 {
 throw Error.notImplemented();
 };

 function Department$IEmployee$get_employeeID ()
 {
 throw Error.notImplemented();
 };

 function Department$IEmployee$set_employeeID ()
 {
 throw Error.notImplemented();
 };

 Department.IEmployee.prototype =
 {
 get_employeeID : Department$IEmployee$get_employeeID,
 set_employeeID: Department$IEmployee$set_employeeID
 }

 Department.IEmployee.registerInterface(“Department.IEmployee”);

 Department.Employee = function (firstName, lastName)
 {
 this._firstName = firstName;
 this._lastName = lastName;
 }

 Department.Employee.prototype =
 {
 get_firstName : function () {return this._firstName;},
 set_firstName : function (value) {this._firstName = value;},
 get_lastName : function() {return this._lastName;},
 set_lastName : function (value) {this._lastName = value;},
 get_employeeID : function () {return this._employeeID;},
 set_employeeID : function (value) {this._employeeID = value;}
 }

 Department.Employee.registerClass(“Department.Employee”, null,

 Department.IEmployee);

 var interfaces = Department.Employee.getInterfaces();
 for (var i = 0; i<interfaces.length; i++)
 alert(interfaces[i].getName());
 </script>
 </form>
</body>
</html>

c04.indd 93c04.indd 93 8/20/07 6:00:37 PM8/20/07 6:00:37 PM

Chapter 4: JavaScript Object-Oriented Programming

94

 Listing 4-9 presents the internal implementation of the getInterfaces function.

 Listing 4-9: The Internal Implementation of the get Interfaces Method

 Type.prototype.getInterfaces = function()
{
 var a = [], b = this;
 while(b)
 {
 var c = b.__interfaces;
 if(c)
 {
 for(var d = 0, f = c.length; d < f; d ++)
 {
 var e = c[d];
 if(!Array.contains(a, e))
 a[a.length] = e;
 }
 }
 b = b.__baseType;
 }
 return a;
};

 As you can see in this listing, the getInterfaces function takes the following steps:

 1. It defines and instantiates a local JavaScript array:

 var a = []

 2. It assigns the current type to a local variable:

 b = this;

 3. It accesses the interfaces that the current type implements: As you saw in Listing 4-7 , every type
maintains the list of the interfaces that it implements in an internal array named _interfaces :

 var c = b.__interfaces;

 4. It iterates through the interfaces that the current type implements and adds each enumerated
 interface to the local JavaScript array defined in step 1:

 a[a.length] = e

 5. It assigns the base type of the current type to the local variable defined in step 2, which means
that the base type is now the current type:

 b = b.__baseType

 6. It repeats steps 3, 4, and 5.

 As these steps show, the getInterfaces method returns all the interfaces that the type and all its
 ancestor types implement.

c04.indd 94c04.indd 94 8/20/07 6:00:37 PM8/20/07 6:00:37 PM

Chapter 4: JavaScript Object-Oriented Programming

95

 is Interface
 You can use the isInterface function to determine whether a specified object is an interface. Note
that this method is static, which means that you must call this method directly on the Type itself. The
bo ldfaced portion of the following code calls the isInterface function to determine whether
 Department.IEmployee is an interface:

 <%@ Page Language=”C#” %>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />

 <script language=”JavaScript” type=”text/javascript”>
 Type.registerNamespace(“Department”);
 Department.IEmployee = function Department$IEmployee()
 {
 throw Error.notImplemented();
 };

 function Department$IEmployee$get_employeeID ()
 {
 throw Error.notImplemented();
 };

 function Department$IEmployee$set_employeeID ()
 {
 throw Error.notImplemented();
 };

 Department.IEmployee.prototype =
 {
 get_employeeID : Department$IEmployee$get_employeeID,
 set_employeeID: Department$IEmployee$set_employeeID
 }

 Department.IEmployee.registerInterface(“Department.IEmployee”);

 Department.Employee = function (firstName, lastName)
 {
 this._firstName = firstName;
 this._lastName = lastName;
 }

 Department.Employee.prototype =
 {
 get_firstName : function () {return this._firstName;},
 set_firstName : function (value) {this._firstName = value;},
 get_lastName : function() {return this._lastName;},
 set_lastName : function (value) {this._lastName = value;},

(continued)

c04.indd 95c04.indd 95 8/20/07 6:00:37 PM8/20/07 6:00:37 PM

Chapter 4: JavaScript Object-Oriented Programming

96

 get_employeeID : function () {return this._employeeID;},
 set_employeeID : function (value) {this._employeeID = value;}
 }

Department.Employee.registerClass(“Department.Employee”, null,
 Department.IEmployee);
 var isInterface = Type.isInterface(Department.IEmployee);
 alert(isInterface);
 </script>
 </form>
</body>
</html>

 Listing 4-10 contains the internal implementation of isInterface . isInterface simply returns the
value of the _interface Boolean field discussed earlier. This is yet another example of the .NET-like
type reflection capabilities of the ASP.NET AJAX client-side framework.

 Listing 4-10: The Internal Implementation of is Interface

 Type.isInterface = function(a)
{
 if(typeof a === “undefined” || a === null)
 return false;
 return ! ! a.__interface;
};

 Inheritance
 One of the main characteristics of any OOP language is support for the class inheritance. The ASP.NET
AJAX client-side framework extends JavaScript to add support for this all-important feature. As an
example, Listing 4-11 implements a new class named Department.Manager that inherits the
 Department.Employee class.

 Listing 4-11: A Page that uses Inheritance

 <%@ Page Language=”C#” %>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />

 <script language=”JavaScript” type=”text/javascript”>
 Type.registerNamespace(“Department”);
 Department.IEmployee = function Department$IEmployee()
 {
 throw Error.notImplemented();
 };

c04.indd 96c04.indd 96 8/20/07 6:00:38 PM8/20/07 6:00:38 PM

Chapter 4: JavaScript Object-Oriented Programming

97

 function Department$IEmployee$get_employeeID ()
 {
 throw Error.notImplemented();
 };

 function Department$IEmployee$set_employeeID ()
 {
 throw Error.notImplemented();
 };

 Department.IEmployee.prototype =
 {
 get_employeeID : Department$IEmployee$get_employeeID,
 set_employeeID: Department$IEmployee$set_employeeID
 }

 Department.IEmployee.registerInterface(“Department.IEmployee”);

 Department.Employee = function (firstName, lastName)
 {
 this._firstName = firstName;
 this._lastName = lastName;
 }

 Department.Employee.prototype =
 {
 get_firstName : function () {return this._firstName;},
 set_firstName : function (value) {this._firstName = value;},
 get_lastName : function() {return this._lastName;},
 set_lastName : function (value) {this._lastName = value;},
 get_employeeID : function () {return this._employeeID;},
 set_employeeID : function (value) {this._employeeID = value;}
 }

 Department.Employee.registerClass(“Department.Employee”, null,

 Department.IEmployee);

 Department.Manager = function (firstName, lastName, department)
 {
 Department.Manager.initializeBase(this,[firstName,lastName]);
 this._department = department;
 };

 Department.Manager.prototype =
 {
 get_department : function () {return this._department;},
 set_department : function (value) {this._department = value;}
 };

Department.Manager.registerClass(“Department.Manager”, Department.Employee);

 var mgr = new Department.Manager(“SomeFirstName”, “SomeLastName”,
 “SomeDepartment”);
 var str = ”First Name: “ + mgr.get_firstName() + “\n”;

(continued)

c04.indd 97c04.indd 97 8/20/07 6:00:38 PM8/20/07 6:00:38 PM

Chapter 4: JavaScript Object-Oriented Programming

98

 Listing 4-11 (continued)

 str += (“Last Name: “ + mgr.get_lastName() + “\n”);
 str += (“Department: “ + mgr.get_department() + “\n”);
 alert(str);
 </script>
 </form>
</body>
</html>

 The first order of business is to define the new Manager class or the new Manager constructor as shown
in Listing 4-12 .

 Listing 4-12: The Manager Constructor in JavaScript

 Department.Manager = function (firstName, lastName, department)
 {
 Department.Manager.initializeBase(this,[firstName,lastName]);
 this._department = department;
 };

 Note that the Manager constructor first calls a method named initializeBase . To understand the role
of this method, take a look at the Manager constructor in an OOP language such as C#, as shown in
 Listing 4-13 .

 Listing 4-13: The Manager Constructor in C#

 public Manager(string firstName, string lastName:base(firstName, lastName),
 string department)

 {
 this._department = department;
}

 The Manager constructor uses the boldfaced syntax shown in Listing 4-13 to call the constructor of its
base class — that is, the Employee class. The Manager constructor in the ASP.NET AJAX client-side
framework, on the other hand, uses the boldfaced syntax shown in Listing 4-12 to achieve the same
goal — that is, to call the constructor of the base class. Therefore, calling the initializeBase method is
equivalent to calling the base syntax shown in Listing 4-13 . I’ll discuss the internal implementation of
the initializeBase method later in this chapter. For now, suffice it to say that the constructor of a base
class must first call the initializeBase method.

 As mentioned, the first order of business in subclassing an existing class such as the Department
.Employee class is to define the constructor of the subclass (see Listing 4-12). The next order of business
is to register the subclass with the ASP.NET AJAX client-side framework, like this:

 Department.Manager.registerClass(“Department.Manager”, Department.Employee);

 Note that you must pass the base class itself as the second parameter of the registerClass method.
This tells the ASP.NET AJAX client-side framework that the class being registered is a subclass of the
specified class.

c04.indd 98c04.indd 98 8/20/07 6:00:38 PM8/20/07 6:00:38 PM

Chapter 4: JavaScript Object-Oriented Programming

99

 Because the Department.Manager class derives from the Department.Employee class, it inherits the
 get_firstName , set_firstName , get_lastName , and set_lastName methods from its base class. You
can now instantiate an instance of the Department.Manager class and call these four methods on the
instance even though the class itself does not directly contain these four methods:

 var mgr = new Department.Manager(“SomeFirstName”, “SomeLastName”,
 “SomeDepartment”);
 var str = ”First Name: “ + mgr.get_firstName() + “\n”;
 str += (“Last Name: “ + mgr.get_lastName() + “\n”);
 str += (“Department: “ + mgr.get_department() + “\n”);
 alert(str);

 Listings 4 -3 and 4 -8 presented portions of the internal implementation of the registerClass method.
Listing 4 -14 presents the complete code for this method.

Listing 4 -14: A Portion of the Internal Implementation of the registerClass Function

 Type.prototype.registerClass = function(c, b, d)
{
 this.prototype.constructor = this;
 this.__typeName = c;
 this.__class = true;

 if(b)
 {
 this.__baseType = b;
 this.__basePrototypePending = true;
 }

 if(!window.__classes)
 window.__classes = [];

 window.__classes[c.toUpperCase()] = this;

 if(d)
 {
 this.__interfaces = [];
 for(var a = 2; a < arguments.length; a ++)
 {
 var e = arguments[a];
 this.resolveInheritance();
 for (var methodName in interfaceType.prototype)
 {
 var method = interfaceType.prototype[methodName];
 if (!this.prototype[methodName])
 {
 this.prototype[methodName] = method;
 }
 }
 this.__interfaces.push(e);
 }
 }
 window.__registeredTypes[c] = true;
 return this;
};

c04.indd 99c04.indd 99 8/20/07 6:00:39 PM8/20/07 6:00:39 PM

Chapter 4: JavaScript Object-Oriented Programming

100

 The highlighted portion of this code takes the following steps:

 1. It assigns the base class to a field named _baseType . Think of this field as .NET-like metadata,
which allows you to query a type for its base type.

 this.__baseType = b;

 2. It sets a Boolean field named _basePrototypePending to true . I’ll discuss the significance of
this field in the next section.

 get BaseType
 The getBaseType method enables you to access the _baseType metadata of a specified type.
 This metadata references the base type of the type. Listing 4-15 presents a page that uses the
 getBaseType method.

 Listing 4-15: A Page that uses the get BaseType Method

 <%@ Page Language=”C#” %>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />

 <script language=”JavaScript” type=”text/javascript”>
 Type.registerNamespace(“Department”);
 Department.IEmployee = function Department$IEmployee()
 {
 throw Error.notImplemented();
 };

 function Department$IEmployee$get_employeeID ()
 {
 throw Error.notImplemented();
 };

 function Department$IEmployee$set_employeeID ()
 {
 throw Error.notImplemented();
 };

 Department.IEmployee.prototype =
 {
 get_employeeID : Department$IEmployee$get_employeeID,

c04.indd 100c04.indd 100 8/20/07 6:00:39 PM8/20/07 6:00:39 PM

Chapter 4: JavaScript Object-Oriented Programming

101

 set_employeeID: Department$IEmployee$set_employeeID
 }

 Department.IEmployee.registerInterface(“Department.IEmployee”);

 Department.Employee = function (firstName, lastName)
 {
 this._firstName = firstName;
 this._lastName = lastName;
 }

 Department.Employee.prototype =
 {
 get_firstName : function () {return this._firstName;},
 set_firstName : function (value) {this._firstName = value;},
 get_lastName : function() {return this._lastName;},
 set_lastName : function (value) {this._lastName = value;},
 get_employeeID : function () {return this._employeeID;},
 set_employeeID : function (value) {this._employeeID = value;}
 }

 Department.Employee.registerClass(“Department.Employee”, null,
 Department.IEmployee);

 Department.Manager = function (firstName, lastName, department)
 {
 Department.Manager.initializeBase(this,[firstName,lastName]);
 this._department = department;
 };

 Department.Manager.prototype =
 {
 get_department : function () {return this._department;},
 set_department : function (value) {this._department = value;}
 };

 Department.Manager.registerClass(“Department.Manager”, Department.Employee);
 alert(Department.Manager.getBaseType());
 </script>
 </form>
</body>
</html>

 Note that the line of code in the pageLoad method calls the alert method to display the result of the
call into the getBaseType method of the Manager class:

 alert(Department.Manager.getBaseType());

 If you run this code, you’ll get the pop-up message shown in Figure 4-1 .

c04.indd 101c04.indd 101 8/20/07 6:00:39 PM8/20/07 6:00:39 PM

Chapter 4: JavaScript Object-Oriented Programming

102

 Note that this pop-up message shows the following code:

 Department.Employee = function (firstName, lastName)
 {
 var _firstName = firstName;
 var _lastName = lastName;
 }

 This is the boldfaced code shown in Listing 4-15 — that is, the definition of the constructor of the
 Department.Employee class. As this example shows, the getBaseType method returns a reference
to the actual Department.Employee class.

 Listing 4-16 presents the internal implementation of the getBaseType method. This method simply
returns the value of the _baseType metadata as expected. This is yet another example of the runtime
type reflection capabilities of the ASP.NET AJAX client-side framework.

 Listing 4-16: The get BaseType Method

 Type.prototype.getBaseType = function()
{
 return typeof this.__baseType === “undefined” ? null : this.__baseType;
};

 initialize Base
 As you saw in Listing 4-12 , the constructor of every subclass must first call the initializeBase
method. As discussed earlier, this method is the ASP.NET AJAX equivalent of the base syntax in C#
(see Listings 4-12 and 4-13). As such, the main responsibility of the initializeBase method is to
invoke the constructor of the base class. Before diving into the internal implementation of this method,
let’s revisit Listing 4-12 :

 Department.Manager = function (firstName, lastName, department)
 {

 Department.Manager.initializeBase(this,[firstName,lastName]);

 this._department = department;
 };

Figure 4-1

c04.indd 102c04.indd 102 8/20/07 6:00:40 PM8/20/07 6:00:40 PM

Chapter 4: JavaScript Object-Oriented Programming

103

 As the highlighted portion of this code shows, the initializeBase method takes two parameters. The
first parameter references the instance of the subclass that is calling the method. The subclass in this case
is the Department.Manager class. The second parameter — which is optional — is a JavaScript array
that contains the parameters that must be passed into the constructor of the base class.

 Listing 4-17 presents the internal implementation of the initializeBase method.

 Listing 4-17: The Internal Implementation of initialize Base

 Type.prototype.initializeBase = function(a, b)
{
 this.resolveInheritance();
 if(this.__baseType)
 {
 if(!b)
 this.__baseType.apply(a);
 else
 this.__baseType.apply(a, b);
 }
 return a;
};

 This method takes the following steps:

 1. It calls a method named resolveInheritance (discussed in more detail in the next section):

 this.resolveInheritance();

 2. If the current class is indeed a subclass of another class — that is, if _baseType is not null — the
 initializeBase method calls the apply method on the constructor of the base class, passing
in the JavaScript array that contains the parameters of this constructor:

 this.__baseType.apply(a, b);

 resolve Inheritance
 The best way to understand what the resolveInheritance method does is to study its internal
 implementation as presented in Listing 4-18 .

 Listing 4-18: The resolve Inheritance Method

 Type.prototype.resolveInheritance = function()
{
 if(this.__basePrototypePending)
 {
 var b = this.__baseType;
 b.resolveInheritance();
 for(var a in b.prototype)

(continued)

c04.indd 103c04.indd 103 8/20/07 6:00:40 PM8/20/07 6:00:40 PM

Chapter 4: JavaScript Object-Oriented Programming

104

 Listing 4-18 (continued)

 {
 var c = b.prototype[a];
 if(! this.prototype[a])
 this.prototype[a] = c
 }
 delete this.__basePrototypePending;
 }
}

 This method first checks whether the _basePrototypePending field has been defined for the current
type. The registerClass method is the only place where this field is defined (see Listing 4-14). The
 registerClass method defines this field to tell the resolveInheritance method that it must execute
the boldfaced code shown in Listing 4-18 . Note that the resolveInheritance method deletes the
 _basePrototypePending field after it executes this boldfaced portion to ensure that this code is not
executed more than once when the resolveInheritance method is called multiple times.

 Now, let’s study the boldfaced code. Note that the resolveInheritance is a recursive function
because it is recursively called for each ancestor type of a specified type. For example, when the
 resolveInheritance method of the Department.Manager class is called, the resolveInheritance
method of the Department.Employee base class is automatically called as well.

 As Listing 4-18 shows, when the resolveInheritance method of a class is called, the method first
accesses the base class of the class:

 var b = this.__baseType;

 It then iterates through the members (methods or properties) assigned to the prototype property of the
base class and assigns each enumerated member (method or property) to the prototype property of
the class on which the resolveInheritance method was called.

 Therefore, the end result of calling the resolveInheritance method on a given type is that all the
members assigned to the prototype properties of all its ancestor types are assigned to the prototype
property of the type.

 This is how the ASP.NET AJAX client-side framework manages to emulate the inheritance object- oriented
feature in JavaScript to make client-side programming more like server-side .NET programming.

 call BaseMethod
 To understand the role of the callBaseMethod method, consider a similar situation in an OOP language
such as C#. A C# class exposes virtual methods to allow its subclasses to override the implementations of
these methods. This is how a subclass extends the functionality of its base class. Most of the time, the
subclass’s implementation of a virtual method calls its base class’s implementation in addition to provid-
ing its own implementation. In other words, the subclass’s implementation complements the base class’s
implementation.

c04.indd 104c04.indd 104 8/20/07 6:00:40 PM8/20/07 6:00:40 PM

Chapter 4: JavaScript Object-Oriented Programming

105

 The callBaseMethod method in the ASP.NET AJAX client-side framework allows a subclass’s
 implementation of a method to call its base class’s implementation. This is yet another step that the
ASP.NET AJAX client-side framework takes to emulate the .NET Framework. To help you understand
how this works in the ASP.NET AJAX client-side framework, I’ll walk through the example shown in
Listing 4-19 .

 Listing 4-19: An ASP.NET Page that Sets the Stage for using callBaseMethod

 <%@ Page Language=”C#” %>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />

 <script language=”JavaScript” type=”text/javascript”>
 Type.registerNamespace(“Department”);
 Department.IEmployee = function Department$IEmployee()
 {
 throw Error.notImplemented();
 };

 function Department$IEmployee$get_employeeID ()
 {
 throw Error.notImplemented();
 };

 function Department$IEmployee$set_employeeID ()
 {
 throw Error.notImplemented();
 };

 Department.IEmployee.prototype =
 {
 get_employeeID : Department$IEmployee$get_employeeID,
 set_employeeID: Department$IEmployee$set_employeeID
 }

 Department.IEmployee.registerInterface(“Department.IEmployee”);

 Department.Employee = function (firstName, lastName)
 {
 this._firstName = firstName;
 this._lastName = lastName;
 }

 Department.Employee.prototype =
 {
 get_firstName : function () {return this._firstName;},
 set_firstName : function (value) {this._firstName = value;},

(continued)

c04.indd 105c04.indd 105 8/20/07 6:00:41 PM8/20/07 6:00:41 PM

Chapter 4: JavaScript Object-Oriented Programming

106

 Listing 4-19 (continued)

 get_lastName : function() {return this._lastName;},
 set_lastName : function (value) {this._lastName = value;},
 get_employeeID : function () {return this._employeeID;},
 set_employeeID : function (value) {this._employeeID = value;},
 getEmployeeInfo : function ()
 {
 var info = ”First Name: “ + this.get_firstName() + “\n”;
 info += (“Last Name: “ + this.get_lastName() + “\n”);
 if (this._employeeID)
 info += (“Employee ID: “ + this._employeeID + “\n”);
 return info;
 }
 }

 Department.Employee.registerClass(“Department.Employee”, null,

 Department.IEmployee);

 Department.Manager = function (firstName, lastName, department)
 {
 Department.Manager.initializeBase(this,[firstName,lastName]);
 this._department = department;
 };

 Department.Manager.prototype =
 {
 get_department : function () {return this._department;},
 set_department : function (value) {this._department = value;}
 };

 Department.Manager.registerClass(“Department.Manager”, Department.Employee);

 var mgr = new Department.Manager(“SomeFirstName”, “SomeLastName”,
 “SomeDepartment”);
 mgr.set_employeeID(324);
 alert (mgr.getEmployeeInfo());
 </script>
 </form>
</body>
</html>

 As the first boldfaced portion of Listing 4-19 shows, a new function named getEmployeeInfo is added
to the prototype property of the Department.Employee class.

 This function simply displays the first name, last name, and employee ID of the current employee object.
Because the Department.Manager class derives from the Department.Employee class, it automatically
inherits the getEmployeeInfo method from its base class. That is why you can create an instance of the
 Department.Manager class and call this function on it as shown in the second boldfaced portion of
 Listing 4-19 .

 If you run Listing 4-19 , you get the pop-up message shown in Figure 4-2 . Notice that this message dis-
plays the first name, last name, and employee ID, but it does not display the manager’s department. This

c04.indd 106c04.indd 106 8/20/07 6:00:41 PM8/20/07 6:00:41 PM

Chapter 4: JavaScript Object-Oriented Programming

107

is because the Department.Manager class inherits the Department.Employee class’s implementation
of the getEmployeeInfo method, which does not contain the department information.

Figure 4-2

 Listing 4-20 shows another example where the Department.Manager class overrides the
 getEmployeeInfo function to include the manager’s department name in the return information.

 Listing 4-20: Overriding the get EmployeeInfo Function

 <%@ Page Language=”C#” %>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />

 <script language=”JavaScript” type=”text/javascript”>
 Type.registerNamespace(“Department”);
 Department.IEmployee = function Department$IEmployee()
 {
 throw Error.notImplemented();
 };

 function Department$IEmployee$get_employeeID ()
 {
 throw Error.notImplemented();
 };

 function Department$IEmployee$set_employeeID ()
 {
 throw Error.notImplemented();
 };

(continued)

c04.indd 107c04.indd 107 8/20/07 6:00:42 PM8/20/07 6:00:42 PM

Chapter 4: JavaScript Object-Oriented Programming

108

 Listing 4-20 (continued)

 Department.IEmployee.prototype =
 {
 get_employeeID : Department$IEmployee$get_employeeID,
 set_employeeID: Department$IEmployee$set_employeeID
 }

 Department.IEmployee.registerInterface(“Department.IEmployee”);

 Department.Employee = function (firstName, lastName)
 {
 this._firstName = firstName;
 this._lastName = lastName;
 }

 Department.Employee.prototype =
 {
 get_firstName : function () {return this._firstName;},
 set_firstName : function (value) {this._firstName = value;},
 get_lastName : function() {return this._lastName;},
 set_lastName : function (value) {this._lastName = value;},
 get_employeeID : function () {return this._employeeID;},
 set_employeeID : function (value) {this._employeeID = value;},
 getEmployeeInfo : function ()
 {
 var info = ”First Name: “ + this.get_firstName() + “\n”;
 info += (“Last Name: “ + this.get_lastName() + “\n”);
 if (this._employeeID)
 info += (“Employee ID: “ + this._employeeID + “\n”);
 return info;
 }
 }

 Department.Employee.registerClass(“Department.Employee”, null,
 Department.IEmployee);

 Department.Manager = function (firstName, lastName, department)
 {
 Department.Manager.initializeBase(this,[firstName,lastName]);
 this._department = department;
 };

 Department.Manager.prototype = {
 get_department : function () {return this._department;},
 set_department : function (value) {this._department = value;},
 getEmployeeInfo : function()
 {
 var info = Department.Manager.callBaseMethod(this, “getEmployeeInfo”,
 null);
 info += (“Department: “ + this._department + “\n”);
 return info;
 }
 };

c04.indd 108c04.indd 108 8/20/07 6:00:42 PM8/20/07 6:00:42 PM

Chapter 4: JavaScript Object-Oriented Programming

109

Department.Manager.registerClass(“Department.Manager”, Department.Employee);

 var mgr = new Department.Manager(“SomeFirstName”, “SomeLastName”,
 “SomeDepartment”);
 mgr.set_employeeID(324);
 alert (mgr.getEmployeeInfo());

 </script>
 </form>
</body>
</html>

 As the second boldfaced portion of Listing 4-20 shows, the Department.Manager class’s
 implementation of the getEmployeeInfo function calls the callBaseMethod function to invoke the
 Department.Employee class’s implementation of the getEmployeeInfo function. As the first bold-
faced portion of Listing 4-20 shows, the Department.Employee class’s implementation returns a string
that contains the first name, last name, and employee ID information. The callBaseMethod function
under the hood invokes the getEmployeeInfo function and returns this string to its caller — that is the
 getEmployeeInfo function of the Department.Employee class, as shown here:

 var info = Department.Manager.callBaseMethod(this, “getEmployeeInfo”, null);

 Note that the callBaseMethod function takes three arguments. The first argument references the
instance of the Department.Manager class on which this function is called. The second argument is the
name of the base class’s method that the callBaseMethod is supposed to invoke. The last argument,
which is optional, is the parameters that the callBaseMethod function must pass into the base class’s
method when it’s calling the method. In this case, the base class method (getEmployeeInfo) does
not take any parameters. You don’t have to pass null as the third parameter if the base method does not
take any parameters. You can simply drop the last parameter.

 The getEmployeeInfo function also appends the department information to the string that the
 callBaseMethod function returns:

 info += (“Department: “ + this._department + “\n”);

 As this example shows, thanks to the callBaseMethod function, the Department.Manager class’s imple-
mentation of the getEmployeeInfo function does not have to repeat its base class implementation. If you
run Listing 4-20 , you get the pop-up message shown in Figure 4-3 . Notice that the information displayed in
this message contains the department information in addition to the first name, last name, and employee ID.

Figure 4-3

c04.indd 109c04.indd 109 8/20/07 6:00:42 PM8/20/07 6:00:42 PM

Chapter 4: JavaScript Object-Oriented Programming

110

 Listing 4-21 presents the internal implementation of the callBaseMethod function. This function first
calls a JavaScript function named getBaseMethod , which is discussed in the next section. For now it suf-
fices to say that this function returns a reference to the Function object that represents the base class’s
implementation of the specified function. Finally, the callBaseMethod function invokes the apply
function on the referenced Function object to invoke the associated function.

 Listing 4-21: The Internal Implementation of the call BaseMethod Function

 Type.prototype.callBaseMethod = function(a, d, b)
{
 var c = this.getBaseMethod(a, d);
 if(! b) return c.apply(a);
 else return c.apply(a, b);
};

 get BaseMethod
 The getBaseMethod function takes two arguments. The first argument references the object on which
this function was invoked. The second argument contains a function name. The main responsibility of
the getBaseMethod function is to locate the Function object that represents the function with the speci-
fied name and return a reference to this Function object. Take a look at Listing 4-22 to see what a refer-
ence to a Function object looks like.

 Listing 4-22: A Page that uses the get BaseMethod Method

 <%@ Page Language=”C#” %>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />

 <script language=”JavaScript” type=”text/javascript”>
 Type.registerNamespace(“Department”);
 Department.IEmployee = function Department$IEmployee()
 {
 throw Error.notImplemented();
 };

 function Department$IEmployee$get_employeeID ()
 {
 throw Error.notImplemented();
 };

 function Department$IEmployee$set_employeeID ()
 {
 throw Error.notImplemented();
 };

c04.indd 110c04.indd 110 8/20/07 6:00:43 PM8/20/07 6:00:43 PM

Chapter 4: JavaScript Object-Oriented Programming

111

 Department.IEmployee.prototype =
 {
 get_employeeID : Department$IEmployee$get_employeeID,
 set_employeeID: Department$IEmployee$set_employeeID
 }

 Department.IEmployee.registerInterface(“Department.IEmployee”);

 Department.Employee = function (firstName, lastName)
 {
 this._firstName = firstName;
 this._lastName = lastName;
 }

 Department.Employee.prototype =
 {
 get_firstName : function () {return this._firstName;},
 set_firstName : function (value) {this._firstName = value;},
 get_lastName : function() {return this._lastName;},
 set_lastName : function (value) {this._lastName = value;},
 get_employeeID : function () {return this._employeeID;},
 set_employeeID : function (value) {this._employeeID = value;},
 getEmployeeInfo : function ()
 {
 var info = ”First Name: “ + this.get_firstName() + “\n”;
 info += (“Last Name: “ + this.get_lastName() + “\n”);
 if (this._employeeID)
 info += (“Employee ID: “ + this._employeeID + “\n”);
 return info;
 }
 }

 Department.Employee.registerClass(“Department.Employee”, null,

 Department.IEmployee);

 Department.Manager = function (firstName, lastName, department)
 {
 Department.Manager.initializeBase(this,[firstName,lastName]);
 this._department = department;
 };

 Department.Manager.prototype =
 {
 get_department : function () {return this._department;},
 set_department : function (value) {this._department = value;},
 getEmployeeInfo : function()
 {
 var info = Department.Manager.callBaseMethod(this, “getEmployeeInfo”,
 null);
 info += (“Department: “ + this._department + “\n”);
 return info;
 }
 };

(continued)

c04.indd 111c04.indd 111 8/20/07 6:00:43 PM8/20/07 6:00:43 PM

Chapter 4: JavaScript Object-Oriented Programming

112

 Listing 4-22 (continued)

 Department.Manager.registerClass(“Department.Manager”, Department.Employee);

 var mgr = new Department.Manager(“SomeFirstName”, “SomeLastName”,
 “SomeDepartment”);
 var ref1 = Department.Manager.getBaseMethod(mgr, “getEmployeeInfo”);
 alert (ref1);
 </script>
 </form>
</body>
</html>

 The second boldfaced portion of Listing 4-22 calls the getBaseMethod function on the Department
.Manager class, passing in a reference to the class itself and the string that contains the name of the
 getEmployeeInfo function. If you run this code, you get the pop-up message shown in Figure 4-4 .
Compare the content of this message and the first bold portion of Listing 4-22 . As you can see, the
 getBaseMethod function returns the getEmployeeInfo function of the base class — that is, the
 Department.Employee class.

Figure 4-4

 Listing 4-23 presents the internal implementation of the function.

 Listing 4-23: The get BaseMethod Method

 Type.prototype.getBaseMethod = function(d, c)
{
 var b = this.getBaseType();
 if(b)
 {
 var a = b.prototype[c];
 return a instanceof Function ? a : null;
 }
 return null;
};

c04.indd 112c04.indd 112 8/20/07 6:00:44 PM8/20/07 6:00:44 PM

Chapter 4: JavaScript Object-Oriented Programming

113

 This function calls the getBaseType method to access the object that represents the base type of the
 current class:

 var b = this.getBaseType();

 getBaseMethod then uses the name of the function as an index into the prototype collection property
of the object that represents the base type to access and returns the Function object that represents the
function with the specified name:

 var a = b.prototype[c];
return a instanceof Function ? a : null

 implements Interface
 The implementsInterface function takes an interface as its argument and returns a Boolean value that
specifies whether the type on which the function is called implements the specified interface. Here’s an
example:

 <%@ Page Language=”C#” %>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />

 <script language=”JavaScript” type=”text/javascript”>
 function getEmployeeID(obj)
 {
 var objType = Object.getType(obj);
 alert(objType);
 var flag = objType.implementsInterface(Department.IEmployee);
 alert(flag);
 if (!flag)
 throw Error.argument(

“Must implement the Department.IEmployee interface”);
 return obj.getemployeeID();
 }

 Type.registerNamespace(“Department”);
 Department.IEmployee = function Department$IEmployee()
 {
 throw Error.notImplemented();
 };

 function Department$IEmployee$get_employeeID ()
 {
 throw Error.notImplemented();
 };

(continued)

c04.indd 113c04.indd 113 8/20/07 6:00:44 PM8/20/07 6:00:44 PM

Chapter 4: JavaScript Object-Oriented Programming

114

 function Department$IEmployee$set_employeeID ()
 {
 throw Error.notImplemented();
 };

 Department.IEmployee.prototype =
 {
 get_employeeID : Department$IEmployee$get_employeeID,
 set_employeeID: Department$IEmployee$set_employeeID
 }

 Department.IEmployee.registerInterface(“Department.IEmployee”);

 Department.Employee = function (firstName, lastName)
 {
 this._firstName = firstName;
 this._lastName = lastName;
 }

 Department.Employee.prototype =
 {
 get_firstName : function () {return this._firstName;},
 set_firstName : function (value) {this._firstName = value;},
 get_lastName : function() {return this._lastName;},
 set_lastName : function (value) {this._lastName = value;},
 get_employeeID : function () {return this._employeeID;},
 set_employeeID : function (value) {this._employeeID = value;},
 getEmployeeInfo : function () {
 var info=”First Name: “ + this.get_firstName() + “\n”;
 info += (“Last Name: “ + this.get_lastName() + “\n”);
 if (this._employeeID)
 info += (“Employee ID: “ + this._employeeID + “\n”);
 return info;
 }
 }

 Department.Employee.registerClass(“Department.Employee”, null,
 Department.IEmployee);

 Department.Manager = function (firstName, lastName, department)
 {
 Department.Manager.initializeBase(this,[firstName, lastName]);
 this._department = department;
 };

 Department.Manager.prototype =
 {
 get_department : function () {return this._department;},
 set_department : function (value) {this._department = value;},
 getEmployeeInfo : function() {
 var info = Department.Manager.callBaseMethod(this, “getEmployeeInfo”,
 null);
 info += (“Department: “ + this._department + “\n”);

c04.indd 114c04.indd 114 8/20/07 6:00:44 PM8/20/07 6:00:44 PM

Chapter 4: JavaScript Object-Oriented Programming

115

 return info;
 }
 };

 Department.Manager.registerClass(“Department.Manager”, Department.Employee);

 var mgr = new Department.Manager(“SomeFirstName”, “SomeLastName”,
 “SomeDepartment”);
 mgr.set_employeeID(234);
 var employeeID = getEmployeeID(mgr);
 alert (employeeID);
 </script>
 </form>
</body>
</html>

 As the second boldfaced portion of this code listing shows, the Department.Employee class directly
implements the Department.IEmployee interface. As you’ll see shortly, even though the Department
.Manager class does not directly implement this interface, the call into the implementsInterface
 function returns true because this class derives from the Department.Employee class.

 The third boldfaced portion of this code listing first instantiates an instance of the Department
.Manager class:

 var mgr = new Department.Manager(“SomeFirstName”, “SomeLastName”, “SomeDepartment”);

 It then calls a JavaScript function named getEmployeeID , passing in the Department.Manager object
to return the employee ID of the object:

 var employeeID = getEmployeeID(mgr);

 Finally, it displays the employee ID:

 alert (employeeID);

 The first boldfaced portion of this code listing presents the implementation of the getEmployeeID
JavaScript function. This function takes an object as its argument and performs the following tasks:

 1. It calls the getType function of the JavaScript Object , passing in the object that was passed
into it:

 var objType = Object.getType(obj);

 As previously discussed, the getType function returns an object that references the type of a
specified object. In this case, the Department.Manager object is passed into the getType
 function, which means that this function returns the Function object that represents the
 Department.Manager class.

2. It calls the alert function to display the return value of the getType function:

 alert(objType);

c04.indd 115c04.indd 115 8/20/07 6:00:45 PM8/20/07 6:00:45 PM

Chapter 4: JavaScript Object-Oriented Programming

116

 As Figure 4-5 shows, in this case the getType function returns the Function object that
 represents the constructor of the Department.Manager class.

Figure 4-5

3. It calls the implementsInterface function on the return value of the getType function, pass-
ing in the Department.IEmployee interface:

 var flag = objType.implementsInterface(Department.IEmployee);

 The implementsInterface function determines whether the type on which the function is
called (and its ascendant types) implements the specified interface. In this case, the
 Department.Manager type does not directly implement the Department.IEmployee interface.
However, its parent class, Department.Employee , does implement this interface. That is why
the implementsInterface function returns true .

4. It throws a Sys.ArgumentException exception if the specified type does not implement the
specified interface:

 if (!flag)
 throw Error.argument(“Must implement the Department.IEmployee interface”);

 5. It calls the getemployeeID function on the specified object if the specified type does indeed im-
plement the specified interface:

 return obj.getemployeeID();

 In this case, the Department.Manager class inherits the getEmployeeID function from its base class,
 Department.Employee .

 Listing 4-24 presents the internal implementation of the implementsInterface function.

c04.indd 116c04.indd 116 8/20/07 6:00:45 PM8/20/07 6:00:45 PM

Chapter 4: JavaScript Object-Oriented Programming

117

 Listing 4-24: The Internal Implementation of implements Interface

 Type.prototype.implementsInterface = function(d)
{
 this.resolveInheritance();
 var c = d.getName(), a = this.__interfaceCache;
 if(a)
 {
 var e = a[c];
 if(typeof e !== “undefined”)
 return e;
 }
 else
 a = this.__interfaceCache = {};
 var b = this;
 while(b)
 {
 var f = b.__interfaces;
 if(f)
 if(Array.indexOf(f, d) !== - 1)
 return a[c] = true;
 b = b.__baseType;
 }
 return a[c] = false;
};

 This function first calls the resolveInheritance function:

 this.resolveInheritance();

 This is a recursive function. It copies all members of the prototype collection properties of the current
type’s ancestor types into the prototype collection property of the current type. Therefore, after this call,
the current type contains all members that it inherits from its ancestor types. This is how the ASP.NET
AJAX client-side framework emulates inheritance, as discussed previously. This step is important because
there are cases such as Department.Manager where the current type itself does not implement a given
interface, but one of its ancestor types does. The resolveInheritance method copies the interface-
related members such as getEmployeeID to the prototype collection property of the current type.

 The implementsInterface function then calls the getName function on the interface passed into it to
access the fully qualified name of the interface:

 var c = d.getName();

 The function then accesses an internal collection named _interfaceCache :

 var a = this.__interfaceCache;

 As you’ll see shortly, this collection caches the fully qualified names of all interfaces that the current type
and its ancestor types implement. This cache is added to improve performance.

c04.indd 117c04.indd 117 8/20/07 6:00:46 PM8/20/07 6:00:46 PM

Chapter 4: JavaScript Object-Oriented Programming

118

 If the cache contains an entry for the specified interface, the function retrieves the interface directly from
the cache and returns it:

 if(a)
 {
 var e = a[c];
 if(typeof e !== “undefined”)
 return e;
 }

 If the cache hasn’t been created yet, it instantiates the cache:

 else
 a = this.__interfaceCache = {};

 Finally, the function iterates through the current type and all its ancestor types to determine whether the
 _interfaces collection of any of these types contains an entry for the specified interface. If so, it adds
an entry for the interface to the cache and returns the interface:

 var b = this;
 while(b)
 {
 var f = b.__interfaces;
 if(f)
 if(Array.indexOf(f, d) !== - 1)
 return a[c] = true;
 b = b.__baseType
 }
 return a[c] = false

 Caching allows you to avoid going through this logic the next time.

 inherits From
 The inheritsFrom function returns a Boolean value that specifies whether the type on which the
 inheritsFrom is called inherits from the type passed into it as its argument. The following code
 presents an example where the inheritsFrom function is called on the Department.Manager type to
determine whether this type inherits from the Department.Employee type:

 <%@ Page Language=”C#” %>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />

 <script language=”JavaScript” type=”text/javascript”>
 Type.registerNamespace(“Department”);

c04.indd 118c04.indd 118 8/20/07 6:00:46 PM8/20/07 6:00:46 PM

Chapter 4: JavaScript Object-Oriented Programming

119

 Department.IEmployee = function Department$IEmployee()
 {
 throw Error.notImplemented();
 };

 function Department$IEmployee$get_employeeID ()
 {
 throw Error.notImplemented();
 };

 function Department$IEmployee$set_employeeID ()
 {
 throw Error.notImplemented();
 };

 Department.IEmployee.prototype =
 {
 get_employeeID : Department$IEmployee$get_employeeID,
 set_employeeID: Department$IEmployee$set_employeeID
 }

 Department.IEmployee.registerInterface(“Department.IEmployee”);

 Department.Employee = function (firstName, lastName)
 {
 this._firstName = firstName;
 this._lastName = lastName;
 }

 Department.Employee.prototype =
 {
 get_firstName : function () {return this._firstName;},
 set_firstName : function (value) {this._firstName = value;},
 get_lastName : function() {return this._lastName;},
 set_lastName : function (value) {this._lastName = value;},
 get_employeeID : function () {return this._employeeID;},
 set_employeeID : function (value) {this._employeeID = value;},
 getEmployeeInfo : function () {
 var info=”First Name: “ + this.get_firstName() + “\n”;
 info += (“Last Name: “ + this.get_lastName() + “\n”);
 if (this._employeeID)
 info += (“Employee ID: “ + this._employeeID + “\n”);
 return info;
 }
 }

 Department.Employee.registerClass(“Department.Employee”, null,

 Department.IEmployee);

 Department.Manager = function (firstName, lastName, department)
 {
 Department.Manager.initializeBase(this,
 [firstName,lastName]);
 this._department = department;
 };

(continued)

c04.indd 119c04.indd 119 8/20/07 6:00:46 PM8/20/07 6:00:46 PM

Chapter 4: JavaScript Object-Oriented Programming

120

 Department.Manager.prototype =
 {
 get_department : function () {return this._department;},
 set_department : function (value) {this._department = value;},
 getEmployeeInfo : function()
 {
 var info = Department.Manager.callBaseMethod(this, “getEmployeeInfo”,
 null);
 info += (“Department: “ + this._department + “\n”);
 return info;
 }
 };

Department.Manager.registerClass(“Department.Manager”, Department.Employee);

 var flag = Department.Manager.inheritsFrom(Department.Employee);
 alert (flag);
 </script>
 </form>
</body>
</html>

 Listing 4-25 contains the internal implementation of the inheritsFrom function.

 Listing 4-25: The Internal Implementation of inherits From

 Type.prototype.inheritsFrom = function(b)
{
 this.resolveInheritance();
 var a = this.__baseType;
 while(a)
 {
 if(a === b)
 return true;
 a = a.__baseType
 }
 return false
};

 This function first calls the resolveInheritance function as usual:

 this.resolveInheritance();

 Then it searches through the ancestor types of the current type for the specified type, with each type
identifying its base type through its _baseType field:

 var a = this.__baseType;
 while(a)
 {
 if(a === b)
 return true;
 a = a.__baseType;
 }
 return false;

c04.indd 120c04.indd 120 8/20/07 6:00:47 PM8/20/07 6:00:47 PM

Chapter 4: JavaScript Object-Oriented Programming

121

 is ImplementedBy
 The isImplementedBy function returns a Boolean value that specifies whether the object passed into it
implements the interface type on which the function is called. The boldfaced portion of the following
code first instantiates instances of the Department.Employee and Department.Manager types. Then,
it calls the isImplementedBy function on the Department.IEmployee interface type twice, each time
passing in one of these two instances. Notice that in both cases the function returns true .

 <%@ Page Language=”C#” %>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />

 <script language=”JavaScript” type=”text/javascript”>
 Type.registerNamespace(“Department”);
 Department.IEmployee = function Department$IEmployee()
 {
 throw Error.notImplemented();
 };

 function Department$IEmployee$get_employeeID ()
 {
 throw Error.notImplemented();
 };

 function Department$IEmployee$set_employeeID ()
 {
 throw Error.notImplemented();
 };

 Department.IEmployee.prototype =
 {
 get_employeeID : Department$IEmployee$get_employeeID,
 set_employeeID: Department$IEmployee$set_employeeID
 }

 Department.IEmployee.registerInterface(“Department.IEmployee”);

 Department.Employee = function (firstName, lastName)
 {
 this._firstName = firstName;
 this._lastName = lastName;
 }

(continued)

c04.indd 121c04.indd 121 8/20/07 6:00:47 PM8/20/07 6:00:47 PM

Chapter 4: JavaScript Object-Oriented Programming

122

 Department.Employee.prototype =
 {
 get_firstName : function () {return this._firstName;},
 set_firstName : function (value) {this._firstName = value;},
 get_lastName : function() {return this._lastName;},
 set_lastName : function (value) {this._lastName = value;},
 get_employeeID : function () {return this._employeeID;},
 set_employeeID : function (value) {this._employeeID = value;},
 getEmployeeInfo : function () {
 var info=”First Name: “ + this.get_firstName() + “\n”;
 info += (“Last Name: “ + this.get_lastName() + “\n”);
 if (this._employeeID)
 info += (“Employee ID: “ + this._employeeID + “\n”);
 return info;
 }
 }

 Department.Employee.registerClass(“Department.Employee”, null,

 Department.IEmployee);

 Department.Manager = function (firstName, lastName, department)
 {
 Department.Manager.initializeBase(this,
 [firstName,lastName]);
 this._department = department;
 };

 Department.Manager.prototype =
 {
 get_department : function () {return this._department;},
 set_department : function (value) {this._department = value;},
 getEmployeeInfo : function()
 {
 var info = Department.Manager.callBaseMethod(this, “getEmployeeInfo”,
 null);
 info += (“Department: “ + this._department + “\n”);
 return info;
 }
 };

 Department.Manager.registerClass(“Department.Manager”, Department.Employee);

 var employee = new Department.Employee(“SomeFirstName”, “SomeLastName”);
 var flag = Department.IEmployee.isImplementedBy(employee);
 alert (flag);
 var mgr = new Department.Manager(“SomeFirstName”, “SomeLastName”,
 “SomeDepartment”);
 flag = Department.IEmployee.isImplementedBy(mgr);
 alert (flag);
 </script>
 </form>
</body>
</html>

 Listing 4-26 contains the code for the internal implementation of the isImplementedBy function.

c04.indd 122c04.indd 122 8/20/07 6:00:47 PM8/20/07 6:00:47 PM

Chapter 4: JavaScript Object-Oriented Programming

123

 Listing 4-26: The Internal Implementation of is ImplementedBy

 Type.prototype.isImplementedBy = function(a)
{
 if(typeof a === “undefined” || a === null)
 return false;
 var b = Object.getType(a);
 return !!(b.implementsInterface && b.implementsInterface(this));
};

 The function calls the getType function on the JavaScript Object type, passing in the object passed into
the isImplementedBy function:

 var b = Object.getType(a);

 The getType function returns the type of the specified object.

 The function then calls the implementsInterface function on the type returned from the getType
function, passing in the interface type:

 return !!(b.implementsInterface && b.implementsInterface(this));

 This function returns a Boolean that specifies whether the type on which this function is called
 implements the specified interface type.

 get RootNamespaces
 As discussed earlier, in general there are two types of namespaces: local and global (or root). A local
namespace is a namespace that belongs to another namespace. A global namespace, on the other hand,
does not belong to any other namespace. The getRootNamespaces JavaScript function returns an array
that contains all the namespaces registered at the global level. Here’s an example:

 <%@ Page Language=”C#” %>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />
 <script language=”JavaScript” type=”text/javascript”>
 Type.registerNamespace(“Department”);
 Type.registerNamespace(“MyNamespace”);
 Type.registerNamespace(“Department.Section”);
 var ar = Type.getRootNamespaces();
 var str = ””;
 for (var i = 0; i<ar.length; i++)
 str += (ar[i].getName() + “\n”);
 alert(str);
 </script>
 </form>
</body>
</html>

c04.indd 123c04.indd 123 8/20/07 6:00:48 PM8/20/07 6:00:48 PM

Chapter 4: JavaScript Object-Oriented Programming

124

 This code first registers two global namespaces, Department and MyNamespace , and a local namespace,
 Department.Section :

 Type.registerNamespace(“Department”);
Type.registerNamespace(“MyNamespace”);
Type.registerNamespace(“Department.Section”);

 Next, it calls the getRootNamespace static function of the Type to return the array that contains all the
root namespaces:

 var ar = Type.getRootNamespaces();

 Then, it iterates through the namespaces in the array, calls the getName function on each enumerated
namespace to return the fully qualified name of the namespace, and appends this name to the
specified string:

 var str=””;
 for (var i = 0; i<ar.length; i++)
 str += (ar[i].getName() + “\n”);

 Finally, it displays the string shown in Figure 4-6 .

Figure 4-6

 As this figure shows, the collection that the getRootNamespaces function returns does not contain the
 Department.Section local namespace. However, the collection does contain a root namespace,
 Sys (discussed in detail in subsequent chapters).

 Listing 4-27 presents the internal implementation of the getRootNamespaces function. This function
simply clones the content of the _rootNamespaces collection, which contains all the global namespaces.

 Listing 4-27: The Internal Implementation of get RootNamespaces

 Type.getRootNamespaces = function()
{
 return Array.clone(window.__rootNamespaces);
};

c04.indd 124c04.indd 124 8/20/07 6:00:48 PM8/20/07 6:00:48 PM

Chapter 4: JavaScript Object-Oriented Programming

125

 parse
 The parse static method of the Type class returns the Function object that represents the type with the
specified name. This method takes two parameters where the second parameter is optional. The first
parameter must be a string that contains the following:

 ❑ The fully qualified name of the type, including its namespace containment hierarchy if the
 second parameter is not specified

❑ The name of the type without its namespace containment hierarchy if the second parameter is
specified

 The second parameter must reference the actual namespace that contains the type being parsed.

 The following example defines a class named Department.Employee and registers it with the ASP.NET
AJAX client-side framework. It then calls the parse static method on the Type , passing the fully quali-
fied name of the class.

 <%@ Page Language”C#” %>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />

 <script language=”JavaScript” type=”text/javascript”>
 Type.registerNamespace(“Department”);
 Department.Employee = function (firstName, lastName)
 {
 this._firstName = firstName;
 this._lastName = lastName;
 }

 Department.Employee.prototype =
 {
 get_firstName : function () {return this._firstName;},
 set_firstName : function (value) {this._firstName = value;},
 get_lastName : function() {return this._lastName;},
 set_lastName : function (value) {this._lastName = value;}
 }

 Department.Employee.registerClass(“Department.Employee”);

 alert (Type.parse(“Department.Employee”));
 </script>
 </form>
</body>
</html>

 Figure 4-7 shows what you get when you run this code. Compare this to the boldfaced portion of the
code. As you can see, the parse function returns a Function object that represents the constructor of the
 Department.Employee class.

c04.indd 125c04.indd 125 8/20/07 6:00:48 PM8/20/07 6:00:48 PM

Chapter 4: JavaScript Object-Oriented Programming

126

 The following code is a version of the previous code that passes the name of the Employee class without
its namespace as the first parameter of the parse method and the reference to the actual Department
namespace that contains the Employee class. If you run this code, you get the same result as shown in
Figure 4-7 . Note that the second parameter is not a string that contains the name of the Department
namespace. Instead, it is a reference to the actual namespace.

 <%@ Page Language”C#” %>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />

 <script language=”JavaScript” type=”text/javascript”>
 Type.registerNamespace(“Department”);
 Department.Employee = function (firstName, lastName)
 {
 this._firstName = firstName;
 this._lastName = lastName;
 }

 Department.Employee.prototype =
 {
 get_firstName : function () {return this._firstName;},
 set_firstName : function (value) {this._firstName = value;},
 get_lastName : function() {return this._lastName;},
 set_lastName : function (value) {this._lastName = value;}
 }

 Department.Employee.registerClass(“Department.Employee”);

 alert (Type.parse(“Employee”, Department));
 </script>
 </form>
</body>
</html>

Figure 4-7

c04.indd 126c04.indd 126 8/20/07 6:00:49 PM8/20/07 6:00:49 PM

Chapter 4: JavaScript Object-Oriented Programming

127

 Listing 4-28 shows the internal implementation of the parse static method of the Type class. The main
responsibility of this function is to return the type with the specified name and namespace. To do so, this
function uses the eval JavaScript function. To improve performance, the evaluated type is stored in a
local cache named _htClasses for future reference. In other words, future calls for the same type name
will be served from the cache instead of calling the eval method.

 Listing 4-28: The Internal Implementation of parse

 Type.parse = function(typeName, ns)
{
 var fn;
 if (ns)
 {
 if (!window.__classes)
 return null;

 fn = window.__classes[ns.getName().toUpperCase() + ‘.’ +
 typeName.toUpperCase()];
 return fn || null;
 }
 if(! typeName)
 return null;

 if(! Type.__htClasses)
 Type.__htClasses = {};

 fn = Type.__htClasses[typeName];
 if(!fn)
 {
 fn = eval(typeName);
 Type.__htClasses[typeName] = fn;
 }
 return fn;
};

 register Enum
 The registerEnum method enables you to register an enumeration with the ASP.NET AJAX client-side
framework. Here’s an example:

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />

(continued)

c04.indd 127c04.indd 127 8/20/07 6:00:49 PM8/20/07 6:00:49 PM

Chapter 4: JavaScript Object-Oriented Programming

128

 <script language=”javascript” type=”text/javascript”>
 Type.registerNamespace(“MyNamespace”);
 MyNamespace.State = function ()
 {
 throw Error.notImplemented();
 }

 MyNamespace.State.prototype =
 {
 State1 : 1,
 State2 : 2,
 State3 : 4
 }
 MyNamespace.State.registerEnum(“MyNamespace.State”);
 alert(MyNamespace.State.State1);
 alert(MyNamespace.State.State2);
 alert(MyNamespace.State.State3);
 </script>
 </form>
</body>
</html>

 This code first defines an enumeration named MyNamespace.State . Defining an enumeration involves
two tasks. First, you need to define a constructor that raises an exception, which ensures that no one else
can create an instance of your enumeration:

 MyNamespace.State = function ()
 {
 throw Error.notImplemented();
 }

 Next, you need to assign a JavaScript object literal to the prototype property of the newly created enu-
meration. This JavaScript object literal must expose one name/value pair for each enumeration value:

 MyNamespace.State.prototype = {
 State1 : 1,
 State2 : 2,
 State3 : 3
 }

 Finally, you need to register your enumeration with the ASP.NET AJAX client-side framework:

 MyNamespace.State.registerEnum(“MyNamespace.State”);

 The registerEnum method takes a second argument of type Boolean. Pass true for this argument to tell
the ASP.NET AJAX client-side framework that your enumeration supports bitwise operations. This
allows the clients of your enumeration to use the bitwise OR operation to combine two or more of the
enumeration values of your enumeration:

 MyNamespace.State.registerEnum(“MyNamespace.State”, true);

c04.indd 128c04.indd 128 8/20/07 6:00:49 PM8/20/07 6:00:49 PM

Chapter 4: JavaScript Object-Oriented Programming

129

 is Enum
 The isEnum static method of the Type class enables you to determine whether a specified object is an
enumeration. This is yet another example of the type reflection capabilities of the ASP.NET AJAX
client-side framework. The following code shows an example where this method is used:

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />
 <script language=”javascript” type=”text/javascript”>
 Type.registerNamespace(“MyNamespace”);
 MyNamespace.State = function ()
 {
 throw Error.notImplemented();
 }

 MyNamespace.State.prototype = {
 State1 : 1,
 State2 : 2,
 State3 : 4
 }
 MyNamespace.State.registerEnum(“MyNamespace.State”);
 alert(Type.isEnum(MyNamespace.State));
 </script>
 </form>
</body>
</html>

 is Flags
 The isFlags static method of the Type class returns a Boolean value that specifies whether a specified
enumeration allows bitwise operations between its values. The following code shows an example that
uses the isFlags method. Note that this code passes true as the second argument of the
 registerEnum method to tell the ASP.NET AJAX client-side framework that the enumeration being
 registered supports bitwise operations.

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

(continued)

c04.indd 129c04.indd 129 8/20/07 6:00:50 PM8/20/07 6:00:50 PM

Chapter 4: JavaScript Object-Oriented Programming

130

<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />
 <script language=”javascript” type=”text/javascript”>
 Type.registerNamespace(“MyNamespace”);
 MyNamespace.State = function ()
 {
 throw Error.notImplemented();
 }

 MyNamespace.State.prototype = {
 State1 : 1,
 State2 : 2,
 State3 : 4
 }
 MyNamespace.State.registerEnum(“MyNamespace.State”, true);
 alert(Type.isFlags(MyNamespace.State));
 </script>
 </form>
</body>
</html>

 Summary
 This chapter presented in-depth coverage of the ASP.NET AJAX OOP and type reflection capabilities.
The next chapter discusses another important part of the ASP.NET AJAX client-side framework: the
ASP.NET AJAX event programming extensions.

c04.indd 130c04.indd 130 8/20/07 6:00:50 PM8/20/07 6:00:50 PM

 Event Programming
Extensions

 One of the great advantages of the .NET Framework is its event-programming facilities. The
ASP.NET AJAX client-side framework provides you with similar facilities to make client-side
JavaScript event programming more like server-side .NET event programming as much as possible.
This chapter provides you with in-depth coverage of the ASP.NET AJAX event-programming
extensions and examples that use these extensions.

 Event Programming
 The .NET Framework provides you with the following three classes to facilitate event programming
in the .NET Framework:

 ❑ System.EventArgs : This is the base class from which all event data classes derive, directly
or indirectly. This class exposes a single read-only property of type EventArgs named
 Empty , which simply instantiates and returns an instance of the class.

 ❑ System.ComponentModel.CancelEventArgs : This is the base class from which all event
data classes associated with cancelable events derive, directly or indirectly. This class exposes
a single read/write Boolean property named Cancel .

 ❑ System.ComponentModel.EventHandlerList : This class is a linked list, where each list
entry contains the event handlers for an event type with a specified key. This class exposes
the following three important methods:

 ❑ AddHandler : This method adds a specified event handler to the list entry associated
with an event type with a specified key.

 ❑ RemoveHandler : This method removes a specified event handler from the list entry
associated with an event type with a specified key.

 ❑ AddHandlers : This method adds the content of a specified EventHandlerList — that
is, a link list of list entries — to the EventHandlerList on which the method is called.

c05.indd 131c05.indd 131 8/20/07 6:01:48 PM8/20/07 6:01:48 PM

Chapter 5: Event Programming Extensions

132

 The ASP.NET AJAX client-side framework comes with three classes named Sys.EventArgs ,
Sys. CancelEventArgs , and Sys.EventHandlerList that respectively emulate the .NET
 System. EventArgs , System.ComponentModel.CancelEventArgs , and System.ComponentModel
.EventHandlerList classes as discussed in the following sections.

 Before diving into the implementation of these classes, here’s a basic description of what an event data
class is and what role it plays in server-side .NET or client-side ASP.NET AJAX event programming. An
instance of a class raises an event to inform interested clients that something of interest to the clients has
occurred. The clients of certain types of events may need more information to process the event. This
information is known as event data. The event data class is a class whose instances contain the event
data associated with a particular type of event. An event data class normally exposes properties that
 contain the event data. As you’ll see later, it is the responsibility of the instance that raises the event to
instantiate an instance of the appropriate event data class, to initialize the properties of this event data
class instance with the appropriate event data, and to pass this event data class instance into the event
handlers registered for the specified event when it invokes these event handlers.

 Sys.EventArgs
 The ASP.NET AJAX client-side framework contains a base event data class that emulates the .NET
 System.EventArgs base event data class, as shown in Listing 5-1 .

 Listing 5-1: The Sys.EventArgs Base Event Data Class

 Sys.EventArgs = function Sys$EventArgs() { }
Sys.EventArgs.registerClass(‘Sys.EventArgs’);

 The Sys.EventArgs base event data class of the ASP.NET AJAX client-side framework, just like the
 System.EventArgs base event data class of the .NET Framework, features a static property named
 Empty . Here’s how it works:

 Sys.EventArgs.Empty = new Sys.EventArgs();

 Sys.CancelEventArgs
 The ASP.NET AJAX client-side framework also includes an event data class named Sys.CancelEventArgs
that emulates the .NET System.ComponentModel.CancelEventArgs event data class, as defined
in Listing 5-2 . The Sys.CancelEventArgs class inherits from the Sys.EventArgs base class and
extends its functionality to add support for a new read/write Boolean property named cancel . The
Sys.CancelEventArgs class, just like its .NET counterpart, is the base class for the event data classes
of all cancelable events in the ASP.NET AJAX client-side framework.

 Listing 5-2: The Sys.CancelEventArgs Event Data Class

 Sys.CancelEventArgs = function Sys$CancelEventArgs() {
 Sys.CancelEventArgs.initializeBase(this);
 this._cancel = false;
}

(continued)

c05.indd 132c05.indd 132 8/20/07 6:01:48 PM8/20/07 6:01:48 PM

Chapter 5: Event Programming Extensions

133

function Sys$CancelEventArgs$get_cancel() {
 return this._cancel;
}

function Sys$CancelEventArgs$set_cancel(value) {
 this._cancel = value;
}

Sys.CancelEventArgs.prototype = {
 get_cancel: Sys$CancelEventArgs$get_cancel,
 set_cancel: Sys$CancelEventArgs$set_cancel
}

Sys.CancelEventArgs.registerClass(‘Sys.CancelEventArgs’, Sys.EventArgs);

 EventHandlerList
 Listing 5-3 presents the definition of the Sys.EventHandlerList class.

 Listing 5-3: The Sys.EventHandlerList Class

 Sys.EventHandlerList = function Sys$EventHandlerList() {
 this._list = {};
}

Sys.EventHandlerList.prototype = {
 addHandler: Sys$EventHandlerList$addHandler,
 removeHandler: Sys$EventHandlerList$removeHandler,
 getHandler: Sys$EventHandlerList$getHandler,

 _getEvent: Sys$EventHandlerList$_getEvent
}

Sys.EventHandlerList.registerClass(‘Sys.EventHandlerList’);

 As you can see, the constructor of this class simply instantiates an internal object named _list :

 this._list = {};

 Also note that this class features four methods: addHandler , removeHandler , getHandler , and
 _getEvent . The definitions of these methods are presented in the following sections.

 _ get Event
 The Sys.EventHandlerList class contains an internal method named _getEvent as defined in
 Listing 5-4 . As mentioned, this method is used internally by other methods of the class, which means
that you should not directly use this method in your JavaScript code. Instead, you should use the other
methods of the class. However, understanding the internal implementation of this method helps you get
a better understanding of the other methods of the class.

c05.indd 133c05.indd 133 8/20/07 6:01:49 PM8/20/07 6:01:49 PM

Chapter 5: Event Programming Extensions

134

 Listing 5-4: The _ get Event Method

 function Sys$EventHandlerList$_getEvent(id, create) {
 if (!this._list[id]) {
 if (!create)
 return null;
 this._list[id] = [];
 }
 return this._list[id];
}

 As you can see, the _getEvent method takes two arguments. The first argument is used as an index into
the _list . The second argument is a Boolean value that specifies whether the method should instantiate
a subarray associated with the specified index if the _list does not already contain the subarray. In
summary, the _getEvent method uses its first argument as an index into the _list to return the
 subarray associated with the index.

 add Handler
 This method adds a specified event handler to the subarray of the _list with the specified index. This sub-
array contains the event handlers for the event type associated with the specified index. As such, this method
takes two arguments. The first argument is used as an index into the _list to access the associated subarray.
The second argument references the event handler being added. As Listing 5-5 shows, addHandler first calls
the _getEvent method to return the subarray associated with the specified index, and then calls the add
method on the Array class to add the specified event handler to this subarray.

 Listing 5-5: The add Handler Method

 function Sys$EventHandlerList$addHandler(id, handler) {
 Array.add(this._getEvent(id, true), handler);
}

 remove Handler
 This method removes a specified event handler from the subarray of the _list with the specified
index. This subarray contains the event handlers for the event type associated with the specified index.
As such, this method takes two arguments, as shown in Listing 5-6 . The first argument is used as an
index into the _list to access the associated subarray. The second argument references the event
 handler being removed.

 Listing 5-6: The remove Handler Method

 function Sys$EventHandlerList$removeHandler(id, handler) {
 var evt = this._getEvent(id);
 if (!evt)
 return;
 Array.remove(evt, handler);
}

c05.indd 134c05.indd 134 8/20/07 6:01:49 PM8/20/07 6:01:49 PM

Chapter 5: Event Programming Extensions

135

 As you can see, removeHandler first calls the _getEvent method to access the subarray associated with
the specified index and then calls the remove method on the Array class to remove the specified event
handler from the subarray.

 get Handler
 This method returns a reference to a JavaScript function whose invocation automatically invokes all
the event handlers for an event type with a specified index. See Listing 5-7 for the implementation of
this method.

 Listing 5-7: The get Handler Class

 function Sys$EventHandlerList$getHandler(id) {
 var evt = this._getEvent(id);
 if (!evt || (evt.length === 0))
 return null;
 evt = Array.clone(evt);
 if (!evt._handler) {
 evt._handler = function(source, args) {
 for (var i = 0, l = evt.length; i < l; i++) {
 evt[i](source, args);
 }
 };
 }
 return evt._handler;
}

 As you can see, getHandler first calls the _getEvent method to access the subarray of the _list with
the specified index:

 var evt = this._getEvent(id);

 Then it defines a function that iterates through the event handlers in this subarray and invokes each
 enumerated event handler:

 evt._handler = function(source, args) {
 for (var i = 0, l = evt.length; i < l; i++) {
 evt[i](source, args);
 }
};

 One of the great features of the ASP.NET Framework is its convenient event programming pattern for
implementing a new event. That is, adding a new event to a class involves the following steps:

 1. Add a property of type EventHandlerList to your class if your class does not already contain
this property.

2. Choose an appropriate name for your event.

c05.indd 135c05.indd 135 8/20/07 6:01:49 PM8/20/07 6:01:49 PM

Chapter 5: Event Programming Extensions

136

3. Choose an appropriate key for your event. The key is normally an instance of the
System.Object class.

4. Determine whether your class must pass data to the event subscribers when it raises the event.
If so, proceed to step 5. If not, use the EventArgs and EventHandler base classes as your event
data class and event delegate, and proceed to step 9 (skipping steps 5 through 8).

5. Determine whether the .NET Framework or your own custom library already comes with an
event data class and event delegate that you can use directly. If so, skip steps 6, 7, and 8 and go
directly to step 9. Otherwise, proceed to the next step.

6. Determine which event data class of the .NET Framework or your own custom library is the
most appropriate base class.

7. Implement an event data class that derives from the base class chosen in step 6.

8. Define an event delegate that takes two arguments where the first argument is of type
System.Object and the second argument is of the same type as your event data class.

9. Declare an event with the same type as your event delegate as the member of your class. The
 add and remove event accessors must add and remove the specified event handler for the event
type with the specified key to the EventHandlerList property of your class.

10. Add a method to your class that raises the event. This method must first access the list entry in
the EventHandlerList link list that contains the event handlers for the event type with the
specified key. This list entry exposes a delegate property whose invocation automatically
 invokes the event handlers that the list entry contains in the order in which they were added to
the list entry.

 Following the ASP.NET Framework, the ASP.NET AJAX client-side framework offers this similar event
programming pattern:

 1. Add a method named get_events to your class if your class does not already contain this
method. The method must return an instance of the EventHandlerList type. This instance is
where your class must store all the event handlers registered for its events. A typical implemen-
tation of this method is as follows:

 function get_events()
{
 if (!this.events)
 this.events = new Sys.EventHandlerList();

 return this.events;
}

2. Choose an appropriate name for your event.

3. Determine whether your class must pass data to the event subscribers when it raises the event.
If so, proceed to step 4. If not, use the EventArgs base class as your event data class, skip steps
4 through 6, and go directly to Step 7.

4. Determine whether the ASP.NET AJAX client-side framework or your own custom library
 already comes with an event data class that you can directly use. If so, skip steps 5 and 6 and go
directly to step 7. Otherwise, proceed to step 5.

5. Determine which event data class of the ASP.NET AJAX client-side framework or your own cus-
tom library is the most appropriate base class.

c05.indd 136c05.indd 136 8/20/07 6:01:50 PM8/20/07 6:01:50 PM

Chapter 5: Event Programming Extensions

137

6. Implement an event data class that derives from the base class chosen in step 5.

7. Implement a method named add_EventName where the EventName is the placeholder for the
name of the event. The clients of your class will use this method to register event handlers for
the event with the specified name. A typical implementation of this method is as follows:

 function add_EventName(handler)
{
 var eventHandlerList = this.get_events();
 eventHandlerList.addHandler(“EventName”, handler);
}

 This method must take a single argument that references a JavaScript function and perform the
 following tasks:

 1. It must invoke the get_events method to return a reference to the EventHandlerList
object where the class stores all the event handlers registered for its events.

2. It must invoke the addHandler method on this EventHandlerList object to add the
specified event handler to the list of event handlers registered for the event with the speci-
fied name.

 8. Implement a method named remove_EventName where the EventName is the placeholder for
the name of the event. The clients of your class will use this method to remove event handlers
from the list of event handlers registered for the event with the specified name. A typical imple-
mentation of this method is as follows:

 function remove_EventName(handler)
{
 var eventHandlerList = this.get_events();
 eventHandlerList.removeHandler(“EventName”, handler);
}

 This method must take a single argument that references a JavaScript function and perform the
following tasks:

 1. It must invoke the get_events method to return a reference to the EventHandlerList
object where the class stores all the event handlers registered for its events.

2. It must invoke the removeHandler method on this EventHandlerList object to remove
the specified event handler from the list of event handlers registered for the event with a
specified name.

 9. Implement a method named onEventName where the EventName is the placeholder for the
name of the event. Your class must use this method to raise the event and consequently to
 invoke the event handlers registered for the event with the specified name. A typical implemen-
tation of this method is as follows:

 function onEventName(e)
{
 var eventHandlerList = this.get_events();
 var handler = eventHandlerList.getHandler(“EventName”);
 if (handler)
 handler(this, e);
}

c05.indd 137c05.indd 137 8/20/07 6:01:50 PM8/20/07 6:01:50 PM

Chapter 5: Event Programming Extensions

138

 This method must take a single argument that references the event data class instance that
 contains the event data and perform the following tasks:

 1. It must invoke the get_events method to return a reference to the EventHandlerList
object where the class stores all the event handlers registered for its events.

2. It must invoke the getHandler method on this EventHandlerList object, passing in
the name of the event. This method returns a reference to a JavaScript function. This
 function automatically invokes all the event handlers registered for the event with the
specified name.

 10. Implement a method that includes the logic that instantiates the event data class instance, initial-
izes the properties of this instance with the event data, and invokes the onEventName method,
passing in the event data class instance. You’ll see an example of this later in the chapter.

 Using Event Programming
 This section shows you how to use the previously mentioned event programming pattern to add new
events to your client-side classes. The example used in this section is a shopping cart application. First,
the basic classes of the application are presented, and then the application is enhanced with events.

 Base Classes
 Listing 5-8 presents the content of a JavaScript file named ShoppingCart.js that contains the
 implementation of the base classes. As you can see, the example shopping cart application consists of
two base classes:

 ❑ ShoppingCartItem : As the name suggests, the instances of this class represent the shopping
cart items that the end user adds to the shopping cart.

❑ ShoppingCart : As the name implies, the instances of this class represent the user’s shopping carts.

 Listing 5-8: The Content of the ShoppingCart.js JavaScript File

 Type.registerNamespace(“Shopping”);

Shopping.ShoppingCartItem = function Shopping$ShoppingCartItem(id, name, price)
{
 this.id = id;
 this.name = name;
 this.price = price;
}

function Shopping$ShoppingCartItem$get_id()
{
 return this.id;
}

function Shopping$ShoppingCartItem$get_name()
{
 return this.name;
}

c05.indd 138c05.indd 138 8/20/07 6:01:50 PM8/20/07 6:01:50 PM

Chapter 5: Event Programming Extensions

139

function Shopping$ShoppingCartItem$get_price()
{
 return this.price;
}

Shopping.ShoppingCartItem.prototype =
{
 get_id : Shopping$ShoppingCartItem$get_id,
 get_name : Shopping$ShoppingCartItem$get_name,
 get_price : Shopping$ShoppingCartItem$get_price
};

Shopping.ShoppingCartItem.registerClass(“Shopping.ShoppingCartItem”);

Shopping.ShoppingCart = function() {
}

function Shopping$ShoppingCart$initialize()
{
 this.shoppingCartItems = {};
}

function Shopping$ShoppingCart$get_shoppingCartItems()
{
 return this.shoppingCartItems;
}

function Shopping$ShoppingCart$addShoppingCartItem(shoppingCartItem)
{
 var cartItems = this.get_shoppingCartItems();
 var cartItemId = shoppingCartItem.get_id();

 if (cartItems[cartItemId])
 {
 var exception = Error.duplicateItem(“Duplicate Shopping Cart Item!”,
 {name: shoppingCartItem.get_name()});
 throw exception;
 }

 else
 this.shoppingCartItems[cartItemId] = shoppingCartItem;
}

Shopping.ShoppingCart.prototype = {
 addShoppingCartItem : Shopping$ShoppingCart$addShoppingCartItem,
 initialize : Shopping$ShoppingCart$initialize,
 get_shoppingCartItems : Shopping$ShoppingCart$get_shoppingCartItems
};

Shopping.ShoppingCart.registerClass(“Shopping.ShoppingCart”);

if(typeof(Sys)!==’undefined’)
 Sys.Application.notifyScriptLoaded();

c05.indd 139c05.indd 139 8/20/07 6:01:51 PM8/20/07 6:01:51 PM

Chapter 5: Event Programming Extensions

140

 Listing 5-9 presents an ASP.NET page that uses these base classes, which are discussed in more
detail later.

 Listing 5-9: A Page that uses the Base Classes

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”
 src=”ShoppingCartApp1.js”>
 </script>
 <script type=”text/javascript” language=”javascript”>
 function pageLoad()
 {
 var shoppingCart = new Shopping.ShoppingCart();
 shoppingCart.initialize();
 var shoppingCartItem = new Shopping.ShoppingCartItem(1, “item1”, 23);
 shoppingCart.addShoppingCartItem(shoppingCartItem);
 var shoppingCartItems = shoppingCart.get_shoppingCartItems();
 for (var id in shoppingCartItems)
 {
 alert(shoppingCartItems[id].get_name());
 }
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScripManager1”>
 <Scripts>
 <asp:ScriptReference Path=”ShoppingCart.js” />
 </Scripts>
 </asp:ScriptManager>
 </form>
</body>
</html>

 As you can see from Listing 5-9 , the pageLoad method first instantiates a ShoppingCart object to
 represent the current user’s shopping cart:

 var shoppingCart = new Shopping.ShoppingCart();

 Next, it calls the initialize method (discussed in more detail later) on the newly instantiated
 ShoppingCart object to initialize the object:

 shoppingCart.initialize();

c05.indd 140c05.indd 140 8/20/07 6:01:51 PM8/20/07 6:01:51 PM

Chapter 5: Event Programming Extensions

141

 Then, it instantiates a ShoppingCartItem object to represent the item that the current user wants to add
to her shopping cart:

 var shoppingCartItem = new Shopping.ShoppingCartItem(1, “item1”, 23);

 To keep this discussion focused, I’ve skipped the user interface that presents the current user with the list
of available items to choose from and hard-coded the item being added.

 Next, the pageLoad method adds the newly instantiated ShoppingCartItem object to the current user’s
shopping cart:

 shoppingCart.addShoppingCartItem(shoppingCartItem);

 Finally, it pops up a message that displays the name of the item just added to the shopping cart:

 alert(shoppingCart.get_shoppingCartItems()[0].get_name());

 Namespace
 The ShoppingCart.js JavaScript file defines a namespace named Shopping that will contain all the
other classes of the shopping cart application, as follows:

 Type.registerNamespace(“Shopping”);

 ShoppingCartItem
 The ShoppingCart.js JavaScript file defines a class named ShoppingCartItem , as shown in
Listing 5-10 .

 Listing 5-10: The ShoppingCartItem Class

 Shopping.ShoppingCartItem = function Shopping$ShoppingCartItem(id, name, price)
 {
 this.id = id;
 this.name = name;
 this.price = price;
 }

 Shopping.ShoppingCartItem.prototype =
 {
 get_id : Shopping$ShoppingCartItem$get_id,
 get_name : Shopping$ShoppingCartItem$get_name,
 get_price : Shopping$ShoppingCartItem$get_price
 };

 Shopping.ShoppingCartItem.registerClass(“Shopping.ShoppingCartItem”);

 As you can see, the ShoppingCartItem class exposes three properties named id , name , and price .
The id property of a ShoppingCartItem object uniquely identifies the object among other

c05.indd 141c05.indd 141 8/20/07 6:01:51 PM8/20/07 6:01:51 PM

Chapter 5: Event Programming Extensions

142

 ShoppingCartItem objects. Notice that Listing 5-10 assigns the following object to the prototype
 property of the ShoppingCartItem class:

 {
 get_id : Shopping$ShoppingCartItem$get_id,
 get_name : Shopping$ShoppingCartItem$get_name,
 get_price : Shopping$ShoppingCartItem$get_price
};

 The object shown in this code fragment exposes three methods named get_id , get_name , and get_price ,
which respectively reference three JavaScript functions named Shopping$ShoppingCartItem$get_id ,
Shopping$ShoppingCartItem$get_name , and Shopping$ShoppingCartItem$get_price .

 This ensures that all instances of the ShoppingCartItem class share the same copy of the get_id ,
get_name , and get_price methods. If you were to directly define these three methods inside the con-
structor of the ShoppingCartItem class, each instance of the class would have its own copy of these
methods. This would waste a lot of resources.

 As Listing 5-11 shows, the Shopping$ShoppingCartItem$get_id , Shopping$ShoppingCartItem$get
_name , and Shopping$ShoppingCartItem$get_price methods respectively return the id, name, and
price of the associated ShoppingCartItem object.

 Listing 5-11: The Referenced JavaScript Functions

 function Shopping$ShoppingCartItem$get_id()
{
 return this.id;
}

function Shopping$ShoppingCartItem$get_name()
{
 return this.name;
}

function Shopping$ShoppingCartItem$get_price()
{
 return this.price;
}

 ShoppingCart
 Listing 5-12 shows the implementation of the ShoppingCart class.

 Listing 5-12: The ShoppingCart Class

 Shopping.ShoppingCart = function() {
 }

 Shopping.ShoppingCart.prototype = {
 addShoppingCartItem : Shopping$ShoppingCart$addShoppingCartItem,

(continued)

c05.indd 142c05.indd 142 8/20/07 6:01:51 PM8/20/07 6:01:51 PM

Chapter 5: Event Programming Extensions

143

 initialize : Shopping$ShoppingCart$initialize,
 get_shoppingCartItems : Shopping$ShoppingCart$get_shoppingCartItems
 };

 Shopping.ShoppingCart.registerClass(“Shopping.ShoppingCart”);

 In this listing, the following object is added to the prototype property of the ShoppingCart class:

 {
 addShoppingCartItem : Shopping$ShoppingCart$addShoppingCartItem,
 initialize : Shopping$ShoppingCart$initialize,
 get_shoppingCartItems : Shopping$ShoppingCart$get_shoppingCartItems
 };

 This object features three methods named addShoppingCartItem , initialize , and get_shopping-
CartItems , which respectively reference the Shopping$ShoppingCart$addShoppingCartItem ,
Shopping$ShoppingCart$initialize , and Shopping$ShoppingCart$get_shoppingCartItems
 JavaScript functions, as discussed in the following sections.

 initialize
 As you can see in Listing 5-13 , the initialize JavaScript function instantiates an internal object
named shoppingCartItems that will contain the ShoppingCartItems added to the current user’s
shopping cart.

 Listing 5-13: The initialize JavaScript Function

 function Shopping$ShoppingCart$initialize()
{
 this.shoppingCartItems = {};
}

 get _ shopping CartItems
 As Listing 5-14 shows, this JavaScript function returns a reference to the shoppingCartItems internal
array that contains the ShoppingCartItem objects added to the current user’s shopping cart.

 Listing 5-14: The get _ shopping CartItems JavaScript Function

 function Shopping$ShoppingCart$get_shoppingCartItems()
{
 return this.shoppingCartItems;
}

 add ShoppingCartItem
 As you can see in Listing 5-15 , this method takes several steps to add the specified ShoppingCartItem
object to the shoppingCartItems collection. First, it checks whether the shoppingCartItems collection
contains an object with the same id as the object being added. If so, it throws a DuplicateItemException
(discussed in previous chapters). If not, it adds the specified ShoppingCartItem to the
 shoppingCartItems collection.

c05.indd 143c05.indd 143 8/20/07 6:01:52 PM8/20/07 6:01:52 PM

Chapter 5: Event Programming Extensions

144

 Listing 5-15: The Shopping$ShoppingCart$addShoppingCartItem JavaScript Functions

 function Shopping$ShoppingCart$addShoppingCartItem(shoppingCartItem)
{
 var cartItems = this.get_shoppingCartItems();
 var cartItemId = shoppingCartItem.get_id();

 if (cartItems[cartItemId])
 {
 var exception = Error.duplicateItem(“Duplicate Shopping Cart Item!”,
 {name: shoppingCartItem.get_name()});
 throw exception;
 }

 else
 this.shoppingCartItems[cartItemId] = shoppingCartItem;
}

 Events
 In this section, the functionality of the ShoppingCart class developed in the previous section is
extended to add support for events. You may be wondering why you need to enhance a class with
events. When you’re implementing a class, you do your best to ensure that your class provides its clients
with the necessary functionality. However, you cannot add application-specific functionality to your
class if you want different applications to use your class. This means that your class will not meet the
application-specific requirements of its clients.

 Let’s take a look at some of the application-specific requirements that the version of the ShoppingCart
class discussed in the previous section does not meet.

 In Listing 5-13 , the initialize method of the ShoppingCart class performed a single task — that is, it
instantiated the shoppingCartItems collection that will contain the ShoppingCartItem objects added
to the current user’s shopping cart. There are several application-specific requirements that the current
implementation of the initialize method does not meet, such as the following:

 ❑ As part of the initialization process, a typical shopping cart application also needs to populate
the shoppingCartItems collection with the items that the current user selected in the previous
session. To do so, the application needs to run some application-specific code to retrieve the pre-
vious session’s items from the underlying data store.

❑ As part of the initialization process, a shopping cart application may also need to run some
 application-specific code to perform certain filtering on the items that the current user selected
in the previous session.

 As you’ll see later in this section, the ShoppingCart class can be enhanced with an event named
 ShoppingCartInitialized , which the initialize method can raise to allow the clients of the class
to execute application-specific initialization code.

 In Listing 5-15 , the addShoppingCartItem method of the ShoppingCart class added the specified
 ShoppingCartItem object to the shoppingCartItems collection. Before adding the object to the collection,

c05.indd 144c05.indd 144 8/20/07 6:01:52 PM8/20/07 6:01:52 PM

Chapter 5: Event Programming Extensions

145

the shopping cart application may need to run some code that contains some application- specific logic to
determine whether the addition of the specified object would violate some application-specific rules.

 As you’ll see later in this section, the ShoppingCart class can be enhanced with a cancelable event
named ShoppingCartItemAdding , which the addShoppingCartItem method can raise to allow the
clients of the class to cancel the add operation if it violates application-specific rules.

 In Listing 5-15 , the addShoppingCartItem method raised a DuplicateItemException exception if the
 shoppingCartItems already contains a ShoppingCartItem object with the same id value as the one
being added. Many applications prefer to use application-specific exception-handling mechanisms to
handle exceptions.

 As you’ll see later, the ShoppingCart class can be enhanced with an event named ShoppingCart-
ItemAdded , which the addShoppingCartItem method can raise to allow the clients of the class to use
application-specific exception-handling logic to handle the exception.

 This event is useful even when no exception is raised because it allows the application to run
 application-specific code after an item is added. For example, the application may want to display
 information about a special promotion for the newly added item.

 As you can see, enhancing your classes with events enables the clients of your classes to extend the
 functionality of your classes to incorporate application-specific logic.

 Listing 5-16 presents the new version of the ShoppingCart.js JavaScript file that contains the imple-
mentation of all the classes of the shopping cart application. These classes are discussed in detail later in
this chapter.

 Listing 5-16: The New Version of the ShoppingCart.js File

 Type.registerNamespace(“Shopping”);

Shopping.ShoppingCartItem = function Shopping$ShoppingCartItem(id, name, price)
{
 this.id = id;
 this.name = name;
 this.price = price;
}

function Shopping$ShoppingCartItem$get_id()
{
 return this.id;
}

function Shopping$ShoppingCartItem$get_name()
{
 return this.name;
}

(continued)

c05.indd 145c05.indd 145 8/20/07 6:01:52 PM8/20/07 6:01:52 PM

Chapter 5: Event Programming Extensions

146

 Listing 5-16 (continued)

function Shopping$ShoppingCartItem$get_price()
{
 return this.price;
}

Shopping.ShoppingCartItem.prototype = {
 get_id : Shopping$ShoppingCartItem$get_id,
 get_name : Shopping$ShoppingCartItem$get_name,
 get_ price : Shopping$ShoppingCartItem$get_ price
};

Shopping.ShoppingCartItem.registerClass(“Shopping.ShoppingCartItem”);

Shopping.ShoppingCart = function() { }

function Shopping$ShoppingCart$get_events() {
 if (!this.events)
 this.events = new Sys.EventHandlerList();

 return this.events;
}

function Shopping$ShoppingCart$initialize()
{
 this.shoppingCartItems = {};
 this.onShoppingCartInitialized(Sys.EventArgs.Empty);
}

function Shopping$ShoppingCart$onShoppingCartInitialized(e)
{
 var handler = this.get_events().getHandler(“shoppingCartInitialized”);
 if (handler)
 handler(this, e);
}

function Shopping$ShoppingCart$addShoppingCartItem(shoppingCartItem)
{
 var e1 = new Shopping.ShoppingCartItemAddingEventArgs(shoppingCartItem);
 this.onShoppingCartItemAdding(e1);

 if (!e1.get_cancel())
 {
 var exception = null;
 var cartItems = this.get_shoppingCartItems();
 var cartItemId = shoppingCartItem.get_id();

 if (cartItems[cartItemId])
 exception = Error.duplicateItem(“Duplicate Shopping Cart Item!”,
 {name: shoppingCartItem.get_name()});
 else
 this.shoppingCartItems[cartItemId] = shoppingCartItem;

c05.indd 146c05.indd 146 8/20/07 6:01:53 PM8/20/07 6:01:53 PM

Chapter 5: Event Programming Extensions

147

 var e2 =
 new Shopping.ShoppingCartItemAddedEventArgs(shoppingCartItem, exception);
 this.onShoppingCartItemAdded(e2);

 if (!e2.get_exceptionHandled())
 throw exception;
 }
}

function Shopping$ShoppingCart$onShoppingCartItemAdding(e)
{
 var handler = this.get_events().getHandler(“shoppingCartItemAdding”);
 if (handler)
 handler(this, e);
}

function Shopping$ShoppingCart$onShoppingCartItemAdded(e)
{
 var handler = this.get_events().getHandler(“shoppingCartItemAdded”);
 if (handler)
 handler(this, e);
}

function Shopping$ShoppingCart$add_shoppingCartInitialized(handler)
{
 this.get_events().addHandler(“shoppingCartInitialized”, handler);
}

function Shopping$ShoppingCart$add_shoppingCartItemAdding(handler)
{
 this.get_events().addHandler(“shoppingCartItemAdding”, handler);
}

function Shopping$ShoppingCart$add_shoppingCartItemAdded(handler)
{
 this.get_events().addHandler(“shoppingCartItemAdded”, handler);
}

function Shopping$ShoppingCart$remove_shoppingCartInitialized(handler)
{
 this.get_events().removeHandler(“shoppingCartInitialized”, handler);
}

function Shopping$ShoppingCart$remove_shoppingCartItemAdding(handler)
{
 this.get_events().removeHandler(“shoppingCartItemAdding”, handler);
}

function Shopping$ShoppingCart$remove_shoppingCartItemAdded(handler)
{
 this.get_events().removeHandler(“shoppingCartItemAdded”, handler);
}

(continued)

c05.indd 147c05.indd 147 8/20/07 6:01:53 PM8/20/07 6:01:53 PM

Chapter 5: Event Programming Extensions

148

 Listing 5-16 (continued)

function Shopping$ShoppingCart$get_shoppingCartItems()
{
 return this.shoppingCartItems;
}

Shopping.ShoppingCart.prototype = {
 addShoppingCartItem : Shopping$ShoppingCart$addShoppingCartItem,
 initialize : Shopping$ShoppingCart$initialize,
 get_shoppingCartItems : Shopping$ShoppingCart$get_shoppingCartItems,

 get_events : Shopping$ShoppingCart$get_events,

 add_shoppingCartInitialized :
 Shopping$ShoppingCart$add_shoppingCartInitialized,
 remove_shoppingCartInitialized :
 Shopping$ShoppingCart$remove_shoppingCartInitialized,
 onShoppingCartInitialized : Shopping$ShoppingCart$onShoppingCartInitialized,

 add_shoppingCartItemAdding : Shopping$ShoppingCart$add_shoppingCartItemAdding,
 remove_shoppingCartItemAdding:
 Shopping$ShoppingCart$remove_shoppingCartItemAdding,
 onShoppingCartItemAdding : Shopping$ShoppingCart$onShoppingCartItemAdding,

 add_shoppingCartItemAdded : Shopping$ShoppingCart$add_shoppingCartItemAdded,
 remove_shoppingCartItemAdded:
 Shopping$ShoppingCart$remove_shoppingCartItemAdded,
 onShoppingCartItemAdded : Shopping$ShoppingCart$onShoppingCartItemAdded
};

Shopping.ShoppingCart.registerClass(“Shopping.ShoppingCart”);

Shopping.ShoppingCartItemAddingEventArgs =
function Shopping$ShoppingCartItemAddingEventArgs (shoppingCartItem)
{
 Shopping.ShoppingCartItemAddingEventArgs.initializeBase(this);
 this.shoppingCartItem = shoppingCartItem;
}

function Shopping$ShoppingCartItemAddingEventArgs$get_shoppingCartItem()
{
 return this.shoppingCartItem;
}

Shopping.ShoppingCartItemAddingEventArgs.prototype = {
 get_shoppingCartItem :
 Shopping$ShoppingCartItemAddingEventArgs$get_shoppingCartItem
};

c05.indd 148c05.indd 148 8/20/07 6:01:53 PM8/20/07 6:01:53 PM

Chapter 5: Event Programming Extensions

149

Shopping.ShoppingCartItemAddingEventArgs.registerClass(
 “Shopping.ShoppingCartItemAddingEventArgs”, Sys.CancelEventArgs);

Shopping.ShoppingCartItemAddedEventArgs =
function Shopping$ShoppingCartItemAddedEventArgs (shoppingCartItem, exception)
{
 Shopping.ShoppingCartItemAddedEventArgs.initializeBase(this);
 this.shoppingCartItem = shoppingCartItem;
 this.exception = exception;
 this.exceptionHandled = false;
}

function Shopping$ShoppingCartItemAddedEventArgs$get_shoppingCartItem()
{
 return this.shoppingCartItem;
}

function Shopping$ShoppingCartItemAddedEventArgs$get_exception()
{
 return this.exception;
}

function Shopping$ShoppingCartItemAddedEventArgs$get_exceptionHandled()
{
 return !this.exception || this.exceptionHandled;
}

function Shopping$ShoppingCartItemAddedEventArgs$set_exceptionHandled(value)
{
 this.exceptionHandled = value;
}

Shopping.ShoppingCartItemAddedEventArgs.prototype = {
 get_shoppingCartItem :
 Shopping$ShoppingCartItemAddedEventArgs$get_shoppingCartItem,
 get_exception : Shopping$ShoppingCartItemAddedEventArgs$get_exception,
 get_exceptionHandled :
 Shopping$ShoppingCartItemAddedEventArgs$get_exceptionHandled,
 set_exceptionHandled :
 Shopping$ShoppingCartItemAddedEventArgs$set_exceptionHandled
};

Shopping.ShoppingCartItemAddedEventArgs.registerClass(
 “Shopping.ShoppingCartItemAddedEventArgs”, Sys.EventArgs);

if(typeof(Sys)!==’undefined’)
 Sys.Application.notifyScriptLoaded();

c05.indd 149c05.indd 149 8/20/07 6:01:54 PM8/20/07 6:01:54 PM

Chapter 5: Event Programming Extensions

150

 Listing 5-17 presents a page containing the new version of the shopping cart class that uses events.

 Listing 5-17: A Page that uses the New Version of the Shopping Cart Class

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function shoppingCartInitializedCallback(sender, e)
 {
 alert(“Shopping cart is initialized!”);
 }

 function shoppingCartItemAddingCallback(sender, e)
 {
 e.set_cancel(false);
 alert(“Adding “ + e.get_shoppingCartItem().get_name());
 }

 function shoppingCartItemAddedCallback(sender, e)
 {
 alert(“Added “ + e.get_shoppingCartItem().get_name());
 if (e.get_exception())
 alert(e.get_exception());
 }

 function pageLoad()
 {
 var shoppingCart = new Shopping.ShoppingCart();
 shoppingCart.add_shoppingCartInitialized(shoppingCartInitializedCallback);
 shoppingCart.add_shoppingCartItemAdding(shoppingCartItemAddingCallback);
 shoppingCart.add_shoppingCartItemAdded(shoppingCartItemAddedCallback);
 shoppingCart.initialize();
 var shoppingCartItem = new Shopping.ShoppingCartItem(1, “item1”, 23);
 shoppingCart.addShoppingCartItem(shoppingCartItem);
 shoppingCart.remove_shoppingCartInitialized(shoppingCartInitializedCallback);
 shoppingCart.remove_shoppingCartItemAdding(shoppingCartItemAddingCallback);
 shoppingCart.remove_shoppingCartItemAdded(shoppingCartItemAddedCallback);
 }
 </script>
</head>

c05.indd 150c05.indd 150 8/20/07 6:01:54 PM8/20/07 6:01:54 PM

Chapter 5: Event Programming Extensions

151

<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScripManager1”>
 <Scripts>
 <asp:ScriptReference Path=”ShoppingCart.js” />
 </Scripts>
 </asp:ScriptManager>
 </form>
</body>
</html>

 As you can see, the pageLoad method instantiates a ShoppingCart object to represent the current user’s
shopping cart:

 var shoppingCart = new Shopping.ShoppingCart();

 Next, it calls the add_shoppingCartInitialized method on the ShoppingCart object to register a
JavaScript function named shoppingCartInitializedCallback as an event handler for the
 ShoppingCartInitialized event of the ShoppingCart object:

 shoppingCart.add_shoppingCartInitialized(shoppingCartInitializedCallback);

 The pageLoad method then calls the add_shoppingCartItemAdding method on the ShoppingCart
object to register a JavaScript function named shoppingCartItemAddingCallback as the event
 handler for the ShoppingCartItemAdding event of the ShoppingCart object:

 shoppingCart.add_shoppingCartItemAdding(shoppingCartItemAddingCallback);

 Next, it calls the add_shoppingCartItemAdded method on the ShoppingCart object to register a
JavaScript function named shoppingCartItemAddedCallback as the event handler for the
 ShoppingCartItemAdded event of the ShoppingCart object:

 shoppingCart.add_shoppingCartItemAdded(shoppingCartItemAddedCallback);

 Then, it calls the initialize method on the ShoppingCart object to initialize the object:

 shoppingCart.initialize();

 Next, it instantiates a ShoppingCartItem object with the specified id , name , and price , and calls the
 addShoppingCartItem method on the ShoppingCart object, passing in the ShoppingCartItem object
to add the object to shoppingCartItems :

 var shoppingCartItem = new Shopping.ShoppingCartItem(1, “item1”, 23);
 shoppingCart.addShoppingCartItem(shoppingCartItem);

c05.indd 151c05.indd 151 8/20/07 6:01:54 PM8/20/07 6:01:54 PM

Chapter 5: Event Programming Extensions

152

 Finally, it calls the associated remove methods on the ShoppingCard object to remove the JavaScript
functions that were previously registered:

 shoppingCart.remove_shoppingCartInitialized(shoppingCartInitializedCallback);
 shoppingCart.remove_shoppingCartItemAdding(shoppingCartItemAddingCallback);
 shoppingCart.remove_shoppingCartItemAdded(shoppingCartItemAddedCallback);

 You’ll understand the implementation of the shoppingCartInitializedCallback ,
shoppingCartItemAddingCallback , and shoppingCartItemAddedCallback event handlers better
when the events of the ShoppingCart class are discussed later in this chapter.

 ShoppingCartItemAddingEventArgs
 This class is the event data class for the ShoppingCartItemAdding event. As you can see in Listing 5-18 ,
this class exposes a getter method named get_shoppingCartItem that returns a reference to the
 ShoppingCartItem object being added.

 Note that the ShoppingCartItemAddingEventArgs event data class derives from the
Sys.CancelEventArgs class, which is the base event data class for all cancelable events. As discussed
earlier, the Sys.CancelEventArgs class features two important methods named get_cancel and
set_cancel that allow an event handler for a cancelable event to cancel the event.

 As such, the ShoppingCartItemAddingEventArgs event data class inherits the get_cancel and
set_cancel methods from its base class.

 Listing 5-18: The ShoppingCartItemAddingEventArgs Event Data Class

 Shopping.ShoppingCartItemAddingEventArgs =
 function Shopping$ShoppingCartItemAddingEventArgs (shoppingCartItem)
 {
 Shopping.ShoppingCartItemAddingEventArgs.initializeBase(this);
 this.shoppingCartItem = shoppingCartItem;
 }

 function Shopping$ShoppingCartItemAddingEventArgs$get_shoppingCartItem()
 {
 return this.shoppingCartItem;
 }

 Shopping.ShoppingCartItemAddingEventArgs.prototype = {
 get_shoppingCartItem :
 Shopping$ShoppingCartItemAddingEventArgs$get_shoppingCartItem
 };

 Shopping.ShoppingCartItemAddingEventArgs.registerClass(
 “Shopping.ShoppingCartItemAddingEventArgs”, Sys.CancelEventArgs);

c05.indd 152c05.indd 152 8/20/07 6:01:55 PM8/20/07 6:01:55 PM

Chapter 5: Event Programming Extensions

153

 ShoppingCartItemAddedEventArgs
 This class acts as the event data class for the ShoppingCartItemAdded event as shown in Listing 5-19 .

 Listing 5-19: The ShoppingCartItemAddedEventArgs Event Data Class

 Shopping.ShoppingCartItemAddedEventArgs =
 function Shopping$ShoppingCartItemAddedEventArgs (shoppingCartItem, exception)
 {
 Shopping.ShoppingCartItemAddedEventArgs.initializeBase(this);
 this.shoppingCartItem = shoppingCartItem;
 this.exception = exception;
 this.exceptionHandled = false;
 }

 function Shopping$ShoppingCartItemAddedEventArgs$get_shoppingCartItem()
 {
 return this.shoppingCartItem;
 }

 function Shopping$ShoppingCartItemAddedEventArgs$get_exception()
 {
 return this.exception;
 }

 function Shopping$ShoppingCartItemAddedEventArgs$get_exceptionHandled()
 {
 return !this.exception || this.exceptionHandled;
 }

 function Shopping$ShoppingCartItemAddedEventArgs$set_exceptionHandled(value)
 {
 this.exceptionHandled = value;
 }

 Shopping.ShoppingCartItemAddedEventArgs.prototype = {
 get_shoppingCartItem :
 Shopping$ShoppingCartItemAddedEventArgs$get_shoppingCartItem,
 get_exception : Shopping$ShoppingCartItemAddedEventArgs$get_exception,
 get_exceptionHandled :
 Shopping$ShoppingCartItemAddedEventArgs$get_exceptionHandled,
 set_exceptionHandled :
 Shopping$ShoppingCartItemAddedEventArgs$set_exceptionHandled
 };

 Shopping.ShoppingCartItemAddedEventArgs.registerClass(
 “Shopping.ShoppingCartItemAddedEventArgs”, Sys.EventArgs);

c05.indd 153c05.indd 153 8/20/07 6:01:55 PM8/20/07 6:01:55 PM

Chapter 5: Event Programming Extensions

154

 As you can see in this listing, the ShoppingCartItemAddedEventArgs class exposes the following four
methods:

 ❑ get_shoppingCartItem : This getter returns a reference to the ShoppingCartItem object that
was added to the shoppingCartItems of the ShoppingCart object that represents the current
user’s shopping cart.

❑ get_exception : This getter returns a reference to the Exception object raised during the
 execution of the addShoppingCartItem method of the ShoppingCart object. An event handler
can call this getter to access the Exception object and use application-specific exception-
 handling logic to handle the exception.

❑ set_exceptionHandled : This setter allows an event handler to inform the addShoppingCart-
Item method of the ShoppingCart object to bypass the default exception-handling logic because
the exception has already been handled by application-specific exception-handling logic.

❑ get_exceptionHandled : The addShoppingCartItem method calls this getter to find out if the
event handler has already handled the exception.

 ShoppingCart
 As you can see in Listing 5-20 , the ShoppingCart.js JavaScript file defines the ShoppingCart class
whose instances represent user shopping carts. The methods of this class are discussed in the following
sections.

 Listing 5-20: The ShoppingCart.js JavaScript File

 Shopping.ShoppingCart = function() { }

 Shopping.ShoppingCart.prototype = {
 addShoppingCartItem : Shopping$ShoppingCart$addShoppingCartItem,
 initialize : Shopping$ShoppingCart$initialize,
 get_shoppingCartItems : Shopping$ShoppingCart$get_shoppingCartItems,

 get_events : Shopping$ShoppingCart$get_events,

 add_shoppingCartInitialized :
 Shopping$ShoppingCart$add_shoppingCartInitialized,
 remove_shoppingCartInitialized :
 Shopping$ShoppingCart$remove_shoppingCartInitialized,
 onShoppingCartInitialized : Shopping$ShoppingCart$onShoppingCartInitialized,

 add_shoppingCartItemAdding : Shopping$ShoppingCart$add_shoppingCartItemAdding,
 remove_shoppingCartItemAdding:
 Shopping$ShoppingCart$remove_shoppingCartItemAdding,
 onShoppingCartItemAdding : Shopping$ShoppingCart$onShoppingCartItemAdding,

 add_shoppingCartItemAdded : Shopping$ShoppingCart$add_shoppingCartItemAdded,

c05.indd 154c05.indd 154 8/20/07 6:01:55 PM8/20/07 6:01:55 PM

Chapter 5: Event Programming Extensions

155

 remove_shoppingCartItemAdded:
 Shopping$ShoppingCart$remove_shoppingCartItemAdded,
 onShoppingCartItemAdded : Shopping$ShoppingCart$onShoppingCartItemAdded
 };

 Shopping.ShoppingCart.registerClass(“Shopping.ShoppingCart”);

 get _ events
 As discussed earlier, the ASP.NET AJAX client-side framework exposes a class named Sys.EventHan-
dlerList that emulates the .NET System.ComponentModel.EventHandlerList class. As you can see
in Listing 5-21 , the ShoppingCart class exposes a getter named get_events whose main responsibility
is to instantiate the Sys.EventHandlerList class if it hasn’t already been instantiated and to return the
instance to its caller.

 Listing 5-21: The get_events Method of the ShoppingCart Class

 function Shopping$ShoppingCart$get_events() {
 if (!this.events)
 this.events = new Sys.EventHandlerList();

 return this.events;
}

 initialize
 Listing 5-22 contains the code for the initialize method of the ShoppingCart class.

 Listing 5-22: The initialize Method of the ShoppingCart Class

 function Shopping$ShoppingCart$initialize()
{
 this.shoppingCartItems = {};
 this.onShoppingCartInitialized(Sys.EventArgs.Empty);
}

 As you can see in this listing, the initialize method of the ShoppingCart class performs two impor-
tant tasks. First, it instantiates the shoppingCartItems where the ShoppingCartItem objects will be
stored. Second, it calls the onShoppingCartInitialized method of the ShoppingCart object, passing
in the Sys.EventArgs.Empty parameter to raise the ShoppingCartInitialized event. This event
does not involve any event data, so it uses the Sys.EventArgs base class as its event data class. This is
very similar to .NET, where the System.EventArgs base class is used as the event data class for events
that do not involve any event data. The Sys.EventArgs.Empty provides the same programming conve-
nience as its .NET counterpart — that is, the System.EventArgs.Empty .

 on ShoppingCartInitialized
 Listing 5-23 presents the implementation of the onShoppingCartInitialized method of the
 ShoppingCart class.

c05.indd 155c05.indd 155 8/20/07 6:01:56 PM8/20/07 6:01:56 PM

Chapter 5: Event Programming Extensions

156

 Listing 5-23: The on ShoppingCartInitialized Method of the ShoppingCart Class

 function Shopping$ShoppingCart$onShoppingCartInitialized(e)
{
 var handler = this.get_events().getHandler(“shoppingCartInitialized”);
 if (handler)
 handler(this, e);
}

 This method calls the getHandler method of the EventHandlerList object, passing in the name of the
event — which is shoppingCartInitialized in this case. As discussed earlier, the getHandler
method returns a JavaScript function that iterates through the event handlers registered for the event
with the specified name and calls each enumerated event handler.

 add ShoppingCartItem
 The main responsibility of the addShoppingCartItem method of the ShoppingCart class is to add the
specified ShoppingCartItem object to the shoppingCartItems collection, as shown in Listing 5-24 .

 Listing 5-24: The add ShoppingCartItem Method of the ShoppingCart Class

 function Shopping$ShoppingCart$addShoppingCartItem(shoppingCartItem)
{
 var e1 = new Shopping.ShoppingCartItemAddingEventArgs(shoppingCartItem);
 this.onShoppingCartItemAdding(e1);

 if (!e1.get_cancel())
 {
 var exception = null;
 var cartItems = this.get_shoppingCartItems();
 var cartItemId = shoppingCartItem.get_id();

 if (cartItems[cartItemId])
 exception = Error.duplicateItem(“Duplicate Shopping Cart Item!”,
 {name: shoppingCartItem.get_name()});
 else
 this.shoppingCartItems[cartItemId] = shoppingCartItem;

 var e2 =

new Shopping.ShoppingCartItemAddedEventArgs(shoppingCartItem, exception);
 this.onShoppingCartItemAdded(e2);

 if (!e2.get_exceptionHandled())
 throw exception;
 }
}

 This method takes the following steps:

 1. It instantiates a ShoppingCartItemAddingEventArgs object, passing in the
 ShoppingCartItem object being added:

 var e1 = new Shopping.ShoppingCartItemAddingEventArgs(shoppingCartItem);

c05.indd 156c05.indd 156 8/20/07 6:01:56 PM8/20/07 6:01:56 PM

Chapter 5: Event Programming Extensions

157

2. It calls the onShoppingCartItemAdding method (discussed in the next section), passing the
 ShoppingCartItemAddingEventArgs object:

 this.onShoppingCartItemAdding(e1);

 As you’ll see in the next section, the onShoppingCartItemAdding method invokes the event handlers
for the ShoppingCartItemAdding event, passing each event handler the ShoppingCartItemAdding-
EventArgs object. It’s the responsibility of each event handler to use application-specific logic to deter-
mine whether adding the specified ShoppingCartItem object to the shoppingCartItems collection
will violate application-specific business rules. If so, the event handler must use the set_cancel method
of the ShoppingCartItemAddingEventArgs object to set the _cancel field of the object to true .

 As Listing 5-24 shows, the addShoppingCartItem method uses the ShoppingCartItemAddingEven-
tArgs object’s get_cancel method to access the _cancel field value in order to determine whether
the event handler has decided that the addition of the specified ShoppingCartItem object to the
 shoppingCartItems collection should proceed. If so, the addShoppingCartItem method first deter-
mines whether the shoppingCartItems collection already contains a ShoppingCartItem object with
the same id as the ShoppingCartItem object being added. If so, it creates a DuplicateItemException
object:

 exception = Error.duplicateItem(“Duplicate Shopping Cart Item!”,
 {name: shoppingCartItem.get_name()});

 If not, it adds the ShoppingCartItem object to the shoppingCartItems collection:

 this.shoppingCartItems[cartItemId] = shoppingCartItem;

 Next, addShoppingCartItem creates a ShoppingCartItemAddedEventArgs object, passing in the
 ShoppingCartItem being added and the Exception object (if any):

 var e2 = new Shopping.ShoppingCartItemAddedEventArgs(shoppingCartItem, exception);

 Then, it calls the onShoppingCartItemAdded method, passing in the ShoppingCartItemAddedEven-
tArgs object to raise the ShoppingCartItemAdded event:

 this.onShoppingCartItemAdded(e2);

 As you’ll see in the next section, the onShoppingCartItemAdded method invokes all the event handlers
registered for the ShoppingCartItemAdded event, passing the ShoppingCartItemAddedEventArgs
object. It’s the responsibility of each event handler to call the get_exception method of the Shopping-
CartItemAddedEventArgs object to access the Exception object (if any), to use application-specific
exception-handling logic to handle the exception, and to call the set_exceptionHandled method on
the ShoppingCartItemAddedEventArgs object to set its exceptionHandled Boolean field to true .
As Listing 5-24 shows, addShoppingCartItem calls the get_exceptionHandled method on the
ShoppingCartItemAddedEventArgs object to access the value of the _exceptionHandled Boolean
field. addShoppingCartItem throws the exception (if any) only if this field has been set to true :

 if (!e2.get_exceptionHandled())
 throw exception;

c05.indd 157c05.indd 157 8/20/07 6:01:56 PM8/20/07 6:01:56 PM

Chapter 5: Event Programming Extensions

158

 on ShoppingCartItemAdding
 Listing 5-25 shows the implementation of the onShoppingCartItemAdding method of the
 ShoppingCart class.

 Listing 5-25: The on ShoppingCartItemAdding Method of the ShoppingCart Class

 function Shopping$ShoppingCart$onShoppingCartItemAdding(e)
{
 var handler = this.get_events().getHandler(“shoppingCartItemAdding”);
 if (handler)
 handler(this, e);
}

 As you can see, this method calls the getHandler method on the EventHandlerList collection,
 passing in the name of the event — shoppingCartItemAdding in this case. As discussed earlier, the
 get_handler method returns a JavaScript function that iterates through all the event handlers
 registered for the event with the specified name and calls each enumerated event handler, passing in
the ShoppingCardItemAdding object passed into the onShoppingCartItemAdding method.

 on ShoppingCartItemAdded
 Listing 5-26 shows the code for the onShoppingCartItemAdded method of the ShoppingCart class.

 Listing 5-26: The on ShoppingCartItemAdded Method of the ShoppingCart Class

 function Shopping$ShoppingCart$onShoppingCartItemAdded(e)
{
 var handler = this.get_events().getHandler(“shoppingCartItemAdded”);
 if (handler)
 handler(this, e);
}

 This method takes a single argument of type ShoppingCartItemAddedEventArgs . The method calls
the getHandler method on this collection, passing in the name of the event — that is, shoppingCar-
tItemAdded . It then calls the JavaScript function that the getHandler method returns, passing in the
 ShoppingCartItemAddedEventArgs object.

 Adding an Event Handler
 As Listing 5-27 shows, the ShoppingCart class provides you with three methods named add_shop-
pingCartInitialized , add_shoppingCartItemAdding , and add_shoppingCartItemAdded , which
allow you to add event handlers for the ShoppingCartInitialized , ShoppingCartItemAdding , and
 ShoppingCartItemAdded events, respectively. Notice that each add method delegates to the
 addHandler method of the internal EventHandlerList object.

c05.indd 158c05.indd 158 8/20/07 6:01:56 PM8/20/07 6:01:56 PM

Chapter 5: Event Programming Extensions

159

 Listing 5-27: The Methods of the ShoppingCart Class that Add Event Handlers

 function Shopping$ShoppingCart$add_shoppingCartInitialized(handler)
{
 this.get_events().addHandler(“shoppingCartInitialized”, handler);
}

function Shopping$ShoppingCart$add_shoppingCartItemAdding(handler)
{
 this.get_events().addHandler(“shoppingCartItemAdding”, handler);
}

function Shopping$ShoppingCart$add_shoppingCartItemAdded(handler)
{
 this.get_events().addHandler(“shoppingCartItemAdded”, handler);
}

 Removing an Event Handler
 As Listing 5-28 shows, the ShoppingCart class also presents three methods named remove_shopping-
CartInitialized , remove_shoppingCartItemAdding , and remove_shoppingCartItemAdded ,
which you can use to remove a specified event handler registered for the ShoppingCartInitialized ,
 ShoppingCartItemAdding , and ShoppingCartItemAdded events, respectively. Notice that each
 remove method delegates to the removeHandler method of the internal EventHandlerList object.

 Listing 5-28: The Methods of the ShoppingCart Class that Remove Event Handlers

 function Shopping$ShoppingCart$remove_shoppingCartInitialized(handler)
{
 this.get_events().removeHandler(“shoppingCartInitialized”, handler);
}

function Shopping$ShoppingCart$remove_shoppingCartItemAdding(handler)
{
 this.get_events().removeHandler(“shoppingCartItemAdding”, handler);
}

function Shopping$ShoppingCart$remove_shoppingCartItemAdded(handler)
{
 this.get_events().removeHandler(“shoppingCartItemAdded”, handler);
}

 Summary
 The ASP.NET AJAX event-programming extensions emulate the .NET event-programming paradigm.
This enables you to use a programming model very similar to the .NET event-programming model to
add events to your JavaScript classes. The next chapter discusses Document Object Model (DOM) event
programming — a common client-side event programming practice.

c05.indd 159c05.indd 159 8/20/07 6:01:57 PM8/20/07 6:01:57 PM

c05.indd 160c05.indd 160 8/20/07 6:01:57 PM8/20/07 6:01:57 PM

 DOM Extensions
 Document Object Model (DOM) programming is one of the most common client-side programming
tasks in the world of Web development. The ASP.NET AJAX DOM extensions extend traditional
DOM programming to add support for .NET-like methods and properties. This chapter provides
in-depth coverage of these extensions. As you’ll see in subsequent chapters, this convenient set of
classes and enumerations are used extensively in the ASP.NET AJAX client-side framework.

 DomElement
 As Listing 6-1 shows, the ASP.NET AJAX DOM extensions define a new JavaScript class named
 DomElement . As you’ll see in the following sections, this class exposes static methods and proper-
ties that introduce .NET-like programming convenience into your client-side DOM scripting.
Because all these methods and properties are static, you must call them directly on the DomElement
class itself. Note that the DomElement class belongs to the Sys.UI namespace. Also note that you
should not directly instantiate an instance of this class because all members of the class are static.

 Listing 6-1: The DomElement Class

 Sys.UI.DomElement = function SysUIDomElement() { }
Sys.UI.DomElement.registerClass(‘Sys.UI.DomElement’);

 get ElementById
 This static method of the DomElement class takes up to two parameters. The first parameter
 contains the value of the id HTML attribute of a DOM element. The second parameter, which is
optional, references the parent DOM element of the DOM element whose id HTML attribute’s
value is given by the first parameter. The main responsibility of the getElementById method is
to return a reference to the JavaScript object that represents the DOM element whose id HTML
 attribute is given by the first parameter.

 To see how the getElementById method returns this reference, let’s take a look at the internal
implementation of this method as shown in Listing 6-2 .

c06.indd 161c06.indd 161 8/20/07 7:58:09 PM8/20/07 7:58:09 PM

Chapter 6: DOM Extensions

162

 Listing 6-2: The Internal Implementation of the get ElementById Method of the
DomElement Class

 var $get = Sys.UI.DomElement.getElementById = function(f, e)
{
 if(!e)
 return document.getElementById(f);

 if(e.getElementById)
 return e.getElementById(f);

 var c = [], d = e.childNodes;
 for(var b = 0; b < d.length; b ++)
 {
 var a = d[b];
 if(a.nodeType == 1)
 c[c.length] = a;
 }
 while(c.length)
 {
 a = c.shift();
 if(a.id == f)
 return a;
 d = a.childNodes;
 for(b = 0; b < d.length; b ++)
 {
 a = d[b];
 if(a.nodeType == 1)
 c[c.length] = a;
 }
 }
 return null;
}

 The getElementById method first checks whether its second parameter has been specified. If not, it
simply delegates to the getElementById method of the current document JavaScript object. In other
words, by default, the getElementById method uses the current document object as the parent of the
DOM element with the id HTML attribute given by the first parameter:

 if(!e)
 return document.getElementById(f);

 If the second argument of the method has indeed been specified, the method checks whether the parent
DOM element that the second argument references supports a method named getElementById . If so, it
simply delegates to the getElementById method of the parent element. For example, if your page uses
a frameset consisting of two frames, and you want to access a child element of one of these frames from
the other frame, you can pass the document DOM object of the other frame as the second argument
of the getElementById method:

 if(e.getElementById)
 return e.getElementById(f);

c06.indd 162c06.indd 162 8/20/07 7:58:09 PM8/20/07 7:58:09 PM

Chapter 6: DOM Extensions

163

 This tells the getElementById method to call the getElementById method of the document element of
the other frame as opposed to the document element of the current frame. You’ll see an example of this
scenario shortly.

 If the second argument of the getElementById method of the DomElement class has indeed been
 specified but it does not support the getElementById method, the getElementById method of the
 DomElement class simply searches through the descendants of the parent element for the element with
the specified id attribute value:

 var c = [], d = e.childNodes;
 for(var b = 0; b < d.length; b ++)
 {
 var a = d[b];
 if(a.nodeType == 1)
 c[c.length] = a
 }
 while(c.length)
 {
 a = c.shift();
 if(a.id == f)
 return a;
 d = a.childNodes;
 for(b = 0; b < d.length; b ++)
 {
 a = d[b];
 if(a.nodeType == 1)
 c[c.length] = a
 }
 }
 return null

 This is great for situations where you want to limit the search to the descendant of a particular DOM
 element. You’ll see an example of this scenario shortly.

 As the internal implementation of the getElementById method of the DomElement class shows, this
method handles the following three scenarios:

❑ The default scenario where the search for the DOM element with the specified id HTML attri-
bute is limited to the descendant DOM elements of the current document object

❑ The scenario where the search for the DOM element with the specified id HTML attribute is
limited to the descendant DOM elements of the specified document object, which may or may
not be the current document object

❑ The scenario where the search for the DOM element with the specified id HTML attribute is
limited to the descendant DOM elements of the specified DOM element

 The following code presents an example of the first scenario. As the boldfaced portion of this code
shows, the getElementById method of the DomElement class is called without specifying the second
argument. This instructs the getElementById method to search through the descendant DOM elements
of the current document.

c06.indd 163c06.indd 163 8/20/07 7:58:10 PM8/20/07 7:58:10 PM

Chapter 6: DOM Extensions

164

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script language=”javascript” type=”text/javascript”>
 function frame1ClickCallback()
 {
 var frame1TextBox = Sys.UI.DomElement.getElementById(“frame1TextBox”);
 alert(frame1TextBox.value);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />
 <input type=”text” id=”frame1TextBox” />
 <input type=”button” onclick=”frame1ClickCallback()”
 value=”Send” />
 </form>
</body>
</html>

 Now, let’s take look at the example of the second scenario shown in the following code. The boldfaced
portion of this code passes the document.form1 element as the second argument of the getElementById
method. As you can see, document.form1 is the parent of the frame1TextBox element. This limits the
search to the child elements of the document.form1 element.

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script language=”javascript” type=”text/javascript”>
 function frame1ClickCallback()
 {
 var frame1TextBox = Sys.UI.DomElement.getElementById(“frame1TextBox”,
 document.form1);
 alert(frame1TextBox.value);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />
 <input type=”text” id=”frame1TextBox” />
 <input type=”button” onclick=”frame1ClickCallback()”
 value=”Send” />
 </form>
</body>
</html>

c06.indd 164c06.indd 164 8/20/07 7:58:10 PM8/20/07 7:58:10 PM

Chapter 6: DOM Extensions

165

 Now, let’s take a look at an example of the third scenario. This example consists of three ASP.NET pages.
The first page uses a frameset as shown in Listing 6-3 . The frameset consists of two frames named
 frame1 and frame2 that respectively display the contents of the frame1.aspx and frame2.aspx pages.

 Listing 6-3: The page that uses the frameset

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
</head>
 <frameset cols=”60%,40%”>
 <frame src=”frame1.aspx” name=”frame1”/>
 <frame src=”frame2.aspx” name=”frame2”/>
 </frameset>
</html>

 Listing 6-4 presents the frame2.aspx page. As you can see, this page is very simple. It consists of a
 single text box element.

 Listing 6-4: The frame2.aspx Page

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <input type=”text” id=”frame2TextBox” />
 </form>
</body>
</html>

 Listing 6-5 presents the frame1.aspx page.

 Listing 6-5: The frame1.aspx Page

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script language=”javascript” type=”text/javascript”>

(continued)

c06.indd 165c06.indd 165 8/20/07 7:58:10 PM8/20/07 7:58:10 PM

Chapter 6: DOM Extensions

166

 Listing 6-5 (continued)

 function frame1ClickCallback()
 {
 var frame1TextBox = Sys.UI.DomElement.getElementById(“frame1TextBox”);
 var frame2TextBox = Sys.UI.DomElement.getElementById(“frame2TextBox”,
 parent.frame2.document);
 frame2TextBox.value = frame1TextBox.value;
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />
 <input type=”text” id=”frame1TextBox” />
 <input type=”button” onclick=”frame1ClickCallback()”
 value=”Send” />
 </form>
</body>
</html>

 This page consists of a text box and a button. When you enter a value into the text box and click the
 button, the frame1ClickCallback JavaScript function is called. As the boldfaced portion of Listing 6-5
shows, this JavaScript function takes the following actions:

 1. It calls the getElementById method of the DomElement class to return a reference to the text
box displayed in the frame1.aspx — that is, the current document.

 var frame1TextBox = Sys.UI.DomElement.getElementById(“frame1TextBox”);

 2. It calls the getElementById method of the DomElement class to return a reference to the text
box displayed in the other frame — that is, frame2.aspx . Note that the frame1ClickCallback
method passes the document object of the other frame as the second argument to the
 getElementById method to instruct this method to search through the child DOM elements
of the other frame for the specified text box.

 var frame2TextBox = Sys.UI.DomElement.getElementById(“frame2TextBox”,
 parent.frame2.document);

 3. It assigns the value of the text box of frame1.aspx to the text box of frame2.aspx .

 frame2TextBox.value = frame1TextBox.value;

 add CssClass
 The addCssClass static method of the DomElement class adds a new CSS class name to the specified
DOM element, if it hasn’t been already added. Listing 6-6 presents the internal implementation of this
method. Note that this method first calls the containsCssClass static method of the DomElement class
to check whether the DOM object already contains the specified CSS class name. If not, it simply appends
the new CSS class name to the className property of the DOM object.

c06.indd 166c06.indd 166 8/20/07 7:58:11 PM8/20/07 7:58:11 PM

Chapter 6: DOM Extensions

167

 Listing 6-6: The Internal Implementation of the add CssClass Method

 Sys.UI.DomElement.addCssClass = function(a, b)
{
 if(!Sys.UI.DomElement.containsCssClass(a, b))
 {
 if(a.className === “”)
 a.className = b;
 else
 a.className += “ “ + b;
 }
}

 contains CssClass
 The containsCssClass static method of the DomElement class returns a Boolean value that specifies
whether a specified DOM object contains the specified CSS class name. Listing 6-7 presents the internal
implementation of this method. Note that this method simply delegates to the contains static method
of the Array class. The ASP.NET AJAX client-side script framework extends the Array class to add
 support for the contains static method, as discussed in chapter 2 .

 Listing 6-7: The Internal Implementation of the contains CssClass Method

 Sys.UI.DomElement.containsCssClass = function(b, a)
{
 return Array.contains(b.className.split(“ “), a)
}

 remove CssClass
 The removeCssClass static method of the DomElement class removes a specified CSS class name from
the specified DOM object. Listing 6-8 contains the code for the internal implementation of this method.
As you can see, this method uses a simple string manipulation to remove the specified CSS class name.

 Listing 6-8: The Internal Implementation of the remove CssClass Method

 Sys.UI.DomElement.removeCssClass = function(d, c)
{
 var a =” “ + d.className + “ “,
 b = a.indexOf(“ “ + c + “ “);

 if(b >= 0)
 d.className =
 (a.substring(0, b) + “ “ + a.substring(b + c.length + 1,
 a.length)).trim();
}

 Take a look at the example in Listing 6-9 , which uses the addCssClass and removeCssClass methods
of the DomElement class.

c06.indd 167c06.indd 167 8/20/07 7:58:11 PM8/20/07 7:58:11 PM

Chapter 6: DOM Extensions

168

 Listing 6-9: A page that uses the add CssClass and remove CssClass Methods

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <style type=”text/css”>
 .CssClass1 {
 background-color: Blue;
 color: Yellow;
 font-weight: bold;
 }
 .CssClass2 {
 background-color: Yellow;
 color: Blue;
 font-weight: bold;
 }
 </style>
 <script language=”javascript” type=”text/javascript”>
 var myLinkDomElementObj;
 var myList;

 function addCallback()
 {
 var myCssClass = myList.options[myList.selectedIndex].value;
 Sys.UI.DomElement.addCssClass(myLinkDomElementObj, myCssClass);
 }

 function removeCallback()
 {
 var myCssClass = myList.options[myList.selectedIndex].value;
 Sys.UI.DomElement.removeCssClass(myLinkDomElementObj, myCssClass);
 }

 function pageLoad()
 {
 myLinkDomElementObj = Sys.UI.DomElement.getElementById(“myLink”);
 myList = document.getElementById(“myList”);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />

 Wrox Web Site
 <select id=”myList”>
 <option value=”CssClass1”>CSS Class 1</option>
 <option value=”CssClass2”>CSS Class 2</option>
 </select>

c06.indd 168c06.indd 168 8/20/07 7:58:11 PM8/20/07 7:58:11 PM

Chapter 6: DOM Extensions

169

 <input type=”button” value=”Add” onclick=”addCallback()” />
 <input type=”button” value=”Remove” onclick=”removeCallback()” />
 </form>
</body>
</html>

 Figure 6-1 shows what you’ll see when you access this page. Run the program, select a CSS class name
from the list, and click the Add button. You should see the effects of the selected CSS class. Now click the
Remove button. The link should go back to its default format.

Figure 6-1

 toggle CssClass
 The toggleCssClass static method of the DomElement class toggles a specified CSS class name on or
off on a specified DOM object. The best way to understand what this method does is to use it in an
example. Listing 6-10 presents a page that uses this method.

 Listing 6-10: A page that uses the toggle CssClass Method

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <style type=”text/css”>
 .CssClass1 {
 background-color: Blue;
 color: Yellow;
 font-size: 40px;
 }
 </style>
 <script language=”javascript” type=”text/javascript”>
 function toggleCssClass(myLink)
 {
 Sys.UI.DomElement.toggleCssClass(myLink, “CssClass1”);
 }
 </script>

(continued)

c06.indd 169c06.indd 169 8/20/07 7:58:12 PM8/20/07 7:58:12 PM

Chapter 6: DOM Extensions

170

 Listing 6-10 (continued)

</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />
 <a href=”http://www.wrox.com”
 onmouseover=”toggleCssClass(this)”
 onmouseout=”toggleCssClass(this)”>Wrox Web Site
 </form>
</body>
</html>

 If you run this code, you’ll see the result shown in Figure 6-2 , which is a very simple page that contains a
single hyperlink. Now if you move the mouse over the link, you’ll get the result shown in Figure 6-3 . If
you move the mouse away from the link, you’ll get the result shown in Figure 6-2 again. Therefore,
 moving the mouse over and out of the link switches the style of the class between what you see in the
two figures.

Figure 6-2

Figure 6-3

 Listing 6-11 shows the internal implementation of the toggleCssClass method. This method first calls
the containsCssClass method to check whether the specified DOM object already contains the speci-
fied CSS class name. If so, it calls the removeCssClass method to remove the CSS class name. If not, it
calls the addCssClass method to add the CSS class name.

c06.indd 170c06.indd 170 8/20/07 7:58:12 PM8/20/07 7:58:12 PM

Chapter 6: DOM Extensions

171

 Listing 6-11: The Internal Implementation of the toggle CssClass Method

 Sys.UI.DomElement.toggleCssClass = function(b, a)
{
 if(Sys.UI.DomElement.containsCssClass(b, a))
 Sys.UI.DomElement.removeCssClass(b, a);
 else
 Sys.UI.DomElement.addCssClass(b, a);
}

 get Location
 Listing 6-12 presents the simplified version of the internal implementation of the DomElement class’s
 getLocation static method.

 Listing 6-12: The Simplified Version of the Internal Implementation of the get Location
Method

 Sys.UI.DomElement.getLocation = function(d)
{
 var b = 0, c = 0, a;
 for(a = d; a; a = a.offsetParent)
 {
 if(a.offsetLeft)
 b += a.offsetLeft;

 if(a.offsetTop)
 c += a.offsetTop
 }
 return { x : b, y : c }
}

 This method returns a JavaScript object literal that contains the x and y coordinates of the specified DOM
element with respect to the top-left corner of the browser window. Note that the internal implementation
of the getLocation method uses the following three important properties of DOM elements:

❑ offsetParent : Returns a reference to the first positioned DOM element in the containment
 hierarchy of the current DOM element.

❑ offsetLeft : Returns the number of pixels that the current DOM element is offset to the left
within its offsetParent DOM element.

❑ offsetTop : Returns the number of pixels that the current DOM element is offset from the top
within its offsetParent DOM element.

 As Listing 6-12 shows, the getLocation method iterates through the DOM elements in the containment
hierarchy of the specified DOM element and accumulates the values of the offsetLeft and offsetTop
properties of these enumerated DOM elements. Therefore, the two accumulated values at the end specify
the number of pixels that the specified DOM element is offset to the left and to the top within the
browser window.

c06.indd 171c06.indd 171 8/20/07 7:58:12 PM8/20/07 7:58:12 PM

Chapter 6: DOM Extensions

172

 Listing 6-13 shows an example that uses the getLocation method.

 Listing 6-13: A page that uses the get Location Method

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script language=”javascript” type=”text/javascript”>
 function clickCallback(myspan)
 {
 var obj = Sys.UI.DomElement.getLocation(myspan);
 alert(“x=” + obj.x + “\n” + “y=” + obj.y);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” />
 Click here!
 </form>
</body>
</html>

 If you run this program and click the Click here! link, you should get a pop-up message the displays the
 x and y coordinates of the label.

 set Location
 The setLocation static method of the DomElement class sets the x and y coordinates of a specified
DOM element to specified values. As such, it takes the following three arguments:

❑ b : References the DOM element whose x and y coordinates are being set.

❑ c : Specifies the new value in pixels of the x coordinate.

❑ d : Specifies the new value in pixels of the y coordinate.

 As Listing 6-14 shows, the setLocation method also sets the position style property to absolute . In
other words, this method absolutely positions the specified DOM element.

 Listing 6-14: The Internal Implementation of the set Location Method

 Sys.UI.DomElement.setLocation = function(b, c, d)
{
 var a = b.style;
 a.position=”absolute”;
 a.left = c + “px”;
 a.top = d + “px”;
}

c06.indd 172c06.indd 172 8/20/07 7:58:13 PM8/20/07 7:58:13 PM

Chapter 6: DOM Extensions

173

 Listing 6-15 shows an example of how the getLocation and setLocation methods are used.

 Listing 6-15: An ASP.NET page that uses the get Location and set Location Methods

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script language=”javascript” type=”text/javascript”>
 function mousedowncb(event)
 {
 event = event || window.event;
 document.oldClientX = event.clientX;
 document.oldClientY = event.clientY;
 document.onmousemove = mousemovecb;
 document.onmouseup = mouseupcb;
 return false;
 }

 function mouseupcb(event)
 {
 event = event || window.event;
 document.onmousemove = null;
 document.onmouseup = null;
 return false;
 }

 function mousemovecb(event)
 {
 event = event || window.event;
 var deltaClientX = event.clientX - document.oldClientX;
 var deltaClientY = event.clientY - document.oldClientY;

 var sender = $get(“mydiv”);
 var senderLocation = Sys.UI.DomElement.getLocation(sender);
 Sys.UI.DomElement.setLocation(sender, senderLocation.x+deltaClientX,
 senderLocation.y+deltaClientY);

 document.oldClientX = event.clientX;
 document.oldClientY = event.clientY;

 return false;
 }

 </script>
</head>

(continued)

c06.indd 173c06.indd 173 8/20/07 7:58:13 PM8/20/07 7:58:13 PM

Chapter 6: DOM Extensions

174

 Listing 6-15 (continued)

<body>
 <div id=”mydiv” style=”position: absolute; left: 0px; top: 0px”
 onmousedown=”mousedowncb(event)”>
 <a href=”javascript:void(0)” id=”myspan”
 style=”font-weight: bold”>Wrox Web Site
 </div>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />
 </form>
</body>
</html>

 This page simply renders the “Wrox Web Site” text and allows you to move this text by clicking the text
and holding the mouse button down while moving the mouse around. Note that this page registers the
 mousedowncb method as an event handler for the mousedown event of the div HTML element with the
 id HTML attribute value of mydiv as shown in the following code:

 function mousedowncb(event)
 {
 event = event || window.event;
 document.oldClientX = event.clientX;
 document.oldClientY = event.clientY;
 document.onmousemove = mousemovecb;
 document.onmouseup = mouseupcb;
 return false;
 }

 This method takes two steps. First, it accesses and stores the mouse position’s x and y coordinates from
the event object’s clientX and clientY properties. Next, it registers the mousemovecb and mouseupcb
methods as callbacks for the document object’s mousemove and mouseup events.

 As Listing 6-15 shows, the mousemovecb method first accesses the current x and y coordinates of the
mouse position from the clientX and clientY properties of the event object and the old x and y coordi-
nates of the mouse. Next, it evaluates the number of pixels the mouse has moved:

 var deltaClientX = event.clientX - document.oldClientX;
 var deltaClientY = event.clientY - document.oldClientY;

 The method then uses $get syntax to access a reference to the mydiv DOM element:

 var sender = $get(“mydiv”);

 Next, it calls the getLocation method, passing in the above reference to return the JavaScript object
 literal that contains the current x and y coordinates of the mydiv DOM element:

 var senderLocation = Sys.UI.DomElement.getLocation(sender);

c06.indd 174c06.indd 174 8/20/07 7:58:13 PM8/20/07 7:58:13 PM

Chapter 6: DOM Extensions

175

 Then, it calls the setLocation method to set the mydiv DOM element’s x and y coordinates to new
 values. These new values basically increment the current values by the number of pixels that the mouse
has moved:

 Sys.UI.DomElement.setLocation(sender, senderLocation.x+deltaClientX,
 senderLocation.y+deltaClientY);

 get Bounds
 Because the getBounds method returns an object of type Bounds , first we need to study Bounds .
 Listing 6-16 presents the internal implementation of the Bounds type. As this code listing shows, Bounds
is a class with four properties: x , y , height , and width . These properties contain the x and y coordinates
and the height and width of a specified DOM element.

 Listing 6-16: The Bounds Type

 Sys.UI.Bounds = function SysUIBounds(x, y, width, height) {
 this.x = x;
 this.y = y;
 this.height = height;
 this.width = width;
}
Sys.UI.Bounds.registerClass(‘Sys.UI.Bounds’);

 As you can see, there is no sign of the DOM element in the definition of the Bounds type. This is where
the getBounds method comes into play. As Listing 6-17 shows, this method returns a Bounds object that
contains the x and y coordinates and the width and height of the specified DOM element.

 Listing 6-17: The Internal Implementation of the get Bounds Method

 Sys.UI.DomElement.getBounds = function SysUIDomElement$getBounds(element) {
 var offset = Sys.UI.DomElement.getLocation(element);

 return new Sys.UI.Bounds(offset.x, offset.y,
 element.offsetWidth || 0,
 element.offsetHeight || 0);
}

 The ASP.NET page shown in Listing 6-18 uses the getBounds method to access the width of the span
DOM element called myspan .

c06.indd 175c06.indd 175 8/20/07 7:58:14 PM8/20/07 7:58:14 PM

Chapter 6: DOM Extensions

176

 Listing 6-18: An ASP.NET page that uses the get Bounds Method

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script language=”javascript” type=”text/javascript”>
 function pageLoad()
 {
 var bounds = Sys.UI.DomElement.getBounds($get(“myspan”));
 alert(bounds.width);
 }
 </script>
</head>
<body>
Wrox Web Site
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />
 </form>
</body>
</html>

 MouseButton
 One of the most common event sources is the mouse. The ASP.NET AJAX DOM extensions define an
enumeration named MouseButton whose values represent different buttons of the mouse, as shown
in Listing 6-19 . As you can see, this enumeration has three enumeration values: leftButton ,
 middleButton , and rightButton .

 Listing 6-19: The MouseButton Enumeration

 Sys.UI.MouseButton = function SysUIMouseButton() {}

Sys.UI.MouseButton.prototype = {
 leftButton: 0,
 middleButton: 1,
 rightButton: 2
}
Sys.UI.MouseButton.registerEnum(“Sys.UI.MouseButton”);

 Key
 Another very common source of events is the keyboard. The ASP.NET AJAX DOM extensions define an
enumeration named Key that features one enumeration value for each key, as shown in Listing 6-20 .

c06.indd 176c06.indd 176 8/20/07 7:58:14 PM8/20/07 7:58:14 PM

Chapter 6: DOM Extensions

177

 Listing 6-20: The Key Enumeration

 Sys.UI.Key = function SysUIKey() { }

Sys.UI.Key.prototype = {
 backspace: 8,
 tab: 9,
 enter: 13,
 esc: 27,
 space: 32,
 pageUp: 33,
 pageDown: 34,
 end: 35,
 home: 36,
 left: 37,
 up: 38,
 right: 39,
 down: 40,
 del: 127
}
Sys.UI.Key.registerEnum(“Sys.UI.Key”);

 Delegates
 A method of a .NET class is characterized by the following:

❑ The name of the method

❑ The class to which the method belongs

❑ The number of its arguments

❑ The order of its arguments

❑ The types of its arguments

❑ The type of the value the method returns

❑ The body of the method — that is, its implementation

 For the most part, the callers of a method are only interested in knowing what they need to pass into the
method and what the method returns. In other words, they’re only interested in the method’s argument
count, order, and types, and type of the value it returns. They don’t care what the name of the method is,
which class owns the method, or how the method is implemented (the body of the method).

 As far as the callers are concerned, methods of different names and implementations belonging to differ-
ent classes are the same as long as they all have the same argument count, order, and types, and return
the same type. You can think of the argument count, order, and types and the return type of a method
as the type of the method.

 Each method has the following two characteristics:

 ❑ Its type, which consists of its argument count, order, and types and return type

❑ Its method-specific aspects, which consists of its name, class, and body

c06.indd 177c06.indd 177 8/20/07 7:58:14 PM8/20/07 7:58:14 PM

Chapter 6: DOM Extensions

178

 When the callers of a method call the method directly, they unnecessarily get coupled to its method-
 specific aspects — that is, its name, class, and body. This will not allow these callers to invoke other
methods of the same type with different names and implementations belonging to different classes.
Therefore, you need a mechanism that will allow the caller of a method to indirectly call the method
without using its method-specific aspects (its name, class, and body). This will ensure that the caller of a
method is coupled only to its type, not its method-specific aspects.

 The .NET Framework offers two approaches to decouple the callers of a method from its method-specific
aspects. The first approach requires the classes owning the methods to implement an interface that
exposes a method with the same argument count, order, and types and return value type. In other
words, the interface hides the method-specific aspects of a method — its class and body.

 The second approach requires you to define a delegate with the same argument count, order, and types
and return value type. A delegate is an object that encapsulates and hides the name, class, and body of
the method that it represents. In other words, a delegate is just like an interface, but it exposes the
 method’s argument count, order, and types and return-value type.

 You may be wondering which approach is better because it seems that they both do the same thing —
they both hide the method-specific aspects of the method. The answer is, “It depends.” Because a dele-
gate represents a single type of method, it provides more granularity than an interface, which could
contain more than one type of method. As such, if you just want to hide the method-specific aspects of a
single method, you’re better off using a delegate, which only targets a single type of method.

 There are two ways to define a .NET delegate. The most common approach is to use the delegate key-
word to declare the delegate without actually implementing it. The delegate keyword instructs the
compiler to generate the necessary code for the declared delegate at compile time. This saves you from
having to implement the delegate yourself. Another approach to defining a .NET delegate is to use the
 CreateDelegate static method of the Delegate class. This method allows you to create a delegate to
represent a specified method of a specified .NET class.

 The ASP.NET AJAX client-side framework extends the functionality of the JavaScript Function type to add
support for a new static method named createDelegate that emulates the CreateDelegate method of
the .NET Delegate class. It allows you to create a delegate to represent a specified method of a specified
 JavaScript object. Listing 6-21 presents the internal implementation of the createDelegate method. Because
the createDelegate method is a static method, you must call it directly on the Function class itself.

 Listing 6-21: The create Delegate Method of the JavaScript Function Type

 Function.createDelegate =
function Function$createDelegate(instance, method) {
 return function() {
 return method.apply(instance, arguments);
 }
}

 The createDelegate method takes two parameters. The first parameter references the JavaScript object
owning the method that the delegate represents. The second parameter references the Function object
that represents the method the delegate represents. As you can see, the createDelegate method
defines and returns a new JavaScript function that calls the apply method on the Function object,
 passing in the reference to the JavaScript object and the array that contains the values of the parameters
of the method that the Function object represents.

c06.indd 178c06.indd 178 8/20/07 7:58:14 PM8/20/07 7:58:14 PM

Chapter 6: DOM Extensions

179

Strictly speaking, since the createDelegate method internally used the apply method, the JavaScript
function passed into the createDelegate method as its second argument doesn’t need to be a method of the
JavaScript object passed into the createDelegate method as its first argument. When the apply method is
invoked on the JavaScript function passed in the createDelegate method as its second argument, the
 JavaScript keyword within the scope of the body of the JavaScript function is automatically set to refer-
ence the JavaScript object passed into the createDelegate method as its first argument. This allows the
JavaScript function to use the JavaScript keyword within the body of the function to access the JavaScript
object passed into the createDelegate method as its first argument. The same argument applies to all cases
in this book where the apply or call methods are used internally to implement those cases.

 Listing 6-22 shows an example that uses the createDelegate method. This example defines a new ASP
.NET AJAX client class named Mover that belongs to a namespace named Delegates . This class encap-
sulates the logic that allows the end user to move a specified object (such as text or an image) around.
Each type of movable object comes with its own provider. A provider is an ASP.NET AJAX client class
that exposes a method that populates a specified container HTML element with the movable content. For
example, as you’ll see shortly, the TextProvider client class is the provider associated with a text. This
client class exposes a method named addText that populates the specified container HTML element
with the specified text.

 Listing 6-22: An example that uses the create Delegate method

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function pageLoad()
 {
 var mover = new Delegates.Mover();
 var textProvider = new Delegates.TextProvider(“Wrox Web Site”);
 var addTextDelegate = Function.createDelegate(textProvider,
 textProvider.addText);
 mover.invokeAddContentDelegate (addTextDelegate);
 }
 </script>
</head>
<body>

 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Scripts>
 <asp:ScriptReference Path=”Delegate.js” />
 </Scripts>
 </asp:ScriptManager>
 </form>
</body>
</html>

c06.indd 179c06.indd 179 8/20/07 7:58:15 PM8/20/07 7:58:15 PM

Chapter 6: DOM Extensions

180

 As you can see in this listing, the pageLoad method takes the following actions:

 ❑ It instantiates the Mover object:

 var mover = new Delegates.Mover();

 ❑ It instantiates the TextProvider object, passing in the movable text:

 var textProvider = new Delegates.TextProvider(“Wrox Web Site”);

 ❑ It calls the createDelegate method on the Function class to instantiate a delegate that repre-
sents the addText method of the TextProvider object. The addText method is responsible for
providing the text that the end user can move.

 var addTextDelegate = Function.createDelegate(textProvider, textProvider.addText);

 ❑ It calls the invokeAddContentDelegate method on the Mover object, passing in the delegate.
This method invokes the delegate to add the text that the end user can move around.

 mover.invokeAddContentDelegate (addTextDelegate);

 The delegate isolates the Mover from what the Mover is moving — that is, the movable content. Mover
has no idea that it is moving text. The sole responsibility of the Mover is to enable the end user to move
the displayed content. The Mover is not responsible for displaying and determining the movable content,
whether it’s text, an image, or something else. This responsibility is delegated to another object. In the
example in Listing 6-22 , this object is the TextProvider object. Listing 6-22 wraps the addText method
of this TextProvider object in a delegate and passes the delegate into the invokeAddContentDelegate
method of the Mover object. As you’ll see shortly, the invokeAddContentDelegate method invokes
the delegate, which in turn invokes the addText method of the TextProvider object. In other words, the
invocation of the addText method of the TextProvider object has been assigned to the delegate.

 Thanks to the delegate, the Mover can indirectly invoke the addText method of the TextProvider
object without knowing the method-specific characteristics of the method. In addition, the Mover can
execute any method of any class as long as the method takes a single argument and returns no value.
This means that you can replace the TextProvider with another class to provide different type of
 movable content. For example, Listing 6-23 uses an instance of a class named ImageProvider to provide
an image as the movable content. Notice that in this case the Mover executes a method with a different
name (addImage instead of addText) and a different implementation that belongs to a different class
(ImageProvider instead of TextProvider).

 Listing 6-23: A page that uses different movable content

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>

c06.indd 180c06.indd 180 8/20/07 7:58:15 PM8/20/07 7:58:15 PM

Chapter 6: DOM Extensions

181

 function pageLoad()
 {
 var mover = new Delegates.Mover();
 var imageProvider = new Delegates.ImageProvider(“images.jpg”);
 var addImageDelegate = Function.createDelegate(imageProvider,
 imageProvider.addImage);
 mover. invokeAddContentDelegate(addImageDelegate);
 }
 </script>
</head>
<body>

 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <scripts>
 <asp:ScriptReference Path=”Delegate.js” />
 </scripts>
 </asp:ScriptManager>
 </form>
</body>
</html>

Notice that Listings 6-22 and 6-23 use a <asp:ScriptReference> element to register the Delegate.js
 JavaScript file. This file contains the entire application logic.

 <asp:ScriptReference Path=”Delegate.js” />

 The ScriptReference class is discussed later in this book. For now suffice it to say that the
 ScriptManager server control exposes a collection property named Scripts that contains zero or
more instances of a class named ScriptReference , where each instance registers a particular
 JavaScript file. Notice that the ScriptReference class exposes a property named Path . You must set
this to the path of the JavaScript file being registered.

 Listing 6-24 presents the content of the Delegate.js JavaScript file. As you can see, this file contains the
implementation of the Mover , TextProvider , and ImageProvider ASP.NET AJAX client classes.

 Listing 6-24: The Delegate.js JavaScript File

 Type.registerNamespace(“Delegates”);

function Delegates$Mover$invokeAddContentDelegate(addContentDelegate)
{
 addContentDelegate(“container1”);
}

function mousedowncb(event)
{
 event = event || window.event;
 document.oldClientX = event.clientX;
 document.oldClientY = event.clientY;

(continued)

c06.indd 181c06.indd 181 8/20/07 7:58:15 PM8/20/07 7:58:15 PM

Chapter 6: DOM Extensions

182

 Listing 6-24 (continued)

 document.onmousemove = mousemovecb;
 document.onmouseup = mouseupcb;
 return false;
}

function mouseupcb(event)
{
 event = event || window.event;
 document.onmousemove = null;
 document.onmouseup = null;
 return false;
}

function mousemovecb(event)
{
 event = event || window.event;
 var deltaClientX = event.clientX - document.oldClientX;
 var deltaClientY = event.clientY - document.oldClientY;

 var container = document.getElementById(“container1”);

 var containerLocation = Sys.UI.DomElement.getLocation(container);
 Sys.UI.DomElement.setLocation(container,
 containerLocation.x + deltaClientX,
 containerLocation.y + deltaClientY);

 document.oldClientX = event.clientX;
 document.oldClientY = event.clientY;

 return false;
}

function Delegates$TextProvider$addText(containerId)
{
 var container = document.getElementById(containerId);
 container.innerHTML =
 ‘<a href=”javascript:void(0)” id=”myspan”’ +
 ‘ style=”font-weight: bold”>’ + this.text + ‘’;
}

function Delegates$ImageProvider$addImage(containerId)
{
 var container = document.getElementById(containerId);
 container.innerHTML = ””;
}

Delegates.TextProvider = function (text) {
 this.text = text;
}

c06.indd 182c06.indd 182 8/20/07 7:58:15 PM8/20/07 7:58:15 PM

Chapter 6: DOM Extensions

183

Delegates.TextProvider.prototype = {
 addText : Delegates$TextProvider$addText
}

Delegates.TextProvider.registerClass(“Delegates.TextProvider”);

Delegates.ImageProvider = function (imagePath) {
 this.imagePath = imagePath;
}

Delegates.ImageProvider.prototype = {
 addImage : Delegates$ImageProvider$addImage
}

Delegates.ImageProvider.registerClass(“Delegates.ImageProvider”);

Delegates.Mover = function () {
 var container = document.getElementById(“container1”);
 if (!container)
 {
 container = document.createElement(“div”);
 container.id = ”container1”;
 container.style.position = ”absolute”;
 document.body.insertBefore(container, document.forms[0]);
 container.onmousedown = mousedowncb;
 }
}

Delegates.Mover.prototype = {
 invokeAddContentDelegate : Delegates$Mover$invokeAddContentDelegate
}

Delegates.Mover.registerClass(“Delegates.Mover”);

 The following sections walk you through this listing and describe the implementation of the Delegates
namespace and Mover , TextProvider , and ImageProvider client classes.

 Namespace
 The Delegates.js file defines and registers a namespace named Delegates , which contains all the
classes defined for this application:

 Type.registerNamespace(“Delegates”);

c06.indd 183c06.indd 183 8/20/07 7:58:16 PM8/20/07 7:58:16 PM

Chapter 6: DOM Extensions

184

 Mover
 The Delegates.js file defines and registers the Mover class. Note that the constructor of this class first
checks whether the <body> HTML element of the current document contains a <div> HTML element
with an id HTML attribute value of container1 . If not, it takes the following steps to create the element
and initialize its properties:

 1. It calls the createElement method on the current document to create the container <div>
HTML element. This element will be used as a container for the movable content.

 container = document.createElement(“div”);

2. It initializes the properties of the newly instantiated container <div> HTML element:

 container.id = ”container1”;
 container.style.position = ”absolute”;

 3. It adds the container element before the <form> HTML element:

 document.body.insertBefore(container, document.forms[0]);

 4. It registers the mousedowncb global JavaScript function as the event handler for the mousedown
event of the container element. The implementation of this function is discussed later in this
chapter.

 container.onmousedown = mousedowncb;

 Note that the Mover is not responsible for specifying the content of the container <div> HTML element.
This responsibility is delegated to another class such as TextProvider or ImageProvider . As you’ll see
in subsequent sections, the TextProvider and ImageProvider classes populate the container <div>
HTML element with a text and an image.

 The Mover class exposes a method named invokeAddContentDelegate that takes a delegate as its
argument and invokes that delegate, passing in the value of the id HTML attribute of the container
 <div> HTML element, container1 :

 function Delegates$Mover$invokeAddContentDelegate(addContentDelegate)
{
 addContentDelegate(“container1”);
}

 TextProvider
 The Delegates.js file defines and registers the TextProvider class. The constructor of this class takes
some text and stores it in an internal field for future reference:

 Delegates.TextProvider = function (text) {
 this.text = text;
}

c06.indd 184c06.indd 184 8/20/07 7:58:16 PM8/20/07 7:58:16 PM

Chapter 6: DOM Extensions

185

 Note that the TextProvider class exposes a method named addText that takes the value of the id
HTML attribute of the container <div> HTML element as its argument:

 function Delegates$TextProvider$addText(containerId)
{
 var container = document.getElementById(containerId);
 container.innerHTML = ’<a href=”javascript:void(0);” id=”myspan”’ +
 ‘style=”font-weight: bold”>’ + this.text + ‘’;
}

 The addText method first calls the getElementById method on the document object to access a
 reference to the container <div> HTML element:

 var container = document.getElementById(containerId);

 Next, it renders the specified text as a hyperlink within the opening and closing tags of the container
 <div> HTML element:

 container.innerHTML = ’<a href=”javascript:void(0);” id=”myspan”’ +
 ‘style=”font-weight:bold”>’ + this.text + ‘’;

 ImageProvider
 The Delegates.js file defines the ImageProvider class. The constructor of this class takes a single
parameter, which contains the path to a specified image, and stores the image path in an internal field for
future reference:

 Delegates.ImageProvider = function (imagePath) {
 this.imagePath = imagePath;
}

 Note that the ImageProvider class features a single method named addImage that takes the value of
the id HTML attribute of the container <div> HTML element as its argument:

 function Delegates$ImageProvider$addImage(containerId)
{
 var container = document.getElementById(containerId);
 container.innerHTML = ””;
}

 This method first accesses the container <div> HTML element and then renders an HTML ele-
ment with the specified src HTML attribute value as the content of the container <div> HTML element.

 DomEvent
 DOM event programming is a complex task, mainly because different types of browsers use different
types of event models. As such, programmers spend most of their time adding custom code to make up
for the differences between these event models. The ASP.NET AJAX client-side framework comes with a

c06.indd 185c06.indd 185 8/20/07 7:58:16 PM8/20/07 7:58:16 PM

Chapter 6: DOM Extensions

186

class named DomEvent that encapsulates all the logic that deals with event modeling differences among
browsers, and provides you with a convenient API to interact with all these browsers as if they were of
the same type. This enables you to write one set of code that works with all types of browsers. The
 following sections discuss the members of the DomEvent class in detail.

 Constructor
 As Listing 6-25 shows, the constructor of the DomEvent class takes a single parameter that references the
event object. Every time an event occurs, the browser automatically creates an event object, which
exposes properties that provide more information about the event, such as whether the ALT key was
pressed when the event occurred, which mouse button was pressed when the event occurred, and so on.

 The event object of different types of browsers exposes different properties. These browser inconsisten-
cies make client-side event programming a daunting task. As you can see in Listing 6-25 , the DomEvent
constructor maps the event object’s browser-dependent, inconsistent properties into a consistent set of
properties that enable you to write one set of code that runs on all types of browsers.

 Listing 6-25: The Constructor of the DomEvent Class

 Sys.UI.DomEvent = function SysUIDomEvent(eventObject)
{
 var e = eventObject;
 this.rawEvent = e;
 this.altKey = e.altKey;

 if (typeof(e.button) !== ‘undefined’)
 this.button = (typeof(e.which) !== ‘undefined’) ? e.button :
 (e.button === 4) ? Sys.UI.MouseButton.middleButton :
 (e.button === 2) ? Sys.UI.MouseButton.rightButton :
 Sys.UI.MouseButton.leftButton;

 if (e.type === ‘keypress’)
 this.charCode = e.charCode || e.keyCode;

 else if (e.keyCode && (e.keyCode === 46))
 this.keyCode = 127;

 else
 this.keyCode = e.keyCode;

 this.clientX = e.clientX;
 this.clientY = e.clientY;
 this.ctrlKey = e.ctrlKey;
 this.target = e.target ? e.target : e.srcElement;

 if (this.target) {
 var loc = Sys.UI.DomElement.getLocation(this.target);
 this.offsetX = (typeof(e.offsetX) !== ‘undefined’) ? e.offsetX :
 window.pageXOffset + (e.clientX || 0) - loc.x;
 this.offsetY = (typeof(e.offsetY) !== ‘undefined’) ? e.offsetY :
 window.pageYOffset + (e.clientY || 0) - loc.y;
 }

c06.indd 186c06.indd 186 8/20/07 7:58:17 PM8/20/07 7:58:17 PM

Chapter 6: DOM Extensions

187

 this.screenX = e.screenX;
 this.screenY = e.screenY;
 this.shiftKey = e.shiftKey;
 this.type = e.type;
}

Sys.UI.DomEvent.registerClass(‘Sys.UI.DomEvent’);

 The DomEvent class has the following properties:

 ❑ rawEvent : Gets a reference to the event object, as follows:

 this.rawEvent = e;

 ❑ altKey : Gets a Boolean value that specifies whether the ALT key was pressed when the event
occurred. This property simply reflects the value of the altKey property of the event object, as
follows:

 this.altKey = e.altKey;

 ❑ button : Gets a Sys.UI.MouseButton enumeration value that specifies which mouse button
was pressed when the event occurred. This property maps the value of the event object’s
 button property to a more programmer-friendly Sys.UI.MouseButton enumeration value:

 if (typeof(e.button) !== ‘undefined’)
 this.button = (typeof(e.which) !== ‘undefined’) ? e.button :
 (e.button === 4) ? Sys.UI.MouseButton.middleButton :
 (e.button === 2) ? Sys.UI.MouseButton.rightButton :
 Sys.UI.MouseButton.leftButton;

 ❑ charCode : Gets an integer value that specifies the character code of the key that raised the
event. This property presents the value of the event object’s charCode property if the event
 object exposes this property; otherwise, it presents the value of the keyCode property of the
event object:

 if (e.type === ‘keypress’)
 this.charCode = e.charCode || e.keyCode;

 ❑ clientX : Gets an integer value that specifies the horizontal offset (in pixels) between the mouse
position and the left side of the browser window’s client area when the event occurred. This
property simply returns the value of the event object’s clientX property, as follows:

 this.clientX = e.clientX;

 ❑ clientY : Gets an integer value that specifies the vertical offset (in pixels) between the mouse
position and the top of the browser window’s client area when the event occurred. This property
simply returns the value of the event object’s clientY property, as follows:

 this.clientY = e.clientY;

c06.indd 187c06.indd 187 8/20/07 7:58:17 PM8/20/07 7:58:17 PM

Chapter 6: DOM Extensions

188

 ❑ ctrlKey : Gets a Boolean value that specifies whether the CTRL key was pressed when the event
occurred, as follows:

 this.ctrlKey = e.ctrlKey;

 ❑ target : Gets a reference to the object that raised the event. This property returns the value of
the event object’s target property if the event object exposes this property; otherwise it returns the
value of the srcElement property. Internet Explorer (IE) exposes the event target through the
 srcElement property, whereas other browsers such as Mozilla expose the event target through the
 target property.

 this.target = e.target ? e.target : e.srcElement;

 ❑ offsetX : Gets an integer value that specifies the horizontal offset (in pixels) between the mouse
position and the left side of the event target when the event occurred. This property returns the
value of the event object’s offsetX property if the event object contains this property; other-
wise, it evaluates the value as follows:

 var loc = Sys.UI.DomElement.getLocation(this.target);
 this.offsetX = (typeof(e.offsetX) !== ‘undefined’) ? e.offsetX :
 window.pageXOffset + (e.clientX || 0) - loc.x;

 ❑ offsetY : Gets an integer value that specifies the vertical offset (in pixels) between the mouse
position and the top of the event target when the event occurred. This property returns the value
of the event object’s offsetY property if the event object contains this property; otherwise, it
evaluates the value as follows:

 this.offsetY = (typeof(e.offsetY) !== ‘undefined’) ? e.offsetY :
 window.pageYOffset + (e.clientY || 0) - loc.y;

 ❑ screenX : Gets an integer value that specifies the horizontal offset (in pixels) between the mouse
position and the left side of the user’s screen when the event occurred. This property simply
 returns the value of the event object’s screenX property, as follows:

 this.screenX = e.screenX;

 ❑ screenY : Gets an integer value that specifies the vertical offset (in pixels) between the mouse
position and the top of the user’s screen when the event occurred. This property simply returns
the value of the event object’s screenY property, as follows:

 this.screenY = e.screenY;

 ❑ shiftKey : Gets a Boolean value that specifies whether the SHIFT key was pressed when the
event occurred. This property simply returns the value of the shiftKey property of the event
object, as follows:

 this.shiftKey = e.shiftKey;

c06.indd 188c06.indd 188 8/20/07 7:58:17 PM8/20/07 7:58:17 PM

Chapter 6: DOM Extensions

189

 ❑ type : Gets a string value that contains the name of the event. The name of the event is the same
as the event handler’s name, without the on prefix. For example, the event associated with the
 onclick event handler is named click . This enables you to write a single JavaScript function
that uses the type property’s value in a switch statement in order to determine the type of the
event and consequently to determine which event handler must be called.

 this.type = e.type;

 The DomEvent object acts as a wrapper around the event object that the browser generates to represent
the event when an event occurs. The ASP.NET AJAX DOM extensions contain the infrastructure that pro-
vides event handlers (registered for an event) with the DomEvent object that encapsulates the event
object the browser generates. This ensures that the event handlers use the DomEvent object instead of the
event object. This infrastructure consists of several methods, which are discussed in the following
sections.

 Static Methods
 The DomEvent class exposes two sets of methods: static and instance. The static methods are methods
that are defined directly on the DomEvent class. As such they must be invoked on the class itself. They
cannot be invoked on an instance of the class. These static methods are addHandler , removeHandler ,
 addHandlers , and clearHandlers . The following sections discuss these methods.

 add Handler
 The DomEvent class exposes a static method named addHandler that you can use to register an event
handler for a specified event.

 The addHandler method takes three parameters. The first parameter references the DOM element that
raised the event. The second parameter is a string that contains the name of the event, excluding the on
prefix. The third parameter references the event handler being added. Listing 6-26 contains an example
the uses the addHandler method.

 Listing 6-26: An example that uses the add Handler method

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function clickcb(domEvent)
 {
 var msg = ”altKey ----> “ + domEvent.altKey;
 msg += (“\nbutton ----> “ + domEvent.button);
 msg += (“\ntype ----> “ + domEvent.type);

(continued)

c06.indd 189c06.indd 189 8/20/07 7:58:17 PM8/20/07 7:58:17 PM

Chapter 6: DOM Extensions

190

 Listing 6-26 (continued)

 msg += (“\nctrlKey ----> “ + domEvent.ctrlKey);
 msg += (“\ntarget ----> “ + domEvent.target);
 msg += (“\noffsetX ----> “ + domEvent.offsetX);
 msg += (“\noffsetY ----> “ + domEvent.offsetY);
 msg += (“\nclientX ----> “ + domEvent.clientX);
 msg += (“\nclientY ----> “ + domEvent.clientY);
 msg += (“\nscreenX ----> “ + domEvent.screenX);
 msg += (“\nscreenY ----> “ + domEvent.screenY);
 msg += (“\nshiftKey ----> “ + domEvent.shiftKey);
 alert (msg);
 }

 function pageLoad()
 {
 var mybtn = $get(“mybtn”);
 $addHandler (mybtn, “click”, clickcb);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />
 <button id=”mybtn” type=”button”>Click Here</button>
 </form>
</body>
</html>

 This example renders a simple <button> HTML element. As this example shows, adding an event
 handler for an event involves the following steps:

 1. Access a reference to the DOM element that will raise the event:

 var mybtn = $get(“mybtn”);

 2. Call the addHandler method, passing in the reference to the DOM element, the name of the
event, and the reference to the event handler:

 $addHandler (mybtn, “click”, clickcb);

 The clickcb event handler simply pops up an alert that displays the property values of the DomEvent
object that represents the click event, as shown in Figure 6-4 . As you can see, the ASP.NET AJAX DOM
extensions automatically instantiate a DomEvent object under the hood and pass it into the clickcb
event handler.

c06.indd 190c06.indd 190 8/20/07 7:58:18 PM8/20/07 7:58:18 PM

Chapter 6: DOM Extensions

191

 Listing 6-27: The add Handler Method

 var $addHandler = Sys.UI.DomEvent.addHandler =
function SysUIDomEvent$addHandler(element, eventName, handler)
{
 if (!element._events)
 element._events = {};

 var eventCache = element._events[eventName];
 if (!eventCache)
 element._events[eventName] = eventCache = [];

 var browserHandler;
 if (element.addEventListener) {
 browserHandler = function(e) {
 return handler.call(element, new Sys.UI.DomEvent(e));
 }
 element.addEventListener(eventName, browserHandler, false);
 }

 else if (element.attachEvent) {
 browserHandler = function() {
 return handler.call(element, new Sys.UI.DomEvent(window.event));
 }
 element.attachEvent(‘on’ + eventName, browserHandler);
 }
 eventCache[eventCache.length] =
 {handler: handler, browserHandler: browserHandler};
}

Figure 6-4

c06.indd 191c06.indd 191 8/20/07 7:58:18 PM8/20/07 7:58:18 PM

Chapter 6: DOM Extensions

192

 Now, let’s walk through the implementation of the addHandler method shown in Listing 6-27 . This
method first checks whether the DOM element that will raise the event contains an object named
 _events . If not, it instantiates and adds this object to the DOM element:

 if (!element._events)
 element._events = {};

 Next, addHandler uses the event name as an index into the _events to access the subarray associated
with the specified event name. If _events does not contain a subarray for the specified event name,
 addHandlers instantiates and adds this subarray to _events :

 var eventCache = element._events[eventName];
 if (!eventCache)
 element._events[eventName] = eventCache = [];

 Then, addHandler checks whether the DOM element that will raise the event supports a method named
 addEventListener . The DOM elements of browsers such as Mozilla support this method. If the DOM
element supports this method, addHandler takes the following steps:

 1. It defines a JavaScript function that contains two statements. The first statement instantiates a
 DomEvent , passing in the event object to represent the event. The second statement invokes the
 call method on the event handler being registered, passing in the reference to the DOM element
that will raise the event and the DomEvent object that represents the event. JavaScript sets the
value of the JavaScript keyword within the scope of the event handler being registered to refer-
ence the DOM element passed into the call method. This means that you can use the JavaScript
keyword within the body of this event handler to access the DOM element that raised the event.

2. It invokes the addEventListener method on the DOM element that will raise the event,
 passing in the event name and the JavaScript function defined previously to register the
 JavaScript function as the event handler for the event with the specified name.

 In other words, addHandler wraps the call into the event handler being added in a new event handler
and registers this new event handler for the event. Therefore, when the specified DOM element finally
raises the event, it calls the new event handler, which in turn instantiates the DomEvent object and calls
the event handler being added, passing in the DomEvent object:

 var browserHandler;
 if (element.addEventListener) {
 browserHandler = function(e) {
 var domEvent = new Sys.UI.DomEvent(e);
 return handler.call(element, domEvent);
 }
 element.addEventListener(eventName, browserHandler, false);
 }

 If the DOM element that will raise the event does not support the addEventListener method,
 addHandler checks whether it supports the attachEvent method. The DOM elements of IE browsers
support this method. If the DOM element supports this method, addHandler first defines a JavaScript
function that consists of two statements. The first statement instantiates a DomEvent object that encapsu-
lates the window.event event object. The second statement invokes the call method on the event
 handler being added, passing in the reference to the DOM element and the DomEvent object. Next,

c06.indd 192c06.indd 192 8/20/07 7:58:18 PM8/20/07 7:58:18 PM

Chapter 6: DOM Extensions

193

 addHandler calls the attachEvent method on the DOM element, passing in the on -prefixed name of
the event and the JavaScript function just defined:

 else if (element.attachEvent) {
 browserHandler = function() {
 var domEvent = new Sys.UI.DomEvent(window.event);
 return handler.call(element, domEvent);
 }
 element.attachEvent(‘on’ + eventName, browserHandler);
 }

 Finally, addHandler stores an object with two properties in the subarray associated with the event.
The first property, handler , references the event handler being added; and the second property,
 browserHandler , references the JavaScript function defined previously:

 eventCache[eventCache.length] =
 {handler: handler, browserHandler: browserHandler};

 removeHandler
 The DomEvent class exposes a method named removeHandler that removes a specified event handler.
As Listing 6-28 shows, the removeHandler is defined on the DomEvent class itself. As such, it is a static
method that must be called on the class itself.

 As you can see, the removeHandler method takes three parameters. The first parameter references the
DOM element that exposes the event with the specified name. The second parameter is a string that con-
tains the name of the event. The third parameter references the event handler method being removed.

 Listing 6-28: The remove Handler Method of the DomEvent Class

 var $removeHandler = Sys.UI.DomEvent.removeHandler =
function SysUIDomEvent$removeHandler(element, eventName, handler)
{
 var cache = element._events[eventName];
 var browserHandler = null;
 for (var i = 0, l = cache.length; i < l; i++)
 {
 if (cache[i].handler === handler)
 {
 browserHandler = cache[i].browserHandler;
 break;
 }
 }

 if (element.removeEventListener)
 element.removeEventListener(eventName, browserHandler, false);

 else if (element.detachEvent)
 element.detachEvent(‘on’ + eventName, browserHandler);

 cache.splice(i, 1);
}

c06.indd 193c06.indd 193 8/20/07 7:58:19 PM8/20/07 7:58:19 PM

Chapter 6: DOM Extensions

194

 Now, let’s walk through the implementation of the removeHandler method. This method first uses the
event name as an index into the _events object of the DOM element that exposes the event with the
specified name, and returns a reference to the array that contains all the event handlers for the event
with the specified name:

 var cache = element._events[eventName];

 Next, it iterates through the event handlers of the array to locate the event handler to be removed:

 for (var i = 0, l = cache.length; i < l; i++) {
 if (cache[i].handler === handler) {
 browserHandler = cache[i].browserHandler;
 break;
 }
 }

 Then, it checks whether the DOM element that exposes the event supports the removeEventListener
method. The DOM elements of browsers such as Mozilla support this method. If the DOM element
 supports the method, removeHandler simply calls the removeEventListener method on the DOM
element to remove the specified event handler:

 element.removeEventListener(eventName, browserHandler, false);

 If the DOM element does not support the removeEventListener method, removeHandler checks
whether it supports the detachEvent method. The DOM elements of browsers such as IE support this
method. If the DOM element supports the method, removeHandler calls the method to remove the
specified event handler:

 element.detachEvent(‘on’ + eventName, browserHandler);

 Finally, removeHandler removes the event handler from the array:

 cache.splice(i, 1);

 As you can see, thanks to the removeHandler method of the DomEvent class, you don’t have to worry
about the discrepancies among the browsers. It’s all taken care of under the hood. The DomEvent class
also takes care of the bookkeeping logic required to store and remove event handlers — storing and
removing event handlers from the associated arrays of _events . Later in this chapter, you’ll see an
example where you need to call the removeHandler method to remove a specified event handler.

 add Handlers
 The DomEvent class exposes a method named addHandlers that allows you to register event handlers
for different events of a specified DOM element. As Listing 6-29 shows, this method takes three argu-
ments. The first argument references the DOM element that will raise the specified events. The second
argument is a collection that contains the event names and the handlers being registered for these events.
The third argument references the object that is the context for the delegates that the addHandlers
method creates internally to represent the event handlers (discussed in detail later in this chapter).

c06.indd 194c06.indd 194 8/20/07 7:58:19 PM8/20/07 7:58:19 PM

Chapter 6: DOM Extensions

195

 Listing 6-29: The Internal Implementation of the add Handlers Method

 var $addHandlers = Sys.UI.DomEvent.addHandlers =
function SysUIDomEvent$addHandlers(element, events, handlerOwner)
{
 for (var name in events) {
 var handler = events[name];

 if (handlerOwner)
 handler = Function.createDelegate(handlerOwner, handler);

 $addHandler(element, name, handler);
 }
}

 Now let’s walk through this listing. Here’s what’s going on:

 1. The addHandlers method is defined on the DomEvent class itself instead of its prototype
property. This means that this method is a static method and must be invoked on the class itself.

2. The ASP.NET AJAX DOM extensions define a shortcut method named $addHandlers that
 allows you to use the following short syntax to invoke the addHandler method:

 $addHandlers(element, events, handlerOwner);

 addHandlers iterates through the event handlers that the events dictionary contains and takes the
 following actions for each enumerated event handler:

 ❑ It uses the event name as an index into the events dictionary to access the enumerated event handler:

 var handler = events[name];

 ❑ It checks whether the caller has passed a value for the third argument. If so, addHandlers
 invokes the createDelegate method on the Function type, passing in the third argument
and the event handler itself:

 if (handlerOwner)
 handler = Function.createDelegate(handlerOwner, handler);

 As discussed earlier in this chapter, the createDelegate method creates a delegate that
 encapsulates and represents the event handler associated with the specified object.

❑ It calls the addHandler method of the DomEvent class, passing in three arguments. The first argument
references the DOM element that will raise the event; the second argument is a string value that con-
tains the event name; and the third argument references the event handler being added:

 $addHandler(element, name, handler);

 Listing 6-30 shows an example that uses the addHandlers method.

c06.indd 195c06.indd 195 8/20/07 7:58:19 PM8/20/07 7:58:19 PM

Chapter 6: DOM Extensions

196

 Listing 6-30: An example that uses the add Handlers method

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function blurcb(domEvent)
 {
 alert(“blurcb was invoked!”);
 }

 function mousedowncb(domEvent)
 {
 alert(“mousedowncb was invoked!”);
 }

 function pageLoad()
 {
 var mybtn = $get(“mybtn”);
 var events = {blur:blurcb, mousedown:mousedowncb};
 $addHandlers(mybtn, events);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />
 <button id=”mybtn” type=”button”>Click Here</button>
 </form>
</body>
</html>

 As you can see, the pageLoad method first creates a JavaScript object literal that contains two name/
value pairs where the name part of each pair contains the event name and the value part contains the
event handler. Then it calls the addHandlers method of the DomEvent class, passing in the reference to
the <button> HTML element and this JavaScript object literal.

 In this case, you could also call the addHandler method twice to achieve the same effect, as shown in the
boldfaced portion of Listing 6-31 . If you don’t specify the third argument of the addHandlers method,
the method is equivalent to multiple calls into the addHandler method. However, as you’ll see later in this
chapter, if you do specify the third argument of the addHandlers method, the method does more than just
make multiple calls into the addHandler methods.

c06.indd 196c06.indd 196 8/20/07 7:58:20 PM8/20/07 7:58:20 PM

Chapter 6: DOM Extensions

197

 Listing 6-31: A version of Listing 6-30 that uses the add Handler method

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function blurcb(domEvent)
 {
 alert(“blurcb was invoked!”);
 }

 function mousedowncb(domEvent)
 {
 alert(“mousedowncb was invoked!”);
 }

 function pageLoad()
 {
 var mybtn = $get(“mybtn”);

 $addHandler (mybtn, “blur”, blurcb);
 $addHandler (mybtn, “mousedown”, mousedowncb);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />
 <button id=”mybtn” type=”button”>Click Here</button>
 </form>
</body>
</html>

 clear Handlers
 The DomEvent class exposes a method named clearHandlers that allows you to clear all event
 handlers registered for all the events of a specified DOM element. In Listing 6-32 , the DomEvent class
does the following:

 1. It defines the clearHandlers method on the DomEvent class itself. As such, this method is a
static method that must be directly called on the class itself.

2. It defines a shortcut method named $clearHandlers that allows you to use the following
 notation to invoke the clearHandlers method:

 $clearHandlers(element);

c06.indd 197c06.indd 197 8/20/07 7:58:20 PM8/20/07 7:58:20 PM

Chapter 6: DOM Extensions

198

 Listing 6-32: The clear Handlers Method of the DomEvent Class

 var $clearHandlers = Sys.UI.DomEvent.clearHandlers =
function SysUIDomEvent$clearHandlers(element)
{
 if (element._events) {
 var cache = element._events;
 for (var name in cache) {
 var handlers = cache[name];
 for (var i = handlers.length - 1; i >= 0; i--)
 $removeHandler(element, name, handlers[i].handler);
 }
 element._events = null;
 }
}

 In its internal implementation, the clearHandlers method simply iterates through the event handlers
in the _events dictionary of the specified DOM element and takes the following steps for each enumer-
ated event type:

 1. It uses the event name as an index into the _events dictionary to access the array that contains
the event handlers for the event with the specified name:

 var handlers = cache[name];

 2. It iterates through the event handlers in the array and calls the removeHandler method once for
each enumerated event handler to remove the handler:

 for (var i = handlers.length - 1; i >= 0; i--)
 $removeHandler(element, name, handlers[i].handler);

 Again thanks to the DomEvent class, you can remove all the event handlers registered for all the events
of a specified DOM element by one simple call into the clearHandler method. All the associated book-
keeping work is managed under the hood for you.

 Instance Methods
 As mentioned previously, the DomEvent class exposes two sets of methods: static and instance. The static
methods were discussed in the previous section. This section discusses the instance methods of the
 DomEvent class. The instance methods are defined directly on the prototype property of the DomEvent
class. As such, they must be invoked on an instance of the class. They cannot be invoked on the class
itself. These instance methods are preventDefault and stopPropagation .

 prevent Default
 As discussed earlier, when an event occurs, the browser instantiates an event object and populates its
properties with specific information about the event. Each event normally has a default behavior. For
example, the click event of <input type=”submit”> posts the form data back to the server. Most

c06.indd 198c06.indd 198 8/20/07 7:58:20 PM8/20/07 7:58:20 PM

Chapter 6: DOM Extensions

199

applications nowadays need to validate the form data on the client-side and cancel the postback
 operation altogether if the validation fails. Obviously the cancellation must be performed inside the event
 handler method that handles the click event. The event object associated with the event exposes a mem-
ber that allows these applications to cancel the default action of the event. The event object created by
browsers such as Mozilla exposes a method named preventDefault that can be invoked on the event
object to cancel the default action. The event object created by some other browsers such as IE, on the
other hand, exposes a Boolean property named returnValue that can be set to cancel the default action.

 The DomEvent class exposes an instance method named preventDefault that encapsulates this
browser-dependent event cancellation logic, enabling you to cancel the event with a single method call
that works on all types of browsers. Listing 6-33 presents the internal implementation of the
 preventDefault method.

 Listing 6-33: The prevent Default Instance Method of the DomEvent Class

 function SysUIDomEvent$preventDefault() {
 if (this.rawEvent.preventDefault)
 this.rawEvent.preventDefault();

 else if (window.event)
 window.event.returnValue = false;
}

 Listing 6-34 contains a page the uses the preventDefault instance method of the DomEvent class.

 Listing 6-34: A page that uses the prevent Default method

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<script runat=”server”>
 void Page_Load(object sender, EventArgs e)
 {
 if (IsPostBack)
 info.Text=”You entered: “ + date.Value;
 }
</script>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script language=”javascript” type=”text/javascript”>
 function validateInput(input)
 {
 if (arguments.length != arguments.callee.length)
 {
 var err3=Error.parameterCount(“Invalid argument count!”);
 throw err3;
 }

(continued)

c06.indd 199c06.indd 199 8/20/07 7:58:20 PM8/20/07 7:58:20 PM

Chapter 6: DOM Extensions

200

 Listing 6-34 (continued)

 if (input == null || input.trim() == “”)
 {
 var er = Error.argumentNull(“input”, “Date cannot be null!”);
 throw er;
 }
 var reg = new RegExp(“(\\d\\d)[-](\\d\\d)[-](\\d\\d\\d\\d)”);
 var date = reg.exec(input);
 if (date == null)
 {
 var err = Error.argumentUndefined(“input”, “Undefined value!”);
 throw err;
 }

 var ar = input.split(“-”);

 if (ar[2] < 1900 || ar[2] > 2008)
 {
 var err2=Error.argumentOutOfRange(“input”, input);
 throw err2;
 }
 }

 function clickCallback(domEvent)
 {
 var date = $get(“date”);
 var info = $get(“info”);
 info.innerHTML=””;
 try
 {
 validateInput(date.value);
 }
 catch (e)
 {
 alert(e.message);
 date.value=””;
 domEvent.preventDefault();
 }
 }

 function pageLoad()
 {
 var submitbtn = $get(“submitbtn”);
 $addHandler(submitbtn, “click”, clickCallback);
 }

 </script>
</head>

c06.indd 200c06.indd 200 8/20/07 7:58:21 PM8/20/07 7:58:21 PM

Chapter 6: DOM Extensions

201

<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />
 Enter date: <input type=”text” id=”date” runat=”server”/>
 <button type=”submit” id=”submitbtn”>Submit</button>

 <asp:Label ID=”info” runat=”server” />
 </form>
</body>
</html>

 This page covers a very common scenario in Web applications: the validation of the data that the end
user enters into a text box before submitting the form to the server. As you can see, this page contains a
text box and a Submit button that submits the value of the text box to the server. The pageLoad JavaScript
function uses the addHandler method of the DomEvent class to register the clickCallback
 JavaScript function as the event handler for the click event of the Submit button:

 function pageLoad()
 {
 var submitbtn = $get(“submitbtn”);
 $addHandler(submitbtn, “click”, clickCallback);
 }

 The clickCallback event handler first calls the validateInput JavaScript function to validate the
date that the end user entered in the text box. The validateInput JavaScript function performs the
 validations discussed in Chapter 3 , and raises an exception if the validation fails.

 The catch block of the clickCallback event handler catches this exception and calls the
 preventDefault method of the DomEvent object to cancel the form submission to the server.

 stop Propagation
 Event propagation is one of the important aspects of client-side event programming. To understand
event propagation, first you need to understand the concept of containment hierarchy. The containment
hierarchy of a specified DOM element such as the Submit button in Listing 6-34 is a tree, or hierarchy, of
DOM elements that contains all the ancestor DOM elements of the specified DOM element in addition to
the DOM element itself. The root DOM element of a containment hierarchy is the window object.

 For example, the containment hierarchy of the Submit button in Listing 6-34 contains these DOM elements:
window, document, HTML, body, form, and button. Prior to modern browsers, when the end user clicked
the Submit button, the button would raise the click event, which had to be handled at the Submit button
level. In other words, you had to register an event handler for the click event of the Submit button to
handle the event. If there were no event handlers registered for the click event of the Submit button, the
event would be lost forever. You had to handle the event at the event target itself.

 That’s all in the past. Modern browsers propagate the event that a DOM element raises all the way
through the containment hierarchy of the element. For example, in the case of the Submit button in
 Listing 6-34 , when the end user clicks the button and raises the click event, the event object associated

c06.indd 201c06.indd 201 8/20/07 7:58:21 PM8/20/07 7:58:21 PM

Chapter 6: DOM Extensions

202

with this event is passed to the ancestor DOM elements (document, HTML, and so on) for the Submit
button. This has two important benefits:

 ❑ You can now register an event handler with a higher-level DOM element, such as the document
element, to handle the event that a lower-level DOM element, such as the Submit button, raises.

❑ You can handle the same event multiple times at multiple hierarchy levels. For example, you can
handle the event that the Submit button raises at the document and body levels in addition to
the Submit-button level.

 In general, there are three event propagation models:

 ❑ Netscape Navigator 4–only event propagation model: Netscape Navigator 4 is the only
browser that supports this event propagation model. As more people are moving from
Netscape Navigator 4 to more modern browsers, this event propagation model is used less
often. In this event propagation model, when a DOM element such as the Submit button in
Listing 6-34 raises an event, the event propagates from the top of the DOM element’s
 containment hierarchy (the window object) all the way down to the event target (the DOM
 element itself). The Netscape Navigator 4 event propagation model is also known as
event capture. By default, Netscape Navigator 4 event propagation is turned off.

❑ Internet Explorer 4 and higher event propagation model: In this event propagation model,
when a DOM element such as the Submit button in Listing 6-34 raises an event, the event propa-
gates from the bottom of the DOM element’s containment hierarchy (the DOM element itself) all
the way up to the top of the containment hierarchy (the window object). In other words, the
 Internet Explorer 4 and higher propagation model is the opposite of the Netscape Navigator
4 event propagation model. The Internet Explorer 4 and higher propagation model is known
as event bubbling. Internet Explorer 4 and higher event bubbling is very similar to the ASP.NET
Framework’s event bubbling. By default, Internet Explorer 4 and higher event propagation is
turned on.

❑ W3C event propagation model: In this event propagation model, when a DOM element such as
the Submit button in Listing 6-34 raises an event, the event propagates from the top of the DOM
element’s containment hierarchy (the window object) all the way down to the event target and
then bubbles from there all the way back up to the top of the containment hierarchy. The W3C
event propagation model accommodates both Netscape Navigator 4 and Internet Explorer 4 and
higher event propagation models. Unfortunately, because the other two propagation models are
still in use, the W3C event propagation model had to introduce a new syntax to avoid conflicts.
By default, only the event bubbling portion of the W3C event propagation is turned on.

 By default, event capture is turned off no matter which event propagation model is used. There are times
when an application needs to stop the default behavior of event bubbling at a particular level of a
 containment hierarchy. For example, in the case of Listing 6-34 , you may not want the click event to
propagate to the document level because it would interfere with some other events that your application
handles at that level. Both the Internet Explorer 4 and higher and W3C propagation models allow you to
stop the event bubbling at a desired level of a containment hierarchy. However, these models require you
to invoke different members of the event object to achieve this. In the case of the W3C event propagation
model, you must call the stopPropagation method on the event object to stop the event bubbling at a
specified hierarchy level. In the case of the Internet Explorer 4 and higher event propagation model, you
must set the cancelBubble property of the event object to true to stop the event bubbling at a specified
hierarchy level.

c06.indd 202c06.indd 202 8/20/07 7:58:21 PM8/20/07 7:58:21 PM

Chapter 6: DOM Extensions

203

 The DomEvent class exposes an instance method named stopPropagation that encapsulates this
browser-dependent code, allowing you to stop the event bubbling at a desired level by making a single
method call that works with all types of browsers.

 Listing 6-35 presents the internal implementation of the stopPropagation method of the
 DomEvent class.

 Listing 6-35: The stop Propagation Instance Method of the DomEvent Class

 function SysUIDomEvent$stopPropagation() {
 if (this.rawEvent.stopPropagation)
 this.rawEvent.stopPropagation();

 else if (window.event)
 window.event.cancelBubble = true;
}

 As you can see in this listing, the stopPropagation method first checks whether the event object
 supports a method named stopPropagation . If so, this indicates that the browser is using the W3C event
propagation model, and the stopPropagation method of the event object is called to stop the event
 bubbling. The constructor of the DomEvent class assigns the event object to the rawEvent property of the
 DomEvent object:

 this.rawEvent.stopPropagation();

 If the event object does not support the stopPropagation method, Listing 6-35 checks whether the
 window object supports a property named event . If so, this indicates that the browser is using the Inter-
net Explorer 4 and higher event propagation model, and the cancelBubble property of the event object
is set to true to stop the event bubbling.

 Using the DomEvent Class
 Listing 6-36 presents an example that uses the methods of the DomEvent class. This example is a new
version of the example discussed earlier in the chapter (see Listing 6-22 through 6-24). Recall that the
previous version did the following:

 ❑ It loaded and displayed a single movable object such as text.

❑ It instantiated a single mover that enables the end user to move the movable object.

 As you can see, the previous version of the example supports loading, displaying, and moving a single
movable object. The new version of the example supports loading, displaying, and moving
multiple movable objects simultaneously. The new version allows you to attach a separate mover object
to each movable object so you can move them independently. The new version also adds support for a
new type of movable object that displays a table of data. As Listing 6-36 shows, this page displays three
movable objects simultaneously, allowing you to move them independently. These movable objects are
text, an image, and a table of data as shown in Figure 6-5 .

c06.indd 203c06.indd 203 8/20/07 7:58:22 PM8/20/07 7:58:22 PM

Chapter 6: DOM Extensions

204

 Listing 6-36: A page that uses the DomEvent Class

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <style type=”text/css”>
 .myTable {
 background-color: LightGoldenrodYellow;
 border-color:Tan;
 border-width:1px;
 color:Black;
 }

 .myTable th, .myTable td
 {
 padding: 2px 5px;
 }

 .header {
 background-color:Tan;
 font-weight:bold
 }

 .odd {
 background-color:PaleGoldenrod;
 }

 </style>
 <script type=”text/javascript” language=”javascript”>
 function pageLoad()
 {
 var imageMover = new Delegates.Mover(“container1”);
 var imageProvider = new Delegates.ImageProvider(“images.jpg”);
 var addImageDelegate = Function.createDelegate(imageProvider,
 imageProvider.addImage);
 imageMover.addContent(addImageDelegate);

 var textMover = new Delegates.Mover(“container2”);
 var textProvider = new Delegates.TextProvider(“Wrox Web Site”);
 var addTextDelegate = Function.createDelegate(textProvider,
 textProvider.addText);
 textMover.addContent(addTextDelegate);

 var headers = [“Product”, “Distributor”, “Producer”];
 var rows = [];

c06.indd 204c06.indd 204 8/20/07 7:58:22 PM8/20/07 7:58:22 PM

Chapter 6: DOM Extensions

205

 for (var i=0; i<10; i++)
 {
 rows[i] = [“Product”+i, “Distributor”+i, “Producer”+i];
 }

 var tableMover = new Delegates.Mover(“container3”);
 var tableProvider = new Delegates.TableProvider(headers, rows);
 var addTableDelegate =
 Function.createDelegate(tableProvider,
 tableProvider.addTable);
 tableMover.addContent(addTableDelegate);
 }
 </script>
</head>
<body>

 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Scripts>
 <asp:ScriptReference Path=”Delegate.js” />
 </Scripts>
 </asp:ScriptManager>
 </form>
</body>
</html>

Figure 6-5

 Adding a new type of movable object requires you to write a new provider class. As such, this example
implements a new class named TableProvider that renders a table of data. The data could be coming

c06.indd 205c06.indd 205 8/20/07 7:58:22 PM8/20/07 7:58:22 PM

Chapter 6: DOM Extensions

206

from any type of source, such as SQL Server, XML documents, or a Web service. To keep the discussion
focused, in this case I hardcoded the required data. As you can see in Listing 6-36 , the constructor of the
 TableProvider class takes two arguments. The first argument is an array that contains the header texts
of the table; the second argument is an array of subarrays, where each subarray contains the field values
for a data record or row:

 var headers = [“Product”, “Distributor”, “Producer”];
 var rows = [];
 for (var i=0; i<10; i++)
 {
 rows[i] = [“Product”+i, “Distributor”+i, “Producer”+i];
 }

 var tableProvider = new Delegates.TableProvider(headers, rows);

 Notice that Listing 6-36 uses the following script reference:

 <asp:ScriptReference Path=”Delegate.js” />

 This script reference references the Delegate.js script file that contains the entire application logic.
Listing 6-37 presents the content of this file. I’ll discuss the JavaScript functions defined in this code
 listing in the following sections.

 Lisitng 6-37: The Content of Delegate.js Script File

 Type.registerNamespace(“Delegates”);

Delegates.Mover = function (containerId)
{
 var container = $get(containerId);
 Delegates.Mover.incrementMoversCount();
 if (!container)
 {
 container = document.createElement(“div”);

 this.containerId = container.id = containerId;
 container.style.position = ”absolute”;
 document.body.insertBefore(container, document.forms[0]);

 $addHandlers(container, { mousedown: this.mousedowncb }, this);
 }
}

Delegates.Mover.prototype =
{
 addContent : Delegates$Mover$invokeAddContentDelegate,
 mousedowncb : Delegates$Mover$mousedowncb,
 mouseupcb : Delegates$Mover$mouseupcb,
 mousemovecb : Delegates$Mover$mousemovecb
}

c06.indd 206c06.indd 206 8/20/07 7:58:23 PM8/20/07 7:58:23 PM

Chapter 6: DOM Extensions

207

Delegates.Mover.incrementMoversCount = function()
{
 if (typeof(this.moversCount) == “undefined”)
 this.moversCount = 0;

 this.moversCount++;
}

Delegates.Mover.get_moversCount = function()
{
 return this.moversCount;
}

function Delegates$Mover$invokeAddContentDelegate(addContentDelegate)
{
 addContentDelegate(this.containerId);
}

function Delegates$Mover$mousedowncb(domEvent)
{
 var container = $get(this.containerId);
 this.oldClientX = domEvent.clientX;
 this.oldClientY = domEvent.clientY;
 var events = {mousemove: this.mousemovecb, mouseup: this.mouseupcb}
 $addHandlers(document, events, this);
 container.style.zIndex += Delegates.Mover.get_moversCount();
 domEvent.preventDefault();
}

function Delegates$Mover$mouseupcb(domEvent)
{
 var container = $get(this.containerId);
 $clearHandlers(document);
 container.style.zIndex -= Delegates.Mover.get_moversCount();
 domEvent.preventDefault();
}

function Delegates$Mover$mousemovecb(domEvent)
{
 var container = $get(this.containerId);
 var deltaClientX = domEvent.clientX - this.oldClientX;
 var deltaClientY = domEvent.clientY - this.oldClientY;

 var containerLocation = Sys.UI.DomElement.getLocation(container);
 Sys.UI.DomElement.setLocation(container, containerLocation.x+deltaClientX,
 containerLocation.y+deltaClientY);

 this.oldClientX = domEvent.clientX;
 this.oldClientY = domEvent.clientY;

 domEvent.preventDefault();
}

(continued)

c06.indd 207c06.indd 207 8/20/07 7:58:23 PM8/20/07 7:58:23 PM

Chapter 6: DOM Extensions

208

 Lisitng 6-37 (continued)

Delegates.TableProvider = function (headers, rows)
{
 this.headers = headers;
 this.rows = rows;
}

Delegates.TableProvider.prototype =
{
 addTable : Delegates$TableProvider$addTable
}

function Delegates$TableProvider$addTable(containerId)
{
 var container = $get(containerId);
 var table = document.createElement(“table”);
 Sys.UI.DomElement.addCssClass(table, “myTable”);
 var headerRow = table.insertRow(0);
 Sys.UI.DomElement.addCssClass(headerRow, “header”);

 function renderHeaderCell(dataFieldName, cellIndex, dataFieldNames)
 {
 var headerCell = document.createElement(“th”);
 headerCell.appendChild(document.createTextNode(dataFieldName));
 headerRow.appendChild(headerCell);
 };

 function renderDataCell(dataFieldValue, index, dataFieldValues)
 {
 var dataCell = row.insertCell(row.cells.length);
 dataCell.appendChild(document.createTextNode(dataFieldValue));
 };

 Array.forEach(this.headers, renderHeaderCell);

 for (var rowIndex in this.rows)
 {
 var row = table.insertRow(table.rows.length);
 if (rowIndex % 2 == 1)
 Sys.UI.DomElement.addCssClass(row, “odd”);

 Array.forEach(this.rows[rowIndex], renderDataCell);
 }
 container.appendChild(table);
}

Delegates.TextProvider = function (text)
{
 this.text = text;
}

c06.indd 208c06.indd 208 8/20/07 7:58:23 PM8/20/07 7:58:23 PM

Chapter 6: DOM Extensions

209

Delegates.TextProvider.prototype =
{
 addText : Delegates$TextProvider$addText
}

Delegates.ImageProvider = function (imagePath)
{
 this.imagePath = imagePath;
}

Delegates.ImageProvider.prototype =
{
 addImage : Delegates$ImageProvider$addImage
}

function Delegates$TextProvider$addText(containerId)
{
 var container = $get(containerId);
 container.innerHTML = ’<a href=”javascript:void(0);” id=”myspan”’ +
 ‘ style=”font-weight:bold”>’ +
 this.text + ‘’;
}

function Delegates$ImageProvider$addImage(containerId)
{
 var container = $get(containerId);
 container.innerHTML = ””;
}

Delegates.Mover.registerClass(“Delegates.Mover”);
Delegates.TextProvider.registerClass(“Delegates.TextProvider”);
Delegates.ImageProvider.registerClass(“Delegates.ImageProvider”);
Delegates.TableProvider.registerClass(“Delegates.TableProvider”);

if (typeof(Sys) !== ‘undefined’) Sys.Application.notifyScriptLoaded();

 Mover
 Listing 6-38 presents the implementation of the Mover class. The new version of the Mover class features
the following enhancements:

 ❑ The constructor of the new version takes a string argument that contains the id HTML attribute
value of the container <div> HTML element. This is an improvement over the previous version
where this value was hardcoded. This improvement allows you to instantiate multiple Mover
objects and to attach each one to a separate movable object so you can move each object inde-
pendently from the others.

❑ The new version stores the id of the container <div> HTML element in an internal field named
 containerId , as follows:

 this.containerId = containerId;

c06.indd 209c06.indd 209 8/20/07 7:58:23 PM8/20/07 7:58:23 PM

Chapter 6: DOM Extensions

210

 Listing 6-38: The Mover Class

 Delegates.Mover = function (outerDivId)
 {
 var container = $get(containerId);
 Delegates.Mover.incrementMoversCount();
 if (!container)
 {
 container = document.createElement(“div”);

 this.containerId = containerId;

 container.id = outerDivId;
 container.style.position=”absolute”;
 document.body.insertBefore(container, document.forms[0]);

 var events = {mousedown:this.mousedowncb};
 $addHandlers(container, events, this);
 }
 }

 Delegates.Mover.prototype = {
 addContent : Delegates$Mover$invokeAddContentDelegate,
 mousedowncb : Delegates$Mover$mousedowncb,
 mouseupcb : Delegates$Mover$mouseupcb,
 mousemovecb : Delegates$Mover$mousemovecb
 }

 Delegates.Mover.incrementMoversCount = function() {
 if (typeof(this.moversCount) == “undefined”)
 this.moversCount = 0;
 this.moversCount++;
 }

 Delegates.Mover.get_moversCount = function() {
 return this.moversCount;
 }

 Delegates.Mover.registerClass(“Delegates.Mover”);

 Note that the new version of the Mover class constructor uses the DomEvent class’s addHandlers
method to register the mousedowncb method as the event handler for the mousedown event of the
 container <div> HTML element. Also note that the mousedowncb method is now an instance method
of the Mover class.

 var events = {mousedown:this.mousedowncb};
 $addHandlers(container, events, this);

c06.indd 210c06.indd 210 8/20/07 7:58:24 PM8/20/07 7:58:24 PM

Chapter 6: DOM Extensions

211

 This is a great improvement over the previous version where mousedowncb was a global JavaScript
function and was directly assigned to the onmousedown member of the container <div> HTML element,
as shown in the following code fragment:

 container.mousedown = mousedowncb;

 In such a direct assignment of the event handler method, the method is directly invoked on the
HTML element that raises the event, which in this case is the container <div> HTML element. This
means that if the this keyword is used inside the mousedowncb method, it will reference the
 container JavaScript object.

 The addHandlers method of the DomEvent class does not directly register the mousedowncb method
with the HTML element that raises the event. Instead, it defines a new JavaScript function that wraps a
call into the mousedowncb method and directly registers this new JavaScript function as the event
 handler for the mousedown event of the container <div> HTML element. This means that the keyword
used inside the mousedowncb method will reference the Mover object instead of the container object.

 Now let’s see the proof for these arguments. As shown in the highlighted portion of the following
code snippet taken from Listing 6-29 , the addHandlers method of the DomEvent class calls the
 createDelegate method on the Function class. Note that the addHandlers method passes two
parameters into the createDelegate method. The first parameter specifies the JavaScript object to
which the this pointer from the event handler (that is, mousedowncb) will refer — the Mover object in
this case. The second parameter references the event handler being registered — the mousedowncb
method in this case.

 var $addHandlers = Sys.UI.DomEvent.addHandlers =
function SysUIDomEvent$addHandlers(element, events, handlerOwner)
{
 for (var name in events) {
 var handler = events[name];

 if (handlerOwner)
 handler = Function.createDelegate(handlerOwner, handler);

 $addHandler(element, name, handler);
 }
}

 The createDelegate method of the Function class defines a new JavaScript function that calls the
 apply method on the second argument passed into the createDelegate method, as shown in the
 following code. The second argument in this case references the mousedowncb method. Note that the
 createDelegate method passes its first parameter into the apply method. The first parameter in this
case references the Mover object. This means that the pointer used inside the mousedowncb method
points to the Mover object.

c06.indd 211c06.indd 211 8/20/07 7:58:24 PM8/20/07 7:58:24 PM

Chapter 6: DOM Extensions

212

 Function.createDelegate =
function Function$createDelegate(instance, method) {
 return function() {
 return method.apply(instance, arguments);
 }
}

 The addHandlers method calls the addHandler method of the DomEvent class to register the new event
handler (that is, the one that wraps a call into the mousedowncb method of the Mover object) as the
 callback for the mousedown event of the container <div> HTML element, as shown in the highlighted
portion of the following code snippet taken from Listing 6-29 :

 var $addHandlers = Sys.UI.DomEvent.addHandlers =
function SysUIDomEvent$addHandlers(element, events, handlerOwner)
{
 for (var name in events) {
 var handler = events[name];

 if (handlerOwner)
 handler = Function.createDelegate(handlerOwner, handler);

 $addHandler(element, name, handler);

 }
}

 Note that the Mover class exposes six methods: addContent , mousedowncb , mouseupcb , mousemovecb ,
 incrementMoversCount , and get_moversCount . Because the first four methods are defined on the
 prototype property of the Mover class instead of the class itself, they are considered instance methods;
therefore, they must be invoked on an instance of the Mover class, not directly on the class itself.

 Because the incrementMoversCount and get_moversCount methods are defined on the Mover class
itself, they are considered static methods and must be invoked on the Mover class itself instead of an
instance of the class. As shown in the following code snippet taken from Listing 6-38 , the constructor of
the Mover class invokes the incrementMoversCount static method on the Mover class to increment the
 moversCount field by one:

 Delegates.Mover.incrementMoversCount();

 As you’ll see later, the get_moversCount static method of the Mover class will be invoked to retrieve the
total number of the Mover objects in the application.

 The following sections discuss the implementation of the Mover class instance methods.

c06.indd 212c06.indd 212 8/20/07 7:58:24 PM8/20/07 7:58:24 PM

Chapter 6: DOM Extensions

213

 add Content
 The addContent method takes a delegate as an argument and invokes the delegate, passing in the id
HTML attribute value of the container <div> HTML element, as shown in Listing 6-39 . It’s the responsi-
bility of the delegate to populate the container <div> HTML element with the appropriate content. This
content could be as simple as a text and as complex as an interface that consists of many GUI elements
such as buttons, pictures, and drop-down lists.

 Listing 6-39: The add Content Method of the Mover Class

 function Delegates$Mover$invokeAddContentDelegate(addContentDelegate)
{
 addContentDelegate(this.containerId);
}

 mousedowncb
 Listing 6-40 shows the mousedowncb method of the Mover class.

 Listing 6-40: The mousedowncb Method of the Mover Class

 function Delegates$Mover$mousedowncb(domEvent)
{
 this.oldClientX = domEvent.clientX;
 this.oldClientY = domEvent.clientY;
 var events = {mousemove:this.mousemovecb, mouseup:this.mouseupcb};
 $addHandlers(document, events, this);
 var container = $get(this.containerId);
 container.style.zIndex += Delegates.Mover.get_moversCount();
 domEvent.preventDefault();
}

 As you can see in this listing, the mousedowncb method of the Mover class takes the following actions:

 ❑ It instantiates a JavaScript object literal with two name/value pairs, where the name part of each
pair contains an event name and the value part references the event handler being registered for
the event with the specified name:

 var events = {mousemove:this.mousemovecb, mouseup:this.mouseupecb};

 ❑ It calls the addHandlers method of the DomEvent class, passing three parameters. The first
 parameter is the reference to the DOM element that raises the events, which is the document
 element in this case. The second parameter is the JavaScript object literal that contains the event
handlers being registered, which is the events object in this case. The third parameter is the
 reference to the JavaScript object to which the pointers used inside the event handler being
 registered will refer, which is the Mover object in this case.

 $addHandlers(document, events, this);

c06.indd 213c06.indd 213 8/20/07 7:58:24 PM8/20/07 7:58:24 PM

Chapter 6: DOM Extensions

214

 As discussed earlier and shown in Listing 6-40 , you can use the this keyword inside the mousedowncb
method to reference the Mover object and consequently to reference the other properties and methods of
the Mover object as follows:

 ❑ You can use the this keyword to directly access the oldClientX and oldClientY properties of
the Mover object from within the mousedowncb method to store the values of the DomEvent
 object’s clientX and clientY properties for future reference. This allows each Mover object to
do its own bookkeeping. This is important in this case because you want to attach a separate
 Mover object to each movable object so you can move the movable objects independently.

❑ You can use the this keyword to directly access the Mover object’s mousemovecb and
 mouseupcb methods.

❑ You can use the this keyword to directly access the Mover object’s containerId property from
within the mousedowncb to increment the value of its zIndex property. This will ensure that
when the user selects a moveable object partially covered by other objects, the selected object
moves to the front.

 Note that the zIndex value is incremented by the number returned from the get_moversCount static
method of the Mover class. This method returns the total number of Mover objects in the current
application.

 mouseupcb
 Listing 6-41 contains the code for the mouseupcb method of the Mover class.

 Listing 6-41: The mouseupcb Method of the Mover Class

 function Delegates$Mover$mouseupcb(domEvent)
{
 $clearHandlers(document);
 var container = $get(this.containerId);
 container.style.zIndex -= Delegates.Mover.get_moversCount();
 domEvent.preventDefault();
}

 As you can see in this listing, the mouseupcb method calls the clearHandlers static method of the
 DomEvent class, passing in the document object to clear all event handlers registered for the events
that the document element exposes. The method then decrements the zIndex value of the container
 <div> HTML element:

 container.style.zIndex -= Delegates.Mover.get_moversCount();

c06.indd 214c06.indd 214 8/20/07 7:58:25 PM8/20/07 7:58:25 PM

Chapter 6: DOM Extensions

215

 mousemovecb
 Listing 6-42 shows the mousemovecb method of the Mover class.

 Listing 6-42: The mousemovecb Method of the Mover Class

 function Delegates$Mover$mousemovecb(domEvent)
{
 var deltaClientX = domEvent.clientX - this.oldClientX;
 var deltaClientY = domEvent.clientY - this.oldClientY;

 var container = $get(this.containerId);
 var containerLocation = Sys.UI.DomElement.getLocation(container);
 Sys.UI.DomElement.setLocation(container, containerLocation.x + deltaClientX,
 containerLocation.y + deltaClientY);

 this.oldClientX = domEvent.clientX;
 this.oldClientY = domEvent.clientY;

 domEvent.preventDefault();
}

 As you can see in this listing, the mousemovecb method first determines how many pixels the mouse
pointer has moved horizontally and vertically:

 var deltaClientX = domEvent.clientX - this.oldClientX;
var deltaClientY = domEvent.clientY - this.oldClientY;

 Next, it calls the getLocation static method of the DomElement class to return the JavaScript object
 literal that contains the current x and y coordinates of the container <div> HTML element:

 var outerDivLocation = Sys.UI.DomElement.getLocation(container);

 Then, it then calls the setLocation static method of the DomElement class to increment the current
 x and y coordinates of the container <div> HTML element by the number of pixels the mouse pointer
has moved horizontally and vertically:

 Sys.UI.DomElement.setLocation(container, containerLocation.x + deltaClientX,
 containerLocation.y + deltaClientY);

 Finally, it stores the current x and y coordinates of the mouse pointer in the oldClientX and
 oldClientY properties of the Mover object. As you can see, each Mover object keeps track of the x and y
coordinates of its associated container <div> HTML element. This enables you to have more than one
 Mover object in the application, each keeping track of the x and y coordinates of its associated container
 <div> HTML element.

c06.indd 215c06.indd 215 8/20/07 7:58:25 PM8/20/07 7:58:25 PM

Chapter 6: DOM Extensions

216

 TableProvider
 Listing 6-43 presents the implementation of the TableProvider class. As you can see, the constructor of
this class takes two arguments. The first argument is an array that contains the header text. The second
argument is an array of subarrays, where each subarray contains the field values for a particular data row.

 Listing 6-43: The TableProvider Class

 Delegates.TableProvider = function (headers, rows) {
 this.headers = headers;
 this.rows = rows;
 }

 Delegates.TableProvider.prototype = {
 addTable : Delegates$TableProvider$addTable
 }

 Delegates.TableProvider.registerClass(“Delegates.TableProvider”);

 Note that the TableProvider class exposes a method named addTable . Because this method is
 directly defined on the prototype property of the class, it must be invoked on an instance of the class.
Listing 6-44 contains the code for the addTable method, which iterates through the header text in the
 headers array and renders each enumerated header text in a <th> HTML element. Then, it iterates
through the subarrays in the rows array and renders each enumerated subarray in a <tr> HTML
element.

 Listing 6-44: The add Table Method of the TableProvider Class

 function Delegates$TableProvider$addTable(containerId)
{
 var container = $get(containerId);
 var table = document.createElement(“table”);
 Sys.UI.DomElement.addCssClass(table, “myTable”);
 var headerRow = table.insertRow(0);
 Sys.UI.DomElement.addCssClass(headerRow, “header”);

 function renderHeaderCell(dataFieldName, cellIndex, dataFieldNames)
 {
 var headerCell = document.createElement(“th”);
 headerCell.appendChild(document.createTextNode(dataFieldName));
 headerRow.appendChild(headerCell);
 };

 function renderDataCell(dataFieldValue, index, dataFieldValues)
 {
 var dataCell = row.insertCell(row.cells.length);
 dataCell.appendChild(document.createTextNode(dataFieldValue));
 };

 Array.forEach(this.headers, renderHeaderCell);

c06.indd 216c06.indd 216 8/20/07 7:58:25 PM8/20/07 7:58:25 PM

Chapter 6: DOM Extensions

217

 for (var rowIndex in this.rows)
 {
 var row = table.insertRow(table.rows.length);
 if (rowIndex % 2 == 1)
 Sys.UI.DomElement.addCssClass(row, “odd”);

 Array.forEach(this.rows[rowIndex], renderDataCell);
 }
 container.appendChild(table);
}

 Summary
 This chapter provided in-depth coverage of several classes and enumerations of the ASP.NET AJAX
DOM extensions. It also provided in-depth coverage of the DomEvent class and showed how you can
use the methods and properties of this class in your client-side event programming tasks. As you’ll see in
subsequent chapters, the ASP.NET AJAX client-side framework uses the DomEvent class and its methods
extensively.

c06.indd 217c06.indd 217 8/20/07 7:58:26 PM8/20/07 7:58:26 PM

c06.indd 218c06.indd 218 8/20/07 7:58:26 PM8/20/07 7:58:26 PM

 Component Development
Infrastructure

 The ASP.NET and .NET Frameworks provide server-side programmers with the necessary
 infrastructure for component development. You can think of a component as a unit of functionality
that implements a well-known API. A component may or may not have a visual presence in the
user interface of an application. For example, a timer is a component that does not render visual
markup in an ASP.NET page. A GridView , on the other hand, is a component that does render
visual markup in a page. Thanks to the ASP.NET and .NET component development infrastructure,
you can develop components such as GridView with minimal time and effort.

 The ASP.NET AJAX client-side framework provides client-side programmers with a component-
development infrastructure that emulates its ASP.NET and .NET counterparts to enable
you to develop client-side components with minimal time and effort. The ASP.NET AJAX
 component-development infrastructure consists of a set of well-defined interfaces and classes as
discussed in this chapter.

 First, this chapter presents the main interfaces that make up the ASP.NET AJAX component-
 development infrastructure. Then the chapter introduces two main classes of this infrastructure:
 Component and _Application .

 Every ASP.NET AJAX component (including your own custom components) directly or indirectly
derives from the Component base class. This base class defines the lifecycle that every component
application must go through. A component lifecycle consists of well-defined phases, as discussed
in this chapter. Therefore, deriving your custom component classes from the Component base class
automatically enables your component to participate in a typical component lifecycle.

 Every ASP.NET AJAX application is represented by an instance of the _Application class. This
instance is created by the ASP.NET AJAX framework and exposed through the Sys.Application
variable. The _Application class defines the lifecycle that every ASP.NET AJAX application must
go through. An application lifecycle consists of well-defined phases, as discussed in this chapter.

c07.indd 219c07.indd 219 8/20/07 8:09:02 PM8/20/07 8:09:02 PM

Chapter 7: Component Development Infrastructure

220

 Interfaces
 The ASP.NET AJAX client-side framework extends the core functionality of JavaScript to add support for
object-oriented features such as classes, inheritance, enumerations, interfaces, and so on. Interfaces are at
the heart of every object-oriented framework. They act as contracts between the classes that implement
them and the clients of these classes. This allows you to replace the existing classes with new ones with-
out affecting the client code as long as the new classes honor the established contract by implementing
the required interfaces.

 The ASP.NET and .NET Frameworks come with well-known sets of interfaces that are used throughout
these frameworks and the ASP.NET and .NET applications. The ASP.NET AJAX client-side framework
includes a set of interfaces that emulate their ASP.NET and .NET counterparts. These interfaces are used
throughout the ASP.NET AJAX client-side framework and the ASP.NET AJAX applications. The
 following sections cover some of these interfaces.

 I Disposable
 The .NET Framework defines an interface named IDisposable that exposes a single method named
 Dispose . Every .NET class that holds valuable resources must implement this interface, and the class’s
implementation of the Dispose method must release the resources that it holds. The Dispose method of
a .NET class instance is invoked right before the instance is disposed of.

 The ASP.NET AJAX client-side framework includes an interface named IDisposable that emulates the
.NET IDisposable interface as shown in Listing 7-1 . The ASP.NET AJAX IDisposable interface, just
like its .NET counterpart, exposes a single method named dispose . Note that this interface belongs to
the Sys namespace.

 Listing 7-1: The I Disposable Interface

 Sys.IDisposable = function Sys$IDisposable() {
 throw Error.notImplemented();
}

function Sys$IDisposable$dispose() {
 throw Error.notImplemented();
}

Sys.IDisposable.prototype = {
 dispose: Sys$IDisposable$dispose
}

Sys.IDisposable.registerInterface(‘Sys.IDisposable’);

 Listing 7-2 references a JavaScript file named Monitor.js that contains the code for a class that
 implements the IDisposable interface. This file defines a class named Monitor whose main purpose is
to monitor mouse movement and display the x and y coordinates of the mouse pointer as it is moving.

c07.indd 220c07.indd 220 8/20/07 8:09:02 PM8/20/07 8:09:02 PM

Chapter 7: Component Development Infrastructure

221

 Listing 7-2: A Class that Implements the I Disposable Interface

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function pageLoad()
 {
 var monitor = new Disposables.Monitor();
 var btn = $get(“btn”);
 var disposeDelegate = Function.createDelegate(monitor, monitor.dispose);
 $addHandler(btn, “click”, disposeDelegate);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” >
 <Scripts>
 <asp:ScriptReference Path=”Monitor.js” />
 </Scripts>
 </asp:ScriptManager>

 <button id=”btn” type=”button”>Dispose Monitor</button>
 <div>
 </div>
 </form>
</body>
</html>

 Listing 7-3 presents the contents of the Monitor.js JavaScript file.

 Listing 7-3: The Monitor.js JavaScript File

 Type.registerNamespace(“Disposables”);

Disposables.Monitor = function() {
 this.div = document.createElement(“div”);
 document.body.insertBefore(this.div,document.forms[0]);
 this.registerMonitor();
}

(continued)

c07.indd 221c07.indd 221 8/20/07 8:09:03 PM8/20/07 8:09:03 PM

Chapter 7: Component Development Infrastructure

222

 Listing 7-3 (continued)

Disposables.Monitor.prototype =
{
 registerMonitor : function() {
 this.delegate = Function.createDelegate(this, this.print);
 $addHandler(document, “mousemove”, this.delegate);
 },

 print : function(domEvent) {
 this.div.innerHTML = ”X-Coordinate: “ + domEvent.clientX + “
” +
 “Y-Coordinate: “ + domEvent.clientY;
 },

 dispose : function() {
 $removeHandler(document, “mousemove”, this.delegate);
 }
}

Disposables.Monitor.registerClass(“Disposables.Monitor”, null,
 Sys.IDisposable);

if(typeof(Sys)!==’undefined’)
 Sys.Application.notifyScriptLoaded();

 The Monitor.js first defines a namespace named Disposables :

 Type.registerNamespace(“Disposables”);

 Next, it defines the constructor of the Monitor class. Note that the Monitor class belongs to the
 Disposables namespace. This constructor first creates the <div> HTML element that will display
the x and y coordinates of the mouse pointer:

 this.div = document.createElement(“div”);

 Next, it inserts this <div> HTML element before the <form> HTML element:

 document.body.insertBefore(this.div,document.forms[0]);

 Finally, the constructor calls the registerMonitor method of the Monitor class:

 this.registerMonitor();

 The Monitor.js file then defines the instance methods of the Monitor class. The first instance method
is the registerMonitor method. The registerMonitor method first calls the createDelegate static
method on the Function class to create a delegate that represents the Monitor object’s print method:

 this.delegate = Function.createDelegate(this, this.print);

c07.indd 222c07.indd 222 8/20/07 8:09:03 PM8/20/07 8:09:03 PM

Chapter 7: Component Development Infrastructure

223

 Next, the registerMonitor method calls the addHandler static method on the DomEvent class to
 register the delegate as the event handler for the document object’s mousedown event:

 $addHandler(document, “mousemove”, this.delegate);

 Next, the Monitor.js file defines the print instance method of the Monitor class. The print method
takes an argument of type DomEvent that represents the event object. The print method prints the
 values of the clientX and clientY properties of the DomEvent object within the opening and closing
tags of the <div> HTML element:

 this.div.innerHTML = ”X-Coordinate: “ + domEvent.clientX + “
” +
 “Y-Coordinate: “ + domEvent.clientY;

 The Monitor.js file then defines the dispose method of the Monitor class. As discussed earlier, the
 dispose method of a class instance is where the class instance must do the final cleanup before the
instance is disposed of. In this case, the Monitor object removes the event handler that it registered for
the document object’s mousemove event:

 dispose : function() {
 $removeHandler(document, “mousemove”, this.delegate);
 }

 Next, the Monitor.js file registers the Monitor class with the ASP.NET AJAX client-side framework.
Note that it passes Sys.IDisposable as the third argument to the registerClass method to inform
the framework that the class being registered (the Monitor class) implements the Sys.IDisposable
interface:

 Disposables.Monitor.registerClass(“Disposables.Monitor”, null, Sys.IDisposable);

 As you can see in the following excerpt from Listing 7-2 , the pageLoad method first creates an instance
of the Monitor class:

 var monitor = new Disposables.Monitor();

 Next, the pageLoad method calls the createDelegate method on the Function class to create a
 delegate that represents the dispose method of the newly created Monitor object:

 var disposeDelegate = Function.createDelegate(monitor, monitor.dispose);

 Finally, the pageLoad method calls the addHandler static method on the DomEvent class to register the
delegate as the event handler for the click event of the specified <button> DOM element:

 var btn = $get(“btn”);
 $addHandler(btn, “click”, disposeDelegate);

 When you click the <button> HTML element shown in Figure 7-1 , the disposeDelegate delegate is
automatically invoked. The delegate then calls the dispose method of the Monitor object, which in turn
removes the event handler that the Monitor object had registered for the document object’s mousemove
event. Therefore, after clicking the <button> HTML element, the monitor will no longer keep track of
the mouse movement.

c07.indd 223c07.indd 223 8/20/07 8:09:03 PM8/20/07 8:09:03 PM

Chapter 7: Component Development Infrastructure

224

 This example explicitly calls the dispose method. This was done for educational purposes. As you’ll see
later, the ASP.NET AJAX client-side framework provides you with an infrastructure that automatically
calls the dispose method of a component when the component is about to be disposed of.

 I NotifyDisposing
 As discussed in the previous section, your ASP.NET AJAX client classes must implement the
 IDisposable interface to perform final cleanup such as releasing the resources they’re holding before
they’re disposed of. There are times when the client of an instance of an ASP.NET AJAX client class
needs to be notified when the instance is about to be disposed of — that is, when the dispose method
of the instance is invoked. To address these cases, your ASP.NET AJAX client classes must also
 implement the INotifyDisposing interface as defined in Listing 7-4 . This interface exposes the
 following two methods:

 ❑ add_disposing : Your ASP.NET AJAX client class’s implementation of this method must
 register the specified event handler as the callback for the disposing event. Your class must
raise this event when its dispose method is invoked.

❑ remove_disposing : Your ASP.NET AJAX client class’s implementation of this method
must remove the specified event handler from the list of event handlers registered for the
disposing event.

 Listing 7-4: The I NotifyDisposing Interface

 Sys.INotifyDisposing = function Sys$INotifyDisposing() {
 throw Error.notImplemented();
}

function Sys$INotifyDisposing$add_disposing(handler) {
 throw Error.notImplemented();
}

Figure 7-1

c07.indd 224c07.indd 224 8/20/07 8:09:04 PM8/20/07 8:09:04 PM

Chapter 7: Component Development Infrastructure

225

function Sys$INotifyDisposing$remove_disposing(handler) {
 throw Error.notImplemented();
}

Sys.INotifyDisposing.prototype = {
 add_disposing: Sys$INotifyDisposing$add_disposing,
 remove_disposing: Sys$INotifyDisposing$remove_disposing
}

Sys.INotifyDisposing.registerInterface(“Sys.INotifyDisposing”);

 Listing 7-5 presents the content of the new version of the Monitor.js JavaScript file for the new version
of the Monitor class that implements the INotifyDisposing interface.

 Listing 7-5: The new version of the Monitor.js JavaScript file

 Type.registerNamespace(“Disposables”);

Disposables.Monitor = function() {
 this.div = document.createElement(“div”);
 document.body.insertBefore(this.div,document.forms[0]);
 this.registerMonitor();
}

Disposables.Monitor.prototype =
{
 registerMonitor : function() {
 this.delegate = Function.createDelegate(this, this.print);
 $addHandler(document, “mousemove”, this.delegate);
 },

 print : function(domEvent) {
 this.div.innerHTML = ”X-Coordinate: “ + domEvent.clientX + “
” +
 “Y-Coordinate: “ + domEvent.clientY;
 },

 dispose : function() {
 if (this.events) {
 var handler = this.events.getHandler(“disposing”);
 if (handler)
 handler(this, Sys.EventArgs.Empty);
 }

 delete this.events;
 $removeHandler(document, “mousemove”, this.delegate);
 },

(continued)

c07.indd 225c07.indd 225 8/20/07 8:09:04 PM8/20/07 8:09:04 PM

Chapter 7: Component Development Infrastructure

226

 Listing 7-5 (continued)

 get_events : function() {
 if (!this.events)
 this.events = new Sys.EventHandlerList();
 return this.events;
 },

 add_disposing : function(handler) {
 this.get_events().addHandler(“disposing”, handler);
 },

 remove_disposing : function(handler) {
 this.get_events().removeHandler(“disposing”, handler);
 }
}

Disposables.Monitor.registerClass(“Disposables.Monitor”, null,
 Sys.IDisposable,
 Sys.INotifyDisposing);
if(typeof(Sys)!==’undefined’)
 Sys.Application.notifyScriptLoaded();

 As you can see in this listing, the new version of the Monitor class implements the following three new
methods:

 ❑ get_events : This method returns a reference to an EventHandlerList object. This object will
be used to store the JavaScript functions that the Monitor object’s clients register as event
 handlers for the events the Monitor class exposes. Currently the Monitor class exposes a single
event: disposing .

 get_events : function() {
 if (!this.events)
 this.events = new Sys.EventHandlerList();
 return this.events;
 }

 ❑ add_disposing : This method provides the Monitor class’s implementation of the add_disposing
method of the INotifyDisposing interface. This method calls the addHandler method on
the EventHandlerList object (this.events) to register the specified handler for the
disposing event:

 add_disposing : function(handler) {
 this.get_events().addHandler(“disposing”, handler);
 }

c07.indd 226c07.indd 226 8/20/07 8:09:04 PM8/20/07 8:09:04 PM

Chapter 7: Component Development Infrastructure

227

 ❑ remove_disposing : This method provides the Monitor class’s implementation of the
remove_disposing method of the INotifyDisposing interface. This method calls
the removeHandler method on the EventHandlerList object to remove the specified handler:

 remove_disposing : function(handler) {
 this.get_events().removeHandler(“disposing”, handler);
 }

 Listing 7-6 presents a page that uses the new version of the Monitor class. Note that the pageLoad
method calls the Monitor object’s add_disposing method to register the disposingcb JavaScript
 function as the event handler for the object’s disposing event:

 monitor.add_disposing(disposingcb);

 When you click the Dispose Monitor button to call the Monitor object’s dispose method, it
 automatically invokes the disposingcb JavaScript function.

 Listing 7-6: A Page that Uses the New Version of the Monitor Class

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function disposingcb()
 {
 alert(“The Disposing event was raised!”);
 }

 function pageLoad()
 {
 var monitor = new Disposables.Monitor();
 monitor.add_disposing(disposingcb);
 var btn = $get(“btn”);
 var disposeDelegate = Function.createDelegate(monitor, monitor.dispose);
 $addHandler(btn, “click”, disposeDelegate);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”>

(continued)

c07.indd 227c07.indd 227 8/20/07 8:09:05 PM8/20/07 8:09:05 PM

Chapter 7: Component Development Infrastructure

228

 Listing 7-6 (continued)

 <Scripts>
 <asp:ScriptReference Path=”Monitor.js” />
 </Scripts>
 </asp:ScriptManager>

 <button id=”btn” type=”button”>Dispose Monitor</button>
 <div>
 </div>
 </form>
</body>
</html>

 I NotifyPropertyChanged
 If the clients of an instance of your ASP.NET AJAX client class need to be notified when one or more of
the properties of the instance change value, your class must implement the INotifyPropertyChange
interface as defined in Listing 7-7 .

 Listing 7-7: The I NotifyPropertyChanged Interface

 Sys.INotifyPropertyChange = function Sys$INotifyPropertyChange() {
 throw Error.notImplemented();
}

function Sys$INotifyPropertyChange$add_propertyChanged(handler) {
 throw Error.notImplemented();
}

function Sys$INotifyPropertyChange$remove_propertyChanged(handler) {
 throw Error.notImplemented();
}

Sys.INotifyPropertyChange.prototype = {
 add_propertyChanged: Sys$INotifyPropertyChange$add_propertyChanged,
 remove_propertyChanged: Sys$INotifyPropertyChange$remove_propertyChanged
}

Sys.INotifyPropertyChange.registerInterface(‘Sys.INotifyPropertyChange’);

 As you can see, the INotifyPropertyChange interface exposes the following two methods:

 ❑ add_propertyChanged : Your ASP.NET AJAX client class’s implementation of this method must
register the specified handler as the event handler for the propertyChanged event. Your class
must raise this event when one of its properties changes value.

c07.indd 228c07.indd 228 8/20/07 8:09:05 PM8/20/07 8:09:05 PM

Chapter 7: Component Development Infrastructure

229

❑ remove_propertyChanged : Your ASP.NET AJAX client class’s implementation of this method must
remove the specified handler from the list of handlers registered for the propertyChanged event.

 Listing 7-8 presents the new version of the Monitor.js JavaScript file that contains a new version of the
 Monitor class. This class implements the INotifyPropertyChange interface to allow its client to regis-
ter callbacks for its propertyChanged event.

 Listing 7-8: A New Version of the Monitor.js File

 Type.registerNamespace(“Disposables”);

Disposables.Monitor = function() {
 this.id=”Monitor1”;
 this.div = document.createElement(“div”);
 document.body.insertBefore(this.div,document.forms[0]);
 this.registerMonitor();
}

Disposables.Monitor.prototype =
{
 registerMonitor : function() {
 this.delegate = Function.createDelegate(this, this.print);
 $addHandler(document, “mousemove”, this.delegate);
 },

 print : function(domEvent) {
 this.div.innerHTML = ”Monitor id: “ + this.get_id() + “
” +
 “X-Coordinate: “ + domEvent.clientX + “
” +
 “Y-Coordinate: “ + domEvent.clientY;
 },

 dispose : function()
 {
 if (this.events) {
 var handler = this.events.getHandler(“disposing”);
 if (handler)
 handler(this, Sys.EventArgs.Empty);
 }

 delete this.events;
 $removeHandler(document, “mousemove”, this.delegate);
 },

(continued)

c07.indd 229c07.indd 229 8/20/07 8:09:05 PM8/20/07 8:09:05 PM

Chapter 7: Component Development Infrastructure

230

 Listing 7-8 (continued)

 get_events : function() {
 if (!this.events)
 this.events = new Sys.EventHandlerList();
 return this.events;
 },

 add_disposing : function(handler) {
 this.get_events().addHandler(“disposing”, handler);
 },

 remove_disposing : function(handler) {
 this.get_events().removeHandler(“disposing”, handler);
 },

 add_propertyChanged : function(handler) {
 this.get_events().addHandler(“propertyChanged”, handler);
 },

 remove_propertyChanged : function(handler) {
 this.get_events().removeHandler(“propertyChanged”, handler);
 },

 raisePropertyChanged : function (propertyName) {
 if (!this.events)
 return;

 var handler = this.events.getHandler(“propertyChanged”);
 if (handler)
 handler(this, new Sys.PropertyChangedEventArgs(propertyName));
 },

 get_id : function() {
 return this.id;
 },

 set_id : function(value) {
 this.id = value;
 this.raisePropertyChanged(“id”);
 }
}

Disposables.Monitor.registerClass(“Disposables.Monitor”, null,
 Sys.IDisposable,
 Sys.INotifyDisposing,
 Sys.INotifyPropertyChange);

if(typeof(Sys)!==’undefined’)
 Sys.Application.notifyScriptLoaded();

c07.indd 230c07.indd 230 8/20/07 8:09:05 PM8/20/07 8:09:05 PM

Chapter 7: Component Development Infrastructure

231

 Listing 7-9 presents a page that uses the new version of the Monitor class. Figure 7-2 shows what you’ll
see in your browser when you access this page. Notice that the page now contains a new text box where
you can enter a new value for id property of the Monitor object. Enter a new value and click the Change
Property button to change the value of the id property. You should see a pop-up message shown in
 Figure 7-3 , which informs you that the value of the id property has changed.

 Listing 7-9: A page that uses new version of the Monitor class that implements
the I NotifyPropertyChanged interface

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 var monitor;

 function disposingcb()
 {
 alert(“The Disposing event was raised!”);
 }

 function propertyChangedcb(sender,e)
 {
 alert(e.get_propertyName() + “ property changed!”);
 }

 function changeProperty(domEvent)
 {
 var id = $get(“id”);
 monitor.set_id(id.value);
 }

 function pageLoad()
 {
 monitor = new Disposables.Monitor();
 monitor.add_disposing(disposingcb);
 monitor.add_propertyChanged(propertyChangedcb);
 var disposebtn = $get(“disposebtn”);
 var disposeDelegate = Function.createDelegate(monitor, monitor.dispose);
 $addHandler(disposebtn, “click”, disposeDelegate);
 var changePropertybtn = $get(“changePropertybtn”);
 $addHandler(changePropertybtn, “click”, changeProperty);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”>

(continued)

c07.indd 231c07.indd 231 8/20/07 8:09:06 PM8/20/07 8:09:06 PM

Chapter 7: Component Development Infrastructure

232

 Listing 7-9 (continued)

 <Scripts>
 <asp:ScriptReference Path=”Monitor.js” />
 </Scripts>
 </asp:ScriptManager>
 Enter new Monitor id: <input type=”text” id=”id” />
 <button id=”changePropertybtn” type=”button”>
 Change Property
 </button>

 <button id=”disposebtn” type=”button”>Dispose Monitor</button>
 </form>
</body>
</html>

Figure 7-2

Figure 7-3

c07.indd 232c07.indd 232 8/20/07 8:09:06 PM8/20/07 8:09:06 PM

Chapter 7: Component Development Infrastructure

233

 The new version of the Monitor class exposes the following five new methods (as shown in Listing 7-8):

 ❑ add_propertyChanged : This method provides the Monitor class’s implementation of the
add_propertyChanged method of the INotifyPropertyChange interface. This method calls
the addHandler method on the EventHandlerList to register the specified callback as the
event handler for the propertyChanged event:

 add_propertyChanged : function(handler) {
 this.get_events().addHandler(“propertyChanged”, handler);
 },

 ❑ remove_propertyChanged : This method provides the Monitor class’s implementation of the
 remove_propertyChanged method of the INotifyPropertyChange interface. This method
calls the removeHandler method on the EventHandlerList to remove the specified handler
from the list of handlers registered for the propertyChanged event:

 remove_propertyChanged : function(handler) {
 this.get_events().removeHandler(“propertyChanged”, handler);
 },

 ❑ raisePropertyChanged : As the name implies, the main responsibility of this method is to raise
the propertyChanged event to invoke all event handlers registered for the propertyChanged
event. This method instantiates an instance of a class named PropertyChangedEventArgs ,
passing in the name of the property whose value has changed and passing the instance into the
event handler when it invokes the event handler. The PropertyChangedEventArgs class is
 discussed in more detail later in this section. For now suffice it to say that this class is the event
data class for the propertyChanged event.

 raisePropertyChanged : function (propertyName) {
 if (!this.events)
 return;

 var handler = this.events.getHandler(“propertyChanged”);
 if (handler)
 handler(this, new Sys.PropertyChangedEventArgs(propertyName));
 },

 ❑ get_id : This getter simply returns the value of the id property of the Monitor object:

 get_id : function() {
 return this.id;
 },

 ❑ set_id : This setter takes two steps. First, it assigns the new value to the id property of the
 Monitor object. Then, it calls the raisePropertyChanged method, passing in the name of
the property whose value has changed (which is the id property in this case) to raise the
 propertyChanged event.

c07.indd 233c07.indd 233 8/20/07 8:09:06 PM8/20/07 8:09:06 PM

Chapter 7: Component Development Infrastructure

234

 set_id : function(value) {
 this.id = value;
 this.raisePropertyChanged(“id”);
 }

 Note that the pageLoad method in Listing 7-9 adds the propertyChangedcb JavaScript function as the
event handler for the propertyChanged event of the Monitor object:

 monitor.add_propertyChanged(propertyChangedcb);

 As the following code snippet shows, the propertyChangedcb function simply displays the pop-up
message shown previously in Figure 7-3 , informing you that the value of the id property has changed:

 function propertyChangedcb(sender,e)
 {
 alert(e.get_propertyName() + “ property changed!”);
 }

 As this code shows, when the Monitor object calls the propertyChangedcb function, it passes two
parameters into it. The first parameter references the Monitor object itself, which means that the code
inside the propertyChangedcb function has complete access to the public methods and properties of the
 Monitor object that raised the event. The second parameter references the PropertyChangedEventArgs
object that contains the name of the property whose value has changed. As you’ll see shortly, the
PropertyChangedEventArgs class exposes a getter named get_propertyName that returns the name
of the property whose value has changed.

 As the following code snippet from Listing 7-9 shows, the pageLoad method adds the changeProperty
JavaScript function as the event handler for the Change Property button’s click event:

 var changePropertybtn = $get(“changePropertybtn”);
 $addHandler(changePropertybtn, “click”, changeProperty);

 The changeProperty function first retrieves the new value that the end user has entered into the
text box and then calls the set_id setter method of the Monitor object to set the value of the id
 property to the new value:

 function changeProperty(domEvent)
 {
 var id = $get(“id”);
 monitor.set_id(id.value);
 }

 As discussed earlier, the set_id setter calls the raisePropertyChanged method to raise the
 propertyChanged event.

 Listing 7-10 presents the internal implementation of the PropertyChangedEventArgs event data class.
As you can see, this class, like any other ASP.NET AJAX event data class, derives from the EventArgs

c07.indd 234c07.indd 234 8/20/07 8:09:07 PM8/20/07 8:09:07 PM

Chapter 7: Component Development Infrastructure

235

base class. It exposes a single method, \ get_propertyName , which returns the name of the property
whose value has changed.

 Listing 7-10: The Internal Implementation of the PropertyChangedEventArgs Class

 Sys.PropertyChangedEventArgs =
function Sys$PropertyChangedEventArgs(propertyName)
{
 Sys.PropertyChangedEventArgs.initializeBase(this);
 this._propertyName = propertyName;
}

function Sys$PropertyChangedEventArgs$get_propertyName() {
 return this._propertyName;
}

Sys.PropertyChangedEventArgs.prototype = {
 get_propertyName: Sys$PropertyChangedEventArgs$get_propertyName
}

Sys.PropertyChangedEventArgs.registerClass(‘Sys.PropertyChangedEventArgs’,
 Sys.EventArgs);

 Component
 An ASP.NET AJAX client class, such as the Monitor class, implements the IDisposable ,
 INotifyDisposing , and INotifyPropertyChange interfaces to offer the following features:

 ❑ Sys.IDisposable : Implementing this interface enables an instance of the class to perform final
cleanup, such as releasing resources that the instance is holding before the instance is disposed of.

❑ Sys.INotifyDisposing : Implementing this interface enables an instance of the class to inform
its clients when it is about to be disposed of.

❑ Sys.INotifyPropertyChange : Implementing this interface enables an instance of the class to
inform its clients when a property of the instance changes value.

 Because many ASP.NET AJAX client classes need to offer these three features, the ASP.NET AJAX client-
side framework includes a base class named Component that implements these three interfaces. There-
fore, any ASP.NET AJAX client class that derives from the Component class automatically offers these
three features without having to re-implement them.

 As Listing 7-11 shows, the Component class implements the IDisposable , INotifyDisposing , and
 INotifyPropertyChange interfaces. This class simply encapsulates the logic that other ASP.NET AJAX
client classes such as Monitor would have to re-implement otherwise.

c07.indd 235c07.indd 235 8/20/07 8:09:07 PM8/20/07 8:09:07 PM

Chapter 7: Component Development Infrastructure

236

 Listing 7-11: The Component Class

 Sys.Component = function Sys$Component() {

 // More code to come

}

function Sys$Component$get_events() {
 if (!this._events)
 this._events = new Sys.EventHandlerList();

 return this._events;
}

function Sys$Component$get_id() {
 return this._id;
}

function Sys$Component$set_id(value) {

 // More code to come

 this._id = value;
}

function Sys$Component$add_disposing(handler) {
 this.get_events().addHandler(“disposing”, handler);
}

function Sys$Component$remove_disposing(handler) {
 this.get_events().removeHandler(“disposing”, handler);
}

function Sys$Component$add_propertyChanged(handler) {
 this.get_events().addHandler(“propertyChanged”, handler);
}

function Sys$Component$remove_propertyChanged(handler) {
 this.get_events().removeHandler(“propertyChanged”, handler);
}

function Sys$Component$dispose() {
 if (this._events) {
 var handler = this._events.getHandler(“disposing”);
 if (handler)
 handler(this, Sys.EventArgs.Empty);
 }

c07.indd 236c07.indd 236 8/20/07 8:09:07 PM8/20/07 8:09:07 PM

Chapter 7: Component Development Infrastructure

237

 delete this._events;

 // More code to come
}

function Sys$Component$raisePropertyChanged(propertyName) {
 if (!this._events)
 return;

 var handler = this._events.getHandler(“propertyChanged”);
 if (handler)
 handler(this, new Sys.PropertyChangedEventArgs(propertyName));
}

Sys.Component.prototype = {
 get_events: Sys$Component$get_events,
 get_id: Sys$Component$get_id,
 set_id: Sys$Component$set_id,
 add_disposing: Sys$Component$add_disposing,
 remove_disposing: Sys$Component$remove_disposing,
 add_propertyChanged: Sys$Component$add_propertyChanged,
 remove_propertyChanged: Sys$Component$remove_propertyChanged,
 dispose: Sys$Component$dispose,
 raisePropertyChanged: Sys$Component$raisePropertyChanged,

 // More methods to come
}

Sys.Component.registerClass(‘Sys.Component’, null,
 Sys.IDisposable,
 Sys.INotifyPropertyChange,
 Sys.INotifyDisposing);

 The Component base class does much more than just implementing the IDisposable , INotifyDisposing ,
and INotifyPropertyChange interfaces, as you’ll see later in this chapter. To help you understand the
 significance of the Component class, let’s revisit a similar situation in the .NET Framework.

 All MarshallByRef components in the .NET Framework derive from the .NET Component base class,
either directly or indirectly. As a matter of fact, directly or indirectly inheriting this base class is what
makes a .NET component a component. In the .NET Framework’s jargon, a component is a class that
directly or indirectly inherits the .NET Component base class.

 The ASP.NET AJAX Component base class plays a similar role in the ASP.NET AJAX client-side frame-
work. An ASP.NET AJAX component is an ASP.NET AJAX client class that directly or indirectly derives
from the ASP.NET AJAX Component base class; and deriving directly or indirectly from this base class is
what makes an ASP.NET AJAX component a component.

c07.indd 237c07.indd 237 8/20/07 8:09:08 PM8/20/07 8:09:08 PM

Chapter 7: Component Development Infrastructure

238

 I Container
 All components in the .NET Framework can be contained in a container. Keep in mind that this
 containment does not have to be a visual containment; it could be a logical containment. The .NET con-
tainers that logically or visually contain .NET components implement an interface named IContainer .
You can think of this interface as a contract between the .NET components and their containers. This
allows the .NET components to be contained in any container as long as the container implements the
 IContainer interface.

 The ASP.NET AJAX client-side framework includes an interface named IContainer that emulates the
.NET IContainer interface. ASP.NET AJAX components can be contained in any ASP.NET AJAX con-
tainer as long as the container implements the ASP.NET AJAX IContainer interface. Keep in mind that
this container may or may not be a visual container.

 Listing 7-12 presents the definition of the ASP.NET AJAX IContainer interface. This interface exposes
the following methods:

 ❑ addComponent : Adds the specified Component object to the current IContainer object.

❑ removeComponent : Removes the specified Component object from the current IContainer object.

❑ findComponent : Returns a reference to the Component object with the specified id . Keep in
mind that each Component object is uniquely identified by its id , which is a string.

❑ getComponents : Returns an array that contains references to all Component objects that the
 current IContainer object contains.

 Listing 7-12: The ASP.NET AJAX I Container Interface

 Sys.IContainer = function Sys$IContainer() {
 throw Error.notImplemented();
}

function Sys$IContainer$addComponent(component) {
 throw Error.notImplemented();
}

function Sys$IContainer$removeComponent(component) {
 throw Error.notImplemented();
}

function Sys$IContainer$findComponent(id) {
 throw Error.notImplemented();
}

function Sys$IContainer$getComponents() {
 throw Error.notImplemented();
}

c07.indd 238c07.indd 238 8/20/07 8:09:08 PM8/20/07 8:09:08 PM

Chapter 7: Component Development Infrastructure

239

Sys.IContainer.prototype =
{
 addComponent: Sys$IContainer$addComponent,
 removeComponent: Sys$IContainer$removeComponent,
 findComponent: Sys$IContainer$findComponent,
 getComponents: Sys$IContainer$getComponents
}

Sys.IContainer.registerInterface(“Sys.IContainer”);

 Application
 The ASP.NET AJAX client-side framework includes an implementation of the IContainer interface
named _Application , as shown in Listing 7-13 . The name of this class has been prefixed with an
 underscore to emphasize that the ASP.NET AJAX applications are not allowed to instantiate this class.
The ASP.NET AJAX client-side framework automatically instantiates a single instance of the
_Application class when an ASP.NET AJAX application is loaded. The framework defines a variable
named Sys.Application that references this singular instance of the _Application class:

 Sys.Application = new Sys._Application();

 You can use this variable to access this singular instance of the _Application class from within your
JavaScript code. As you’ll see in next few chapters, this singular instance represents your ASP.NET AJAX
application in the ASP.NET AJAX client-side framework.

 As you can see in Listing 7-13 , The constructor of the _Application class defines and instantiates a
 dictionary named _components . This is where all the Component objects added to the application will
be stored. Note that the _Application class derives from the Component class:

 Sys._Application.registerClass(‘Sys._Application’, Sys.Component, Sys.IContainer);

 In other words, the _Application class is a component that acts as a container for other components.
This also means that the _Application class inherits the get_events , add_disposing ,
remove_disposing , add_propertyChanged , remove_propertyChanged , dispose , and
raisePropertyChanged methods from the Component base class.

 Listing 7-13: The _Application Class

 Sys._Application = function Sys$_Application() {
 Sys._Application.initializeBase(this);

 this._components = {};

 // More code to come
}

function Sys$_Application$addComponent(component)
{
 // More code to come
}

(continued)

c07.indd 239c07.indd 239 8/20/07 8:09:08 PM8/20/07 8:09:08 PM

Chapter 7: Component Development Infrastructure

240

 Listing 7-13 (continued)

function Sys$_Application$findComponent(id, parent)
{
 // More code to come
}

function Sys$_Application$getComponents()
{
 // More code to come
}

function Sys$_Application$removeComponent(component)
{
 // More code to come
}

Sys._Application.prototype = {
 addComponent: Sys$_Application$addComponent,
 findComponent: Sys$_Application$findComponent,
 getComponents: Sys$_Application$getComponents,
 removeComponent: Sys$_Application$removeComponent

 // More to class members to come
}

Sys._Application.registerClass(‘Sys._Application’, Sys.Component, Sys.IContainer);

 As this code listing shows, the Sys._ Application class implements the addComponent ,
 findComponent , getComponents , and removeComponent methods of the IContainer interface.
The following sections discuss these methods.

 add Component
 Listing 7-14 presents the internal implementation of the addComponent method of the _Application class.

 Listing 7-14: The add Component Method of the _Application Class

 function Sys$_Application$addComponent(component) {
 var id = component.get_id();
 if (!id)
 throw Error.invalidOperation(Sys.Res.cantAddWithoutId);

 if (typeof(this._components[id]) !== ‘undefined’)
 throw Error.invalidOperation(String.format(Sys.Res.appDuplicateComponent, id));

 this._components[id] = component;
}

c07.indd 240c07.indd 240 8/20/07 8:09:08 PM8/20/07 8:09:08 PM

Chapter 7: Component Development Infrastructure

241

 This method first calls the get_id method on the Component object being added to access its id :

 var id = component.get_id();

 If the id of the Component object being added has not been specified, the addComponent method
does not add the Component object to the _components internal collection; instead, it raises an
 InvalidOperation exception. This means that you must specify the id of your component before
you attempt to add it to the _Application :

 if (!id)
 throw Error.invalidOperation(Sys.Res.cantAddWithoutId);

 Next, the addComponent method checks whether the _component internal dictionary already contains a
 Component object with the specified id . If so, it raises an InvalidOperation exception, which ensures
that all the Component objects in the _Application have unique ids:

 if (typeof(this._components[id]) !== ‘undefined’)
 throw Error.invalidOperation(String.format(Sys.Res.appDuplicateComponent, id));

 Finally, the addComponent method uses the id of the Component object as an index into the
_components internal dictionary to add the Component object to the dictionary:

 this._components[id] = component;

 remove Component
 Listing 7-15 contains the code for the removeComponent method of the _ Application class.

 Listing 7-15: The remove Component Method of the _Application Class

 function Sys$_Application$removeComponent(component) {
 var id = component.get_id();
 if (id)
 delete this._components[id];
}

 This method first calls the get_id method on the Component object to access the id of the Component
object being removed:

 var id = component.get_id();

 Next, it uses this id as an index into the _components dictionary to return a reference to the Component
object with the specified id, which is subsequently deleted:

 delete this._components[id];

c07.indd 241c07.indd 241 8/20/07 8:09:09 PM8/20/07 8:09:09 PM

Chapter 7: Component Development Infrastructure

242

 get Components
 As you can see in Listing 7-16 , the getComponents method of the _Application class first creates a
local array. Then, it iterates through the Component objects in the _components dictionary and adds
each enumerated Component object to this local array, which is then returned to its caller.

 Listing 7-16: The get Components Method of the Application Class

 function Sys$_Application$getComponents() {
 var res = [];
 var components = this._components;
 for (var name in components)
 res[res.length] = components[name];

 return res;
}

 find Component
 Listing 7-17 contains the code for the findComponent method of the _ Application class. This method
takes two arguments. The first argument contains the id of the Component object being searched for. The
second argument references the parent of the Component object being searched for.

 Listing 7-17: The find Component Method of the Application Class

 function Sys$_Application$findComponent(id, parent)
{
 return
 parent ? (Sys.IContainer.isInstanceOfType(parent) ?
 parent.findComponent(id) : parent[id] || null) :
 Sys.Application._components[id] || null;
}

 As you can see in this listing, the second argument — the parent — determines where to look for the
 Component object with the specified id . If the parent hasn’t been specified, the findComponent method
uses the value of the first argument — the id of the Component object being searched for — as an index
into the _components dictionary to return a reference to the Component object with the specified id , as
shown in the boldfaced portion of the following code snippet:

 return
 parent ? (Sys.IContainer.isInstanceOfType(parent) ?
 parent.findComponent(id) : parent[id] || null) :
 Sys.Application._components[id] || null;

 If the parent has been specified and the parent itself is a container (that is, the parent implements the
 IContainer interface), the findComponent method delegates to the findComponent method of
the parent as shown in the boldfaced portion of the following code snippet:

 return
 parent ? (Sys.IContainer.isInstanceOfType(parent) ?
 parent.findComponent(id) : parent[id] || null) :
 Sys.Application._components[id] || null;

c07.indd 242c07.indd 242 8/20/07 8:09:09 PM8/20/07 8:09:09 PM

Chapter 7: Component Development Infrastructure

243

 If the parent has been specified, but it doesn’t implement the IContainer interface, the findComponent
method first assumes that the parent is a DOM element and the Component object being searched is its
DOM child element. Consequently, it uses the id as an index into the parent to return a reference to the
 Component object with the specified id :

 return
 parent ? (Sys.IContainer.isInstanceOfType(parent) ?
 parent.findComponent(id) : parent[id] || null) :
 Sys.Application._components[id] || null;

 If the parent is not a DOM element, the findComponent method returns null .

 When you need to call the findComponent method to return a reference to a Component object with a
specified id, you have three options:

 ❑ If you know for a fact that the component you’re looking for is a top-level component (it is
 directly added to the Application object itself), call the findComponent method with a single
argument that contains the id of the component being search for. This will limit the search to the
 _components collection of the Application object.

❑ If you know for a fact that the component that you’re looking for is not a top-level component (it
is not directly added to the Application object itself), and if you know which component
 contains the component that you are searching for, call the findComponent method with two
arguments. The first argument must contain the id of the component being searched for. The
second argument must contain a reference to the Component object that contains the component
being searched for. This will limit the search to the components contained in the specified
 Component object.

❑ If you know for a fact that the component that you’re looking for is a child component of a DOM
element, call the findComponent method with two arguments. The first argument must contain
the id of the component you’re searching for. The second argument must contain a reference
to the DOM element that contains the component. This will limit the search to the components
contained in the specified DOM element.

 Application Lifecycle
 The application lifecycle begins when the Application object representing the application springs into
life and ends when this object is finally disposed of. To help you identify the constituent phases of the
application lifecycle, this section follows the Application object from the time it is instantiated to
the time it is disposed of.

 The instance of the _Application class, like the instance of any other class, is created when the
 constructor of the class is invoked. This happens when the MicrosoftAjax.js JavaScript file is
loaded into the memory of the browser. This file includes the following statement, which invokes
the constructor of the _Application class:

 Sys.Application = new Sys._Application();

c07.indd 243c07.indd 243 8/20/07 8:09:09 PM8/20/07 8:09:09 PM

Chapter 7: Component Development Infrastructure

244

 Listing 7-18 presents the internal implementation of the _Application class constructor.

 Listing 7-18: The Constructor of the _Application Class

 Sys._Application = function Sys$_Application() {
 Sys._Application.initializeBase(this);

 this._disposableObjects = [];
 this._components = {};
 this._createdComponents = [];
 this._secondPassComponents = [];

 this._unloadHandlerDelegate = Function.createDelegate(this, this._unloadHandler);
 this._loadHandlerDelegate = Function.createDelegate(this, this._loadHandler);

 Sys.UI.DomEvent.addHandler(window, “unload”, this._unloadHandlerDelegate);
 Sys.UI.DomEvent.addHandler(window, “load”, this._loadHandlerDelegate);
}

 This constructor takes the following actions:

 1. It calls the initializeBase method, passing in the reference to the Application object to
 initialize the Component class, which is the base class of the _Application class:.

 Sys._Application.initializeBase(this);

 2. It defines and instantiates an internal array named _disposableObjects :

 this._disposableObjects = [];

 As the name implies, this collection contains disposable objects of an ASP.NET AJAX
 application. A disposable object is an object whose type implements the IDisposable interface.
As you’ll see later, when the Application object is about to be disposed of, it automatically
calls the dispose methods of these disposable objects to allow them to release the resources
they’re holding. Therefore, if you have a disposable object, you must add your object to the
_disposableObjects collection to have the Application object call its dispose method
 before the object is disposed of.

3. It defines and instantiates an internal dictionary named _components :

 this._components = {};

 As discussed earlier in this chapter, the _components dictionary contains all the components of
an ASP.NET AJAX application.

4. It defines and instantiates an internal array named _createdComponents (discussed in more
detail later in this chapter):

 this._createdComponents = [];

c07.indd 244c07.indd 244 8/20/07 8:09:10 PM8/20/07 8:09:10 PM

Chapter 7: Component Development Infrastructure

245

 5. It defines and instantiates an internal array named _secondPassComponents (discussed in
more detail later in this chapter):

 this._secondPassComponents = [];

 6. It calls the createDelegate method on the Function class to create a delegate named
_unloadHandlerDelegate that represents the Application object’s _unloadHandler method:

 this._unloadHandlerDelegate = Function.createDelegate(this, this._unloadHandler);

 7. It registers the _unloadHandlerDelegate delegate as an event handler for the window object’s
 unload event:

 Sys.UI.DomEvent.addHandler(window, “unload”, this._unloadHandlerDelegate);

 This means that when the current window unloads, it automatically calls the
_unloadHandlerDelegate delegate, which in turn calls the Application object’s
_unloadHandler method to allow the application to unload itself. (The _unloadHandler
method is discussed in more detail later in this chapter.)

8. It calls the createDelegate method on the Function class to create a delegate named
_loadHandlerDelegate that represents the Application object’s _loadHandler method:

 this._loadHandlerDelegate = Function.createDelegate(this, this._loadHandler);

 9. It registers the _loadHandlerDelegate delegate as an event handler for the window object’s
 load event:

 Sys.UI.DomEvent.addHandler(window, “load”, this._loadHandlerDelegate);

 This means that when the window object’s load event is raised, the _loadHandlerDelegate
delegate is automatically invoked. This delegate in turn automatically invokes the Application
object’s _loadHandler method to allow the application to load itself. (The _loadHandler
method is discussed in more detail later in this section.)

 As you can see, the Application object gets instantiated when the MicrosoftAjax.js JavaScript file
gets loaded. However, it doesn’t get initialized until the window raises the load event and, conse-
quently, the _loadHandler method of the Application object is invoked.

 Listing 7-19 presents the implementation of the Application object’s _loadHandler method.

 Listing 7-19: The _ load Handler Method of the Application Object

 function Sys$_Application$_loadHandler() {
 if(this._loadHandlerDelegate) {
 Sys.UI.DomEvent.removeHandler(window, “load”, this._loadHandlerDelegate);
 this._loadHandlerDelegate = null;
 }
 this.initialize();
}

c07.indd 245c07.indd 245 8/20/07 8:09:10 PM8/20/07 8:09:10 PM

Chapter 7: Component Development Infrastructure

246

 This _loadHandler method calls the Application object’s initialize method to initialize the
 application as shown in Listing 7-20 .

 Listing 7-20: The initialize Method of the Application Object

 function Sys$_Application$initialize() {
 if (!this._initialized && !this._initializing) {
 this._initializing = true;
 window.setTimeout(Function.createDelegate(this, this._doInitialize), 0);
 }
}

 The initialize method first checks whether the current Application object has already been
 initialized. If so, it simply returns. You may be wondering how the current Application object could be
initialized before the window object raises its load event and consequently invokes the _loadHandler
method, which in turn invokes the initialize method to initialize the Application . The answer lies
in the fact that the _loadHandler method is not the only mechanism that triggers the invocation of the
 initialize method. As you’ll see later in this book, the current ScriptManager server control explic-
itly renders the following script block into the current page right before the closing tag of the form
HTML DOM element (with the runat = server attribute):

 <script type=”text/javascript”>
<!--
Sys.Application.initialize();
// -->
</script>

 As you can see, this script block contains a call into the initialize method of the current
 Application object. Therefore, there are two initialization mechanisms for the current Application
object. As Listing 7-20 shows, the Application object exposes a private Boolean field named
_initializing , ensuring that the current Application object does not get initialized twice. Which-
ever mechanism gets to call the initialize method first gets to initialize the current Application
object. In other words, the first caller wins.

 Next, the initialize method sets the _initializing field to true to signal that the application is
being initialized. Then it calls the setTimeout method on the window object to register the
 Application object’s _doInitialize method to be invoked after a delay of 0 milliseconds. This
doesn’t mean that the _doInitialize method is invoked right away. The delay of 0 milliseconds is a
common trick used in the scripting world to ensure that the execution of the specified method —
_doInitialize — is deferred until the document is done with other tasks and ready to execute
the method.

 Listing 7-21 presents the internal code for the Application object’s _doInitialize method.

c07.indd 246c07.indd 246 8/20/07 8:09:10 PM8/20/07 8:09:10 PM

Chapter 7: Component Development Infrastructure

247

 Listing 7-21: The _ do Initialize Method of the Application Object

 function Sys$_Application$_doInitialize() {
 Sys._Application.callBaseMethod(this, ‘initialize’);

 var handler = this.get_events().getHandler(“init”);
 if (handler) {
 this.beginCreateComponents();
 handler(this, Sys.EventArgs.Empty);
 this.endCreateComponents();
 }
 this.raiseLoad();
 this._initializing = false;
}

 The _doInitialize method first calls callBaseMethod to invoke the initialize method of the base
class, which is the Component class:

 Sys._Application.callBaseMethod(this, ‘initialize’);

 Next, the _doInitialize method calls the get_events method to access the EventHandlerList
object that contains all the event handlers registered for the events that the Application object
exposes. The _Application class inherits the get_events method from the Component class (see
 Listing 7-13). The _doInitialize method then calls the getHandler method on the EventHandlerList
object, passing the string “init” to return a reference to the JavaScript function whose invocation
 automatically invokes all the event handlers registered for the Application object’s init event:

 var handler = this.get_events().getHandler(“init”);

 The getHandler method of the EventHandlerList class defines and returns a JavaScript function that
iterates through the event handlers registered for a particular type of event and invokes each enumer-
ated event handler, as shown in the highlighted portion of the following code excerpt from Listing 5-7 :

 function Sys$EventHandlerList$getHandler(id) {
 var evt = this._getEvent(id);
 if (!evt || (evt.length === 0))
 return null;
 evt = Array.clone(evt);
 if (!evt._handler) {
 evt._handler = function(source, args) {
 for (var i = 0, l = evt.length; i < l; i++) {
 evt[i](source, args);
 }
 };
 }
 return evt._handler;
}

c07.indd 247c07.indd 247 8/20/07 8:09:11 PM8/20/07 8:09:11 PM

Chapter 7: Component Development Infrastructure

248

 Now back to the implementation of the _doInitialize method in Listing 7-21 . If the EventHandlerList
object contains event handlers for the init event of the Application object, the _doInitialize method
takes the following steps:

 1. It calls the beginCreateComponents method of the Application object:

 this.beginCreateComponents();

 As the following code snippet shows, the beginCreateComponent method simply sets an
 internal flag named _creatingComponents to true , to signal that the application has now
 entered the phase where components of the application are created:

 function Sys$_Application$beginCreateComponents() {
 this._creatingComponents = true;
}

 2. It invokes the JavaScript function returned from the EventHandlerList object’s getHandler
method. As discussed earlier, the invocation of this function automatically invokes all the event
handlers registered for the init event of the Application object:

 handler(this, Sys.EventArgs.Empty);

 3. It calls the endCreateComponents method. The main responsibility of this method is to set the
values of the properties of the components that reference other components (described in more
detail later).

 this.endCreateComponents();

 As you can see, the Application object raises the init event before the cross references among
the components of the application are resolved. As such, the event handler that you register for the
 init event of the Application object must not attempt to access other components.

4. It calls the raiseLoad method of the Application object to raise the Load event and sets the
_initializing flag to false to signal the end of the application initialization process:

 this.raiseLoad();
 this._initializing = false;

 Component
 At this point on the journey through the Application object’s life-cycle phases, the endCreateComponents
and raiseLoad methods of the Application object have just been invoked. To continue the journey, we
need to go inside these two methods. However, understanding the internal implementation of the
 Application object’s endCreateComponents and raiseLoad methods requires a solid understanding of
the typical lifecycle of an ASP.NET AJAX application’s constituent components. In other words, the journey
has reached the point where the application lifecycle overlaps the lifecycles of the constituent components of
the application. Therefore, we need to accompany these constituent components on their journey through
their life-cycle phases. The Component base class defines the typical lifecycle of an ASP.NET AJAX
 application’s component.

c07.indd 248c07.indd 248 8/20/07 8:09:11 PM8/20/07 8:09:11 PM

Chapter 7: Component Development Infrastructure

249

 The lifecycle of a component begins when the create method of the Component base class is invoked to
instantiate the component, as shown in Listing 7-22 . The main responsibility of the create method is
to create, initialize, and add a new Component object with the specified characteristics to the current
ASP.NET AJAX application. An example of a Component object is the Monitor object discussed earlier in
this chapter. As you can see, you must not use the new operator directly to create a Component object.
Instead, you must use the create method of the Component base class to create the object. This method
takes the following parameters:

 ❑ type : Contains a reference to the constructor of the component class whose instance is being
 created. For example, in the case of the Monitor class, you must pass Delegates.Monitor as
the value of the type parameter.

❑ properties : References a JavaScript object literal containing name/value pairs. Each of these
pairs must specify the name and value of a particular property of the Component object being
created.

❑ events : References a JavaScript object literal containing name/value pairs. Each of these pairs
must specify the name and event handlers of a particular event of the Component object being
created.

❑ references : References a JavaScript object literal containing name/value pairs. Each of these
pairs must specify the name of the property of the Component object being created and the id
property value of the Component object that the property references.

❑ element : References the DOM element with which the Component object being created is
 associated. A Component object may or may not be associated with a DOM element, as
 discussed later in this chapter.

 Listing 7-22: The create Method of the Component Class

 var $create = Sys.Component.create =
function Sys$Component$create(type, properties, events, references, element)
{
 var component = (element ? new type(element): new type());

 component.beginUpdate();
 if (properties)
 Sys$Component$_setProperties(component, properties);

 if (events) {
 for (var name in events) {
 var eventHandlers = events[name];
 var addEventHandlerMethodName = ”add_” + name;
 var addEventHandlerMethod = component[addEventHandlerMethodName];
 addEventHandlerMethod(eventHandlers);
 }
 }

(continued)

c07.indd 249c07.indd 249 8/20/07 8:09:11 PM8/20/07 8:09:11 PM

Chapter 7: Component Development Infrastructure

250

 Listing 7-22 (continued)

var createdComLen = Sys.Application._createdComponents.length; var
elong to differenct object. I add a bit of text to clarify
this.
 Sys.Application._createdComponents[createdComLen] = component;

 if (component.get_id())
 Sys.Application.addComponent(component);

 if (Sys.Application.get_isCreatingComponents()) {
 if (references)
 Sys.Application._addComponentToSecondPass(component, references);

 else
 component.endUpdate();
 }

 else
 {
 if (references)
 Sys$Component$_setReferences(component, references);

 component.endUpdate();
 }

 return component;
}

 As Listing 7-22 shows, the create method of the Component class first invokes the new operator on its
first argument to instantiate the new Component object. The instantiation is the first life-cycle phase of
the newly created Component object. The first argument of the create method references the constructor
of the component class whose instance is being created. For example, in the case of the Monitor class,
this argument will reference the constructor of the Monitor class. Note that if the Component object is
associated with a DOM element, the reference to the DOM element is passed into the constructor:

 var component = (element ? new type(element): new type());

 Next, the create method calls the beginUpdate method on the newly created Component object:

 component.beginUpdate();

 As Listing 7-23 shows, the beginUpdate method of the Component class sets an internal flag named
_updating to true to mark the beginning of the newly created Component object’s updating life-
cycle phase.

 Listing 7-23: The begin Update Method of the Component Class

 function Sys$Component$beginUpdate() {
 this._updating = true;
}

c07.indd 250c07.indd 250 8/20/07 8:09:12 PM8/20/07 8:09:12 PM

Chapter 7: Component Development Infrastructure

251

 Returning to Listing 7-22 , the create method then calls the _setProperties static method on the
 Component base class, passing in two parameters. The first parameter is the reference to the newly
 created Component object. The second parameter is the JavaScript object literal containing the name/
value pairs that specify the names and values of the newly created Component object properties.

 if (properties)
 Sys$Component$_setProperties(component, properties);

 As you’ll see later, the main responsibility of the _setProperties method is to iterate through the
name/value pairs of the object literal and assign the value portion of each pair to the property of
the newly created Component object with the same name as the name portion of the pair.

 Next, the create method iterates through the name/value pairs of the object literal and performs the
following tasks for each enumerated pair:

 1. It uses the event name as an index into the object literal to return all the event handlers for the
event with specified name:

 var eventHandlers = events[name];

 2. It appends the event name to the string “add_” to form a string that contains the name of the
newly created Component object’s method that registers event handlers for the specified event:

 var addEventHandlerMethodName=”add_” + name;

 For example, the Monitor class exposes an event named disposing . If you append this event
name to the string “add_” , you’ll end up with a string called “add_disposing” , which is the name
of the Monitor class’s add_disposing method. This method takes an event handler as its argu-
ment and registers the handler as the callback for the Monitor class’s disposing event.

3. It uses the event-handler method name as an index into the newly created Component object to
access a reference to the method itself:

 var addEventHandlerMethod = component[addEventHandlerMethodName];

 In the case of the Monitor example, this will return a reference to the add_disposing method.

4. It invokes the event-handler method, passing in the event handlers to register them as callbacks
for the specified event:

 addEventHandlerMethod(eventHandlers);

 As Listing 7-22 shows, the create method then adds the newly created Component object to the
_createdComponents collection of the Application object:

 var createdComLen = Sys.Application._createdComponents.length; var
elong to differenct object. I add a bit of text to clarify
this.
Sys.Application._createdComponents[createdComLen] = component;

 This collection temporarily contains all the newly created Component objects. As you’ll see later, when
the application enters the Load phase of its lifecycle, it raises the load event and consequently invokes

c07.indd 251c07.indd 251 8/20/07 8:09:12 PM8/20/07 8:09:12 PM

Chapter 7: Component Development Infrastructure

252

all event handlers registered for this event, passing the _createdComponents collection. This allows the
event handlers to customize the newly created Component objects. This is very similar to the
 ItemCreated event of the GridView control, where the event handlers for this event can update the
newly created GridViewRow object.

 The create method then calls the Application object’s addComponent method to add the newly cre-
ated component to the Application object’s _components collection, where the component is perma-
nently stored until it is explicitly disposed of:

 if (component.get_id())
 Sys.Application.addComponent(component);

 Next, the create method calls the get_isCreatingComponents method on the Application object
to access the value of its _creatingComponents field: The Application object sets this field to true to
mark the beginning of the Component Creation phase of the current ASP.NET AJAX application.

 If the application has already entered the Component Creation phase of its lifecycle, and the JavaScript
object literal passed in as the fourth argument of the create method is not null, the create method
calls the _addComponentToSecondPass method on the Application object, passing in the reference to
the newly created Component object and the reference to the object literal:

 Sys.Application._addComponentToSecondPass(component, references);

 As Listing 7-24 shows, the _addComponentToSecondPass method of the _Application class simply
creates a new object literal that contains two name/value pairs. The first name/value pair contains the
name “component” and the value referencing the newly created Component object. The second name/
value pair contains the name “references” and the value referencing the object literal passed in as the sec-
ond argument of the _addComponentToSecondPass method. Each name/value pair of this object literal
contains the name of a property of the newly created Component object and the value of the id property
of another Component object that the property references.

 Listing 7-24: The _ add ComponentToSecondPass method of the Application object

 function Sys$_Application$_addComponentToSecondPass(component, references) {
 this._secondPassComponents[this._secondPassComponents.length] =
 {component: component, references: references};
}

 As this listing shows, the _addComponentToSecondPass method then adds the new object literal to the
 _secondPassComponents collection of the Application object to be processed later. As you’ll see later,
the endCreateComponents method of the Application object will process the contents of the
_secondPassComponents collection.

 Now back to the implementation of the create method in Listing 7-22 . As this code listing shows, if the
 Application is in the Component Creation phase, but the object passed into the create method as
the fourth argument is null, the create method calls the endUpdate method on the newly created
 Component object:

 component.endUpdate();

c07.indd 252c07.indd 252 8/20/07 8:09:12 PM8/20/07 8:09:12 PM

Chapter 7: Component Development Infrastructure

253

 Listing 7-25 shows the Component class’s endUpdate method. This method first sets an internal flag
named _updating to false to mark the end of the newly created Component object’s updating life-
cycle phase, and then calls the updated method of the object.

 Listing 7-25: The end Update Method of the Component Class

 function Sys$Component$endUpdate() {
 this._updating = false;
 if (!this._initialized)
 this.initialize();

 this.updated();
}

 As Listing 7-26 shows, the updated method of the Component class doesn’t do anything. However, your
custom component can override this method to perform post-update tasks.

 Listing 7-26: The updated Method of the Component Class

 function Sys$Component$updated() { }

 Returning to Listing 7-22 , if the Application is not in its Component Creation life-cycle phase, and the
object passed into the create method as its fourth argument is not null (that is, if the newly created
 Component object contains properties that reference other components of the application), the create
method calls the _setReferences static method, passing in the reference to the newly created
 Component object and the fourth parameter:

 Sys$Component$_setReferences(component, references);

 As you’ll see later, the main responsibility of the _setReferences method is to access references to the
referenced Component objects and assign them to the associated properties of the newly created
 Component object.

 Finally, the create method calls the endUpdate method on the newly created Component object:

 component.endUpdate();

 Continuing the Application Journey
 Now that you have a solid understanding of the typical lifecycle of an ASP.NET AJAX component, let’s
go back to the endCreateComponents and raiseLoad methods of the Application object to finish the
journey with Application .

 end CreateComponents
 Listing 7-27 presents the internal implementation of the endCreateComponents method of the
 Application object.

c07.indd 253c07.indd 253 8/20/07 8:09:13 PM8/20/07 8:09:13 PM

Chapter 7: Component Development Infrastructure

254

 Listing 7-27: The end CreateComponents Method of the Application Object

 function Sys$_Application$endCreateComponents() {
 var components = this._secondPassComponents;
 for (var i = 0, l = components.length; i < l; i++) {
 var component = components[i].component;
 var references = components[i].references;
 Sys$Component$_setReferences(component, references);
 component.endUpdate();
 }
 this._secondPassComponents = [];
 this._creatingComponents = false;
}

 As you saw previously in Listing 7-18 , the constructor of the _Application class instantiates an internal
array named _secondPassComponents :

 this._secondPassComponents = [];

 This array contains all the Component objects that meet the following two requirements:

 ❑ They were created before the endCreateComponents method of the Application object was
invoked.

❑ They contain properties that reference other Component objects in the application.

 As discussed in the previous section, the Component base class exposes a method named create that
allows you to create, initialize, and add a new Component object to your ASP.NET AJAX application. If
you call this method within an event handler registered for the init event of the Application object,
and if the newly created Component object references other Component objects, the create method
automatically adds the newly created Component object to the _secondPassComponents array of the
 Application object because the newly created Component object meets both of the previously
 mentioned requirements:

 ❑ It was created before the calls into the endCreateComponents method because the init event
occurs before the endCreateComponents method is invoked (as previously shown in
Listing 7-21).

❑ It contains properties that reference other Component objects.

 The create method of the Component class calls the _addComponentToSecondPass method on the
 Application object to add the newly created component to the _secondPassComponents array (as
previously shown in Listing 7-22). The _addComponentToSecondPass method of the _Application
class simply creates a new object literal that contains two name/value pairs (as previously shown in
 Listing 7-24). The first name/value pair contains the name “component” and the value referencing the
newly created Component object. The second name/value pair contains the name “references” and
the value referencing the object passed in as the second argument of the _addComponentToSecondPass

c07.indd 254c07.indd 254 8/20/07 8:09:13 PM8/20/07 8:09:13 PM

Chapter 7: Component Development Infrastructure

255

method. The _addComponentToSecondPass method then adds the new object literal to the
_secondPassComponents collection of the Application object:

 function Sys$_Application$_addComponentToSecondPass(component, references) {
 this._secondPassComponents[this._secondPassComponents.length] =
 {component: component, references: references};
}

 Therefore, the _secondPassComponents array contains a bunch of object literals with two name/value
pairs as just described.

 Now back to Listing 7-27 . As this code listing shows, the endCreateComponents method iterates
through the objects in the _secondPassComponents array and takes the following steps for each
 enumerated object literal:

 1. It accesses the value portion of the first name/value pair of the enumerated object. This value
references the newly created Component object as follows:

 var component = components[i].component;

 2. It accesses the value portion of the second name/value pair of the enumerated object. This value
portion references the object literal that contains a name/value pair for each property of the
newly created Component object and the id of another Component object that the property
references:

 var references = components[i].references;

 3. It calls the _setReferences static method on the Component base class, passing in two argu-
ments. The first argument references the newly created Component object, and the second
 argument references the object literal just discussed:

 Sys$Component$_setReferences(component, references);

 The main responsibility of the _setReferences method is to iterate through the name/value
pairs of the object literal, find a reference to the Component object whose id is given by the
value portion of the enumerated name/value pair, and assign this reference to the property
whose name is given by the name portion of the enumerated name/value pair.

4. It calls the endUpdate method on the newly-created Component object:

 component.endUpdate();

 Finally, the endCreateComponents method first resets the _secondPassComponents array and then
sets the _creatingComponents flag to false to mark the end of the application’s Component Creation
lifecycle phase:

 this._secondPassComponents = [];
this._creatingComponents = false;

c07.indd 255c07.indd 255 8/20/07 8:09:13 PM8/20/07 8:09:13 PM

Chapter 7: Component Development Infrastructure

256

 raise Load
 The call into the raiseLoad method of the Application object is the last phase in its initialization
 process. Listing 7-28 shows this method.

 Listing 7-28: The raise Load Method of the Application Object

 function Sys$_Application$raiseLoad() {
 var h = this.get_events().getHandler(“load”);
 var args = new Sys.ApplicationLoadEventArgs(Array.clone(this._createdComponents),
 !this._initializing);
 if (h)
 h(this, args);

 if (window.pageLoad)
 window.pageLoad(this, args);

 this._createdComponents = [];
}

 As this listing shows, the raiseLoad method calls the get_events method to access a reference to the
 EventHandlerList that contains all the event handlers registered for the events that the Application
object exposes. Then, it calls the getHandler method on the EventHandlerList , passing in the string
 “load” to access the JavaScript function whose invocation automatically invokes all the event handlers
registered for the load event of the Application object:

 var h = this.get_events().getHandler(“load”);

 The raiseLoad method then instantiates an instance of a class named ApplicationLoadEventArgs ,
passing in the contents of an internal array named _createdComponents that contains all the newly
 created Component objects:

 var args = new Sys.ApplicationLoadEventArgs(Array.clone(this._createdComponents),
 !this._initializing);

 As you saw in the previous sections, the create method of the Component class adds the newly created
 Component object to the _createdComponents array.

 Next, the raiseLoad method invokes the JavaScript function returned from the getHandler method:

 if (h)
 h(this, args);

 If your event handler for the Application object’s init event registers an event handler for that
object’s load event, the event handler will be invoked automatically at this phase, which means that
your event handler will have access to the contents of the _createdComponents array. This enables you
to access the newly created Component objects inside your event handler for the load event and custom-
ize the component. This is similar to the OnItemCreated event of the GridView and DetailsView
controls.

c07.indd 256c07.indd 256 8/20/07 8:09:13 PM8/20/07 8:09:13 PM

Chapter 7: Component Development Infrastructure

257

 The raiseLoad method then invokes the pageLoad method on the window object:

 if (window.pageLoad)
 window.pageLoad(this, args);

 Finally, the raiseLoad method resets the _createdComponents array:

 this._createdComponents = [];

 Summary of the Application Lifecycle
 As the discussions in the previous sections show, an ASP.NET AJAX application goes through the
 following life-cycle phases:

 1. Instantiation Phase: This is the first phase of an ASP.NET AJAX application lifecycle. This is the
phase where the constructor of the _Application class is invoked to do the following:

 1. Instantiate the Application object that represents the ASP.NET AJAX application.

2. Instantiate the _disposableObjects array that will contain the disposable objects of the
application.

3. Instantiate the _components collection that will contain the components of the
application.

4. Register the _loadHandler method as the event handler for the load event of the
window object.

5. Register the _unloadHandler method as the event handler for the unload event of the
 window object.

 2. Beginning of the Initialization Phase: This phase occurs after the instantiation phase when
 either the window object raises the load event and consequently calls the _loadHandler
method or the following script block gets executed:

 <script type=”text/javascript”>
<!--
Sys.Application.initialize();
// -->
</script>

 Here is what happens in this phase:

 1. An internal flag named _initializing is set to true to mark the beginning of the
 initialization phase of the application.

2. The _doInitialize method is queued for execution.

 3. Beginning of the Component Creation phase: This is the phase where the
 beginCreateComponents method of the Application object is invoked. As discussed earlier,
this method simply sets an internal flag named _creatingComponents to true to mark the
 beginning of the Component Creation lifecycle phase.

4. Raising the Init Event: This phase occurs immediately after the application enters the
 Component Creation phase. This is the phase where the application raises the init event and
consequently invokes all the event handlers registered for this event. Because the application

c07.indd 257c07.indd 257 8/20/07 8:09:14 PM8/20/07 8:09:14 PM

Chapter 7: Component Development Infrastructure

258

has just entered the component creation phase, the cross references among the components of
the application have not been resolved yet. As such, the event handlers that you register for the
 init event of the Application object must not access other components of the application.

5. End of the Component Creation Phase: This phase occurs right after all the event handlers for
the init event of the Application have been invoked. This is the phase where the
 endCreateComponents method of the Application object is invoked to resolve the cross
 references among the constituent components of an ASP.NET AJAX application.

6. Load Phase: This phase occurs after all the cross references among the constituent components
of an ASP.NET AJAX application have been resolved. This is the phase where the raiseLoad
method of the Application object is invoked. Here is what happens in this phase:

 1. The application raises the load event and consequently invokes all the event handlers regis-
tered for the load event. The Application object passes an ApplicationLoadEventArgs
object into each event handler. This object contains the contents of the Application object’s
 _createdComponents array. The create static method of the Component base class adds
the newly created Component object to this array, which means that you can access the
newly created Component objects from within your load event handler to customize them.
This is very similar to the ItemCreated event of the GridView , which allows you to
 customize the GridViewRow objects right after they’re created.

 Because the load event is raised after all the cross references among the constituent
 components of an application are resolved, you can safely access any component of the
application from within your load event handler.

2. If a page contains the pageLoad method, this method is invoked right after the load event
is raised.

3. The _createdComponents array is reset.

 Application Level Events
 The Application object that represents an ASP.NET AJAX application exposes three important events,
as discussed in the following sections.

 init
 The Application object features a method named add_init that allows you to register a specified
event handler for the init event of the Application object as shown in Listing 7-29 .

 Listing 7-29: The add_init Method of the Application Object

 function Sys$_Application$add_init(handler) {
 if (this._initialized)
 handler(this, Sys.EventArgs.Empty);

 else
 this.get_events().addHandler(“init”, handler);
}

c07.indd 258c07.indd 258 8/20/07 8:09:14 PM8/20/07 8:09:14 PM

Chapter 7: Component Development Infrastructure

259

 As you can see in this code listing, the add_init method first checks whether the Application object
has already raised the init event. The init event is raised only once in the lifetime of an ASP.NET
AJAX application, as discussed earlier. If the init event has already been raised, the add_init method
does not add the event handler being registered to the internal EventHandlerList . This is because
when an event handler is added to the EventHandlerList , it will not be invoked until the associated
event is raised. In this case, because the init event has already been raised, the event handler will
remain in the EventHandlerList forever without ever being invoked. That is why the add_init
method invokes the event handler being registered synchronously:

 if (this._initialized)
 handler(this, Sys.EventArgs.Empty);

 However, if the event handler is added before the Application raises the init event, the add_init
method first calls the get_events method to return a reference to the internal EventHandlerList and
then calls the addHandler method on the EventHandlerList to register the event handler for the init
event of the Application object:

 else
 this.get_events().addHandler(“init”, handler);

 The Application object also exposes a method named remove_init , shown in Listing 7-30 , that allows
you to remove a specified event handler from the list of event handlers registered for the Application
object’s init event.

 Listing 7-30: The remove_init Method of the Application Object

 function Sys$_Application$remove_init(handler) {
 this.get_events().removeHandler(“init”, handler);
}

 load
 You can use the add_load and remove_load methods of the Application object to add a specified
event handler to and remove a specified event handler from the list of event handlers registered for the
 Application object’s load event, as shown in Listing 7-31 .

 Listing 7-31: The add_load and remove_load Methods of the Application Object

 function Sys$_Application$add_load(handler) {
 this.get_events().addHandler(“load”, handler);
}

function Sys$_Application$remove_load(handler) {
 this.get_events().removeHandler(“load”, handler);
}

c07.indd 259c07.indd 259 8/20/07 8:09:14 PM8/20/07 8:09:14 PM

Chapter 7: Component Development Infrastructure

260

 unload
 The Application object’s add_unload and remove_unload methods allow you to add a specified
event handler to and remove a specified event handler from the list of event handlers registered for the
 Application object’s unload event of, as shown in Listing 7-32 .

 Listing 7-32: The add_unload and remove_unload Methods of the Application Object

 function Sys$_Application$add_unload(handler) {
 this.get_events().addHandler(“unload”, handler);
}

function Sys$_Application$remove_unload(handler) {
 this.get_events().removeHandler(“unload”, handler);
}

 Disposable Objects
 As shown in the following code snippet from Listing 7-18 , the constructor of the _Application class
defines and instantiates an array named _disposableObjects :

 this._disposableObjects = [];

 A disposable object is an instance of a class that implements the IDisposable interface. Recall that the
 IDisposable interface exposes a single method named dispose that must be implemented by classes
that derive from this interface. A class’s implementation of the dispose method must release the
resources that the instance of the class is holding before the instance is disposed of. The Application
object that represents an ASP.NET AJAX application guarantees to call the dispose method of your
 disposable objects before these objects are disposed of if you call the registerDisposableObject
method on the Application object to register your disposable object.

 As you can see in Listing 7-33 , the registerDisposableObject method adds the disposable object to
the internal _disposableObjects array.

 Listing 7-33: The register DisposableObject Method of the Application Object

 function Sys$_Application$registerDisposableObject(object) {
 if (!this._disposing)
 this._disposableObjects[this._disposableObjects.length] = object;
}

 As shown in the following code snippet from Listing 7-18 , the constructor of the _Application class
calls the createDelegate method on the Function class to create a delegate that represents the
 Application object’s _unloadHandler method and registers this delegate as the event handler for the
 window object’s unload event:

 this._unloadHandlerDelegate = Function.createDelegate(this, this._unloadHandler);
Sys.UI.DomEvent.addHandler(window, “unload”, this._unloadHandlerDelegate);

c07.indd 260c07.indd 260 8/20/07 8:09:15 PM8/20/07 8:09:15 PM

Chapter 7: Component Development Infrastructure

261

 When the window object finally raises the unload event, it automatically calls the _unloadHandlerDelegate
delegate, which in turn calls the Application object’s _unloadHandler method.

 Listing 7-34 presents the implementation of the _unloadHandler method.

 Listing 7-34: The _ unload Handler Method of the Application Object

 function Sys$_Application$_unloadHandler(event) {
 this.dispose();
}

 As you can see, the _unloadHandler method calls the dispose method on the Application object
to dispose of the object. Listing 7-35 presents the implementation of the Application object’s
dispose method.

 Listing 7-35: The dispose Method of the Application Object

 function Sys$_Application$dispose()
{
 if (!this._disposing)
 {
 this._disposing = true;

 if (window.pageUnload)
 window.pageUnload(this, Sys.EventArgs.Empty);

 var unloadHandler = this.get_events().getHandler(“unload”);
 if (unloadHandler)
 unloadHandler(this, Sys.EventArgs.Empty);

 var disposableObjects = Array.clone(this._disposableObjects);
 for (var i = 0, l = disposableObjects.length; i < l; i++)
 disposableObjects[i].dispose();

 Array.clear(this._disposableObjects);

 Sys.UI.DomEvent.removeHandler(window, “unload”, this._unloadHandlerDelegate);
 if(this._loadHandlerDelegate)
 {
 Sys.UI.DomEvent.removeHandler(window, “load”, this._loadHandlerDelegate);
 this._loadHandlerDelegate = null;
 }

 var sl = Sys._ScriptLoader.getInstance();
 if(sl)
 sl.dispose();

 Sys._Application.callBaseMethod(this, ‘dispose’);
 }
}

c07.indd 261c07.indd 261 8/20/07 8:09:15 PM8/20/07 8:09:15 PM

Chapter 7: Component Development Infrastructure

262

 The dispose method first sets an internal flag named _disposing to true to ensure that the dispose
method is not called more than once during the lifetime of the current ASP.NET AJAX application:

 this._disposing = true;

 Next, it checks whether the window object contains a method named pageUnload . If so, it invokes
this method:

 if (window.pageUnload)
 window.pageUnload(this, Sys.EventArgs.Empty);

 Next, it calls the get_events method on the Application object to return a reference to the internal
 EventHandlerList that contains all the event handlers registered for the events of the Application
object. It then calls the getHandler method on the EventHandlerList object, passing in the string
“ unload ” to return a reference to the JavaScript function whose invocation automatically invokes all the
event handlers registered for the unload event of the Application object:

 var unloadHandler = this.get_events().getHandler(“unload”);

 Next, it invokes this JavaScript function to invoke the associated event handlers:

 if (unloadHandler)
 unloadHandler(this, Sys.EventArgs.Empty);

 As you can see, you have two options when it comes to handling the unload event of the Application
object. One option is to implement a JavaScript function named pageUnload . When the dispose
method of the Application object invokes the pageUnload method, it passes a reference to the
 Application object raising the event, which means that you can use this reference to access the meth-
ods and properties of the Application object that represents the current ASP.NET AJAX application.
Another option is to call the add_unload method on the Application object to register an event
 handler for the unload event.

 As the following code snippet from Listing 7-35 shows, the dispose method then iterates through the
disposable objects in the _disposableObjects collection and invokes the dispose method on each
enumerated disposable object. The dispose method of a disposable object must perform final cleanup
and release all the resources the object is holding.

 var disposableObjects = Array.clone(this._disposableObjects);
 for (var i = 0, l = disposableObjects.length; i < l; i++)
 disposableObjects[i].dispose();

 Next, it calls the clear static method on the Array class to clear the _disposableObjects collection
and consequently dispose these objects:

 Array.clear(this._disposableObjects);

 As you can see, the Application object disposes the disposable objects only after it invokes their
 dispose method — that is, only after these objects get the chance to perform their final cleanup and to
release the resources they’re holding.

c07.indd 262c07.indd 262 8/20/07 8:09:15 PM8/20/07 8:09:15 PM

Chapter 7: Component Development Infrastructure

263

 The dispose method then performs its final cleanup and releases the resources that the application is
holding. In this case, it unregisters the _unloadHandlerDelegate and _loadHandlerDelgate event
handlers (which the constructor of the _Application class previously registered for the unload and
 load events of the window object):

 Sys.UI.DomEvent.removeHandler(window, “unload”, this._unloadHandlerDelegate);
 if(this._loadHandlerDelegate)
 {
 Sys.UI.DomEvent.removeHandler(window, “load”, this._loadHandlerDelegate);
 this._loadHandlerDelegate = null;
 }

 Next, the dispose method of Application calls the dispose method of the _ScriptLoader object to
allow this object to release the resources it is holding:

 var sl = Sys._ScriptLoader.getInstance();
 if(sl)
 sl.dispose();

 Finally, the dispose method of Application invokes the dispose method of its base class, which in this
case is the Component class. Your custom class’s implementation of the dispose method must always
invoke the dispose method of its base class before it returns to allow the base class to perform its final
cleanup and to release the resources it is holding. You must call the following method at the end of the
 dispose method of your class — that is, after your class releases the resources it is holding:

 Sys._Application.callBaseMethod(this, ‘dispose’);

 There are times when you may decide to unregister your disposable object. This is where the
 Application object’s unregisterDisposableObject method comes into play, as shown in
Listing 7-36 .

 Listing 7-36: The unregister DisposableObject Method of the Application Object

 function Sys$_Application$unregisterDisposableObject(object) {
 if (!this._disposing)
 Array.remove(this._disposableObjects, object);
}

 Using the Application Object and
Component Base Class

 The previous sections of this chapter provided you with in-depth coverage of the important methods
and events of the Application object and Component base class. This section shows you how to use the
 Application object and Component base class and their methods and events in your own ASP.NET
AJAX applications. The example presented in this section is a new version of the Monitor class dis-
cussed earlier in this chapter. The following sections go over the old version of this class to point out the
differences between the old and new versions and the logic behind these differences.

c07.indd 263c07.indd 263 8/20/07 8:09:16 PM8/20/07 8:09:16 PM

Chapter 7: Component Development Infrastructure

264

 dispose
 Listing 7-26 took extra steps to emulate a disposing event, as shown in the highlighted portions of the
following code:

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 var monitor;

 function disposingcb()
 {
 alert(“The Disposing event was raised!”);
 }

 . . .
 function pageLoad()
 {
 monitor = new Disposables.Monitor();
 monitor.add_disposing(disposingcb);

 var disposebtn = $get(“disposebtn”);
 var disposeDelegate = Function.createDelegate(monitor, monitor.dispose);
 $addHandler(disposebtn, “click”, disposeDelegate);

 . . .
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”>
 . . .
 </asp:ScriptManager>
 Enter new Monitor id: <input type=”text” id=”id” />
 <button id=”changePropertybtn” type=”button”>Change Property</button>

 <button id=”disposebtn” type=”button”>Dispose Monitor</button>

 <div>
 </div>
 </form>
</body>
</html>

c07.indd 264c07.indd 264 8/20/07 8:09:16 PM8/20/07 8:09:16 PM

Chapter 7: Component Development Infrastructure

265

 The highlighted portions of code do the following:

 ❑ Add a button named Dispose Monitor:

 <button id=”disposebtn” type=”button”>Dispose Monitor</button>

 ❑ Call the createDelegate method on the Function class to create a delegate that represents the
 dispose method of the Monitor class:

 var disposeDelegate = Function.createDelegate(monitor, monitor.dispose);

❑ Call the addHandler method on the DomEvent class to register this delegate as an event handler
for the click event of the Dispose Monitor button:

 $addHandler(disposebtn, “click”, disposeDelegate);

 When the end user clicks this button, the delegate is automatically called, which in turn calls the
 dispose method of the Monitor class.

 As mentioned before, this was done for educational purposes. In a real-life project, the Monitor object
must be registered as a disposable object with the Application object to have the Application object
automatically call its dispose method before it is disposed of. As the following code shows, the con-
structor of the Component base class automatically registers the component as a disposable object with
the Application object:

 Sys.Component = function Sys$Component() {
 if (Sys.Application)
 Sys.Application.registerDisposableObject(this);
}

 Therefore, if you inherit the Monitor class from the Component base class and have the constructor of
the Monitor class invoke the constructor of the base class as shown in the boldfaced portion of the fol-
lowing code, every Monitor object is guaranteed to be registered as a disposable object with the
 Application object:

 Type.registerNamespace(“CustomComponents”);

CustomComponents.Monitor = function() {
 CustomComponents.Monitor.initializeBase(this);
 . . .
}
CustomComponents.Monitor.registerClass(“CustomComponents.Monitor”, Sys.Component);

 Because the Monitor class is now an ASP.NET AJAX component (meaning it derives from the Component
base class), it makes more sense to define a more appropriate namespace such as CustomComponents .

c07.indd 265c07.indd 265 8/20/07 8:09:16 PM8/20/07 8:09:16 PM

Chapter 7: Component Development Infrastructure

266

 As the highlighted portion of the following code snippet from Listing 7-8 shows, the dispose method of
the Monitor class implements the logic that raises disposing event and consequently invokes the event
handlers registered for this event:

 dispose : function() {

 if (this.events) {
 var handler = this.events.getHandler(“disposing”);
 if (handler)
 handler(this, Sys.EventArgs.Empty);
 }

 delete this.events;

 $removeHandler(document, “mousemove”, this.delegate);
 },

 As you can see in the following code snippet from Listing 7-11 , the dispose method of the Component
base class includes the highlighted code from the previous code fragment:

 function Sys$Component$dispose() {

 if (this._events) {
 var handler = this._events.getHandler(“disposing”);
 if (handler)
 handler(this, Sys.EventArgs.Empty);
 }

 delete this._events;

 . . .
}

 Therefore, you can simplify the implementation of the dispose method of the Monitor class if you
inherit the Monitor class from the Component base class and invoke the callBaseMethod method from
the dispose method of the Monitor class, as shown in the following code fragment:

 dispose : function() {
 $removeHandler(document, “mousemove”, this.delegate);
 CustomComponents.Monitor.callBaseMethod(this, “dispose”);

},

 The callBaseMethod method invokes the dispose method of the Component base class.

 If you derive a custom component from the Component base class and if your custom component needs
to override the dispose method, your custom component’s implementation of this method must use the
 callBaseMethod method to invoke the dispose method of the Component base class. Otherwise, the
 disposing event of your custom component will not be raised and, consequently, the event handlers
registered for this event will not be invoked.

c07.indd 266c07.indd 266 8/20/07 8:09:17 PM8/20/07 8:09:17 PM

Chapter 7: Component Development Infrastructure

267

 initialize
 The create static method of the Component base class invokes the endUpdate method when it is done
with updating the newly instantiated component, as shown in the highlighted portions of the following
code snippet from Listing 7-5 :

 var $create = Sys.Component.create =
 function Sys$Component$create(type, properties, events, references, element)
{
 var component = (element ? new type(element): new type());

 component.beginUpdate();
 . . .
 if (Sys.Application.get_isCreatingComponents()) {
 if (references)
 Sys.Application._addComponentToSecondPass(component, references);

 else

 component.endUpdate();

 }

 else {
 if (references)
 Sys$Component$_setReferences(component, references);

 component.endUpdate();

 }

 return component;
}

 The endUpdate method invokes the initialize method if this method has not been already explicitly
invoked, as shown in the highlighted portion of the following code snippet from Listing 7-8 . The
 Component base class guarantees that the initialize method will be automatically invoked if it is
not explicitly invoked.

 function Sys$Component$endUpdate() {
 this._updating = false;
 if (!this._initialized)
 this.initialize();

 this.updated();

}

c07.indd 267c07.indd 267 8/20/07 8:09:17 PM8/20/07 8:09:17 PM

Chapter 7: Component Development Infrastructure

268

 As you can see in the following code fragment, the initialize method of the Component base class
doesn’t do much. It simply sets the _initialized flag to true to ensure that the initialize method
is not twice:

 function Sys$Component$initialize() {
 this._initialized = true;
 }

 Because the Component base class guarantees the one-time automatic invocation of the initialize
method, this method is the best place for your custom component to initialize itself. The Monitor class
initializes itself partly inside its constructor and partly inside the registerMonitor method, as shown
in the highlighted portions of the following code snippet from Listing 7-8 :

 CustomComponents.Monitor = function() {
 CustomComponents.Monitor.initializeBase(this);

 this.id = ”Monitor1”;
 this.div = document.createElement(“div”);
 document.body.insertBefore(this.div,document.forms[0]);
 this.registerMonitor();

}

CustomComponents.Monitor.prototype =
{
 registerMonitor : function() {

 this.delegate = Function.createDelegate(this, this.print);
 $addHandler(document, “mousemove”, this.delegate);

 },
 . . .
}

 The new version of the Monitor class overrides the initialize method that it inherits from the
 Component base class and moves all its initialization logic from its constructor and the registerMonitor
method into the initialize method, as shown in the following code fragment:

 CustomComponents.Monitor.prototype =
{
 initialize : function() {
 CustomComponents.Monitor.callBaseMethod(this, “initialize”);
 this.printFormat = ”Monitor id: {0}
X-Coordinate: {1}” +
 “
Y-Coordinate: {2}”;
 this.div = document.createElement(“div”);
 document.body.insertBefore(this.div,document.forms[0]);
 this.delegate = Function.createDelegate(this, this.print);
 $addHandler(document, “mousemove”, this.delegate);
 }
}

c07.indd 268c07.indd 268 8/20/07 8:09:17 PM8/20/07 8:09:17 PM

Chapter 7: Component Development Infrastructure

269

 Note that the Monitor class’s implementation of the initialize method uses the callBaseMethod
method to invoke the initialize method of its Component base class.

 When you inherit a custom component from the Component base class, your custom component’s
 implementation of the initialize method must use the callBaseMethod method to invoke the
 Component base class’s initialize method. This enables the base class to set the _initialized
internal flag, which ensures that your custom component is not initialized twice.

 id
 The Monitor class implements a getter named get_id and a setter named set_id to allow its clients to
get and to set the id of a Monitor object, as shown in the following code snippet from Listing 7-8 :

 get_id : function() {
 return this.id;
 },

 set_id : function(value) {
 this.id = value;
 this.raisePropertyChanged(“id”);
 },

 Because the new version of the Monitor class derives from the Component base class, it automatically
inherits the get_id and set_id methods from its base class and, consequently, there is no need to
implement these two methods. The following code fragment shows the set_id method of the
 Component base class:

 function Sys$Component$set_id(value) {
 if (this._idSet)
 throw Error.invalidOperation(Sys.Res.componentCantSetIdTwice);

 this._idSet = true;
 var oldId = this.get_id();
 if (oldId && Sys.Application.findComponent(oldId))
 throw Error.invalidOperation(Sys.Res.componentCantSetIdAfterAddedToApp);
 this._id = value;
}

 As this code shows, the set_id method performs the following two tasks before it sets the id of the
component:

 1. It raises an exception if the set_id method has already been invoked to ensure that the id of a
component is not set twice:

 if (this._idSet)
 throw Error.invalidOperation(Sys.Res.componentCantSetIdTwice);

c07.indd 269c07.indd 269 8/20/07 8:09:17 PM8/20/07 8:09:17 PM

Chapter 7: Component Development Infrastructure

270

 2. It invokes the findComponent method on the current Application object to determine
whether the current application already contains a component with the specified id, and if so, it
raises an exception to ensure that the id of the component is not set after the component is
added to the application:

 if (oldId && Sys.Application.findComponent(oldId))
 throw Error.invalidOperation(Sys.Res.componentCantSetIdAfterAddedToApp);

 These two checks are necessary because the id of the component uniquely identifies the component
among other components in the current ASP.NET AJAX application.

 If you implement a custom component that derives from the Component base class, and your custom
component needs to override the set_id method to run some custom code, your custom component’s
implementation of this method must use the callBaseMethod method to invoke the set_id method
of its base class. Otherwise, the two checks will not be performed.

 raise PropertyChanged
 The Monitor class implements a method named raisePropertyChanged that raises the
 propertyChanged event and, consequently, invokes the event handlers registered for this event, as
shown in the following code fragment from Listing 7-8 :

 raisePropertyChanged : function (propertyName) {
 if (!this.events)
 return;

 var handler = this.events.getHandler(“propertyChanged”);
 if (handler)
 handler(this, new Sys.PropertyChangedEventArgs(propertyName));
 },

 As you can see in the following code listing, the Component base class exposes the same method, which
contains the same logic:

 function Sys$Component$raisePropertyChanged(propertyName) {
 if (!this._events)
 return;

 var handler = this._events.getHandler(“propertyChanged”);
 if (handler)
 handler(this, new Sys.PropertyChangedEventArgs(propertyName));
}

 Because the new implementation of the Monitor class inherits the Component base class, it automati-
cally inherits the raisePropertyChanged method from its base class and, therefore, there is no need to
implement this method.

c07.indd 270c07.indd 270 8/20/07 8:09:18 PM8/20/07 8:09:18 PM

Chapter 7: Component Development Infrastructure

271

 If you implement a custom component that derives from the Component base class, and your custom
component needs to override the raisePropertyChanged method to run some custom code, your
custom component’s implementation of the raisePropertyChanged method must use the
 callBaseMethod method to invoke the raisePropertyChanged method of the base class. Other-
wise the propertyChanged event of your custom component will be not raised and, consequently, the
event handlers registered for this event will not be invoked.

 get_events
 Classes such as Monitor that expose events must perform the following tasks:

 1. Support a method such as get_events that returns a reference to the EventHandlerList
 object where the class stores all the event handlers registered for the events of the class. The
 following code presents a typical implementation of this method:

 get_events : function() {
 if (!this.events)
 this.events = new Sys.EventHandlerList();
 return this.events;
 },

 2. Support a method named add_ EventName where the EventName is the placeholder for the name
of the event. This method normally takes a single argument that references a JavaScript function
and registers this function as the event handler for the specified event. The following code frag-
ment presents a typical implementation of this method. As you can see, this method first invokes
the method in step 1 to return a reference to the EventHandlerList object and then invokes the
 addHandler method on this object to register the specified handler for the event with the speci-
fied name.

 add_ EventName : function (handler) {
 var eventHandlerList = this.get_events();
 eventHandlerList.addHandler(“ EventName ”, handler);
}

 3. Support a method named remove_ EventName where the EventName is the place holder for the
name of the event. This method normally takes a single argument that references a JavaScript
function and registers this function as the event handler for the specified event. The following
code fragment presents a typical implementation of this method. As you can see, this method
first invokes the method in step 1 to return a reference to the EventHandlerList object and
then invokes the removeHandler method on this object to remove the specified handler from
the list of event handlers registered for the event with the specified name.

 remove_ EventName : function (handler) {
 var eventHandlerList = this.get_events();
 eventHandlerList.removeHandler(“ EventName ”, handler);
}

c07.indd 271c07.indd 271 8/20/07 8:09:18 PM8/20/07 8:09:18 PM

Chapter 7: Component Development Infrastructure

272

 Because the Component base class implements the get_events method, any class that derives from
the Component base class automatically inherits this method and, consequently, does not need to
 re-implement this method. The class only needs to implement the add_EventName and
remove_EventName methods. Therefore, the new version of the Monitor class does not need to
 implement the get_events method.

 I NotifyPropertyChange
 As discussed earlier and shown in the following code fragment, the Component base class implements the
 INotifyPropertyChange interface and its add_propertyChanged and remove_propertyChanged
methods:

 function Sys$Component$add_propertyChanged(handler) {
 this.get_events().addHandler(“propertyChanged”, handler);
}

function Sys$Component$remove_propertyChanged(handler) {
 this.get_events().removeHandler(“propertyChanged”, handler);
}

 Because the new version of the Monitor class derives from the Component base class, it automatically
inherits these two methods from the base class and, consequently, does not need to implement these two
methods.

 If you derive a custom component from the Component base class, and if your custom component needs
to override the add_ propertyChanged or remove_ propertyChanged method to run some custom
code, your custom component’s implementation of these two methods must use the callBaseMethod
method to invoke the add_ propertyChanged or remove_ propertyChanged method of the
 Component base class. Otherwise, the clients of your custom component will not be able to register or
unregister event handlers for the propertyChanged event of your component.

 I NotifyDisposing
 As discussed earlier and shown in the following code fragment, the Component base class implements
the INotifyDisposing interface and its add_disposing and remove_disposing methods:

 function Sys$Component$add_disposing(handler) {
 this.get_events().addHandler(“disposing”, handler);
}

function Sys$Component$remove_disposing(handler) {
 this.get_events().removeHandler(“disposing”, handler);
}

c07.indd 272c07.indd 272 8/20/07 8:09:18 PM8/20/07 8:09:18 PM

Chapter 7: Component Development Infrastructure

273

 Because the new version of the Monitor class derives from the Component base class, it automatically
inherits these two methods from the base class and, consequently, does not need to implement these two
methods.

 If you derive a custom component from the Component base class, and if your custom component needs
to override the add_disposing or remove_disposing method to run some custom code, your
 custom component’s implementation of these two methods must use the callBaseMethod method to
invoke the add_disposing or remove_disposing method of the Component base class. Other-
wise, the clients of your custom component will not be able to register or un-register event handlers for
the disposing event of your component.

 Listing 7-37 presents the content of the Monitor.js JavaScript file that contains the implementation of
the new version of the Monitor class.

 Listing 7-37: The Content of the Monitor.js JavaScript File that Contains the New
Version of the Monitor Class

 Type.registerNamespace(“CustomComponents”);

CustomComponents.Monitor = function() {
 CustomComponents.Monitor.initializeBase(this);
}

CustomComponents.Monitor.prototype =
{
 print : function(domEvent) {
 this.div.innerHTML = String.format(this.printFormat, this.get_id(),
 domEvent.clientX, domEvent.clientY)
 },

 dispose : function() {
 $removeHandler(document, “mousemove”, this.delegate);
 CustomComponents.Monitor.callBaseMethod(this, “dispose”);
 },

 set_fontSize : function(value) {
 if (value != this.fontSize)
 {
 this.raisePropertyChanged(“fontSize”);
 this.fontSize = value;
 this.div.style.fontSize = this.fontSize + “px”;
 }
 },

 get_fontSize : function() {
 return this.fontSize;
 },

(continued)

c07.indd 273c07.indd 273 8/20/07 8:09:18 PM8/20/07 8:09:18 PM

Chapter 7: Component Development Infrastructure

274

 Listing 7-37 (continued)

 initialize : function() {
 CustomComponents.Monitor.callBaseMethod(this, “initialize”);
 this.printFormat = ”Monitor id: {0}
X-Coordinate: {1}” +
 “
Y-Coordinate: {2}”;
 this.div = document.createElement(“div”);
 document.body.insertBefore(this.div,document.forms[0]);
 this.delegate = Function.createDelegate(this, this.print);
 $addHandler(document, “mousemove”, this.delegate);
 }
}

CustomComponents.Monitor.registerClass(“CustomComponents.Monitor”, Sys.Component);

if(typeof(Sys)!==’undefined’)
 Sys.Application.notifyScriptLoaded();

 As this listing shows, the Monitor class exposes two new methods named get_fontSize and
set_fontSize that allow you to change the font size for the text that displays the current x and y
 coordinates of the mouse pointer:

 set_fontSize : function(value) {
 if (value != this.fontSize)
 {
 this.raisePropertyChanged(“fontSize”);
 this.fontSize = value;
 this.div.style.fontSize = this.fontSize + “px”;
 }
 },

 get_fontSize : function()
 {
 return this.fontSize;
 },

 Note that the set_fontSize method calls the raisePropertyChanged method of the Component
base class, passing in the name of the property — that is, the string value “ fontSize “ — to raise the
 propertyChanged event.

 Next, the print method is modified to use the font size:

 print : function(domEvent) {
 this.div.innerHTML = String.format(this.printFormat, this.get_id(),
 domEvent.clientX, domEvent.clientY)
},

 Finally, the end of the JavaScript file shown in Listing 7-37 contains the following script:

 if(typeof(Sys)!==’undefined’)
 Sys.Application.notifyScriptLoaded();

c07.indd 274c07.indd 274 8/20/07 8:09:19 PM8/20/07 8:09:19 PM

Chapter 7: Component Development Infrastructure

275

 You must always include this script at the end of JavaScript files that contain the required scripts for
your ASP.NET AJAX application. As you can see, this script invokes the notifyScriptLoaded method
on the current Application object to notify the object that the loading of the current JavaScript file is
completed.

 Listing 7-38 presents a page that uses the new version of the Monitor class.

 Listing 7-38: A Page that Uses the New Version of the Monitor Class

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 var monitor;

 function disposingcb()
 {
 alert(“The Disposing event was raised!”);
 }

 function propertyChangedcb(sender,e)
 {
 alert(e.get_propertyName() + “ property changed!”);
 }

 function changeFontSize(domEvent)
 {
 var fontSizetxt = $get(“fontSizetxt”);
 monitor.set_fontSize(fontSizetxt.value);
 }

 function changeId(domEvent)
 {
 var id = $get(“id”);
 try
 {
 monitor.set_id(id.value);
 }
 catch (ex)
 {
 alert(ex.message);
 }
 }

(continued)

c07.indd 275c07.indd 275 8/20/07 8:09:19 PM8/20/07 8:09:19 PM

Chapter 7: Component Development Infrastructure

276

 Listing 7-38 (continued)

 function pageLoad()
 {
 var type = CustomComponents.Monitor;
 var properties = {id : “Monitor1”};
 var events = {disposing : disposingcb, propertyChanged : propertyChangedcb};
 var references = null;
 var element = null;

 monitor = $create(type, properties, events, references, element);
 var changeIdbtn = $get(“changeIdbtn”);
 $addHandler(changeIdbtn, “click”, changeId);
 var changeFontSizebtn = $get(“changeFontSizebtn”);
 $addHandler(changeFontSizebtn, “click”, changeFontSize);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”>
 <Scripts>
 <asp:ScriptReference Path=”Monitor.js” />
 </Scripts>
 </asp:ScriptManager>
 Enter new Monitor id: <input type=”text” id=”id” />
 <button id=”changeIdbtn” type=”button”>Change Id</button>

 Enter new font size: <input type=”text” id=”fontSizetxt” />
 <button id=”changeFontSizebtn” type=”button”>
 Change Font Size</button>
 <div>
 </div>
 </form>
</body>
</html>

 As you can see, this pageLoad method invokes the create static method on the Component base class
(recall that $create is shortcut for the create static method), passing in the following five parameters
to instantiate and initialize a Monitor object and to add this object to the current ASP.NET AJAX
application:

 ❑ type : This parameter references the constructor of the Monitor class — CustomComponents
.Monitor . The type information must also contain the complete namespace containment
 hierarchy of the class being instantiated.

 var type = CustomComponents.Monitor;

 The create static method invokes the new operator on this constructor to instantiate the
component.

❑ properties : This parameter is an object whose property values are used to initialize the prop-
erties of the component that have the same names as the properties of the object. Typically, this

c07.indd 276c07.indd 276 8/20/07 8:09:19 PM8/20/07 8:09:19 PM

Chapter 7: Component Development Infrastructure

277

object is a JavaScript object literal that contains one name/value pair for each property being
initialized:

 var properties = {id : “Monitor1”};

 In this case, you’re only initializing the id property of the Monitor class. The Monitor class
 inherits this property from the Component base class.

❑ events : This parameter is an object whose property values are registered as event handlers for
the events of the component that have the same names as the properties of the object. Typically,
this object is a JavaScript object literal that contains one name/value pair for each event of
interest:

 var events = {disposing : disposingcb, propertyChanged : propertyChangedcb};

 In this case, the object literal consists of two name/value pairs:

 ❑ The name part of the first name/value pair contains the word disposing , which is the
name of the Monitor class’s disposing event, and the value part of this pair references
the disposingcb JavaScript function. This instructs the create static method to register the
 disposingcb function as the event handler for the disposing event.

❑ The name part of the second name/value pair contains the word propertyChanged ,
which is the name of the Monitor class’s propertyChanged event, and the value part of
this pair references the propertyChangedcb JavaScript function. This instructs the
 create static method to register the propertyChangedcb function as the event handler
for the propertyChanged event of the newly instantiated Monitor object.

 ❑ references : This parameter is an object whose property values are used to initialize the prop-
erties of the component that have the same names as the properties of the object and reference
other components in the current application. Typically, this object is a JavaScript object literal
that contains one name/value pair for each property being initialized. In this case, the Monitor
class does not expose any properties that reference other components in the current application.
Therefore, you pass null as the value of this parameter:

 var references = null;

 ❑ element : This parameter references the DOM element associated with the component being
 initialized. In this case, the Monitor class is not associated with any DOM elements on the
 current page, so you pass null as the value of this parameter:

 var element = null;

 As you can see, the pageLoad method invokes the create static method and passes the five parameters
into it. The create method instantiates and initializes a Monitor object, adds the object to the current
application, and returns a reference to this object. The pageLoad method stores this reference in a
 variable named monitor for future reference:

 monitor = $create(type, properties, events, references, element);

c07.indd 277c07.indd 277 8/20/07 8:09:20 PM8/20/07 8:09:20 PM

Chapter 7: Component Development Infrastructure

278

 The pageLoad method then registers the changeId JavaScript function as the event handler for the
 click event of the changeIdbtn HTML button:

 var changeIdbtn = $get(“changeIdbtn”);
 $addHandler(changeIdbtn, “click”, changeId);

 Finally, the pageLoad method registers the changeFontSizebtn JavaScript function as the event
 handler for the click event of the changeFontSizebtn HTML button:

 var changeFontSizebtn = $get(“changeFontSizebtn”);
 $addHandler(changeFontSizebtn, “click”, changeFontSize);

 If you run this page, you should see the result shown in Figure 7-4 . As you can see, the page consists of
two text boxes and their associated buttons.

Figure 7-4

 Enter a new value for the font size and click the Change Font Size button. You should see the pop-up
message shown in Figure 7-5 .

Figure 7-5

c07.indd 278c07.indd 278 8/20/07 8:09:20 PM8/20/07 8:09:20 PM

Chapter 7: Component Development Infrastructure

279

 Next, enter a new URL in the address bar of your browser and press Enter to load the new page. The
browser displays the pop-up message shown in Figure 7-6 before it loads the new page. This message
indicates that the Application object automatically invoked the dispose method on the Monitor
object before disposing of the object.

Figure 7-6

 The changeId JavaScript function wraps the call into the set_id method of the Monitor object in a try
block and catches the associated exception in the catch block, as shown in the following code excerpt
from Listing 7-38 :

 function changeId(domEvent)
 {
 var id = $get(“id”);
 try
 {
 monitor.set_id(id.value);
 }
 catch (ex)
 {
 alert(ex.message);
 }
 }

 As discussed earlier and shown again in highlighted portion of the following code fragment, the set_id
method raises an exception if the value of the id is being set twice:

 function Sys$Component$set_id(value) {
 if (this._idSet)

 throw Error.invalidOperation(Sys.Res.componentCantSetIdTwice);

 this._idSet = true;
 var oldId = this.get_id();
 if (oldId && Sys.Application.findComponent(oldId))
 throw Error.invalidOperation(Sys.Res.componentCantSetIdAfterAddedToApp);
 this._id = value;
}

c07.indd 279c07.indd 279 8/20/07 8:09:20 PM8/20/07 8:09:20 PM

Chapter 7: Component Development Infrastructure

280

 The create static method of the Component base class sets the specified properties of the component to
the specified values (previously shown in Listing 7-5). Because Listing 7-39 invokes the set_id method
after the call into the create method — that is, after id property value is set — the set_id method
invoked within the changeId JavaScript function shown in Listing 7-39 is bound to raise an exception.
To see this in action, run the application again. Enter a new id for the Monitor and click the Change
Monitor Id button. This should pop up the alert shown in Figure 7-7 .

Figure 7-7

 Summary
 This chapter presented some of the important classes and interfaces that make up the ASP.NET AJAX
component-development framework. This chapter also provided in-depth coverage of the two main
classes of the ASP.NET AJAX component-development infrastructure: the _Application and
 Component classes. The next chapter presents a breed of components named client controls.

c07.indd 280c07.indd 280 8/20/07 8:09:21 PM8/20/07 8:09:21 PM

 Developing Client Controls
 As discussed in the previous chapter, the Component class is the base class for all ASP.NET AJAX
components. The ASP.NET AJAX client-side framework includes two important subclasses of
the Component base class: Sys.UI.Control and Sys.UI.Behavior . Therefore, when it comes
to choosing a base class from which to derive your component class, you have three options:
 Component , Control , and Behavior . The previous chapter showed you how to implement an
ASP.NET AJAX component that derives from the Component base class. This chapter first provides
you with in-depth coverage of the Control class and its methods, properties, and events. Then it
provides you with a recipe for developing ASP.NET AJAX components that derive from the
 Control class. Finally, it uses this recipe to implement a custom control class.

 Control
 This section discusses the methods and properties of the Control base class. Because your custom
controls must override the members of the Control class, you need to have a good understanding
of what each member does and how you should override them to provide your own implementa-
tion for these members.

 Definition
 Listing 8-1 presents the definition of the Control class. Note that this code listing registers the
 Control class as the subclass of the Component base class:

 Sys.UI.Control.registerClass(‘Sys.UI.Control’, Sys.Component);

 The Control class exposes several methods and properties, which are discussed in the following
sections. This section discusses the constructor of the class.

c08.indd 281c08.indd 281 8/20/07 6:05:04 PM8/20/07 6:05:04 PM

Chapter 8: Developing Client Controls

282

 Listing 8-1: The Definition of the Control Class

 Sys.UI.Control = function SysUIControl(element) {
 if (typeof(element.control) != ‘undefined’)
 throw Error.invalidOperation(Sys.Res.controlAlreadyDefined);

 Sys.UI.Control.initializeBase(this);
 this._element = element;
 element.control = this;
 this._oldDisplayMode = this._element.style.display;
 if (!this._oldDisplayMode || (this._oldDisplayMode == ‘none’))
 this._oldDisplayMode=’’;
}

Sys.UI.Control.prototype={
 _ parent: null,
 _visibilityMode: Sys.UI.VisibilityMode.hide,
 get_element: SysUIControl$get_element,
 get_id: SysUIControl$get_id,
 set_id: SysUIControl$set_id,
 get_parent: SysUIControl$get_parent,
 set_parent: SysUIControl$set_parent,
 get_visibilityMode: SysUIControl$get_visibilityMode,
 set_visibilityMode: SysUIControl$set_visibilityMode,
 get_visible: SysUIControl$get_visible,
 set_visible: SysUIControl$set_visible,
 addCssClass: SysUIControl$addCssClass,
 dispose: SysUIControl$dispose,
 initialize: SysUIControl$initialize,
 onBubbleEvent: SysUIControl$onBubbleEvent,
 raiseBubbleEvent: SysUIControl$raiseBubbleEvent,
 removeCssClass: SysUIControl$removeCssClass,
 toggleCssClass: SysUIControl$toggleCssClass
}

Sys.UI.Control.registerClass(‘Sys.UI.Control’, Sys.Component);

 As you can see, the constructor of the Control class takes a single argument that references the DOM
element that the Control instance being instantiated will represent. You can think of the Control
instance as the ASP.NET AJAX representation of the DOM element. Consequently, the DOM element that
the Control instance is supposed to represent must already exist in the document where the Control
instance is instantiated.

 Notice that the constructor assigns the newly instantiated Control instance to the control property of
the DOM element, signifying that the DOM element knows which ASP.NET AJAX Control object repre-
sents it:

 element.control = this;

c08.indd 282c08.indd 282 8/20/07 6:05:05 PM8/20/07 6:05:05 PM

Chapter 8: Developing Client Controls

283

 As a result, every DOM element can be represented by only one Control object. To enforce this
 requirement, the constructor first checks whether the control property of the specified DOM element
already references an object. If so, the constructor raises an exception:

 if (typeof(element.control) != ‘undefined’)
 throw Error.invalidOperation(Sys.Res.controlAlreadyDefined);

 Note that the constructor calls the initializeBase method, passing in the reference to the Control
instance being instantiated to invoke the constructor of its base class, which is the Component base class:

 Sys.UI.Control.initializeBase(this);

 The constructor stores the DOM element passed into it in a field named _element :

 this._element = element;

 The constructor then stores the value of the display property of the style property of the DOM element
in another field named _oldDisplayMode :

 this._oldDisplayMode = this._element.style.display;
 if (!this._oldDisplayMode || (this._oldDisplayMode == ‘none’))
 this._oldDisplayMode=’’;

 get_element
 The get_element method of the Control class returns a reference to the DOM element that the
 Control represents, as shown in Listing 8-2 .

 Listing 8-2: The get_element Method of the Control Class

 function SysUIControl$get_element() {
 return this._element;
}

 get_id
 As discussed in the previous chapter, the Component base class exposes a property named id whose
value uniquely identifies a component among other components stored in the Application object’s
 _components collection. Because the Control class derives from the Component base class, every
 Control object is also a Component object and consequently is added to the _components collection of
the Application object. This means that every Control object must have a unique id value.

 Because a Control object is an ASP.NET AJAX representation of a DOM element in an ASP.NET AJAX
application, it makes lot of sense to use the value of the DOM element’s id HTML attribute as the id of
the Control object that represents the DOM element. Therefore, the Control class overrides the get_id
method that it inherits from its base class (the Component class) to return the value of the id attribute of
the DOM element that the Control represents, as shown in Listing 8-3 .

c08.indd 283c08.indd 283 8/20/07 6:05:05 PM8/20/07 6:05:05 PM

Chapter 8: Developing Client Controls

284

 Listing 8-3: The get_id Method of the Control Class

 function SysUIControl$get_id() {
 if (!this._element)
 return ‘’;
 return this._element.id;
}

 set_id
 Because the value of a Control object’s id property is the same as the value of the id HTML attribute of
the DOM element that the Control object represents, the id property of the Control object cannot be
set. Therefore, the Control class overrides the set_id method that it inherits from the Component base
class to raise an InvalidOperation exception. This exception informs the client of a Control object
that calls this method that setting the value of the id property of the Control object is an invalid opera-
tion, as shown in Listing 8-4 .

 Listing 8-4: The set_id Method of the Control Class

 function SysUIControl$set_id(value) {
 throw Error.invalidOperation(Sys.Res.cantSetId);
}

 set_parent
 The Control class exposes a property named parent that references the parent Control object of a
 Control object. The Control class features a method named set_parent that allows you to specify
another Control object as the parent of the Control object on which this method is invoked, as shown
in Listing 8-5 .

 Listing 8-5: The set_parent Method of the Control Class

 function SysUIControl$set_parent(value) {
 var parents = [this];
 var current = value;
 while (current) {
 if (Array.contains(parents, current))
 throw Error.invalidOperation(Sys.Res.circularParentChain);

 parents[parents.length] = current;
 current = current.get_parent();
 }
 this._parent = value;
}

c08.indd 284c08.indd 284 8/20/07 6:05:06 PM8/20/07 6:05:06 PM

Chapter 8: Developing Client Controls

285

 get_parent
 The Control class exposes a method named get_parent that returns the parent Control object of a
 Control object on which this method is invoked, as shown in Listing 8-6 .

 Listing 8-6: The get_parent Method of the Control Class

 function SysUIControl$get_parent() {
 if (this._parent)
 return this._parent;

 else
 {
 var parentElement = this._element.parentNode;
 while (parentElement)
 {
 if (parentElement.control)
 return parentElement.control;

 parentElement = parentElement.parentNode;
 }
 return null;
 }
}

 As you can see in this listing, the get_parent method returns the value of the _parent property of the
 Control object on which the method is invoked if the value of this property has been set:

 if (this._ parent)
 return this._ parent;

 However, if the value of the _ parent property of the Control object has not been specified, the
get_parent method searches upward through the containment hierarchy of the DOM element that the
 Control object represents for the first DOM element whose control property has been specified and
returns the value of this control property as the parent Control object. As previously shown in Listing
 8-2 , the value of a control property of a DOM element references the Control object that represents the
DOM element.

 Therefore, if the value of the parent property of the Control object that represents a DOM element is
not explicitly specified, the Control object that represents the first parent DOM element in the contain-
ment hierarchy of the DOM element will be used as the parent Control object of the DOM element.

 As Listing 8-6 shows, if the parent property of the Control object that represents a DOM element is not
specified, and no parent DOM element in the containment hierarchy of the DOM element is repre-
sented by a Control object, the get_parent method returns null . This means that it is possible to have
a Control object without a parent.

c08.indd 285c08.indd 285 8/20/07 6:05:06 PM8/20/07 6:05:06 PM

Chapter 8: Developing Client Controls

286

 get_visibilityMode
 The Control class exposes a property of type VisibilityMode named visibilityMode . Listing 8-7
presents the definition of the VisibilityMode type. As you can see, the VisibilityMode is an enu-
meration with two possible values: hide and collapse .

 Listing 8-7: The VisibilityMode Type

 Sys.UI.VisibilityMode = function SysUIVisibilityMode() {
 throw Error.notImplemented();
}

Sys.UI.VisibilityMode.prototype = {
 hide: 0,
 collapse: 1
}

Sys.UI.VisibilityMode.registerEnum(“Sys.UI.VisibilityMode”);

 The get_visibilityMode method of the Control class returns the value of the visibilityMode
property of the Control , as shown in Listing 8-8 .

 Listing 8-8: The get_visibilityMode Method of the Control Class

 function SysUIControl$get_visibilityMode() {
 return this._visibilityMode;
}

 get_visible
 The Control class contains a method named get_visible that returns the visibility status of the DOM
element that the current Control object represents, as shown in Listing 8-9 . In other words, the visibility
status of a Control object is same as the visibility status of the DOM element that the Control object
represents.

 Listing 8-9: The get_visible Method of the Control Class

 function SysUIControl$get_visible() {
 return (this._element.style.visibility != ‘hidden’);
}

 set_visibilityMode
 The set_visibilityMode method of the Control class enables you to set the value of the visibili-
tyMode property of the Control object on which this method is invoked, as shown in Listing 8-10 . Due
to the fact that a Control object is an ASP.NET AJAX representation of a DOM element, setting its prop-
erties affects the DOM element that it represents. In this case, setting the visibilityMode property of a

c08.indd 286c08.indd 286 8/20/07 6:05:06 PM8/20/07 6:05:06 PM

Chapter 8: Developing Client Controls

287

 Control object changes the value of the display property of the DOM element’s style property if the
DOM element is invisible. More specifically, if the visibilityMode property is set to the enumeration
value VisibilityMode.hide , the display property reverts to its original value. The constructor of the
 Control class stores the original value of the display property of the DOM element’s style property
in a field named _oldDisplayMode . If the visibilityMode property is set to the enumeration value
 VisibilityMode.collapse , the display property of the DOM element’s style property is
set to none .

 Listing 8-10: The set_visibilityMode Method of the Control Class

 function SysUIControl$set_visibilityMode(value)
{
 if (this._visibilityMode !== value)
 {
 this._visibilityMode = value;
 if (this.get_visible() === false)
 {
 if (this._visibilityMode === Sys.UI.VisibilityMode.hide)
 this._element.style.display = this._oldDisplayMode;

 else
 this._element.style.display = ’none’;
 }
 }
 this._visibilityMode = value;
}

 set_visible
 Listing 8-11 presents the internal implementation of the set_visible method of the Control class. As
you can see, the visible property of a Control object basically reflects the visibility property of the
 style property of the DOM element that the Control object represents. In other words, the visible
property of a Control object allows you to treat the visibility of the underlying DOM element as a Bool-
ean value as opposed to a string value such as visible or hidden .

 Listing 8-11: The set_visible Method of the Control Class

 function SysUIControl$set_visible(value) {
 if (value != this.get_visible())
 {
 this._element.style.visibility = value ? ‘visible’ : ‘hidden’;
 if (value || (this._visibilityMode === Sys.UI.VisibilityMode.hide))
 this._element.style.display = this._oldDisplayMode;

 else
 this._element.style.display=’none’;
 }
}

c08.indd 287c08.indd 287 8/20/07 6:05:07 PM8/20/07 6:05:07 PM

Chapter 8: Developing Client Controls

288

 add CssClass
 When this method is invoked on a Control object, it calls the addCssClass static method on the
 DomElement class to add the specified CSS class to the DOM element that the Control object represents,
as shown in Listing 8-12 .

 Listing 8-12: The add CssClass Method of the Control Class

 function SysUIControl$addCssClass(className) {
 Sys.UI.DomElement.addCssClass(this._element, className);
}

 remove CssClass
 When this method is invoked on a Control object, it calls the removeCssClass static method on the
 DomElement class to remove the specified CSS class from the DOM element that the Control object
 represents, as shown in Listing 8-13 .

 Listing 8-13: The remove CssClass Method of the Control Class

 function SysUIControl$removeCssClass(className) {
 Sys.UI.DomElement.removeCssClass(this._element, className);
}

 toggle CssClass
 When this method is called on a Control object, it calls the toggleCssClass static method on the
 DomElement class to toggle the specified CSS class of the DOM element that the Control object repre-
sents, as shown in Listing 8-14 . What this means is that if the DOM element already contains the speci-
fied CSS class, the toggleCssClass method removes the CSS class. Otherwise, the method adds the
CSS class to the DOM element.

 Listing 8-14: The toggle CssClass Method of the Control Class

 function SysUIControl$toggleCssClass(className) {
 Sys.UI.DomElement.toggleCssClass(this._element, className);
}

 dispose
 The Control class overrides the dispose method that it inherits from the Component base class, as
shown in Listing 8-15 . This method calls the delete method on the element property that references
the DOM element that the current Control object represents.

c08.indd 288c08.indd 288 8/20/07 6:05:07 PM8/20/07 6:05:07 PM

Chapter 8: Developing Client Controls

289

 Listing 8-15: The dispose Method of the Control Class

 function SysUIControl$dispose() {
 Sys.UI.Control.callBaseMethod(this, ‘dispose’);
 if (this._element)
 {
 this._element.control = undefined;
 delete this._element;
 }
}

 on BubbleEvent
 The Control base class in the ASP.NET Framework exposes a method named OnBubbleEvent that its
subclasses can override to catch the events that their child controls bubble up. For example, the
 GridViewRow class overrides the OnBubbleEvent method to catch the Command events that its child
Image, Button, or Link controls bubble up.

 The ASP.NET AJAX Control base class exposes a method named onBubbleEvent that emulates the
 OnBubbleEvent method of the ASP.NET Control base class. This means that your custom client control
can override this method to catch the events that its child Control objects bubble up, as shown in
 Listing 8-16 .

 Listing 8-16: The on BubbleEvent Method of the Control Class

 function SysUIControl$onBubbleEvent(source, args) {
 return false;
}

 As the listing shows, the onBubbleEvent method takes two arguments and returns a Boolean value. The
first argument references the child Control object that bubbled up the event. The second argument is of
type EventArgs . As mentioned, the OnBubbleEvent method allows your custom client control to catch
the events that its child controls bubble up. What your custom client control does with the events that
it catches is up to your custom control. Normally, your custom client control is only interested in
certain types of events. It’s the responsibility of your custom client control’s implementation of the
 onBubbleEvent method to use the second argument of the method to determine the type of the event.
If the event is not of the type that your custom control is interested in, your custom control’s implemen-
tation of the method must return false to allow the event to bubble further up in the containment hier-
archy of your control. However, if the event is indeed of the type that your custom control is interested
in, your custom control must return true to stop the event from bubbling further up the containment
hierarchy (as shown later in this chapter).

 In Listing 8-16 , the onBubbleEvent method of the Control base class returns false to allow the event
to bubble further up in the containment hierarchy.

c08.indd 289c08.indd 289 8/20/07 6:05:07 PM8/20/07 6:05:07 PM

Chapter 8: Developing Client Controls

290

 raise BubbleEvent
 The ASP.NET Control base class exposes a method named RaiseBubbleEvent that its subclasses can
invoke to bubble up their events. For example, the GridViewRow control calls this method to bubble its
events up to the containing GridView control, where the GridView control catches these events in its
 OnBubbleEvent method.

 The ASP.NET AJAX Control base class exposes a method named raiseBubbleEvent that emulates the
 RaiseBubbleEvent method of the ASP.NET Control base class. Your custom client control can call this
method to bubble its events up to its containing controls. You’ll see an example of this later in this
chapter.

 Now let’s take a look at the internal implementation of the Control base class’s raiseBubbleEvent
method, which is shown in Listing 8-17 .

 Listing 8-17: The raise BubbleEvent Method of the Control Class

 function SysUIControl$raiseBubbleEvent(source, args) {
 var currentTarget = this.get_ parent();
 while (currentTarget) {
 if (currentTarget.onBubbleEvent(source, args))
 return;

 currentTarget = currentTarget.get_ parent();
 }
}

 As you can see, this method marches upward through the containment hierarchy of the control that
invokes the raiseBubbleEvent and keeps calling the onBubbleEvent method on each node of the
hierarchy until it reaches the node whose onBubbleEvent method returns true . The onBubbleEvent
method of a client control returns true when it catches an event that it can handle.

 Developing Custom Client Controls
 An ASP.NET AJAX client control is an ASP.NET AJAX client component that directly or indirectly
derives from the Control base class. You can think of an ASP.NET AJAX client control as an ASP.NET
AJAX representation of a specific DOM element on a page.

 The ASP.NET AJAX client controls essentially emulate their corresponding ASP.NET server controls.
Most basic ASP.NET server controls, such as Label and Image , are ASP.NET representations of DOM
elements. These representations enable you to program against the underlying DOM elements using the
ASP.NET/.NET Framework. In other words, these representations enable you to treat DOM elements as
.NET objects.

 The ASP.NET AJAX client controls play a similar role in the client-side programming. These controls are
the ASP.NET AJAX representations of DOM elements, allowing you to program against these elements
using the ASP.NET AJAX Framework. In other words, these representations enable you to treat DOM
elements as ASP.NET AJAX objects.

c08.indd 290c08.indd 290 8/20/07 6:05:08 PM8/20/07 6:05:08 PM

Chapter 8: Developing Client Controls

291

 Every ASP.NET AJAX client control emulates its corresponding ASP.NET server control as much as
 possible. As such, they expose similar methods and properties as their server counterparts.

 The ASP.NET AJAX client-side framework includes with a Sys.Preview namespace defined as follows:

 Type.registerNamespace(‘Sys.Preview’);

 The Sys.Preview namespace contains a UI namespace defined as follows:

 Type.registerNamespace(‘Sys.Preview.UI’);

 The Sys.Preview.UI namespace contains several client controls that directly or indirectly derive from
the ASP.NET AJAX Control base class. The following sections walk you through the code for these cli-
ent controls to help you gain the skills you need to develop your own custom client controls. You’ll also
take a look at the code for Web pages that use these client controls.

 Label Client Control
 The ASP.NET AJAX Label client control is the ASP.NET AJAX representation of the HTML ele-
ment. The Label client control derives from the Control base class and extends its functionality to add
support for two new properties named htmlEncode and text . The following sections discuss the mem-
bers of the Label client control.

 Constructor
 Listing 8-18 presents the implementation of the constructor of the Label client control. Note that this
constructor takes a single argument, which references the DOM span element that the Label control
represents.

 Listing 8-18: The Constructor of the Label Client Control

 Sys.Preview.UI.Label = function Sys$Preview$UI$Label(associatedElement)
{
 Sys.Preview.UI.Label.initializeBase(this, [associatedElement]);
}

Sys.Preview.UI.Label.registerClass(‘Sys.Preview.UI.Label’,Sys.UI.Control);

 This constructor calls the initializeBase method to invoke the constructor of its base class—
 Control —passing in the reference to the DOM element that the Label control represents.

 html Encode
 The Label client control exposes a getter method named get_htmlEncode and a setter method named
 set_htmlEncode that respectively get and set the value of the htmlEncode Boolean property of the con-
trol, as shown in Listing 8-19 .

c08.indd 291c08.indd 291 8/20/07 6:05:08 PM8/20/07 6:05:08 PM

Chapter 8: Developing Client Controls

292

 Listing 8-19: The Getter and Setter Methods of the html Encode Property

 function Sys$Preview$UI$Label$get_htmlEncode()
{
 return this._htmlEncode;
}

function Sys$Preview$UI$Label$set_htmlEncode(value)
{
 this._htmlEncode = value;
}

 text
 Listing 8-20 presents the implementation of the Label control’s get_text getter method, which returns
the value of the text property of the control.

 Listing 8-20: The get_text Getter Method of the Label Control

 function Sys$Preview$UI$Label$get_text()
{
 var element = this.get_element();

 if (this._htmlEncode)
 return element.innerText;
 else
 return element.innerHTML;
}

 This method first calls the get_element method to return a reference to the DOM element that the
 Label control represents:

 var element = this.get_element();

 The Label control inherits the get_element method from its base class— Control .

 Next, the get_text method checks whether the value of the htmlEncode property is set to true . If so, it
returns the value of the innerText property of the DOM element that the Label control represents:

 if (this._htmlEncode)
 return element.innerText;

 If not, it returns the value of the innerHTML property of the DOM element that the Label control
represents:

 else
 return element.innerHTML;

 Listing 8-21 presents the implementation of the set_text method of the Label control.

c08.indd 292c08.indd 292 8/20/07 6:05:08 PM8/20/07 6:05:08 PM

Chapter 8: Developing Client Controls

293

 Listing 8-21: The set_text Method of the Label Control

 function Sys$Preview$UI$Label$set_text(value)
{
 if (!value)
 value=””;

 var element = this.get_element();
 if (this._htmlEncode)
 {
 if (element.innerText !== value)
 {
 element.innerText = value;
 this.raisePropertyChanged(‘text’);
 }
 }

 else
 {
 if (element.innerHTML !== value)
 {
 element.innerHTML = value;
 this.raisePropertyChanged(‘text’);
 }
 }
}

 This method first calls the get_element method of its base class to return a reference to the DOM
 element that the Label control represents:

 var element = this.get_element();

 Next, it checks whether the value of the Label control’s htmlEncode property has been set to true .
If so, it assigns the new value to the innerText property of the DOM element and calls the
 raisePropertyChanged method to raise the propertyChanged event:

 element.innerText = value;
this.raisePropertyChanged(‘text’);

 The Label control inherits the raisePropertyChanged method from the Component base class.

 If the htmlEncode property has been set to false, get_text assigns the new value to the innerHTML
property of the DOM element and calls the raisePropertyChanged method to raise the
 propertyChanged event.

 The get_text and set_text methods of the Label control constitute convenient wrappers around the
 innerText and innerHTML properties of the DOM element that the control represents.

 If you’re wondering how the get_text and set_text methods work in a browser such as Firefox that
does not support the innerText property, the answer lies in the Mozilla compatibility layer of the ASP.
NET AJAX client-side framework, which includes the logic that adds the support for this property. Refer
to the PreviewScripts.js JavaScript file for more information on the Mozilla compatibility layer.

c08.indd 293c08.indd 293 8/20/07 6:05:09 PM8/20/07 6:05:09 PM

Chapter 8: Developing Client Controls

294

 prototype
 As Listing 8-22 shows, the get_htmlEncode , set_htmlEncode , get_text , and set_text methods of
the Label client control are directly defined on the prototype property of the control. This means that
these methods are instance methods and must be invoked on the instances of the Label control class, not
the class itself.

 Listing 8-22: The prototype Property of the Label Control

 Sys.Preview.UI.Label.prototype =
{
 _htmlEncode: false,
 get_htmlEncode: Sys$Preview$UI$Label$get_htmlEncode,
 set_htmlEncode: Sys$Preview$UI$Label$set_htmlEncode,
 get_text: Sys$Preview$UI$Label$get_text,
 set_text: Sys$Preview$UI$Label$set_text
}

 descriptor
 Every component, including the Label control, must expose a property named descriptor that refer-
ences an object literal describing the members of the component. The ASP.NET AJAX client-side frame-
work includes a class named TypeDescriptor that uses the descriptor property of a component to
discover its members. In other words, the descriptor property of a component contains metadata
about the type of the component and its members. As such, the descriptor property of a component
must always be defined directly on the component class itself.

 The descriptor property of a component references an object literal that contains one or more name/
value pairs, where each name/value pair describes a specific group of members. The name part of the
name/value pair that describes the properties of a component contains the word properties , and the
value part is an array of object literals where each object literal describes a particular property. In the case
of the Label control, this array contains two object literals, where the first object literal describes the
 htmlEncode property and the second object literal describes the text property (see Listing 8-23). Each
object literal contains two name/value pairs. The name part of the first name/value pair is the word
 name , and the value part is the string that contains the name of the property being described. The name
part of the second name/value pair is the word type , and the value part references the constructor of the
type of the property being described.

 Listing 8-23: The descriptor Property of the Label Control

 Sys.Preview.UI.Label.descriptor =
{
 properties: [{ name: ‘htmlEncode’, type: Boolean },
 { name: ‘text’, type: String }]
}

c08.indd 294c08.indd 294 8/20/07 6:05:09 PM8/20/07 6:05:09 PM

Chapter 8: Developing Client Controls

295

 Using Label Client Control
 Listing 8-24 presents a page that uses the Label client control.

 Listing 8-24: A Page that Uses the Label Client Control

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 var label;

 function clickcb(domEvent)
 {
 var chkbx = $get(“chkbx”);
 label.set_htmlEncode($get(“chkbx”).checked);
 var txtbx = $get(“txtbx”);
 label.set_text(txtbx.value);
 }

 function pageLoad()
 {
 var btn = $get(“btn”);
 $addHandler(btn, “click”, clickcb);
 label = $create(Sys.Preview.UI.Label, null, null, null, $get(“myspan”));
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 </Scripts>
 </asp:ScriptManager>
 <input type=”checkbox” id=”chkbx”/>
 <label for=”chkbx”>Enable HTML encoding</label>

 Enter text: <input type=”text” id=”txtbx” />
 <button id=”btn” type=”button”>Submit</button>

 <div>
 </div>
 </form>
</body>
</html>

c08.indd 295c08.indd 295 8/20/07 6:05:09 PM8/20/07 6:05:09 PM

Chapter 8: Developing Client Controls

296

 Figure 8-1 shows what you’ll see in your browser when you access this page:

 ❑ A check box that allows you to toggle HTML encoding on or off

❑ A text box where you can enter text

❑ A Submit button

❑ A HTML element

Figure 8-2

Figure 8-1

 When you enter a text into the text box and click the Submit button, the callback for the button retrieves
the text and displays it inside the HTML element. Figure 8-2 presents a different scenario from
what’s shown in Figure 8-1 . The text “ ASP.NET AJAX ” is entered in both cases, containing the
opening and closing tags of the HTML element. In Figure 8-1 , however, the HTML encoding is off.
In this case, the opening and closing tags of the HTML element are not HTML-encoded and conse-
quently the HTML element shows the text in bold. In Figure 8-2 , on the other hand, the HTML
encoding is on. In this case, the opening and closing tags of the element are HTML encoded and
 consequently the element displays these tags as if they were normal non-HTML characters.

c08.indd 296c08.indd 296 8/20/07 6:05:10 PM8/20/07 6:05:10 PM

Chapter 8: Developing Client Controls

297

 Note that the page shown in Listing 8-24 contains the following reference:

 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Path=”PrevewScript.js” />

 This script references a JavaScript file named PreviewScripts.js that contains the definition of the
 Label client control. This JavaScript file is embedded in the Microsoft.Web.Preview.dll assembly.
You need to add this assembly to the bin directory of your application. When you install the Microsoft
ASP.NET Futures, it automatically adds the necessary template to the Visual Studio. Therefore, if you
use this template when you’re creating a new Web site, the Microsoft.Web.Preview.dll assembly
will be automatically added to the bin directory of your Web site.

 As Listing 8-24 shows, pageLoad calls the addHandler static method on the DomEvent class to register
the clickcb JavaScript function as the event handler for the click event of the Submit button:

 var btn = $get(“btn”);
$addHandler(btn, “click”, clickcb);

 Then pageLoad instantiates an instance of the Label client control to represent the HTML
element:

 label = $create(Sys.Preview.UI.Label, null, null, null, $get(“myspan”));

 Now let’s walk through the code for the clickcb JavaScript function. This function first uses the $get
global JavaScript function to return a reference to the check box element:

 var chkbx = $get(“chkbx”);

 It then passes the check box status into the set_htmlEncode method of the Label client control:

 label.set_htmlEncode($get(“chkbx”).checked);

 Finally, it calls the set_text method on the Label client control that represents the element to
display the value entered into the text box:

 var txtbx = $get(“txtbx”);
 label.set_text(txtbx.value);

 Image Client Control
 The ASP.NET Image server control is the ASP.NET representation of an image DOM element. As such, it
exposes the width , height , src , and alt properties of this DOM element as the Width , Height ,
 ImageURL , and AlternateText properties on the Image server control itself. This allows you to treat
these DOM properties as properties on the Image server-control.NET object.

 The ASP.NET AJAX Image client control plays the same role in the ASP.NET AJAX client-side frame-
work. It is the ASP.NET AJAX representation of an image DOM element. As such, it exposes the DOM
 width , height , src , and alt properties of this DOM element as the width , height , imageURL , and

c08.indd 297c08.indd 297 8/20/07 6:05:10 PM8/20/07 6:05:10 PM

Chapter 8: Developing Client Controls

298

 alterateText properties on the Image client control itself. This allows you to treat these DOM proper-
ties as properties on an ASP.NET AJAX Image client control object. The following sections discuss the
implementation of the Image client control members.

 Constructor
 As Listing 8-25 shows, the constructor of the Image client control takes a single argument, which
 references the HTML element the Image client control will represent. This constructor simply
calls the initializeBase method to invoke the constructor of its Control base class, passing in the
 reference to the element. The registerClass method is then called to register the Image class as
the subclass of the Control base class.

 Listing 8-25: The Constructor of the Image Client Control

 Sys.Preview.UI.Image =
 function Sys$Preview$UI$Image(associatedElement)
 {
 Sys.Preview.UI.Image.initializeBase(this, [associatedElement]);
 }
 Sys.Preview.UI.Image.registerClass(‘Sys.Preview.UI.Image’, Sys.UI.Control);

 prototype
 Listing 8-26 presents the implementation of the prototype property of the Image client control. In this
implementation, an object literal describing all the instance methods of the control has been assigned to
the prototype property. As discussed in the previous chapter, an instance method of a class is a method
that is directly defined on the prototype property of the class, as opposed to the class itself. An instance
method must always be invoked on an instance of a class, not the class itself.

 Listing 8-26: The prototype Property of the Image Client Control

 Sys.Preview.UI.Image.prototype =
 {
 get_alternateText: Sys$Preview$UI$Image$get_alternateText,
 set_alternateText: Sys$Preview$UI$Image$set_alternateText,
 get_height: Sys$Preview$UI$Image$get_height,
 set_height: Sys$Preview$UI$Image$set_height,
 get_imageURL: Sys$Preview$UI$Image$get_imageURL,
 set_imageURL: Sys$Preview$UI$Image$set_imageURL,
 get_width: Sys$Preview$UI$Image$get_width,
 set_width: Sys$Preview$UI$Image$set_width
 }

 As you can see in this listing, the Image client control exposes four pairs of instance methods. Each pair
allows you to set and get the value of a particular property of the Image class. For example, the
 set_height and get_height instance methods allow you to set and get the value of the height
 property of the Image client control.

 The four properties that the Image client control exposes — width , height , imageURL , and
 alternateText — are given the same names as the corresponding properties of its Image server control
counterpart to make client-side programming feel more like server-side ASP.NET programming.

c08.indd 298c08.indd 298 8/20/07 6:05:10 PM8/20/07 6:05:10 PM

Chapter 8: Developing Client Controls

299

 image URl
 The Image client control exposes two methods named get_imageURL and set_imageURL that allow
you to get and set the value of the src property of the underling DOM element, as shown in Listing 8-27 .
As you can see from this code listing, both methods first call the get_element method to return a
 reference to the element that the Image client control represents. The Image client control inherits
this method from its Control base class.

 Listing 8-27: The set_imageURL and get_imageURL Methods of the Image Client
Control

 function Sys$Preview$UI$Image$get_imageURL()
 {
 return this.get_element().src;
 }

 function Sys$Preview$UI$Image$set_imageURL(value)
 {
 this.get_element().src = value;
 }

 width
 The Image client control exposes two methods named get_width and set_width that allow you to get
and set the value of the width property of the image DOM element that the control represents. As you
can see in Listing 8-28 , these methods are just wrappers around the width property of the DOM element,
which means you can treat this the same way as a property on an ASP.NET AJAX object.

 Listing 8-28: The set_width and get_width Methods of the Image Client Control

 function Sys$Preview$UI$Image$get_width()
 {
 return this.get_element().width;
 }

 function Sys$Preview$UI$Image$set_width(value)
 {
 this.get_element().width = value;
 }

 height
 As you can see in Listing 8-29 , the set_height and get_height methods act as wrappers around the
 height property of the underlying image DOM element. This enables you to treat this as a property on
an ASP.NET AJAX object, which is the Image client control in this case.

 Listing 8-29: The set_height and get_height Methods of the Image Client Control

 function Sys$Preview$UI$Image$get_height()
 {
 return this.get_element().height;

(continued)

c08.indd 299c08.indd 299 8/20/07 6:05:11 PM8/20/07 6:05:11 PM

Chapter 8: Developing Client Controls

300

 Listing 8-29 (continued)

 }
 function Sys$Preview$UI$Image$set_height(value)
 {
 this.get_element().height = value;
 }

 alternate Text
 The get_alternateText and set_alternateText methods allow you to get and set the value of the
 alt property of the image DOM element using the ASP.NET AJAX client-side framework in the same
way as you would to get and set the value of this property using the ASP.NET Framework (see Listing 8-30).

 Listing 8-30: The set_alternateText and get_alternateText Methods of the Image Client
Control

 function Sys$Preview$UI$Image$get_alternateText()
 {
 return this.get_element().alt;
 }

 function Sys$Preview$UI$Image$set_alternateText(value)
 {
 this.get_element().alt = value;
 }

 Using the Image Client Control
 Listing 8-31 presents a page that uses the Image client control. Previously, we implemented a similar page
that showed how to use the Label client control where the page used the following script reference to
 reference the PreviewScript.js JavaScript file embedded in the Microsoft.Web.PreviewScript.dll
assembly:

 <asp:ScriptReference Assembly=”Microsoft.Web.Preview” Name=”PreviewScript.js” />

 As you can see, Listing 8-31 uses the same script reference because the same JavaScript file also contains
the definition of the Image client control.

 Listing 8-31: A Page that uses the Image client control

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>

c08.indd 300c08.indd 300 8/20/07 6:05:11 PM8/20/07 6:05:11 PM

Chapter 8: Developing Client Controls

301

 function pageLoad()
 {
 var type = Sys.Preview.UI.Image;
 var properties = { imageURL: “wroxProgrammerSmall.jpg”,
 alternateText : “Wrox Programmer’s Reference Series”,
 width: 155, height: 58 };
 var events = null;
 var references = null;
 var element = $get(“myImage”);
 $create(type, properties, events, references, element);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 </Scripts>
 </asp:ScriptManager>

 </form>
</body>
</html>

 The pageLoad method uses the $create shortcut method (the shortcut for the create static method
of the Component base class) to instantiate and initialize an Image client control and to add the control
to the _components collection of the Application object that represents the current ASP.NET AJAX
application. pageLoad passes the following parameters into the create method:

 ❑ type : This parameter references the constructor of the component being created, which is the
 Sys.Preview.UI.Image constructor in this case.

❑ properties : This parameter references an object (normally an object literal) that contains the
names and values of the properties of the component being created that you want to initialize.
The create method internally assigns these values to the properties with the specified names.
In this case, the object literal contains four name/value pairs where the name and value parts of
each pair respectively contain the name and value of a particular property of the Image client
control being created:

 var properties = { imageURL: “wroxProgrammerSmall.jpg”,
 alternateText : “Wrox Programmer’s Reference Series”,
 width: 155, height: 58 };

 ❑ events : This parameter references an object (normally an object literal) that specifies the event
handlers that you want to register for events with the specified names. In this case, the events
object is null so any event handlers will be registered.

❑ references : This parameter references an object (normally an object literal) that specifies the
values of the properties of the component being created that reference other components in the
 _components collection of the current Application object. In this case, this object is null

c08.indd 301c08.indd 301 8/20/07 6:05:11 PM8/20/07 6:05:11 PM

Chapter 8: Developing Client Controls

302

 because the Image client control does not expose any properties that reference other compo-
nents of the application.

❑ element : This parameter references the DOM element on the current page that the newly cre-
ated Image client control will represent. In this case, this parameter references the HTML
element with id HTML attribute value of “ myimage“ :

 var element = $get(“myImage”);

 The pageLoad method then invokes the create method, passing in the five parameters to create the
 Image client control:

 $create(type, properties, events, references, element);

 Extending Image Client Control
 In this section, we’ll implement a client control named Image2 that extends the functionality of the
 Image client control to add support for a DHTML feature known as transition . The Image2 client control
will use the transition feature to provide an animated effect when the user moves the mouse pointer over
and out of the DOM image element that the control represents. Because this feature is only supported on
Internet Explorer version 4 (IE4) or higher, we need a way to ensure that the Image2 client control is
used in only IE4 or higher.

 The ASP.NET AJAX client-side framework defines an object named browser , as presented in Listing 8-32 ,
which emulates the HttpBrowserCapabilities class in the ASP.NET Framework.

 Listing 8-32: The browser Object

 Sys.Browser = {};
Sys.Browser.InternetExplorer = {};
Sys.Browser.Firefox = {};
Sys.Browser.Safari = {};
Sys.Browser.Opera = {};
Sys.Browser.agent = null;
Sys.Browser.hasDebuggerStatement = false;
Sys.Browser.name = navigator.appName;
Sys.Browser.version = parseFloat(navigator.appVersion);
if (navigator.userAgent.indexOf(‘ MSIE ‘) > -1)
{
 Sys.Browser.agent = Sys.Browser.InternetExplorer;
 Sys.Browser.version =
 parseFloat(navigator.userAgent.match(/MSIE (\d+\.\d+)/)[1]);
 Sys.Browser.hasDebuggerStatement = true;
}

else if (navigator.userAgent.indexOf(‘ Firefox/’) > -1)
{
 Sys.Browser.agent = Sys.Browser.Firefox;
 Sys.Browser.version =
 parseFloat(navigator.userAgent.match(/ Firefox\/(\d+\.\d+)/)[1]);

c08.indd 302c08.indd 302 8/20/07 6:05:12 PM8/20/07 6:05:12 PM

Chapter 8: Developing Client Controls

303

 Sys.Browser.name = ’Firefox’;
 Sys.Browser.hasDebuggerStatement = true;
}

else if (navigator.userAgent.indexOf(‘ Safari/’) > -1)
{
 Sys.Browser.agent = Sys.Browser.Safari;
 Sys.Browser.version =
 parseFloat(navigator.userAgent.match(/ Safari\/(\d+\.\d+)/)[1]);
 Sys.Browser.name = ’Safari’;
}

else if (navigator.userAgent.indexOf(‘Opera/’) > -1)
{
 Sys.Browser.agent = Sys.Browser.Opera;
}

 As you can see in this listing, the ASP.NET AJAX client-side framework automatically populates the
 browser object with the information about the current browser when the ASP.NET AJAX scripts are
downloaded. The browser object exposes two important properties named agent and version that
specify the type and version of the current browser. The possible values of the agent property are
Sys.Browser.InternetExplorer , Sys.Browser.Firefox , Sys.Browser.Safari , and Sys.Browser
.Opera .

 Now back to the original goal, which is implementing the Image2 client control that supports the
 transition DHTML feature. Listing 8-33 presents the Image2.js JavaScript file that defines the Image2
client control. The following sections discuss all the members of this control.

 Listing 8-33: The Content of the Image2.js File

 Type.registerNamespace(“CustomComponents”);
CustomComponents.Image2 =
function CustomComponents$Image2(associatedElement)
{
 if (Sys.Browser.agent != Sys.Browser.InternetExplorer ||
 Sys.Browser.version < 4)
 throw Error.invalidOperation;

 CustomComponents.Image2.initializeBase(this, [associatedElement]);
 associatedElement.style.filter = ”revealTrans(duration=0.4, transition=1)”;
}

function CustomComponents$Image2$set_imageURL(value)
{
 this.mouseOutImageURL = value;
 CustomComponents.Image2.callBaseMethod(this, “set_imageURL”, [value]);
}

function CustomComponents$Image2$get_mouseOverImageURL()
{
 return this.mouseOverImageURL;
}

(continued)

c08.indd 303c08.indd 303 8/20/07 6:05:12 PM8/20/07 6:05:12 PM

Chapter 8: Developing Client Controls

304

Listing 8-33 (continued)

function CustomComponents$Image2$set_mouseOverImageURL(value)
{
 this.mouseOverImageURL = value;
}

function CustomComponents$Image2$mouseOverCallback ()
{
 this.get_element().filters[“revealTrans”].apply();
 this.get_element().src = this.mouseOverImageURL;
 this.get_element().filters[“revealTrans”].play();
}

function CustomComponents$Image2$mouseOutCallback ()
{
 this.get_element().filters[“revealTrans”].apply();
 this.get_element().src = this.mouseOutImageURL;
 this.get_element().filters[“revealTrans”].play();
}

function CustomComponents$Image2$get_duration()
{
 return this.get_element().filters[“revealTrans”].duration;
}

function CustomComponents$Image2$set_duration(value)
{
 this.get_element().filters[“revealTrans”].duration = value;
 this.get_element().filters[“revealTrans”].apply();
}

function CustomComponents$Image2$get_transition()
{
 return this.get_element().filters[“revealTrans”].transition;
}

function CustomComponents$Image2$set_transition(value)
{
 this.get_element().filters[“revealTrans”].transition = value;
 this.get_element().filters[“revealTrans”].apply();
}

function CustomComponents$Image2$initialize()
{
 CustomComponents.Image2.callBaseMethod(this, “initialize”);
 this.mouseOverDelegate = Function.createDelegate(this,
 this.mouseOverCallback);
 this.mouseOutDelegate = Function.createDelegate(this,
 this.mouseOutCallback);
 $addHandler(this.get_element(), “mouseover”, this.mouseOverDelegate);
 $addHandler(this.get_element(), “mouseout”, this.mouseOutDelegate);
}

c08.indd 304c08.indd 304 8/20/07 6:05:12 PM8/20/07 6:05:12 PM

Chapter 8: Developing Client Controls

305

function CustomComponents$Image2$dispose()
{
 $removeHandler(this.get_element(), “mouseover”, this.mouseoverDelegate);
 $removeHandler(this.get_element(), “mouseout”, this.mouseOutDelegate);
 CustomComponents.Image2.callBaseMethod(this, “dispose”);
}

CustomComponents.Image2.prototype =
{
 set_imageURL: CustomComponents$Image2$set_imageURL,
 get_mouseOverImageURL : CustomComponents$Image2$get_mouseOverImageURL,
 set_mouseOverImageURL : CustomComponents$Image2$set_mouseOverImageURL,
 get_duration : CustomComponents$Image2$get_duration,
 set_duration : CustomComponents$Image2$set_duration,
 get_transition : CustomComponents$Image2$get_transition,
 set_transition : CustomComponents$Image2$set_transition,
 mouseOverCallback : CustomComponents$Image2$mouseOverCallback,
 mouseOutCallback : CustomComponents$Image2$mouseOutCallback,
 initialize : CustomComponents$Image2$initialize
}

CustomComponents.Image2.registerClass(‘CustomComponents.Image2’,
 Sys.Preview.UI.Image);

CustomComponents.Transition = function CustomComponents$Transition()
{
 throw Error.notImplemented();
}

CustomComponents.Transition.prototype =
{
 boxIn : 0,
 boxOut : 1,
 circleIn : 2,
 circleOut : 3,
 wipeUp : 4,
 wipeDown : 5,
 wipeRight : 6,
 wipeLeft : 7,
 verticalBlinds : 8,
 horizontalBlinds : 9,
 checkerboardAcross : 10,
 checkerboardDown : 11,
 randomDissolve : 12,
 splitVerticalIn : 13,
 splitVerticalOut : 14,
 splitHorizontalIn : 15,
 splitHorizontalOut : 16,

(continued)

c08.indd 305c08.indd 305 8/20/07 6:05:13 PM8/20/07 6:05:13 PM

Chapter 8: Developing Client Controls

306

Listing 8-33 (continued)

 stripsLeftDown : 17,
 stripsLeftUp : 18,
 stripsRightDown : 19,
 stripsRightUp : 20,
 randomBarsHorizontal : 22,
 randomBarsVertical : 23,
 randomTransition : 24
}

CustomComponents.Transition.registerEnum(“CustomComponents.Transition”);

if(typeof(Sys)!==’undefined’)
 Sys.Application.notifyScriptLoaded();

 Constructor
 Listing 8-34 presents the implementation of the Image2 client control’s constructor.

 Listing 8-34: The Constructor of the Image2 Client Control

 CustomComponents.Image2 =
function CustomComponents$Image2(associatedElement)
{
 if (Sys.Browser.agent != Sys.Browser.InternetExplorer ||
 Sys.Browser.version < 4)
 throw Error.invalidOperation;

 CustomComponents.Image2.initializeBase(this, [associatedElement]);
 associatedElement.style.filter = “revealTrans(duration=0.4, transition=1)”;
}

CustomComponents.Image2.registerClass(‘CustomComponents.Image2’,
 Sys.Preview.UI.Image);

 The constructor takes a single argument that references the image DOM element that the Image2 client
control represents. The constructor first uses the values of the agent and version properties of the
Sys.Browser object to determine whether the current browser is IE4 or higher. If not, it raises an
 exception, which ensures that the Image2 client control is used only on IE4 or later browsers:

 if (Sys.Browser.agent != Sys.Browser.InternetExplorer ||
 Sys.Browser.version < 4)
 throw Error.invalidOperation;

 Next, the constructor calls the initializeBase method to invoke the constructor of its base class — that
is, the Image client control:

 CustomComponents.Image2.initializeBase(this, [associatedElement]);

c08.indd 306c08.indd 306 8/20/07 6:05:13 PM8/20/07 6:05:13 PM

Chapter 8: Developing Client Controls

307

 The constructor then adds the revealTrans filter to the image DOM element that the Image2 client
control represents:

 associatedElement.style.filter = “revealTrans(duration=0.4, transition=1)”;

 Note that Listing 8-33 registers the Image2 class as the subclass of the Image class:

 CustomComponents.Image2.registerClass(‘Sys.Preview.UI.Image2’,
 Sys.Preview.UI.Image);

 prototype
 Listing 8-35 presents the code for the prototype property of the Image2 client control. This code listing
assigns an object literal to the prototype property. Each name/value pair of this object literal describes
a method of the Image2 client control. These methods are discussed in the following sections.

 Listing 8-35: The prototype Property of the Image2 Client Control

 CustomComponents.Image2.prototype =
{
 set_imageURL: CustomComponents$Image2$set_imageURL,
 get_mouseOverImageURL : CustomComponents$Image2$get_mouseOverImageURL,
 set_mouseOverImageURL : CustomComponents$Image2$set_mouseOverImageURL,
 get_duration : CustomComponents$Image2$get_duration,
 set_duration : CustomComponents$Image2$set_duration,
 get_transition : CustomComponents$Image2$get_transition,
 set_transition : CustomComponents$Image2$set_transition,
 mouseOverCallback : CustomComponents$Image2$mouseOverCallback,
 mouseOutCallback : CustomComponents$Image2$mouseOutCallback,
 initialize : CustomComponents$Image2$initialize
}

 image URL
 The Image2 client control overrides the set_imageURL method that it inherits from the Image client
control and stores the value assigned to the src property of the underlying DOM element in a new field
named mouseOutImageURL , as shown in Listing 8-36 .

 Listing 8-36: The set_imageURL Method of the Image2 Client Control

 function CustomComponents$Image2$set_imageURL(value)
{
 this.mouseOutImageURL = value;
 CustomComponents.Image2.callBaseMethod(this, “set_imageURL”, [value]);
}

 Note that this code calls the callBaseMethod to invoke the set_imageURL method of the base class —
the Image client control. As discussed in the previous sections, the set_imageURL method of the base
class simply assigns the specified value to the src property of the underlying DOM element.

c08.indd 307c08.indd 307 8/20/07 6:05:13 PM8/20/07 6:05:13 PM

Chapter 8: Developing Client Controls

308

 As the name implies, the image whose path is given by the mouseOutImageURL field will be displayed
when the mouse moves out of the image DOM element.

 mouse OverImageURL
 As Listing 8-37 shows, the Image2 client control exposes a property named mouseOverImageURL and
two methods named get_mouseOverImageURL and set_mouseOverImageURL to get and set the value
of this property. The value of this property must be set to the URL of the image that the Image2 client
control will display when the end user moves the mouse pointer over the image DOM element that
the control represents.

 Listing 8-37: The set_mouseOverImage URL and get_mouseOverImage URL Methods

 function CustomComponents$Image2$get_mouseOverImageURL()
{
 return this.mouseOverImageURL;
}

function CustomComponents$Image2$set_mouseOverImageURL(value)
{
 this.mouseOverImageURL = value;
}

 mouse OverCallback
 When the end user moves the mouse pointer over the image DOM element that the Image2 client
 control represents, the mouseOverCallback method shown in Listing 8-38 is automatically invoked.

 Listing 8-38: The mouse OverCallback Method

 function CustomComponents$Image2$mouseOverCallback ()
{
 this.get_element().filters[“revealTrans”].apply();
 this.get_element().src = this.mouseOverImageURL;
 this.get_element().filters[“revealTrans”].play();
}

 This method first calls the apply method on the revealTrans filter of the image DOM element to
 capture the snapshot of the element:

 this.get_element().filters[“revealTrans”].apply();

 It then assigns the value of the mouseOverImageURL property to the src property of the DOM element:

 this.get_element().src = this.mouseOverImageURL;

 Finally, it calls the play method on the revealTrans filter of the DOM element to display the image
whose URL is given by the mouseOverImageURL property in animated fashion:

 this.get_element().filters[“revealTrans”].play();

c08.indd 308c08.indd 308 8/20/07 6:05:14 PM8/20/07 6:05:14 PM

Chapter 8: Developing Client Controls

309

 mouse OutCallback
 When the end user moves the mouse pointer out of the image DOM element that the Image2 client
 control represents, the mouseOutCallback method shown in Listing 8-39 is automatically invoked.

 Listing 8-39: The mouse OutCallback Method

 function CustomComponents$Image2$mouseOutCallback ()
{
 this.get_element().filters[“revealTrans”].apply();
 this.get_element().src = this.mouseOutImageURL;
 this.get_element().filters[“revealTrans”].play();
}

 This method first calls the apply method on the revealTrans filter of the image DOM element to
 capture the snapshot of the element:

 this.get_element().filters[“revealTrans”].apply();

 It then assigns the value of the mouseOutImageURL property to the src property of the DOM element:

 this.get_element().src = this.mouseOutImageURL;

 Finally, it calls the play method on the revealTrans filter of the DOM element to display the image
whose URL is given by the mouseOutImageURL property in animated fashion:

 this.get_element().filters[“revealTrans”].play();

 Duration
 The revealTrans filter exposes a property named duration . As the name implies, the duration prop-
erty is a float value that determines the duration of the animation. As you can see in Listing 8-40 , the
 Image2 client control exposes two methods named get_duration and set_duration that get and set
the value of the duration property of the revealTrans filter. Note that after setting the value of the
property, the set_duration method calls the apply method on the revealTrans filter to take a new
snapshot.

 Listing 8-40: The get_duration and set_duration Methods

 function CustomComponents$Image2$get_duration()
{
 return this.get_element().filters[“revealTrans”].duration;
}

function CustomComponents$Image2$set_duration(value)
{
 this.get_element().filters[“revealTrans”].duration = value;
 this.get_element().filters[“revealTrans”].apply();
}

c08.indd 309c08.indd 309 8/20/07 6:05:14 PM8/20/07 6:05:14 PM

Chapter 8: Developing Client Controls

310

 transition
 The revealTrans filter exposes a property named transition that determines the animation flavor. The
 Image2 client control features two methods named get_transition and set_transition that allow
you to get and set the value of the transition property of the revealTrans filter, as shown in Listing 8-41 .

 Listing 8-41: The get_transition and set_transition Methods

 function CustomComponents$Image2$get_transition()
{
 return this.get_element().filters[“revealTrans”].transition;
}

function CustomComponents$Image2$set_transition(value)
{
 this.get_element().filters[“revealTrans”].transition = value;
 this.get_element().filters[“revealTrans”].apply();
}

 Transition Enumeration
 The transition property of the revealTrans filter takes one of the predefined possible values. As such, it
makes lot of sense to define an enumeration type named Transition as shown in Listing 8-42 . This
ensures that only valid values are used for the transition property.

 Listing 8-42: The Transition Enumeration

 CustomComponents.Transition = function CustomComponents$Transition()
{
 throw Error.notImplemented();
}

CustomComponents.Transition.prototype =
{
 boxIn : 0,
 boxOut : 1,
 circleIn : 2,
 circleOut : 3,
 wipeUp : 4,
 wipeDown : 5,
 wipeRight : 6,
 wipeLeft : 7,
 verticalBlinds : 8,
 horizontalBlinds : 9,
 checkerboardAcross : 10,
 checkerboardDown : 11,
 randomDissolve : 12,
 splitVerticalIn : 13,
 splitVerticalOut : 14,
 splitHorizontalIn : 15,
 splitHorizontalOut : 16,
 stripsLeftDown : 17,

c08.indd 310c08.indd 310 8/20/07 6:05:14 PM8/20/07 6:05:14 PM

Chapter 8: Developing Client Controls

311

 stripsLeftUp : 18,
 stripsRightDown : 19,
 stripsRightUp : 20,
 randomBarsHorizontal : 22,
 randomBarsVertical : 23,
 randomTransition : 24
}

CustomComponents.Transition.registerEnum(“CustomComponents.Transition”);

 initialize
 The Image2 control overrides the initialize method that it inherits from its base class, as shown in
 Listing 8-43 .

 Listing 8-43: The initialize Method

 function CustomComponents$Image2$initialize()
{
 CustomComponents.Image2.callBaseMethod(this, “initialize”);
 this.mouseOverDelegate = Function.createDelegate(this, this.mouseOverCallback);
 this.mouseOutDelegate = Function.createDelegate(this, this.mouseOutCallback);
 $addHandler(this.get_element(), “mouseover”, this.mouseOverDelegate);
 $addHandler(this.get_element(), “mouseout”, this.mouseOutDelegate);
}

 This method begins by invoking the initialize method of its base class:

 CustomComponents.Image2.callBaseMethod(this, “initialize”);

 Next, it creates a delegate that represents the mouseOverCallback method of the Image2 control and
stores this delegate in a private field named mouseOverDelegate for future reference:

 this.mouseOverDelegate = Function.createDelegate(this, this.mouseOverCallback);

 Then, it creates another delegate to represent the mouseOutCallback method of the Image2 control and
stores this delegate in a private field named mouseOutDelegate for future reference:

 this.mouseOutDelegate = Function.createDelegate(this, this.mouseOutCallback);

 Next, it registers the mouseOverDelegate delegate as the event handler for the mouseover event of the
 Image2 control’s associated element. This means that when the end user moves the mouse over this
 element, the element will automatically invoke the mouseOverDelegate delegate, which in turn will
invoke the mouseOverCallback method:

 $addHandler(this.get_element(), “mouseover”, this.mouseOverDelegate);

 Finally, it registers the mouseOutDelegate delegate as the event handler for the mouseout event of the
 Image2 control’s associated element. This means that when the end user moves the mouse out of this

c08.indd 311c08.indd 311 8/20/07 6:05:15 PM8/20/07 6:05:15 PM

Chapter 8: Developing Client Controls

312

element, the element will automatically invoke the mouseOutDelegate delegate, which in turn will
invoke the mouseOutCallback method:

 $addHandler(this.get_element(), “mouseout”, this.mouseOutDelegate);

 dispose
 The Image2 control overrides the dispose method that it inherits from its base class, as shown in Listing
 8-44 . The current Application object automatically calls this method to allow the Image2 control to
perform its final cleanup before the control is disposed of.

 Listing 8-44: The dispose Method

 function CustomComponents$Image2$dispose()
{
 $removeHandler(this.get_element(), “mouseover”, this.mouseoverDelegate);
 $removeHandler(this.get_element(), “mouseout”, this.mouseOutDelegate);
 CustomComponents.Image2.callBaseMethod(this, “dispose”);
}

 As you saw previously in Listing 8-43 , the initialize method registered the mouseOverDelegate and
 mouseOutDelegate delegates as event handlers for the mouseover and mouseout events of the associ-
ated elements of the Image2 control. The dispose method simply removes these two delegates from the
list of event handlers registered for the mouseover and mouseout events. Note that the method finally
uses the callBaseMethod method to invoke the dispose method of its base class. Your custom compo-
nent’s implementation of the dispose method must always invoke the dispose method of its base class
to allow the base class to perform its final cleanup, raise the disposing event, and invoke the event
 handlers registered for this event.

 Using Image2 Client Control
 Listing 8-45 shows a page where the Image2 client control is used.

 Listing 8-45: A Page that Uses the Image2 Client Control

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function pageLoad()
 {
 var type = CustomComponents.Image2;
 var properties = {imageURL : “wroxProgrammerSmall.jpg”,
 alternateText : “Wrox Programmer’s Reference Series”,
 width : 155, height : 58,

c08.indd 312c08.indd 312 8/20/07 6:05:15 PM8/20/07 6:05:15 PM

Chapter 8: Developing Client Controls

313

 mouseOverImageURL : “wroxProfessionalSmall.jpg”, duration : 0.4,
 transition : CustomComponents.Transition.circleIn};
 var events = null;
 var references = null;
 var element = $get(“myImage”);

 $create(type, properties, events, references, element);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 <asp:ScriptReference Path=”Image2.js” />
 </Scripts>
 </asp:ScriptManager>

 </form>
</body>
</html>

 The page shown in this listing uses the <asp:ScriptManager> to register the PreviewScript.js and
 Image2.js JavaScript files:

 <asp:ScriptManager ID=”ScriptManager1” runat=”server”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 <asp:ScriptReference Path=”Image2.js” />
 </Scripts>
 </asp:ScriptManager>

 The pageLoad method passes the following five parameters into the create static method of the
 Component base class, using $create as a shortcut for this method:

❑ type : This parameter references the constructor of the Image2 client control, with the create
method internally applying the new operator on this constructor to instantiate the client control:

 var type = CustomComponents.Image2;

❑ properties . This parameter is an object literal that contains one name/value pair for each
property of the Image2 control to be initialized — which in this case are the property values of
 imageURL , alternateText , width , height , mouseOverImageURL , duration , and
 transition . The create method internally iterates through these name/value pairs and
 assigns the value part of each name/value pair to the property of the Image2 control with the
same name as the name part of the pair.

c08.indd 313c08.indd 313 8/20/07 6:05:15 PM8/20/07 6:05:15 PM

Chapter 8: Developing Client Controls

314

 var properties = {imageURL : “wroxProgrammerSmall.jpg”,
 alternateText : “Wrox Programmer’s Reference Series”,
 width : 155,
 height : 58,
 mouseOverImageURL : “wroxProfessionalSmall.jpg”,
 duration : 0.4,
 transition : CustomComponents.Transition.circleIn};

 ❑ events : Because no event handlers are being registered in this case, this parameter is null :

 var events = null;

❑ references : Because no property that references other components in the current application is
being initialized in this case, this parameter is null :

 var references = null;

❑ element : This parameter references the DOM element that the Image2 control will represent:

 var element = $get(“myImage”);

 The pageLoad method invokes the create method and passes the five parameters into it:

 $create(type, properties, events, references, element);

 HyperLink Client Control
 The ASP.NET AJAX HyperLink client control derives from the Label client control and extends its func-
tionality to enable you to program against the hyperlink DOM element (<a>) using an ASP.NET-like
programming style.

 Constructor
 Listing 8-46 presents the constructor of the HyperLink client control. At the end of this listing, the
 registerClass method is called to register the HyperLink class as the subclass of the Label class.

 Listing 8-46: The Definition of the HyperLink Client Control

 Sys.Preview.UI.HyperLink =
function Sys$Preview$UI$HyperLink(associatedElement)
{
 Sys.Preview.UI.HyperLink.initializeBase(this, [associatedElement]);
}

Sys.Preview.UI.HyperLink.registerClass(‘Sys.Preview.UI.HyperLink’,
 Sys.Preview.UI.Label);

c08.indd 314c08.indd 314 8/20/07 6:05:16 PM8/20/07 6:05:16 PM

Chapter 8: Developing Client Controls

315

 prototype
 As you can see in Listing 8-47 , an object literal has been assigned to the prototype property of
the HyperLink client control. Note that each name/value pair of this object describes a member of the
 HyperLink class.

 Listing 8-47: The prototype Property of the HyperLink Client Control

 Sys.Preview.UI.HyperLink.prototype =
{
 _clickHandler: null,
 get_navigateURL: Sys$Preview$UI$HyperLink$get_navigateURL,
 set_navigateURL: Sys$Preview$UI$HyperLink$set_navigateURL,
 initialize: Sys$Preview$UI$HyperLink$initialize,
 dispose: Sys$Preview$UI$HyperLink$dispose,
 add_click: Sys$Preview$UI$HyperLink$add_click,
 remove_click: Sys$Preview$UI$HyperLink$remove_click,
 _onClick: Sys$Preview$UI$HyperLink$_onClick
}

 navigate URL
 The ASP.NET AJAX HyperLink client control is just like its server counterpart — that is, the ASP.NET
 HyperLink server control exposes a property named navigateURL . As Listing 8-48 shows, the setter
and getter of this property — set_navigateURL and get_navigateURL — simply delegate to the href
property of the DOM element that the HyperLink client control represents. These two .NET-like
 methods enable you to program against the href property using a .NET-like programming style.

 Listing 8-48: The set_navigate URL and get_navigate URL Methods of the HyperLink
Client Control

 function Sys$Preview$UI$HyperLink$get_navigateURL()
{
 return this.get_element().href;
}

function Sys$Preview$UI$HyperLink$set_navigateURL(value)
{
 this.get_element().href = value ? value : “”;
}

 initialize
 As you can see in Listing 8-49 , the HyperLink client control overrides the initialize method that it
inherits from its Label base class.

c08.indd 315c08.indd 315 8/20/07 6:05:16 PM8/20/07 6:05:16 PM

Chapter 8: Developing Client Controls

316

 Listing 8-49: The initialize Method of the HyperLink Client Control

 function Sys$Preview$UI$HyperLink$initialize()
{
 Sys.Preview.UI.HyperLink.callBaseMethod(this, ‘initialize’);
 this._clickHandler = Function.createDelegate(this, this._onClick);
 $addHandler(this.get_element(), “click”, this._clickHandler);
}

 First, the HyperLink client control calls the callBaseMethod method to invoke the initialize
method of its base class:

 Sys.Preview.UI.HyperLink.callBaseMethod(this, ‘initialize’);

 In general, every time you override the initialize method, you must use the callBaseMethod
method from within your implementation of the initialize method to call the base class’s
 initialize method to allow the base class to initialize itself.

 The initialize method then calls the createDelegate method on the Function class to create a
 delegate that represents the _onClick method of the HyperLink client control. This delegate is stored in
a field named _clickHandler for future reference:

 this._clickHandler = Function.createDelegate(this, this._onClick);

 The initialize method then calls the addHandler static method on the DomEvent class to register the
delegate as the event handler for the click event of the DOM element that the HyperLink client control
represents:

 $addHandler(this.get_element(), “click”, this._clickHandler);

 Therefore, when the DOM element is clicked, it automatically invokes the _clickHandler delegate,
which in turn invokes the _onClick method on the HyperLink client control that represents the DOM
element.

 add_click
 Listing 8-50 presents the implementation of the add_click method of the HyperLink client control.

 Listing 8-50: The add_click Method of the HyperLink Client Control

 function Sys$Preview$UI$HyperLink$add_click(handler)
{
 this.get_events().addHandler(“click”, handler);
}

 This method enables you to register an event hander for the click event of the HyperLink client
 control — not the click event of the DOM element that the HyperLink client control represents. Keep in
mind that the HyperLink client control is a wrapper around the DOM element. What the users actually
interacts with is the DOM element, not the HyperLink client control. In other words, when the user
clicks the DOM element, it is the DOM element that raises the click event, not the HyperLink client
control.

c08.indd 316c08.indd 316 8/20/07 6:05:16 PM8/20/07 6:05:16 PM

Chapter 8: Developing Client Controls

317

 You may be wondering what the connection is between the click event of the HyperLink client control
and the click event of the DOM element that the control represents. You’ll learn the answer to this
question shortly. For now, keep in mind that the add_click method of the HyperLink client control
enables you to register an event handler for the click event of the HyperLink client control itself.

 remove_click
 As you can see in Listing 8-51 , the remove_click method of the HyperLink client control is the
 opposite of the add_click method. It removes a specified event handler from the list of event handlers
registered for the click event of the HyperLink client control.

 Listing 8-51: The remove_click Method of the HyperLink Client Control

 function Sys$Preview$UI$HyperLink$remove_click(handler)
{
 this.get_events().removeHandler(“click”, handler);
}

 _on Click
 Listing 8-52 shows the code for the _onClick method of the HyperLink client control.

 Listing 8-52: The_ on Click Method of the HyperLink Client Control

 function Sys$Preview$UI$HyperLink$_onClick()
{
 var handler = this.get_events().getHandler(“click”);
 if (handler)
 handler(this, Sys.EventArgs.Empty);
}

 This method first calls the get_events method to return a reference to the EventHandlerList that
contains all the event handlers for the HyperLink client control events. The HyperLink client control
inherits the get_events method from the Component base class. The _onClick method then invokes
the getHandler method on the EventHandlerList to return a reference to the JavaScript function
whose invocation automatically invokes all the event handlers registered for the HyperLink client
 control’s click event:

 var handler = this.get_events().getHandler(“click”);

 Finally, the _onClick method invokes the JavaScript function, which in turn invokes all the event han-
dlers registered for the HyperLink control’s click event.

 Now let’s put it altogether :

❑ The initialize method of the HyperLink client control registers the _onClick method as the
event handler for the click event of the DOM element that the control represents (shown in
Listing 8-49). This means that when the end user clicks the DOM element, the _onClick method
of the HyperLink client control is automatically invoked.

c08.indd 317c08.indd 317 8/20/07 6:05:17 PM8/20/07 6:05:17 PM

Chapter 8: Developing Client Controls

318

❑ The add_click method of the HyperLink client control adds a specified handler as the event
handler for the click event of the HyperLink client control (shown in Listing 8-50).

❑ The _onClick method of the HyperLink client control calls all the event handlers registered for
the click event of the HyperLink control (shown in Listing 8-52).

 dispose
 The HyperLink client control overrides the dispose method that it inherits from its base class, as shown
in Listing 8-53 .

 Listing 8-53: The dispose Method of the HyperLink Client Control

 function Sys$Preview$UI$HyperLink$dispose()
{
 if (this._clickHandler)
 $removeHandler(this.get_element(), “click”, this._clickHandler);

 Sys.Preview.UI.HyperLink.callBaseMethod(this, ‘dispose’);
}

 The dispose method calls the removeHandler static method on the DomEvent class using
$removeHandler as a shortcut) to remove the _clickHandler delegate from the list of event handlers
registered for the HyperLink client control’s click event. As previously shown in Listing 8-49 ,
the _clickHandler delegate represents the _onClick method of the HyperLink client control.

 descriptor
 The HyperLink client control, like any other client component, exposes a property named descriptor ,
as shown in Listing 8-54 .

 Listing 8-54: The descriptor Property of the HyperLink Client Control

 Sys.Preview.UI.HyperLink.descriptor ={
 properties: [{ name: ‘navigateURL’, type: String }],
 events: [{ name: ‘click’ }]
}

 This code listing assigns an object literal to the descriptor property. This object contains two name/
value pairs. The first name/value pair describes the name and types of the properties of the HyperLink
client control. As discussed, this control exposes a single property of type string named navigateURL :

 properties: [{ name: ‘navigateURL’, type: String }],

 The second name/value pair describes the events that the control exposes. As discussed, the HyperLink
client control exposes a single event named click :

 events: [{ name: ‘click’ }]

c08.indd 318c08.indd 318 8/20/07 6:05:17 PM8/20/07 6:05:17 PM

Chapter 8: Developing Client Controls

319

 Using the HyperLink Client Control
 Listing 8-55 shows a page where the HyperLink client control is used.

 Listing 8-55: A Page that Uses the HyperLink Client Control

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function pageLoad()
 {
 var type = Sys.Preview.UI.HyperLink;
 var properties = { navigateURL: “http://www.wrox.com”,
 text: “ Wrox Web Site ”,
 htmlEncode: false };
 var events = null;
 var references = null;
 var element = $get(“myHyperLink”);
 $create(type, properties, events, references, element);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 </Scripts>
 </asp:ScriptManager>

 </form>
</body>
</html>

 The pageLoad JavaScript function invokes the create static method on the Component base class to
instantiate and initialize an instance of the HyperLink client control to represent the specified <a>
HTML element. pageLoad passes the following object literal into the create method to initialize the
 navigateURL , text , and htmlEncode properties of the HyperLink client control being created.

 var properties = { navigateURL: “http://www.wrox.com”,
 text: “ Wrox Web Site ”,
 htmlEncode: false };

 As discussed earlier, the HyperLink client control inherits the text and htmlEncode methods from the
 Label client control.

 Listing 8-56 shows an example that uses the click event of the HyperLink control.

c08.indd 319c08.indd 319 8/20/07 6:05:17 PM8/20/07 6:05:17 PM

Chapter 8: Developing Client Controls

320

 Listing 8-56: A Page that Uses the Click Event of the HyperLink Client Control

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function clickCallback(domEvent)
 {
 alert(“Click event was raised!”);
 }

 function pageLoad()
 {
 var type = Sys.Preview.UI.HyperLink;
 var properties = { text: “ Click here! ”, htmlEncode: false };
 var events = { click: clickCallback };
 var references = null;
 var element = $get(“myHyperLink”);
 $create(type, properties, events, references, element);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 </Scripts>
 </asp:ScriptManager>

 </form>
</body>
</html>

 The pageLoad method in this code listing invokes the create static method on the Component base
class to instantiate and initialize an instance of the HyperLink control. It passes the following parame-
ters into the create method:

❑ type : This parameter references the constructor of the HyperLink client control. Keep in mind
that the value of this parameter must contain the complete namespace containment hierarchy of
the client component being instantiated.

 var type = Sys.Preview.UI.HyperLink;

 ❑ properties . This parameter is an object literal that specifies the values of the text and
 htmlEncode properties of the HyperLink client control being instantiated.

 var properties = { text: “ Click here! ”, htmlEncode: false };

c08.indd 320c08.indd 320 8/20/07 6:05:18 PM8/20/07 6:05:18 PM

Chapter 8: Developing Client Controls

321

 ❑ events : This parameter is an object literal that specifies the clickCallback JavaScript function
as the function to be registered as event handler for the click event of the HyperLink client con-
trol being instantiated.

 var events = { click: clickCallback };

 ❑ references . This parameter is null because no properties are being initialized that reference
other components of the current application.

 var references = null;

 ❑ element : This parameter references the <a> DOM element with the id HTML attribute value of
“ myHyperLink ”.

 var element = $get(“myHyperLink”);

 Summary
 This chapter first dove into the Control base class and its members. Then it provided you with in-depth
coverage of several standard ASP.NET AJAX client controls. Finally, it showed you how to develop your
own custom client controls. The next chapter moves on to the Button client control and event bubbling.

c08.indd 321c08.indd 321 8/20/07 6:05:18 PM8/20/07 6:05:18 PM

c08.indd 322c08.indd 322 8/20/07 6:05:18 PM8/20/07 6:05:18 PM

 Event Bubbling and Button
Client Control

 This chapter discusses the implementation of the ASP.NET AJAX Button client control and Web
pages that use this control. You’ll also learn how to implement custom client controls that bubble
their events up to their parent client controls, and how to implement custom client controls that
catch the events that their child controls bubble up.

 CommandEventArgs
 As you’ll see later in this chapter, the Button client control raises an event named command when
the user clicks the button. The ASP.NET AJAX CommandEventArgs class is the event data class
for the command event, as defined in Listing 9-1 .

 Listing 9-1: The CommandEventArgs Class

 Sys.Preview.UI.CommandEventArgs =
function Sys$Preview$UI$CommandEventArgs(commandName, argument)
{
 Sys.Preview.UI.CommandEventArgs.initializeBase(this);
 this._commandName = commandName;
 this._argument = argument;
}

function Sys$Preview$UI$CommandEventArgs$get_argument()
{
 return this._argument;
}

function Sys$Preview$UI$CommandEventArgs$get_commandName()
{
 return this._commandName;
}

(continued)

c09.indd 323c09.indd 323 8/21/07 1:02:52 AM8/21/07 1:02:52 AM

Chapter 9: Event Bubbling and Button Client Control

324

Listing 9-1 (continued)

Sys.Preview.UI.CommandEventArgs.prototype =
{
 get_argument: Sys$Preview$UI$CommandEventArgs$get_argument,
 get_commandName: Sys$Preview$UI$CommandEventArgs$get_commandName
}

Sys.Preview.UI.CommandEventArgs.descriptor =
{
 properties: [{name: ‘argument’, type: String, readOnly: true},
 {name: ‘commandName’, type: String, readOnly: true}]
}
Sys.Preview.UI.CommandEventArgs.registerClass(‘Sys.Preview.UI.CommandEventArgs’,
 Sys.EventArgs);

 The CommandEventArgs class exposes two read-only properties of type string named commandName
and argument . The constructor of this class takes two string parameters and assigns them to these two
properties:

 Sys.Preview.UI.CommandEventArgs =
function Sys$Preview$UI$CommandEventArgs(commandName, argument)
{
 Sys.Preview.UI.CommandEventArgs.initializeBase(this);
 this._commandName = commandName;
 this._argument = argument;
}

 The constructor of this class is the only way to set the values of the commandName and argument
 properties. The CommandEventArgs class comes with two methods named get_commandName and
 get_argument that respectively return the values of the commandName and argument properties of the
 CommandEventArgs .

 The get_commandName and get_argument methods are defined on the prototype property of the
 CommandEventArgs class. As such, they are considered instance methods and must be invoked on a
class instance.

 The CommandEventArgs class, like any other ASP.NET AJAX class, exposes a property named
 descriptor that describes the members of the class. An object literal with a single name/value pair is
assigned to the prototype property. This name/value pair describes the commandName and argument
properties of the CommandEventArgs class.

 Every ASP.NET AJAX event data class must directly or indirectly inherit from the EventArgs base class.
The CommandEventArgs class is no exception:

 Sys.Preview.UI.CommandEventArgs.registerClass(‘Sys.Preview.UI.CommandEventArgs’,
 Sys.EventArgs);

c09.indd 324c09.indd 324 8/21/07 1:02:54 AM8/21/07 1:02:54 AM

Chapter 9: Event Bubbling and Button Client Control

325

 Button Client Control
 The ASP.NET Button server control exposes the following important features:

❑ An event named Command : When the end user clicks a Button server control, the control raises
two events, Click and Command . The event data class associated with the Command event is an
ASP.NET class named CommandEventArgs . When the Button server control invokes an event
handler registered for its Command event, it passes an instance of the CommandEventArgs
event data class into it.

❑ A property named CommandName : The Button server control assigns the value of its Command-
Name property to the CommandName property of the CommandEventArgs object that it passes into
the event handlers registered for its Command event.

❑ A property named CommandArgument : The Button server control optionally assigns the value of
its CommandArgument property to the CommandArgument property of the CommandEventArgs
object that it passes into the event handlers registered for its Command event.

 The ASP.NET AJAX Button client control emulates the ASP.NET Button server control to offer these
three features on the client side, as discussed in the following sections.

 Constructor
 As you can see in Listing 9-2 , the constructor of the Button client control takes a single argument that
references the DOM element that the control represents. The constructor calls the initializeBase
method to invoke the constructor of its base class, passing in the reference to the DOM element. The
 Button client control is then registered as the subclass of the Control base class.

 Listing 9-2: The Constructor of the Button Client Control

 Sys.Preview.UI.Button = function Sys$Preview$UI$Button(associatedElement)
{
 Sys.Preview.UI.Button.initializeBase(this, [associatedElement]);
}

Sys.Preview.UI.Button.registerClass(‘Sys.Preview.UI.Button’, Sys.UI.Control)

 prototype
 As Listing 9-3 shows, the Button client control exposes nine instance methods. They are instance meth-
ods because they’re directly defined on the prototype property of the class. As such, you must invoke
these methods on a class instance.

c09.indd 325c09.indd 325 8/21/07 1:02:55 AM8/21/07 1:02:55 AM

Chapter 9: Event Bubbling and Button Client Control

326

 Listing 9-3: The prototype Property of the Button Client Control

 Sys.Preview.UI.Button.prototype =
{
 _command: null,
 _arg: null,
 _clickHandler: null,
 get_argument: Sys$Preview$UI$Button$get_argument,
 set_argument: Sys$Preview$UI$Button$set_argument,
 get_command: Sys$Preview$UI$Button$get_command,
 set_command: Sys$Preview$UI$Button$set_command,
 initialize: Sys$Preview$UI$Button$initialize,
 dispose: Sys$Preview$UI$Button$dispose,
 add_click: Sys$Preview$UI$Button$add_click,
 remove_click: Sys$Preview$UI$Button$remove_click,
 _onClick: Sys$Preview$UI$Button$_onClick
 }

 argument
 The Button client control exposes a property named argument , which emulates the CommandArgument
property of the Button server control. As Listing 9-4 shows, the get_argument and set_argument
 methods of the Button client control emulate the getter and setter of the Button server control’s
 CommandArgument property.

 Note that the set_argument method calls the raisePropertyChanged method to raise the
 propertyChanged event. The Button client control inherits this method from its base class.

 Listing 9-4: The get_argument and set_argument Methods of the Button Client Control

 function Sys$Preview$UI$Button$get_argument()
{
 return this._arg;
}

function Sys$Preview$UI$Button$set_argument(value)
{
 if (this._arg !== value)
 {
 this._arg = value;
 this.raisePropertyChanged(‘argument’);
 }
}

 command
 As Listing 9-5 shows, the Button client control exposes a property named command and two methods
named get_command and set_command that emulate the CommandName property of the Button server
control and its associated getter and setter methods. Again, note that the set_command method invokes

c09.indd 326c09.indd 326 8/21/07 1:02:55 AM8/21/07 1:02:55 AM

Chapter 9: Event Bubbling and Button Client Control

327

the raisePropertyChanged method to raise the propertyChanged event and, consequently, to invoke
all the event handlers registered for this event.

 Listing 9-5: The get_command and set_command Methods of the Button Client Control

 function Sys$Preview$UI$Button$get_command()
{
 return this._command;
}

function Sys$Preview$UI$Button$set_command(value)
{
 if (this._command !== value)
 {
 this._command = value;
 this.raisePropertyChanged(‘command’);
 }
}

 initialize
 The Button client control overrides the initialize method that it inherits from its base class, as shown
in Listing 9-6 .

 Listing 9-6: The initialize Method of the Button Client Control

 function Sys$Preview$UI$Button$initialize()
{
 Sys.Preview.UI.Button.callBaseMethod(this, ‘initialize’);
 this._clickHandler = Function.createDelegate(this, this._onClick);
 $addHandler(this.get_element(), “click”, this._clickHandler);
}

 The Button client control’s implementation of this method follows the same implementation pattern
as the initialize method of the HyperLink client control discussed in the previous chapter. First, it
calls the callBaseMethod method to invoke the initialize method of its base class. Every time you
implement a client component that overrides the initialize method, your component’s implementa-
tion must always call the callBaseMethod method to invoke the initialize method of its base class
to allow the base class to initialize itself:

 Sys.Preview.UI.Button.callBaseMethod(this, ‘initialize’);

 Next, the initialize method of the Button client control calls the createDelegate method on the
 Function class to create a delegate that represents the _onClick method of the Button control:

 this._clickHandler = Function.createDelegate(this, this._onClick);

 Finally, it calls the addHandler static method on the DomEvent class to register this delegate as an event
handler for the click event of the DOM element that the Button client control represents. This means
that when the end user clicks the DOM element and raises its click event, it automatically invokes this
delegate, which in turn invokes the method that it represents — the _onClick method.

c09.indd 327c09.indd 327 8/21/07 1:02:55 AM8/21/07 1:02:55 AM

Chapter 9: Event Bubbling and Button Client Control

328

 add_click
 Following the same implementation pattern as the HyperLink client control, the Button client control
exposes two methods named add_click and remove_click that allow you to add a specified handler
to and remove a specified handler from the list of handlers registered for the click event of the Button
client control, as shown in Listing 9-7 .

 Listing 9-7: The add_click Method of the Button Client Control

function Sys$Preview$UI$Button$add_click(handler)
{
 this.get_events().addHandler(“click”, handler);
}

function Sys$Preview$UI$Button$remove_click(handler) {
 this.get_events().removeHandler(“click”, handler);
}

 _ on Click
 One of the great things about the ASP.NET Button server control is that it bubbles its Command event up
to its parent server controls. This plays a significant role in composite controls such as GridView and
 DetailsView . Thanks to event bubbling, these composite controls can catch the events raised by their
child controls, such as a Button server control, and expose them as top-level events. This allows these
composite controls to hide their child controls from their clients and consequently act as a single entity.

 The _onClick method of the Button client control emulates the same feature in client-side program-
ming, as shown in Listing 9-8 .

 Listing 9-8: The _ on Click Method of the Button Client Control

 function Sys$Preview$UI$Button$_onClick()
{
 var handler = this.get_events().getHandler(“click”);
 if (handler)
 handler(this, Sys.EventArgs.Empty);

 if (this._command)
 {
 var e = new Sys.Preview.UI.CommandEventArgs(this._command, this._arg);
 this.raiseBubbleEvent(this, e);
 }
}

 This method first calls the get_events method to return a reference to the EventHandlerList that
contains all the event handlers registered for the events that the Button client control exposes. The
 Button client control inherits the get_events method from its base class. Next, the _onClick method
calls the getHandler method on the EventHandlerList to return a JavaScript function whose invoca-
tion automatically invokes all the event handlers registered for the click event of the Button control:

c09.indd 328c09.indd 328 8/21/07 1:02:56 AM8/21/07 1:02:56 AM

Chapter 9: Event Bubbling and Button Client Control

329

 var handler = this.get_events().getHandler(“click”);

 Next, the _onClick method calls this JavaScript function to invoke all the event handlers registered for
the click event:

 handler(this, Sys.EventArgs.Empty);

 So far, there was nothing special about the _onClick method. What makes the _onClick method of the
 Button client control very different from the _onClick method of client controls such as the HyperLink
control is that the _onClick method creates an instance of the CommandEventArgs event data class
 (discussed in the previous section), passing in the values of the command and argument properties of the
 Button client control:

 var e = new Sys.Preview.UI.CommandEventArgs(this._command, this._arg);

 Finally, the _onClick method calls the raiseBubbleEvent method, passing in the CommandEventArgs
event data object to bubble the Button control’s command event up to its parent client control:

 this.raiseBubbleEvent(this, e);

 Keep in mind that every client control inherits the raiseBubbleEvent method from the Control class.
This method provides you with a very nice mechanism to bubble the events of your custom controls to
their parent controls to allow the event handlers of the parent controls to handle these events. This
enables the parent of a child control to catch the events raised by its child controls and expose them as its
own events. This way, the clients of the parent control do not have to deal with the child controls.
Instead, they register their event handlers for the events that the parent control exposes. You’ll see an
example of this later.

 dispose
 As you can see in Listing 9-9 , the Button client control overrides the dispose method of its base class to
remove all the event handlers registered for its click event. Note that the Button control’s implementa-
tion of this method calls the callBaseMethod method to invoke the dispose method of its base class to
allow its base class to do its final cleanup before it is disposed of. Your custom client control’s implemen-
tation of the dispose method must always invoke the dispose method of its base class.

 Listing 9-9: The dispose Method of the Button Client Control

 function Sys$Preview$UI$Button$dispose()
{
 if (this._clickHandler)
 $removeHandler(this.get_element(), “click”, this._clickHandler);

 Sys.Preview.UI.Button.callBaseMethod(this, ‘dispose’);
}

c09.indd 329c09.indd 329 8/21/07 1:02:56 AM8/21/07 1:02:56 AM

Chapter 9: Event Bubbling and Button Client Control

330

 descriptor
 The Button client control, like any ASP.NET AJAX client class, exposes a property named descriptor
that describes the members of the Button control. The value of this property is always an object literal.
As Listing 9-10 shows, this object contains two name/value pairs, where the first name/value pair
describes the properties of the Button control, and the second name/value pair describes the events
that the control exposes. The Button control exposes the command and argument properties and the
 click event.

 Listing 9-10: The descriptor Property of the Button Client Control

 Sys.Preview.UI.Button.descriptor =
{
 properties: [{ name: ‘command’, type: String },
 { name: ‘argument’, type: String }],
 events: [{ name: ‘click’ }]
}

 Using Button Client Control
 This section uses a couple of examples to show you the significance of the Button client control’s
event-bubbling capability. Event bubbling involves two important methods of the Control base class:
 onBubbleEvent and raiseBubbleEvent . It is the responsibility of a child client control to invoke the
 raiseBubbleEvent method to bubble its events to its parent client controls. It is the responsibility of
the parent client control to override the onBubbleEvent method to catch and to optionally handle the
event bubbled up by its child client control.

 Catching a Bubbled Event
 The _onClick method of the Button client control calls the raiseBubbleEvent method to bubble its
 command event up to its parent client controls. The first example shows you a parent client control
named GridView that overrides the onBubbleEvent method to catch the command event that its child
 Button client controls bubble up.

 Listing 9-11 presents the GridView.js JavaScript file that contains the implementation of the GridView
client control.

 Listing 9-11: The GridView.js JavaScript File Containing the GridView Client Control
Implementation

 Type.registerNamespace(“CustomComponents”);

CustomComponents.GridView = function CustomComponents$GridView(associatedElement)
{
 CustomComponents.GridView.initializeBase(this, [associatedElement]);
}

function CustomComponents$GridView$onBubbleEvent(source, args)
{

c09.indd 330c09.indd 330 8/21/07 1:02:56 AM8/21/07 1:02:56 AM

Chapter 9: Event Bubbling and Button Client Control

331

 var handled = false;
 if (args instanceof Sys.Preview.UI.CommandEventArgs)
 {
 switch (args.get_commandName())
 {
 case “Select”:
 alert(args.get_argument() + “ is selected!”);
 handled = true;
 break;
 case “Delete”:
 alert(args.get_argument() + “ is deleted!”);
 handled = true;
 break;
 }
 }
 return handled;
}

CustomComponents.GridView.prototype =
{
 onBubbleEvent : CustomComponents$GridView$onBubbleEvent
}

CustomComponents.GridView.registerClass(“CustomComponents.GridView”,
 Sys.UI.Control);

if(typeof(Sys)!==’undefined’)
 Sys.Application.notifyScriptLoaded();

 As you can see, the GridView client control exposes a constructor and a method named onBubbleEvent
that override the onBubbleEvent method of the Control base class.

 Constructor
 Listing 9-12 shows the constructor of the GridView client control.

 Listing 9-12: The Constructor of the GridView Client Control

 CustomComponents.GridView = function CustomComponents$GridView(associatedElement)
{
 CustomComponents.GridView.initializeBase(this, [associatedElement]);
}

CustomComponents.GridView.registerClass(“CustomComponents.GridView”,
 Sys.UI.Control);

 As with any other ASP.NET AJAX client control, this constructor takes an argument that references the
DOM element that the control represents. It then calls the initializeBase method to invoke the
 constructor of its base class, passing in the reference to the DOM element.

 At the end of this listing, the GridView client control is registered as the subclass of the Control
base class:

 CustomComponents.GridView.registerClass(“CustomComponents.GridView”,
 Sys.UI.Control);

c09.indd 331c09.indd 331 8/21/07 1:02:57 AM8/21/07 1:02:57 AM

Chapter 9: Event Bubbling and Button Client Control

332

 on BubbleEvent
 The GridView client control overrides the onBubbleEvent method of its Control base class, as shown
in Listing 9-13 . Pay close attention to the implementation pattern used to implement the onBubbleEvent
method, because the same pattern is used to implement the onBubbleEvent method of all parent client
controls that need to catch the events raised by their child client controls.

 Listing 9-13: The on BubbleEvent Method of the GridView Client Control

 function CustomComponents$GridView$onBubbleEvent(source, args)
{
 var handled = false;
 if (args instanceof Sys.Preview.UI.CommandEventArgs)
 {
 switch (args.get_commandName())
 {
 case “Select”:
 alert(args.get_argument() + “ is selected!”);
 handled = true;
 break;
 case “Delete”:
 alert(args.get_argument() + “ is deleted!”);
 handled = true;
 break;
 }
 }
 return handled;
}

 As shown in this listing, you take the following steps to implement the onBubbleEvent method of a
parent client control:

 1. Declare a local variable named handled and initialize its value to false :

 var handled = false;

2. Use the instanceof operator to determine whether the event is of the type that the parent
 client control handles. In this case, the GridView client control handles only command events:

 if (args instanceof Sys.Preview.UI.CommandEventArgs)

3. Call the get_commandName method on the second parameter passed into the onBubbleEvent
method to access the command name:

 var commandName = args.get_commandName();

4. Use a switch statement that contains one branch for each command name that the parent client
control handles. In this case the GridView client control handles only the Select and Delete
commands.

5. Handle the event within each branch and set the value of the handled variable to true . The
logic that handles the event can call the get_argument method on the second parameter
passed into the onBubbleEvent method to access the command argument. In this case, the

c09.indd 332c09.indd 332 8/21/07 1:02:57 AM8/21/07 1:02:57 AM

Chapter 9: Event Bubbling and Button Client Control

333

 GridView client control’s handling of the Select and Delete events is pretty simple — the
 control simply calls the alert method to display a message that contains the value returned from
the get_argument method.

6. Return the value of the handled variable to the caller of the onBubbleEvent .

 The caller of the onBubbleEvent method of a parent client control is the raiseBubbleEvent method of
the child client control as shown in the following code snippet from Listing 8-17 . The child client control
calls the raiseBubbleEvent method to bubble its event up to its parent.

 function SysUIControl$raiseBubbleEvent(source, args)
{
 var currentTarget = this.get_parent();
 while (currentTarget) {
 if (currentTarget.onBubbleEvent(source, args))
 return;

 currentTarget = currentTarget.get_parent();
 }
}

 The raiseBubbleEvent method marches upward through the containment hierarchy of the control
that invokes the raiseBubbleEvent and keeps calling the onBubbleEvent method on each node of
the hierarchy until it reaches the node whose onBubbleEvent method returns true . In this case, the
 onBubbleEvent method of the GridView client control returns true after handling the Select and
 Delete events.

 Listing 9-14 contains a Web page that demonstrates the GridView and Button client controls’ event-
bubbling capabilities. Figure 9-1 shows what you’ll see when you access this page.

 Listing 9-14: A Page Showing the GridView and Button Client Controls’ Event-Bubbling
Capabilities

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function pageLoad()
 {
 $create(CustomComponents.GridView, null, null, null, $get(“products”));

 $create(Sys.Preview.UI.Button,
 { command: “Select”, argument: “Product1” },
 null,
 { parent: “products”},
 $get(“product1Selectbtn1”));

(continued)

c09.indd 333c09.indd 333 8/21/07 1:02:57 AM8/21/07 1:02:57 AM

Chapter 9: Event Bubbling and Button Client Control

334

Listing 9-14 (continued)

 $create(Sys.Preview.UI.Button,
 { command: “Delete”, argument: “Product1” },
 null,
 { parent: “products”},
 $get(“product1Deletebtn1”));

 $create(Sys.Preview.UI.Button,
 { command: “Select”, argument: “Product2” },
 null, { parent: “products”}, $get(“product2Selectbtn1”));

 $create(Sys.Preview.UI.Button,
 { command: “Delete”, argument: “Product2” },
 null,
 { parent: “products”},
 $get(“product2Deletebtn1”));
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 <asp:ScriptReference Path=”GridView.js” />
 </Scripts>
 </asp:ScriptManager>
 <table id=”products” style=”background-color:LightGoldenrodYellow;
 border-color:Tan; border-width:1px; color:Black” cellpadding=”0”>
 <tr style=”background-color:Tan; font-weight:bold”>
 <th>Product Name</th>
 <th>Unit Price</th>
 </tr>
 <tr id=”row1”>
 <td>Product1</td>
 <td>$100</td>
 <td><button id=”product1Selectbtn1” type=”button”>Select</button></td>
 <td><button id=”product1Deletebtn1” type=”button”>Delete</button></td>
 </tr>
 <tr id=”row2” style=”background-color:PaleGoldenrod”>
 <td>Product2</td>
 <td>$200</td>
 <td><button id=”product2Selectbtn1” type=”button”>Select</button></td>
 <td><button id=”product2Deletebtn1” type=”button”>Delete</button></td>
 </tr>
 </table>
 </form>
</body>
</html>

c09.indd 334c09.indd 334 8/21/07 1:02:57 AM8/21/07 1:02:57 AM

Chapter 9: Event Bubbling and Button Client Control

335

 This page renders a table with the id HTML attribute value of “products ” that contains two table rows.
Each table row contains two table cells, and each table cell contains a <button> HTML element. There-
fore, altogether you’re looking at four <button> HTML elements with id HTML attribute values of
 product1Selectbtn1 , product1Deletebtn1 , product2Selectbtn1 , and product2Deletebtn1 .
Notice that each <button> HTML element displays either the Select or the Delete text.

 As you can see, we’ve basically hard-coded a table of rows where each row displays one product and
two buttons. One button allows you to select the row and the other button allows you to delete the row.
To keep this discussion focused, the onBubbleEvent method of the GridView client control does not
contain the logic that actually selects or deletes a row. Instead, this method simply calls the alert
method to inform the user that a specified product is selected or deleted (see Listing 9-13).

 <table id=”products” style=”background-color:LightGoldenrodYellow;
 border-color:Tan; border-width:1px; color:Black” cellpadding=”0”>
 <tr style=”background-color:Tan; font-weight:bold”>
 <th>Product Name</th>
 <th>Unit Price</th>
 </tr>
 <tr id=”row1”>
 <td>Product1</td>
 <td>$100</td>
 <td><button id=”product1Selectbtn1” type=”button”>Select</button></td>
 <td><button id=”product1Deletebtn1” type=”button”>Delete</button></td>
 </tr>
 <tr id=”row2” style=”background-color:PaleGoldenrod”>
 <td>Product2</td>
 <td>$200</td>
 <td><button id=”product2Selectbtn1” type=”button”>Select</button></td>
 <td><button id=”product2Deletebtn1” type=”button”>Delete</button></td>
 </tr>
 </table>

Figure 9-1

c09.indd 335c09.indd 335 8/21/07 1:02:58 AM8/21/07 1:02:58 AM

Chapter 9: Event Bubbling and Button Client Control

336

 Now, lets walk though the implementation of the pageLoad method shown in Listing 9-14 . This method
first instantiates an instance of the GridView client control to represent the table DOM element with id
HTML attribute value of “ products ”:

 $create(Sys.Preview.UI.GridView, null, null, null, $get(“products”));

 Then, the method instantiates a Button client control to represent the button DOM element with the id
HTML attribute value of product1Selectbtn1 . This button DOM element allows the user to select the
first row:

 $create(Sys.Preview.UI.Button,
 { command: “Select”, argument: “Product1” },
 null,
 { parent: “products”},
 $get(“product1Selectbtn1”));

 The following object literal is passed as the third argument into the create static method:

 { parent: “products”}

 The third argument of the create method specifies the values of the properties of the component that
reference other components in the current application. As discussed in Chapter 8 , the Control base class
exposes a property name parent that references the parent client control of the current control. In this
case, the {parent: “products”} object literal is passed as the third parameter of the create method
that creates the product1Selectbtn1 client control to tell the create method that the client control
with an id property value of “products” is the parent control of the product1Selectbtn1 client
 control. The create method internally locates this parent control in the _components collection of
the current Application object and assigns it to the parent property of the product1Selectbtn1
 client control.

 The pageLoad method passes the {command: “Select”, argument: “Product1”} object literal as
the second parameter of the create method that creates the product1Selectbtn1 client control. As
you can see, this object literal specifies the string “Product1” as the value of the argument property of
this client control. As you saw previously in Listing 9-13 , this allows the onBubbleEvent method of the
 GridView client control to use the get_argument method to access the argument value and conse-
quently the name of the product being selected:

 The pageLoad method follows similar steps to instantiate and initialize the Button client controls that
represent the <button> HTML elements with id HTML attribute values of product1Deletebtn1 ,
 product2Selectbtn1 , and product2Deletebtn1 .

 Finally, this page registers the PreviewScript.js and GridView.js JavaScript files with the
 ScriptManager :

 <asp:ScriptManager ID=”ScriptManager1” runat=”server”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 <asp:ScriptReference Path=”GridView.js” />
 </Scripts>
 </asp:ScriptManager>

c09.indd 336c09.indd 336 8/21/07 1:03:01 AM8/21/07 1:03:01 AM

Chapter 9: Event Bubbling and Button Client Control

337

 Run the page and click the Delete button that deletes the second row. This should pop up the message
shown in Figure 9-2 . This message contains the name of the product being deleted.

(continued)

Figure 9-2

 Bubbling an Event
 The next example shows you how to use the raiseBubbleEvent method in your own custom client
control to bubble the events that your control exposes. This example involves three ASP.NET AJAX
classes: a new version of the GridView client control, a new client control named GridViewRow , and a
new event data class named GridViewCommandEventArgs .

 GridViewRow
 Listing 9-15 presents a JavaScript file named GridViewRow.js . This file contains the implementation of
a new client control named GridViewRow that represents a table row in the GridView client control.

 Listing 9-15: The GridViewRow.js JavaScript file Containing the GridViewRow Client
Control Implementation

 Type.registerNamespace(“CustomComponents”);

CustomComponents.GridViewRow =
function CustomComponents$GridViewRow(associatedElement)
{
 CustomComponents.GridViewRow.initializeBase(this, [associatedElement]);
}

c09.indd 337c09.indd 337 8/21/07 1:03:01 AM8/21/07 1:03:01 AM

Chapter 9: Event Bubbling and Button Client Control

338

Listing 9-15 (continued)

function CustomComponents$GridViewRow$set_rowIndex(value)
{
 if (this._rowIndexSet)
 throw Error.invalidOperation(“rowIndex property cannot be set twice!”);
 this._rowIndexSet = true;
 this._rowIndex = value;
}

function CustomComponents$GridViewRow$get_rowIndex()
{
 return this._rowIndex;
}

function CustomComponents$GridViewRow$onBubbleEvent(source, args)
{
 var handled = false;

 if (args instanceof Sys.Preview.UI.CommandEventArgs)
 {
 var args2=new CustomComponents.GridViewCommandEventArgs(this, source, args);
 this.raiseBubbleEvent(this, args2);
 handled = true;
 }

 return handled;
}

CustomComponents.GridViewRow.prototype =
{
 get_rowIndex : CustomComponents$GridViewRow$get_rowIndex,
 set_rowIndex : CustomComponents$GridViewRow$set_rowIndex,
 onBubbleEvent : CustomComponents$GridViewRow$onBubbleEvent
}

CustomComponents.GridViewRow.descriptor =
{
 properties : [{name : ‘rowIndex’, type : Number}]
};

CustomComponents.GridViewRow.registerClass(“CustomComponents.GridViewRow”,
 Sys.UI.Control);

if(typeof(Sys)!==’undefined’)
 Sys.Application.notifyScriptLoaded();

 The following sections discuss the implementation of the members of the GridViewRow client control.

c09.indd 338c09.indd 338 8/21/07 1:03:01 AM8/21/07 1:03:01 AM

Chapter 9: Event Bubbling and Button Client Control

339

 Constructor
 Listing 9-16 shows the constructor of the GridViewRow client control. This constructor takes an
 argument that references the table row DOM element the control represents. At the end of the listing, the
 GridViewRow class is registered as the subclass of the Control base class.

 Listing 9-16: The Constructor of the GridViewRow Client Control

 CustomComponents.GridViewRow =
function CustomComponents$GridViewRow(associatedElement)
{
 CustomComponents.GridViewRow.initializeBase(this, [associatedElement]);

}
CustomComponents.GridViewRow.registerClass(“CustomComponents.GridViewRow”,
 Sys.UI.Control);

 row Index
 The GridViewRow client control exposes a property of type integer named rowIndex that specifies the
index of the table row DOM element that the control represents. The get_rowIndex method of the
 control, shown in Listing 9-17 , returns the value of the rowIndex property. As you’ll see later, you use
the set_rowIndex method to set the value of this property when you create the GridViewRow client
control. This property value can be set only once, which ensures that the value cannot be overridden.

 Listing 9-17: The get_row Index and set_row Index Methods of the GridViewRow Client
Control

 function CustomComponents$GridViewRow$set_rowIndex(value)
{
 if (this._rowIndexSet)
 throw Error.invalidOperation(“rowIndex property cannot be set twice!”);

 this._rowIndexSet = true;
 this._rowIndex = value;
}

function CustomComponents$GridViewRow$get_rowIndex()
{
 return this._rowIndex;
}

 on BubbleEvent
 As you can see in Listing 9-18 , the GridViewRow client control overrides the onBubbleEvent method of
its base class to catch the events that its child client controls fire. In this case, the table row DOM element
that the GridViewRow client control represents contains two Button client controls that allow the end
user to select and delete the table row. Therefore, the onBubbleEvent method of the GridViewRow
 control catches the command events that these Button client controls raise. As such, the first parameter of
the onBubbleEvent method references the Button client control that raised the command event, and the
 second parameter of the method references the CommandEventArgs event data object that the _onClick

c09.indd 339c09.indd 339 8/21/07 1:03:02 AM8/21/07 1:03:02 AM

Chapter 9: Event Bubbling and Button Client Control

340

method of the Button client control passed into the raiseBubbleEvent method (shown previously in
Listing 9-8).

 Listing 9-18: The on BubbleEvent Method of the GridViewRow Client Control

 function CustomComponents$GridViewRow$onBubbleEvent(source, args)
{
 var handled = false;

 if (args instanceof Sys.Preview.UI.CommandEventArgs)
 {
 var args2=new CustomComponents.GridViewCommandEventArgs(this,source, args);
 this.raiseBubbleEvent(this, args2);
 handled = true;
 }

 return handled;
}

 This method first checks whether the event that it just caught is a command event. The easiest way to do
this is to check whether the event data object passed into the onBubbleEvent method as its second
 argument is of type CommandEventArgs :

 if (args instanceof Sys.Preview.UI.CommandEventArgs)

 As previously shown in Listing 9-8 , only command events use this type as their event data class.

 Next, the onBubbleEvent method creates an instance of the GridViewCommandEventArgs class.
As you’ll see in the next section, this class is the event data class associated with an event named
 GridViewCommand . The constructor of this event data class takes three arguments. The first argument
references the GridViewRow client control; the second argument references the Button client control that
raised the Command event; and the third argument references the CommandEventArgs object passed into
the onBubbleEvent :

 var args2=new CustomComponents.GridViewCommandEventArgs(this, source, args);

 Next, the onBubbleEvent method calls the raiseBubbleEvent method, passing in two parameters.
The first parameter references the GridViewRow client control; and the second parameter references the
 GridViewCommandEventArgs object:

 this.raiseBubbleEvent(this, args2);

 Therefore, the onBubbleEvent method catches the command event that its Button child controls raise
and raises a GridViewCommand event instead. In this case, it returns true to stop its Button child con-
trol’s command event from bubbling to the parent of the GridViewRow control, which is the GridView
client control. In other words, the GridView client control never gets to handle the original command
event raised by the Button child control. Instead, it receives and handles the GridViewCommand event
that the GridViewRow client control raises.

c09.indd 340c09.indd 340 8/21/07 1:03:02 AM8/21/07 1:03:02 AM

Chapter 9: Event Bubbling and Button Client Control

341

 descriptor
 The GridViewRow client control, like any other ASP.NET AJAX class, implements a property named
 descriptor . You must always define the descriptor property of your ASP.NET AJAX class on the
class itself, not on the prototype property of your class. In other words, the descriptor property must
be a static property. This is because the descriptor property describes the members of the class using
metadata that is shared by all instances of the class.

 Listing 9-19 assigns an object literal to the descriptor property. In this case, the object contains a single
name/value pair that describes the properties of the GridViewRow client control. Because this control
contains a single property named rowIndex , the value portion of this name/value pair is an array
that contains a single object literal. This object consists of three name/value pairs. The first name/value
pair specifies the name of the property: rowIndex . The second name/value pair specifies the type of the
property: Number .

 Listing 9-19: The descriptor Property of the GridViewRow Client Control

 CustomComponents.GridViewRow.descriptor =
{
 properties : [{name : ‘rowIndex’, type : Number}]
};

 GridViewCommandEventArgs
 As discussed in the previous section, the GridViewRow client control raises an event named
 GridViewCommand that uses a new event data class named GridViewCommandEventArgs . Listing 9-20
presents a JavaScript file named GridViewCommandEventArgs.js that contains the implementation of
the GridViewCommandEventArgs class.

 Listing 9-20: The GridViewCommandEventArgs.js File Containing
GridViewCommandEventArgs Event Data Class Implementation

 Type.registerNamespace(“CustomComponents”);

CustomComponents.GridViewCommandEventArgs =
function CustomComponents$GridViewCommandEventArgs (row, source, args)
{
 CustomComponents.GridViewCommandEventArgs.initializeBase(this,
 [args.get_commandName(), args.get_argument()]);
 this._commandSource = source;
 this._row = row;
}

function CustomComponents$GridViewCommandEventArgs$get_commandSource()
{
 return this._commandSource;
}

(continued)

c09.indd 341c09.indd 341 8/21/07 1:03:02 AM8/21/07 1:03:02 AM

Chapter 9: Event Bubbling and Button Client Control

342

Listing 9-20 (continued)

function CustomComponents$GridViewCommandEventArgs$get_row()
 {
 return this._row;
}

CustomComponents.GridViewCommandEventArgs.prototype =
{
 get_commandSource : CustomComponents$GridViewCommandEventArgs$get_commandSource,
 get_row : CustomComponents$GridViewCommandEventArgs$get_row
};

CustomComponents.GridViewCommandEventArgs.descriptor =
{
 properties: [{name:’commandSource’, type:Sys.Preview.UI.Control, readOnly:true},
 {name : ‘row’, type : CustomComponents.GridViewRow, readOnly: true}]
}

CustomComponents.GridViewCommandEventArgs.registerClass(
 “CustomComponents.GridViewCommandEventArgs”,
 Sys.Preview.UI.CommandEventArgs);

if(typeof(Sys)!==’undefined’)
 Sys.Application.notifyScriptLoaded();

 The following sections walk you through the implementation of the GridViewCommandEventArgs event
data class.

 Constructor
 Listing 9-21 shows the constructor of the GridViewCommandEventArgs event data class. This construc-
tor takes three parameters. The first parameter references the GridViewRow client control that bubbles
the event up to the GridView control (shown previously in Listing 9-18). The second parameter refer-
ences the Button child client control that raised the original command event (shown previously in List-
ing 9-8). The third parameter references the CommandEventArgs event data object that the Button child
client’s _onClick method instantiated (shown previously in Listing 9-8).

 Listing 9-21: The Constructor of the GridViewCommandEventArgs Event Data Class

 CustomComponents.GridViewCommandEventArgs =
function CustomComponents$GridViewCommandEventArgs (row, source, args)
{
 CustomComponents.GridViewCommandEventArgs.initializeBase(this,
 [args.get_commandName(), args.get_argument()]);
 this._commandSource = source;
 this._row = row;
}

CustomComponents.GridViewCommandEventArgs.registerClass(
 “CustomComponents.GridViewCommandEventArgs”,
 Sys.Preview.UI.CommandEventArgs);

c09.indd 342c09.indd 342 8/21/07 1:03:03 AM8/21/07 1:03:03 AM

Chapter 9: Event Bubbling and Button Client Control

343

 The constructor first calls the initializeBase method to invoke the constructor of its CommandEvent-
Args base class. An array of two items is passed to the constructor of the CommandEventArgs class.
These items contain the command name and argument, respectively.

 The GridViewCommandEventArgs constructor stores the references to the GridViewRow and Button
client controls in internal fields named _commandSource and _row . Listing 9-21 registers the
 GridViewCommandEventArgs class as the subclass of the CommandEventArgs class:

 CustomComponents.GridViewCommandEventArgs.registerClass(
 “CustomComponents.GridViewCommandEventArgs”,
 Sys.Preview.UI.CommandEventArgs);

 get_command Source
 As you can see in Listing 9-22 , the get_commandSource method returns a reference to the Button child
control that raised the original command event.

 Listing 9-22: The get_command Source Method of the GridViewCommandEventArgs
Class

 function CustomComponents$GridViewCommandEventArgs$get_commandSource()
{
 return this._commandSource;
}

 get_row
 As you can see in Listing 9-23 , the get_row method returns a reference to the GridViewRow client
 control that raised the GridViewCommand event.

 Listing 9-23: The get_row Method of the GridViewCommandEventArgs Class

 function CustomComponents$GridViewCommandEventArgs$get_row()
{
 return this._row;
}

 descriptor
 The GridViewCommandEventArgs class defines a property named descriptor that returns an object
literal describing the members of the class, as shown in Listing 9-24 . In this case, the object contains a
single name/value pair that describes the properties of the class. The value part of the name/value pair
contains an array of two object literals that describe the commandSource and row properties of the class.
Each object literal contains three name/value pairs. The first two pairs describe the name and type of the
property. The last pair specifies that the property is read-only.

c09.indd 343c09.indd 343 8/21/07 1:03:03 AM8/21/07 1:03:03 AM

Chapter 9: Event Bubbling and Button Client Control

344

 Listing 9-24: The descriptor Property of the GridViewCommandEventArgs Class

 CustomComponents.GridViewCommandEventArgs.descriptor =
{
 properties: [{name:’commandSource’, type:Sys.Preview.UI.Control, readOnly:true},
 {name : ‘row’, type : CustomComponents.GridViewRow, readOnly: true}]
}

 GridView
 Listing 9-25 presents a new version of the GridView.js JavaScript file that contains the implementation
of a new version of the GridView client control.

 Listing 9-25: The Content of a New Version of the GridView.js File that Contains the
Implementation of a New Version of the GridView Client Control

 Type.registerNamespace(“CustomComponents”);

CustomComponents.GridView = function Sys$Preview$UI$GridView(associatedElement)
{
 CustomComponents.GridView.initializeBase(this, [associatedElement]);
}

function CustomComponents$GridView$onBubbleEvent(source, args)
{
 var handled = false;
 if (args instanceof CustomComponents.GridViewCommandEventArgs)
 {
 switch (args.get_commandName())
 {
 case “Select”:
 alert(args.get_argument() + “ from row number “ +
 args.get_row().get_rowIndex() + “ is selected!”);
 handled = true;
 break;
 case “Delete”:
 alert(args.get_argument() + “ from row number “ +
 args.get_row().get_rowIndex() + “ is deleted!”);
 handled = true;
 break;
 }
 }
 return handled;
}

CustomComponents.GridView.prototype =
{
 onBubbleEvent : CustomComponents$GridView$onBubbleEvent
}

c09.indd 344c09.indd 344 8/21/07 1:03:03 AM8/21/07 1:03:03 AM

Chapter 9: Event Bubbling and Button Client Control

345

CustomComponents.GridView.registerClass(“CustomComponents.GridView”,
 Sys.UI.Control);
if(typeof(Sys)!==’undefined’)
 Sys.Application.notifyScriptLoaded();

 This GridView client control overrides the onBubbleEvent method of its base class to catch the events
that its GridViewRow child client controls raise. As previously shown in Listing 9-18 , the GridViewRow
client control raises and bubbles up the GridViewCommand event. Because the GridView client control
handles only GridViewCommand events, onBubbleEvent first checks whether the event just caught is
of type GridViewCommand . The standard way to do this is to check the type of the second parameter
passed into the onBubbleEvent . This parameter references an event data object. As you can see from the
following code snippet, if this parameter is of type GridViewCommandEventArgs , you can rest assured
that the event just caught is of type GridViewCommand because only this type of event uses the
 GridViewCommandEventArgs class as its event data class.

 if (args instanceof CustomComponents.GridViewCommandEventArgs)

 Next, the onBubbleEvent method does what the earlier version of the GridView client control did. The
main difference here is that the messages that the alert methods pop up now contain the index of
the table row that raised the GridViewCommand event (see Figure 9-3).

Figure 9-3

c09.indd 345c09.indd 345 8/21/07 1:03:04 AM8/21/07 1:03:04 AM

Chapter 9: Event Bubbling and Button Client Control

346

 Listing 9-26 shows a page that uses the new version of the GridView client control.

 Listing 9-26: A Page that Uses the GridView Control

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function pageLoad()
 {
 $create(CustomComponents.GridView, null, null, null, $get(“products”));

 $create(CustomComponents.GridViewRow,
 {rowIndex: 1}, null, {parent: “products”}, $get(“row1”));

 $create(Sys.Preview.UI.Button,
 { command: “Select”, argument: “Product1” }, null,
 { parent: “row1”},
 $get(“product1Selectbtn1”));

 $create(Sys.Preview.UI.Button,
 { command: “Delete”, argument: “Product1” },
 null,
 { parent: “row1”},
 $get(“product1Deletebtn1”));

 $create(CustomComponents.GridViewRow,
 {rowIndex: 2}, null, {parent: “products”}, $get(“row2”));

 $create(Sys.Preview.UI.Button,
 { command: “Select”, argument: “Product2” }, null,
 { parent: “row2”},
 $get(“product2Selectbtn1”));

 $create(Sys.Preview.UI.Button,
 { command: “Delete”, argument: “Product2” }, null,
 { parent: “row2”},
 $get(“product2Deletebtn1”));
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 <asp:ScriptReference Path=”GridViewCommandEventArgs.js” />
 <asp:ScriptReference Path=”GridViewRow.js” />
 <asp:ScriptReference Path=”GridView.js” />
 </Scripts>
 </asp:ScriptManager>

c09.indd 346c09.indd 346 8/21/07 1:03:04 AM8/21/07 1:03:04 AM

Chapter 9: Event Bubbling and Button Client Control

347

 <table id=”products” style=”background-color:LightGoldenrodYellow;
 border-color:Tan; border-width:1px; color:Black” cellpadding=”0”>
 <tr style=”background-color:Tan; font-weight:bold”>
 <th>Product Name</th>
 <th>Unit Price</th>
 </tr>
 <tr id=”row1”>
 <td>Product1</td>
 <td>$100</td>
 <td><button id=”product1Selectbtn1” type=”button”>Select</button></td>
 <td><button id=”product1Deletebtn1” type=”button”>Delete</button></td>
 </tr>
 <tr id=”row2” style=”background-color:PaleGoldenrod”>
 <td>Product2</td>
 <td>$200</td>
 <td><button id=”product2Selectbtn1” type=”button”>Select</button></td>
 <td><button id=”product2Deletebtn1” type=”button”>Delete</button></td>
 </tr>
 </table>
 </form>
</body>
</html>

 Let’s walk through the implementation of the pageLoad method shown in the listing. This method first
instantiates an instance of the GridView client control to represent the table with an id HTML attribute
value of products :

 $create(CustomComponents.GridView, null, null, null, $get(“products”));

 Then, the method instantiates an instance of the GridViewRow client control to represent the first row of
the table:

 $create(CustomComponents.GridViewRow,
 {rowIndex: 1},
 null,
 {parent: “products”},
 $get(“row1”));

 As this code fragment shows, the pageLoad method passes the {parent: “products”} object literal
as the third argument into the create method to specify the GridView client control with id property
value of “products” as the parent of the GridViewRow client control being instantiated. As you saw
previously in Listing 9-18 , the GridViewRow client control’s onBubbleEvent method calls the
 raiseBubbleEvent method to bubble the GridViewCommand event to its parent client control. There-
fore, you must specify the GridView client control as the parent control of the GridViewRow control if
you want the onBubbleEvent method of the GridView client control to catch the GridViewCommand
event. Also note that the pageLoad method passes the {rowIndex: 1} object literal as the second argu-
ment into the create method to initialize the rowIndex property of the GridViewRow client control
being instantiated to 1 .

c09.indd 347c09.indd 347 8/21/07 1:03:05 AM8/21/07 1:03:05 AM

Chapter 9: Event Bubbling and Button Client Control

348

 Then, the pageLoad method takes the same steps that the pageLoad method previously shown in
 Listing 9-14 took. The main difference is that Listing 9-26 specifies the GridViewRow client control as the
parent control of the Button client controls as opposed to the GridView control itself, as shown in
the boldfaced portions of the following code:

 $create(Sys.Preview.UI.Button,
 { command: “Select”, argument: “Product1” },
 null,
 { parent: “row1”},
 $get(“product1Selectbtn1”));

 $create(Sys.Preview.UI.Button,
 { command: “Delete”, argument: “Product1” },
 null,
 { parent: “row1”},
 $get(“product1Deletebtn1”));

 The pageLoad method then repeats the previous steps to create the second GridViewRow client control
and its two Button child client controls.

 At the end of Listing 9-26 , two new JavaScript files named GridViewCommandEventArgs.js and
 GridViewRow.js are registered with the ScriptManager :

 <asp:ScriptManager ID=”ScriptManager1” runat=”server”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 <asp:ScriptReference Path=”GridViewCommandEventArgs.js” />
 <asp:ScriptReference Path=”GridViewRow.js” />
 <asp:ScriptReference Path=”GridView.js” />
 </Scripts>
 </asp:ScriptManager>

 The GridViewCommandEventArgs.js file contains the code that defines and registers the
 GridViewCommandEventArgs class (shown previously in Listing 9-20). The GridViewRow.js file
 contains the code that defines and registers the GridViewRow client control (shown previously in
Listing 9-25).

 Summary
 This chapter showed you how to implement client controls that bubble their events up to their parent
 client controls and how to implement client controls that catch the events that their child controls bubble
up. The next chapter moves on to another important topic in the ASP.NET AJAX client-side framework:
the type description extensions.

c09.indd 348c09.indd 348 8/21/07 1:03:05 AM8/21/07 1:03:05 AM

 Type Description Extensions
 The ASP.NET Framework provides you with two ways to inspect the metadata associated with a
given type: reflection and TypeDescriptor . Metadata inspection plays a central role in the
ASP.NET Framework. For example, metadata inspection is an integral part of the ASP.NET server
 controls such as GridView , where data records come from many different data sources. It is a
well-known fact that different types of data stores expose different types of data records. For
example, data records stored into or retrieved from a relational database via the ADO.NET layer
normally are of type DataRow or DataRowView . Data records stored into or retrieved from an XML
document via the .NET XML layer are of type XmlNode .

 If an ASP.NET server control such as GridView were to know about the actual type of the data
records being retrieved or stored, it would be tied to a particular type of data record, and,
 consequently, a particular type of data store. For example, if an ASP.NET server control were to
directly interact with the DataRow or DataRowView objects returned from the ADO.NET layer, it
would not be able to interact with XmlNode objects returned from the .NET XML layer. In other
words, the server control would only be able to retrieve data from and store data into a relational
database via the ADO.NET layer and would not be able to retrieve data from and store data into
an XML document via the .NET XML layer.

 The metadata inspection capabilities of the .NET Framework allows a server control such as
 GridView to interact with the data records in generic fashion without knowing their actual types.
This allows the same server control to retrieve and store any type of data records.

 The ASP.NET AJAX client-side framework introduces two metadata inspection facilities that
 emulate their .NET counterparts, reflection and TypeDescriptor . Previous chapters covered the
reflection capabilities of the ASP.NET AJAX client-side framework. This chapter discusses the
ASP.NET AJAX type description capabilities, which emulate the .NET type description capabilities.
As you’ll see later, the ASP.NET AJAX type descriptions provide the client controls with the same
capabilities as their server counterparts. These capabilities enable the client controls to deal with
data records in a generic fashion without having to know their actual types.

 The ASP.NET AJAX type description infrastructure consists of the following main components:

❑ TypeDescriptor

❑ ICustomTypeDescriptor

c10.indd 349c10.indd 349 8/20/07 6:08:12 PM8/20/07 6:08:12 PM

Chapter 10: Type Description Extensions

350

 TypeDescriptor
 The ASP.NET AJAX client-side framework includes a client class named TypeDescriptor that
 emulates the ASP.NET server-side TypeDescriptor class. The following sections discuss the members
of this client class.

 Constructor
 Listing 10-1 presents the implementation of the TypeDescriptor client class’s constructor. As the name
suggests, a TypeDescriptor object describes a type. A type exposes up to three different kinds of
 members: properties, methods, and events. Every type can also be annotated with zero or more metadata
attributes that provide more information about the type.

 A type also inherits the properties, methods, events, and attributes of its base types. Therefore, a com-
plete description of a type must include the type’s and its ancestor type’s properties, methods, events,
and attributes. That is why the TypeDescriptor client class in Listing 10-1 exposes four properties
named properties , methods , events , and attributes .

 As the listing shows, the TypeDescriptor class also exposes four getter methods named _get
_properties , _get_methods , _get_events , and _get_attributes that provide access to these four
properties. The following sections discuss these properties.

 Listing 10-1: The Constructor of the TypeDescriptor Client Class

 Sys.Preview.TypeDescriptor = function Sys$Preview$TypeDescriptor()
{
 var _properties = { };
 var _events = { };
 var _methods = { };
 var _attributes = { };

 this._getAttributes = function this$_getAttributes()
 {
 return _attributes;
 }

 this._getEvents = function this$_getEvents()
 {
 return _events;
 }

 this._getMethods = function this$_getMethods()
 {
 return _methods;
 }

 this._getProperties = function this$_getProperties()
 {
 return _properties;
 }
}

Sys.Preview.TypeDescriptor.registerClass(‘Sys.Preview.TypeDescriptor’);

c10.indd 350c10.indd 350 8/20/07 6:08:12 PM8/20/07 6:08:12 PM

Chapter 10: Type Description Extensions

351

 _properties
 This property references a JavaScript object literal that contains one name/value pair for each property
of the type (or its base type) that the TypeDescriptor object describes. The name part of each name/
value contains the name of the property associated with the pair. The value part of each name/value pair
is a JavaScript object literal that describes the property associated with the pair. This JavaScript object
 literal contains up to five name/value pairs, where each pair provides a piece of metadata information
about the property that the object literal describes, as follows:

❑ The first name/value pair specifies the name of the property. The name part of this name/value
pair is name , and the value part is a string that contains the name of the property.

❑ The second name/value pair describes the type of the property. The name part of this name/
value pair is type , and the value part references the constructor of the property type.

❑ The third name/value pair specifies whether the property is read-only. The name part of this
name/value pair is readOnly , and the value part is a Boolean value.

❑ The fourth name/value pair describes the metadata attributes that annotate the type of the
property. The name part of this name/value pair is attributes , and the value part is an object
that contains the attributes.

❑ The fifth name/value pair specifies whether the property references a DOM element. The name
part of this name/value pair is isDomElement , and the value part is a Boolean value.

 For example, the Component base class exposes the properties shown in the following table.

Property Name Property Type Read Only

dataContext Object False

id String False

isInitialized Boolean True

isUpdating Boolean True

 Based on this table, the _properties property of the TypeDescriptor object that describes the
 Component base class references the JavaScript object literal shown in Listing 10-2 .

 Listing 10-2: The JavaScript Object Literal Referenced by the _properties of the
TypeDescriptor Object that Describes the Component Base Class

 {
 ‘dataContext’: {name: ‘dataContext’, type: Object, readOnly: false},
 ‘id’: {name: ‘id’, type: String, readOnly: false},
 ‘isInitialized’: {name: ‘isInitialized’, type: Boolean, readOnly: true},
 ‘isUpdating’: {name: ‘isUpdating’, type: Boolean, readOnly: true}
}

 This object literal contains five name/value pairs. The name part of each of these name/value pairs
 contains the name of a property — dataContext , id , isInitialized , and isUpdating . The value part
of each of these name/value pairs contains the JavaScript object literal that describes the corresponding

c10.indd 351c10.indd 351 8/20/07 6:08:13 PM8/20/07 6:08:13 PM

Chapter 10: Type Description Extensions

352

property of the Component base class:

 ❑ {name: ‘dataContext’, type: Object, readOnly: false}

❑ {name: ‘id’, type: String, readOnly: false}

❑ {name: ‘isInitialized’, type: Boolean, readOnly: true}

❑ {name: ‘isUpdating’, type: Boolean, readOnly: true}

 Now, let’s take a look at the content of the TypeDescriptor object’s _properties property. Because
the Control class derives from the Component base class, it inherits all the properties of its base class.
The following table presents all the properties of the Control base class, including those that it inherits
from its base class.

Property Name Property Type Read Only

dataContext Object false

Id String false

isInitialized Boolean true

isUpdating Boolean true

Element Object true

Role String true

Parent Object false

Visible Boolean false

visibilityMode Sys.UI.VisibilityMode false

 Based on this table, the _properties property of the TypeDescriptor object that describes the
 Control base class references the JavaScript object literal shown in Listing 10-3 .

 Listing 10-3: The JavaScript Object Literal Referenced by the _properties of the
TypeDescriptor Object that Describes the Control Base Class

 {
 ‘dataContext’: {name: ‘dataContext’, type: Object, readOnly: false},
 ‘id’: {name: ‘id’, type: String, readOnly: false},
 ‘isInitialized’: {name: ‘isInitialized’, type: Boolean, readOnly: true},
 ‘isUpdating’: {name: ‘isUpdating’, type: Boolean, readOnly: true},
 ‘element’: {name: ‘element’, type: Object, readOnly: true},
 ‘role’: {name: ‘role’, type: String, readOnly: true},
 ‘parent’: {name: ‘parent’, type: Object, readOnly: false},
 ‘visible’: {name: ‘visible’, type: Boolean},
 ‘visibilityMode’: {name:’visibilityMode’, type: Sys.UI.VisibilityMode,
 readOnly:false}
}

 Listing 10-4 shows a page that enables you to display the _properties property of the TypeDescriptor
object associated with any ASP.NET AJAX client class, including your own custom classes.

c10.indd 352c10.indd 352 8/20/07 6:08:13 PM8/20/07 6:08:13 PM

Chapter 10: Type Description Extensions

353

 Listing 10-4: A Page that Displays the _properties of the TypeDescriptor Object
Associated with an ASP . NET AJAX Client Class

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <style type=”text/css”>
 .properties
 {
 background-color: LightGoldenrodYellow;
 color: black;
 border-collapse: collapse;
 }

 .properties td, .properties th
 {
 border: 1px solid Tan;
 padding: 5px;
 }

 .header { background-color: Tan; }

 .odd { background-color: PaleGoldenrod; }
 </style>
 <script type=”text/javascript” language=”javascript”>
 function displayProperties(instance)
 {
 var td = Sys.Preview.TypeDescriptor.getTypeDescriptor(instance);
 var properties = td._getProperties();

 var columns = [“Property Name”, “Property Type”, “ReadOnly”,
 “Property Attributes (Name/Value)”];

 var table = document.createElement(“table”);
 Sys.UI.DomElement.addCssClass(table, “properties”);
 var headerRow = table.insertRow(0);
 Sys.UI.DomElement.addCssClass(headerRow, “header”);

 var headerCell = null;
 for (var i=0, length = columns.length; i<length; i++)
 {
 headerCell = document.createElement(“th”);
 headerCell.appendChild(document.createTextNode(columns[i]));
 headerRow.appendChild(headerCell);
 }

 for (var property in properties)
 {
 insertRow(table, properties[property]);
 }

(continued)

c10.indd 353c10.indd 353 8/20/07 6:08:14 PM8/20/07 6:08:14 PM

Chapter 10: Type Description Extensions

354

Listing 10-4 (continued)

 var container = $get(“myDiv”);
 container.innerHTML=””;
 container.appendChild(table);
 }

 function insertRow(table, property)
 {
 var rowIndex = table.rows.length;
 var row = table.insertRow(rowIndex);
 if (rowIndex % 2 == 1)
 Sys.UI.DomElement.addCssClass(row, “odd”);

 insertCell(row, property[“name”]);
 insertCell(row, property[“type”]);
 insertCell(row, property[“readOnly”]);

 var attributesText=”No attributes are defined!”;
 if (property[“attributes”])
 {
 var attributes = property[“attributes”];
 var attrBuffer = [];
 for(var attribute in attributes)
 {
 attrBuffer.push(String.format(“{0}={1}”, attribute,
 attributes[attribute]));
 }
 attributesText = attrBuffer.join();
 }
 insertCell(row, attributesText);
 }

 function insertCell(row, value)
 {
 var cell = row.insertCell(row.cells.length);
 cell.appendChild(document.createTextNode(value));
 }

 function pageLoad()
 {
 var instance = new Sys.UI.Control($get(“forControl”));
 displayProperties(instance);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 </Scripts>

(continued)

c10.indd 354c10.indd 354 8/20/07 6:08:14 PM8/20/07 6:08:14 PM

Chapter 10: Type Description Extensions

355

Listing 10-4 (continued)

 </asp:ScriptManager>
 <div id=”myDiv”></div>
 <div id=”forControl”></div>
 </form>
</body>
</html>

 For example, if you run this page to view the _properties property of the TypeDescriptor object that
describes the Control base class, you’ll get the result shown in Figure 10-1 .

Figure 10-1

 Now take a look at the implementation of the pageLoad and displayProperties JavaScript functions
shown in Listing 10-4 . The pageLoad method instantiates an instance of the Control base class and
invokes the displayProperties JavaScript function, passing in the instance as its argument:

 function pageLoad()
{
 var instance = new Sys.UI.Control($get(“forControl”));
 displayProperties(instance);
}

 The displayProperties method has no knowledge of what the real type of the instance is. All it knows
is that the parameter passed into it is an instance of an ASP.NET AJAX client class.

 The displayProperties function displays information about the properties of the instance passed into
it as its arguments. Thanks to the TypeDescriptor class, the logic that the displayProperties uses to

c10.indd 355c10.indd 355 8/20/07 6:08:14 PM8/20/07 6:08:14 PM

Chapter 10: Type Description Extensions

356

inspect the properties of an ASP.NET AJAX client class instance is type-agnostic, meaning it can be used
to inspect the properties of any ASP.NET AJAX client type. This logic is highlighted in the following code:

 function displayProperties(instance)
 {

 var td = Sys.Preview.TypeDescriptor.getTypeDescriptor(instance);
 var properties = td._getProperties();

 ...

 for (var property in properties)
 {
 insertRow(table, properties[property]);
 }

 var container = $get(“myDiv”);
 container.innerHTML=””;
 container.appendChild(table);
 }

 function insertRow(table, property)

 {
 var rowIndex = table.rows.length;
 var row = table.insertRow(rowIndex);
 if (rowIndex % 2 == 1)
 Sys.UI.DomElement.addCssClass(row, “odd”);

 insertCell(row, property[“name”]);
 insertCell(row, property[“type”]);
 insertCell(row, property[“readOnly”]);

 var attributesText = ”No attributes are defined!”;

 if (property[“attributes”])

 {

 var attributes = property[“attributes”];

 var attrBuffer = [];

 for(var attribute in attributes)
 {
 attrBuffer.push(String.format(“{0}={1}”, attribute,
 attributes[attribute]));
 }

 attributesText = attrBuffer.join();
 }
 insertCell(row, attributesText);
 }

c10.indd 356c10.indd 356 8/20/07 6:08:15 PM8/20/07 6:08:15 PM

Chapter 10: Type Description Extensions

357

 Here’s how this logic works. The displayProperties function first needs to access the
 TypeDescriptor object that describes the type of the specified ASP.NET AJAX class instance in a
generic fashion. You cannot use the new operator to create an instance of the TypeDescriptor class
directly. Instead, you must call the getTypeDescriptor static method on the TypeDescriptor method.
This static method is discussed in detail later in the chapter, but for now it suffices to say that this
method takes an instance of an ASP.NET AJAX type as its argument, and instantiates and returns a
 TypeDescriptor object that describes the type:

 var td = Sys.Preview.TypeDescriptor.getTypeDescriptor(instance);

 The displayProperties function then calls the _getProperties method on the TypeDescriptor
object to return a reference to its _properties property. As discussed previously, this property
 references a single object literal that contains one name/value pair for each property of the type that the
 TypeDescriptor object describes:

 var properties = td._getProperties();

 The displayProperties function then iterates through the name/value pairs of this object literal:

 for (var property in properties)

 The function invokes the following method for each enumerated name/value pair:

 insertRow(table, properties[property]);

 The insertRow method inserts a new table row that displays information about the enumerated
 property or name/value pair. As discussed earlier, the name part of the enumerated name/value pair is
a string that contains the name of the associated property. The displayProperties function uses this
string as an index into the _properties property of the TypeDescriptor object to access the value part
of the enumerated name/value pair. It then passes this value as the second argument into the
 insertRow method.

 As discussed earlier, the value part of an enumerated name/value pair references the object literal that
describes the property associated with that name/value pair. This object literal contains five name/value
pairs. The first name/value pair specifies the name of the property that the object literal describes. The
name part of this name/value pair contains name , and the value part is a string that contains the name of
the property. The insertRow method uses name as an index into this object literal to access the name
of the property, which is then passed into the insertCell method to display it within the opening and
closing tags of a <td> HTML element:

 insertCell(row, property[“name”]);

 The second name/value pair of this object literal specifies the type of the property that the object literal
describes. As discussed earlier, the name part of this name/value pair contains type , and the value part
references the constructor of the type of the property. The insertRow method uses type as an index into
this object literal to access the reference to this constructor, which is then passed into the insertCell
method to display it within the opening and closing tags of a <td> HTML element:

 insertCell(row, property[“type”]);

 The property[“type“] returns a reference to the actual constructor of the property type, which means
that you can directly call the new operator on this reference to create a new instance of the property type.

c10.indd 357c10.indd 357 8/20/07 6:08:15 PM8/20/07 6:08:15 PM

Chapter 10: Type Description Extensions

358

 As discussed earlier, the third name/value pair of this object literal specifies whether the property that
the object literal describes is read-only. The name part of this name/value pair is a string that contains
 readOnly , and the value part is a Boolean value. The insertRow method uses the string readOnly as
an index into the object literal to access this Boolean value, which is then passed into the insertCell
method to display it within the opening and closing tags of a td HTML element:

 insertCell(row, property[“readOnly”]);

 The fourth name/value pair of this object literal describes the attributes that annotate the type of the
property that the object literal describes. As discussed previously, the name part of this name/value pair
contains attributes , and the value part references an object that contains the attributes. The
 insertRow uses attributes as an index into the object literal to access this value, iterates through
the attributes that this value contains, and displays the value of each attribute within the opening and
closing tags of a <td> HTML element:

 var attributesText = ”No attributes are defined!”;
 if (property[“attributes”])
 {
 var attributes = property[“attributes”];
 var attrBuffer = [];
 for(var attribute in attributes)
 {
 attrBuffer.push(String.format(“{0}={1}”, attribute,
 attributes[attribute]));
 }
 attributesText = attrBuffer.join();
 }
 insertCell(row, attributesText);

 _methods
 This property references an object literal that contains one name/value pair for each method of the type
(or base type) that the TypeDescriptor object describes. The name part of each name/value is a string
that contains the name of the associated method. The value part of each name/value pair is an object
 literal that describes the associated method. This object literal contains two name/value pairs, and each
pair provides a piece of metadata information about the method that the object literal describes, as
follows:

 ❑ The first name/value pair specifies the name of the method. The name part of this name/value
pair is name , and the value part is a string that contains the name of the method.

❑ The second name/value pair describes the parameters of the method. The name part of this
name/value pair is parameters , and the value part is an array of object literals. Each object
 literal in the array describes a parameter of the method and contains two name/value pairs, as
follows:

 ❑ The first name/value pair specifies the name of the parameter. The name part of this
name/value pair is name , and the value part is a string that contains the name of the
parameter.

❑ The second name/value pair describes the type of the parameter. The name part of this
name/value pair is type , and the value part references the constructor of the type of the
property.

c10.indd 358c10.indd 358 8/20/07 6:08:15 PM8/20/07 6:08:15 PM

Chapter 10: Type Description Extensions

359

 For example, the Control base class exposes the methods shown in the following table.

Method Name Parameter Name Parameter Type

addCssClass className String

removeCssClass className String

toggleCssClass className String

Based on this table, the _methods property of the TypeDescriptor object that describes the Control
base class references the object literal shown in Listing 10-5 .

 Listing 10-5: The Object Literal Referenced by the _methods Property of the
TypeDescriptor Object that Describes Control Base Class References

 {
 ‘addCssClass’: {name: ‘addCssClass’,
 parameters: [{name: ‘className’, type: String]},
 ‘removeCssClass’: {name: ‘removeCssClass’,
 parameters: [{name: ‘className’, type: String]},
 ‘toggleCssClass’: {name: ‘toggleCssClass’,
 parameters: [{name: ‘className’, type: String]}
 }

 This object literal contains three name/value pairs. The name part of each name/value pair contains the
name of a method: ‘ addCssClass’ , ‘removeCssClass’ , and ‘toggleCssClass’ . The value part of
each name/value pair contains the object literal that describes the corresponding method of the Control
base class, as follows:

 ❑ {name: ‘addCssClass’, parameters: [{name: ‘className’, type: String]}

❑ {name: ‘removeCssClass’, parameters: [{name: ‘className’, type: String]}

❑ {name: ‘toggleCssClass’, parameters: [{name: ‘className’, type: String]}

 Listing 10-6 shows a page that enables you to display _methods property of the TypeDescriptor object
associated with any ASP.NET AJAX client class, including your own custom classes. Figure 10-2 shows
what you’ll see in your browser when you access this page.

 Listing 10-6: A Page that Displays the _methods Property of the TypeDescriptor Object
Associated with an ASP . NET AJAX Client Class

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <style type=”text/css”>

(continued)

c10.indd 359c10.indd 359 8/20/07 6:08:16 PM8/20/07 6:08:16 PM

Chapter 10: Type Description Extensions

360

Listing 10-6 (continued)

 .properties
 {
 background-color: LightGoldenrodYellow;
 color: black;
 border-collapse: collapse;
 }

 .properties td, .properties th
 {
 border: 1px solid Tan;
 padding: 5px;
 }

 .header { background-color: Tan; }

 .odd { background-color: PaleGoldenrod; }
 </style>
 <script type=”text/javascript” language=”javascript”>
 function displayMethods(instance)
 {
 var td = Sys.Preview.TypeDescriptor.getTypeDescriptor(instance);
 var methods = td._getMethods();

 var columns = [“Method Name”, “Parameter (Name/Type)”];

 var table = document.createElement(“table”);
 Sys.UI.DomElement.addCssClass(table, “properties”);
 var headerRow = table.insertRow(0);
 Sys.UI.DomElement.addCssClass(headerRow, “header”);

 var headerCell = null;
 for (var i=0, length = columns.length; i<length; i++)
 {
 headerCell = document.createElement(“th”);
 headerCell.appendChild(document.createTextNode(columns[i]));
 headerRow.appendChild(headerCell);
 }

 for (var m in methods)
 {
 insertRow(table, methods[m]);
 }

 var container = $get(“myDiv”);
 container.innerHTML = ””;
 container.appendChild(table);
 }

(continued)

c10.indd 360c10.indd 360 8/20/07 6:08:16 PM8/20/07 6:08:16 PM

Chapter 10: Type Description Extensions

361

Listing 10-6 (continued)

 function insertRow(table, method)
 {
 var rowIndex = table.rows.length;
 var row = table.insertRow(rowIndex);
 if (rowIndex % 2 == 1)
 Sys.UI.DomElement.addCssClass(row, “odd”);

 insertCell(row, method[“name”]);

 var parametersText = ”No parameters are defined!”;
 if (method[“parameters”])
 {
 var parameters = method[“parameters”];
 var paramBuffer = [];
 for(var parameter in parameters)
 {
 paramBuffer.push(String.format(“({0} / {1})”,
 parameters[parameter].name, parameters[parameter].type.getName()));
 }
 parametersText = paramBuffer.join();
 }
 insertCell(row, parametersText);
 }

 function insertCell(row, value)
 {
 var cell = row.insertCell(row.cells.length);
 cell.appendChild(document.createTextNode(value));
 }

 function pageLoad()
 {
 var instance = new Sys.UI.Control($get(“forControl”));
 displayMethods(instance);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 </Scripts>
 </asp:ScriptManager>
 <div id=”myDiv”></div>
 <div id=”forControl”></div>
 </form>
</body>
</html>

c10.indd 361c10.indd 361 8/20/07 6:08:16 PM8/20/07 6:08:16 PM

Chapter 10: Type Description Extensions

362

 As you can see in Listing 10-6 , the pageLoad method instantiates an instance of the Control base class
and invokes the displayMethods JavaScript function, passing in the instance as its argument:

 function pageLoad()
{
 var instance = new Sys.UI.Control($get(“forControl”));
 displayMethods(instance);
}

 The displayMethods function has no knowledge of what the real type of the instance is. All it knows is
that the parameter passed into it is an instance of an ASP.NET AJAX client class.

 The displayMethods function displays information about the methods of the instance passed into it as
its arguments. Thanks to the TypeDescriptor class, the logic that displayMethods uses to inspect the
methods of an ASP.NET AJAX client class instance is type-agnostic, which means it can be used to
inspect the methods of any ASP.NET AJAX client type. This logic is highlighted in the following code:

 function displayMethods(instance)
 {

 var td = Sys.Preview.TypeDescriptor.getTypeDescriptor(instance);
 var methods = td._getMethods();

 ...

 for (var m in methods)
 {
 insertRow(table, methods[m]);
 }

 var container = $get(“myDiv”);
 container.innerHTML = ””;
 container.appendChild(table);
 }

Figure 10-2

(continued)

c10.indd 362c10.indd 362 8/20/07 6:08:17 PM8/20/07 6:08:17 PM

Chapter 10: Type Description Extensions

363

(continued)

 function insertRow(table, method)

 {
 var rowIndex = table.rows.length;
 var row = table.insertRow(rowIndex);
 if (rowIndex % 2 == 1)
 Sys.UI.DomElement.addCssClass(row, “odd”);

 insertCell(row, method[“name”]);

 var parametersText = ”No parameters are defined!”;

 if (method[“parameters”])

 {
 var parameters = method[“parameters”];
 var paramBuffer = [];

 for(var parameter in parameters)
 {
 paramBuffer.push(String.format(“({0} / {1})”,
 parameters[parameter].name, parameters[parameter].type.getName()));

 }

 parametersText = paramBuffer.join();
 }
 insertCell(row, parametersText);
 }

 The displayMethods function first accesses the TypeDescriptor object:

 var td = Sys.Preview.TypeDescriptor.getTypeDescriptor(instance);

 The displayMethods function then calls the _getMethods method on the TypeDescriptor object to
return a reference to its _methods property. This property references a single object literal that contains
one name/value pair for each method of the type that the TypeDescriptor object describes:

 var methods = td._ getMethods();

 The displayMethods function then iterates through the name/value pairs of this object literal:

 for (var m in methods)

 As discussed earlier, the name part of the enumerated name/value pair is a string that contains the name
of the associated method. The displayMethods function uses this string as an index into the _methods
property of the TypeDescriptor object to access the value part of the enumerated name/value pair. The
value part references the object literal that describes the method associated with the name/value pair.
The displayMethods then passes this object literal into the insertRow method:

 insertRow(table, methods[m]);

c10.indd 363c10.indd 363 8/20/07 6:08:17 PM8/20/07 6:08:17 PM

Chapter 10: Type Description Extensions

364

 This object literal contains two name/value pairs. The first name/value pair specifies the name of the
method that the object literal describes. The name part of this name/value pair contains name , and
the value part is a string that contains the name of the method. insertRow uses name as an index into
this object literal to access the name of the method, which is then passed into the insertCell method to
 display it within the opening and closing tags of a <td> HTML element:

 insertCell(row, method[“name”]);

 The second name/value pair of this object literal describes the parameters of the method that the object
literal describes. The name part of this name/value pair contains parameters , and the value part
 references an array that contains one object for each parameter of the associated method. Each of these
objects in turn contains two name/value pairs that describe the name and type of the parameter.

 insertRow iterates through these objects and displays the name and type of each parameter:

 for(var parameter in parameters)
 {
 paramBuffer.push(String.format(“({0} / {1})”,
 parameters[parameter].name, parameters[parameter].type.getName()));
 }
 parametersText = paramBuffer.join();

 insertCell(row, parametersText);

 _events
 This property references an object literal that contains one name/value pair for each event of the type
(or base type) that the TypeDescriptor object describes. The name part of each name/value is a string
that contains the name of the event associated with the pair. The value part of each name/value pair is
an object literal that describes the event associated with the pair. This object literal contains a single
name/value pair that specifies the name of the event. The name part of this name/value pair is name ,
and the value part is a string that contains the name of the event.

 For example, the Control base class exposes a single event named propertyChanged . Therefore, the
 _events property of the TypeDescriptor object that describes the Control base class references
the object literal shown in Listing 10-7 .

 Listing 10-7: The Object Literal Referenced by the _events Property of the
TypeDescriptor Object that Describes Control Base Class References

 {
 ‘propertyChanged’: {name: ‘propertyChanged’}
}

 This object literal contains a single name/value pair. The name part of this name/value pair is a string
that contains the name of the event: ‘ propertyChanged’ . The value part of this name/value pair con-
tains the object literal that describes the event of the Control base class: {name: ‘propertyChanged’} .

 Now, let’s take a look at the _events property of the TypeDescriptor object that describes the Button
client control. Because the Button control derives from the Control class, it inherits the propertyChanged
event from its base class. The Button control also exposes an event of its own named click. Listing 10-8
shows the object literal that the _events property of the TypeDescriptor object references.

c10.indd 364c10.indd 364 8/20/07 6:08:18 PM8/20/07 6:08:18 PM

Chapter 10: Type Description Extensions

365

 Listing 10-8: The Object Literal Referenced by the _events Property of the
TypeDescriptor Object that Describes Button Base Class References

 {
 ‘click’: {name: ‘click’},
 ‘propertyChanged’: {name: ‘propertyChanged’}
}

 Listing 10-9 shows a page that displays the _events property of the TypeDescriptor object associated
with any ASP.NET AJAX client class, including custom classes. Figure 10-3 shows what the browser
 displays when you access this page.

 Listing 10-9: A Page that Displays the _events Property of the Type D escriptor Object
Associated with an ASP . NET AJAX Client Class

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <style type=”text/css”>
 .properties
 {
 background-color: LightGoldenrodYellow;
 color: black;
 border-collapse: collapse;
 }

 .properties td, .properties th
 {
 border: 1px solid Tan;
 padding: 5px;
 }

 .header { background-color: Tan; }

 .odd { background-color: PaleGoldenrod; }
 </style>
 <script type=”text/javascript” language=”javascript”>
 function displayEvents(instance)
 {
 var td = Sys.Preview.TypeDescriptor.getTypeDescriptor(instance);
 var events = td._getEvents();

 var columns = [“Event Name”];

 var table = document.createElement(“table”);
 Sys.UI.DomElement.addCssClass(table, “properties”);
 var headerRow = table.insertRow(0);
 Sys.UI.DomElement.addCssClass(headerRow, “header”);

(continued)

c10.indd 365c10.indd 365 8/20/07 6:08:18 PM8/20/07 6:08:18 PM

Chapter 10: Type Description Extensions

366

 Listing 10-9 (continued)

 var headerCell = null;
 for (var i=0, length = columns.length; i<length; i++)
 {
 headerCell = document.createElement(“th”);
 headerCell.appendChild(document.createTextNode(columns[i]));
 headerRow.appendChild(headerCell);
 }

 for (var e in events)
 {
 insertRow(table, events[e]);
 }

 var container = $get(“myDiv”);
 container.innerHTML = ””;
 container.appendChild(table);
 }

 function insertRow(table, event)
 {
 var rowIndex = table.rows.length;
 var row = table.insertRow(rowIndex);
 if (rowIndex % 2 == 1)
 Sys.UI.DomElement.addCssClass(row, “odd”);

 insertCell(row, event[“name”]);
 }

 function insertCell(row, value)
 {
 var cell = row.insertCell(row.cells.length);
 cell.appendChild(document.createTextNode(value));
 }

 function pageLoad()
 {
 var instance = new Sys.Preview.UI.Button($get(“forControl”));
 displayEvents(instance);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
Name=”PreviewScript.js” />
 </Scripts>
 </asp:ScriptManager>
 <center><div id=”myDiv”></div></center>
 <div id=”forControl”></div>
 </form>
</body>
</html>

c10.indd 366c10.indd 366 8/20/07 6:08:18 PM8/20/07 6:08:18 PM

Chapter 10: Type Description Extensions

367

 If you run the page shown in Listing 10-9 for the Button control, you should see the result shown in
 Figure 10-4 .

Figure 10-3

Figure 10-4

 Now, let’s take a look at the implementation of the pageLoad method and displayEvents function
shown in Listing 10-9 . The pageLoad method instantiates an instance of the Control base class as usual
and invokes the displayEvents JavaScript function, passing in the instance as its argument:

 function pageLoad()
{
 var instance = new Sys.UI.Control($get(“forControl”));
 displayEvents (instance);
}

 displayEvents has no knowledge of what the real type of the instance is. All it knows is that the
parameter passed into it is an instance of an ASP.NET AJAX client class.

 The displayEvents function displays information about the events of the instance passed into it as its
arguments. Thanks to the TypeDescriptor class, the logic that displayEvents uses to inspect the
events of an ASP.NET AJAX client class instance is type-agnostic, which means you can use it to inspect

c10.indd 367c10.indd 367 8/20/07 6:08:19 PM8/20/07 6:08:19 PM

Chapter 10: Type Description Extensions

368

the events of any ASP.NET AJAX client type. This logic is highlighted in the following code:

 function displayEvents(instance)
 {

 var td = Sys.Preview.TypeDescriptor.getTypeDescriptor(instance);
 var events = td._getEvents();

 ...

 for (var e in events)
 {
 insertRow(table, events[e]);
 }

 var container = $get(“myDiv”);
 container.innerHTML=””;
 container.appendChild(table);
 }

 function insertRow(table, event)

 {
 var rowIndex = table.rows.length;
 var row = table.insertRow(rowIndex);
 if (rowIndex % 2 == 1)
 Sys.UI.DomElement.addCssClass(row, “odd”);

 insertCell(row, event[“name”]);

 }

 Here’s how this logic works. The displayEvents function first calls the getTypeDescriptor static
method on the TypeDescriptor class, passing in the instance to access the TypeDescriptor object that
describes the type of the instance in a generic fashion:

 var td = Sys.Preview.TypeDescriptor.getTypeDescriptor(instance);

 The displayEvents function then calls the _getEvents method on the TypeDescriptor object to
return a reference to its _events property. This property references a single object literal that contains
one name/value pair for each event of the type that the TypeDescriptor object describes:

 var properties = td._getEvents();

 The displayEvents function then iterates through the name/value pairs of this object literal:

 for (var e in events)

 The name part of the enumerated name/value pair is a string that contains the name of the associated
event. The displayEvents function uses this string as an index into the _events property of the
 TypeDescriptor object to access the value part of the enumerated name/value pair. The value part
 references the object literal that describes the event associated with the name/value pair. The
 displayEvents function then passes this object literal into the insertRow method:

 insertRow(table, events[e]);

c10.indd 368c10.indd 368 8/20/07 6:08:19 PM8/20/07 6:08:19 PM

Chapter 10: Type Description Extensions

369

 This object literal contains a single name/value pair. The name part of the pair is name , and the value
part is a string that contains the name of the event. The insertRow function invokes the insertCell
method to display this value:

 insertCell(row, event[“name”]);

 get TypeDescriptor
 The previous sections provided several examples of how you can use the getTypeDescriptor method
in your own applications. This section walks you through the internal implementation of this method to
introduce its extensibility points, setting the stage for later discussions of why, when, and how to extend
the getTypeDescriptor method.

 The getTypeDescriptor method takes an instance of a type as its argument and returns a
 TypeDescriptor object that describes the type, as shown in Listing 10-10 .

 Listing 10-10 : The get T ype D escriptor Static Method of the Type D escriptor Class

 Sys.Preview.TypeDescriptor.getTypeDescriptor =
function Sys$Preview$TypeDescriptor$getTypeDescriptor(instance)
{
 var type = Object.getType(instance);
 var td = type._descriptor;
 if (!td && !type._descriptorChecked)
 {
 if (Sys.Preview.ITypeDescriptorProvider.isImplementedBy(instance))
 td = instance.getDescriptor();

 else
 td = Sys.Preview.TypeDescriptor.generateDescriptor(type);

 type._descriptor = td;
 type._descriptorChecked = true;
 }
 return td;
}

 The getTypeDescriptor method first calls the getType static method on the Object class, passing in
the type instance to return a reference to the type itself:

 var type = Object.getType(instance);

 Next, it checks whether the type instance implements an interface named ITypeDescriptorProvider .
If so, it delegates the responsibility of creating and initializing the TypeDescriptor object that repre-
sents the type to the getDescriptor method of the type itself. If not, it calls the generateDescriptor
static method on the TypeDescriptor class to create and initialize a TypeDescriptor object that
describes the type. In either case, the TypeDescriptor object is cached in an internal field named
_descriptor for future access. Subsequent calls to the getTypeDescriptor method will be serviced
from the cache to improve performance.

 You can extend the functionality of the TypeDescriptor class by having your type implement the
 ITypeDescriptorProvider interface. This interface exposes a single method named getDescriptor .

c10.indd 369c10.indd 369 8/20/07 6:08:19 PM8/20/07 6:08:19 PM

Chapter 10: Type Description Extensions

370

Your type’s implementation of this method must use whatever logic is necessary to create and initialize
an ICustomTypeDescriptor object and return the object to its caller.

 generate Descriptor
 This section presents the internal implementation of the TypeDescriptor class’s generateDescriptor
static method to help you understand the significant role that the descriptor property of a type plays
in enabling others to inspect its members, and why it is important to implement the descriptor
 property of your ASP.NET AJAX client classes.

 Listing 10-11 contains the internal code for the generateDescriptor static method of the
 TypeDescriptor class. This method takes a reference to a type and returns a TypeDescriptor object
that describes the type.

 Listing 10-11 : The generate Descriptor Static Method of the TypeDescriptor Class

 Sys.Preview.TypeDescriptor.generateDescriptor =
function Sys$Preview$TypeDescriptor$generateDescriptor(type)
{
 var td = null;
 var current = type;
 while(current)
 {
 if(current.descriptor)
 {
 if(!td)
 td = new Sys.Preview.TypeDescriptor();

 Sys.Preview.TypeDescriptor.append(td, current.descriptor);
 }
 current = current.getBaseType();
 }
 return td;
}

 The generateDescriptor method first instantiates an instance of the TypeDescriptor class:

 td = new Sys.Preview.TypeDescriptor();

 Then, starting with the type itself, the generateDescriptor method marches upward through the
ancestor types, calling the append static method on the TypeDescriptor class to append each type’s
 descriptor property to the newly instantiated TypeDescriptor object.

 The default implementation of the getTypeDescriptor method (the method that calls the
 generateDescriptor method) assumes that your ASP.NET AJAX type and its ancestor ASP.NET AJAX
types expose metadata information about their properties, methods, events, and attributes through a
static property named descriptor . If your ASP.NET AJAX client type does not implement the
 descriptor property, the clients of your type will not be able to use the TypeDescriptor class to
inspect its members. If one of the ancestor ASP.NET AJAX client types of your ASP.NET AJAX client type
does not implement the descriptor property, the clients of your type will not be able to inspect the
members that your type inherits from that ancestor type.

c10.indd 370c10.indd 370 8/20/07 6:08:20 PM8/20/07 6:08:20 PM

Chapter 10: Type Description Extensions

371

 Your type can override this default implementation by implementing the ITypeDescriptorProvider
interface, as you’ll see later.

 append
 This section walks you through the internal implementation of the TypeDescriptor class’s append
static method to help you understand the following:

❑ The significant role that the descriptor static property of a type plays in the ASP.NET AJAX
type description capabilities

❑ How to implement the descriptor property of your own ASP.NET AJAX client types

❑ The four different kinds of metadata information that the descriptor static property of your
ASP.NET AJAX class can expose to its clients

 A descriptor static property of a type references an object literal that contains up to five name/value
pairs, as follows:

 ❑ The first name/value pair describes the properties of the type. The name part of this name/
value pair contains properties , and the value part references an array of object literals. Each
object literal in this array describes a property of the type and contains up to four name/value
pairs, as follows:

 ❑ The first name/value pair specifies the name of the property. The name part of this name/
value pair is name , and the value part is a string that contains the name of the property.

❑ The second name/value pair specifies the type of the property. The name part of this
name/value pair is type , and the value part references the actual type of the property.

❑ The third name/value pair specifies whether the property is read-only. The name part of
this name/value pair is the ‘readOnly’ string, and value part is a Boolean.

❑ The fourth name/value pair specifies the attributes of the property.

❑ The fifth name/value pair specifies whether the property references a DOM element. The
name part of this name/value pair is isDomElement , and the value part is a Boolean value.

 ❑ The second name/value pair describes the methods of the type. The name part of the pair is
 methods , and the value part is an array of object literals. Each object literal in this array
 describes a method of the type and contains two name/value pairs, as follows:

 ❑ The first name/value pair specifies the name of the method. The name part of the pair is
 name , and the value part is a string that contains the name of the method.

❑ The second name/value pair describes the parameters of the method. The name part of the
pair is parameters , and the value part is an array of object literals. Each object literal in
this array describes a parameter of the method and contains two name/value pairs. The
first name/value pair specifies the name of the parameter where the name part of the pair
is name , and the value part is a string that contains the name of the parameter. The second
name/value pair specifies the type of the parameter where the name part of the pair is
 type , and the value part references the actual type of the parameter.

 ❑ The third name/value pair describes the events of the type. The name part of the pair is events ,
and the value part is an array of object literals. Each object literal in this array describes an event

c10.indd 371c10.indd 371 8/20/07 6:08:20 PM8/20/07 6:08:20 PM

Chapter 10: Type Description Extensions

372

of the type and contains a single name/value pair where the name part of the pair is name , and
the value part is a string that contains the name of the event.

❑ The fourth name/value pair describes the attributes of the type. The name part of the pair is
 attributes , and the value part is an array of object literals. Each object literal in this array
 describes an attribute and contains two name/value pairs, as follows:

 ❑ The first name/value pair specifies the name of the attribute. The name part of the pair is
 name , and the value part is a string that contains the name of the attribute.

❑ The second name/value pair specifies the value of the attribute The name part of the pair
is value , and the value part is the actual value of the attribute.

 Listing 10-12 shows the append static method of the TypeDescriptor class.

 Listing 10-12: The append Static Method of the TypeDescriptor Class

 Sys.Preview.TypeDescriptor.append =
function Sys$Preview$TypeDescriptor$append(td, descriptor)
{
 if (descriptor.properties)
 {
 var length = descriptor.properties.length;
 for (var i = 0; i < length; i++)
 {
 var property = descriptor.properties[i];
 var propertyName = property.name;
 var associatedAttributes = property.attributes;
 var readOnly = property.readOnly? property.readOnly : false;
 var isDomElement = !!(property.isDomElement);
 var isInteger = !!(property.isInteger);

 if (! td._getProperties()[propertyName])
 {
 var args = [propertyName, property.type, readOnly, isDomElement];
 if(typeof(associatedAttributes) === ‘array’)
 {
 for(var j = 0, l = associatedAttributes.length; j < l; j++)
 {
 var attrib = associatedAttributes[j];
 args[args.length] = attrib.name;
 args[args.length] = attrib.value;
 }
 }

 var propInfo = td.addProperty.apply(td, args);
 propInfo.isInteger = isInteger;
 }
 }
 }

(continued)

c10.indd 372c10.indd 372 8/20/07 6:08:20 PM8/20/07 6:08:20 PM

Chapter 10: Type Description Extensions

373

 Listing 10-12 (continued)

 if (descriptor.events)
 {
 var length = descriptor.events.length;
 for (var i = 0; i < length; i++)
 {
 var eventName = descriptor.events[i].name
 if (! td._getEvents()[eventName])
 td.addEvent(eventName);
 }
 }

 if (descriptor.methods)
 {
 var length = descriptor.methods.length;
 for (var i = 0; i < length; i++)
 {
 var methodName = descriptor.methods[i].name;
 if (! td._getMethods()[methodName])
 {
 var params = descriptor.methods[i].params;
 if(!params)
 params = descriptor.methods[i].parameters;
 if (params)
 td.addMethod(methodName, params);

 else
 td.addMethod(methodName);
 }
 }
 }

 if (descriptor.attributes)
 {
 var length = descriptor.attributes.length;
 for (var i = 0; i < length; i++)
 {
 var attributeName = descriptor.attributes[i].name
 if (! td._getAttributes()[attributeName])
 td.addAttribute(attributeName, descriptor.attributes[i].value);
 }
 }
}

 The append static method takes two arguments. The first argument references the TypeDescriptor
object that describes a type, and the second argument references the descriptor property of another
type. The main goal of the append method is to copy the contents of the descriptor property of the
 latter type into the TypeDescriptor object that describes the former type.

 The descriptor property contains up to four name/value pairs. The name parts of these four pairs are
 properties , events , methods , and attributes . The value parts of these four pairs are arrays of object
literals, where each object literal describes a property, event, method, or attribute of the type. That is why
the append static method consists of four major sections — each section copies the contents of the
 associated array into the specified TypeDescriptor object.

c10.indd 373c10.indd 373 8/20/07 6:08:21 PM8/20/07 6:08:21 PM

Chapter 10: Type Description Extensions

374

 After the completion of the call into the append method, the TypeDescriptor object contains the
 contents of the descriptor property of the other type in addition to its original content. As previously
discussed, the generateDescriptor method calls the append method to append the contents of the
descriptor properties of all the ancestor types of a given type into the TypeDescriptor object that repre-
sents the type. Therefore, the _getProperties , _getMethods , _getEvents , and _getAttributes
methods of the TypeDescriptor object return all the properties, methods, events, and attributes of the
ancestor types of the type, in addition to the properties, methods, events, and attributes of the type itself.

 get Property
 The TypeDescriptor class includes a static method named getProperty that takes up to three
 parameters. The first parameter references an instance of a type whose property value is being queried.
The second parameter is a string that contains the name of a property whose value is being queried. The
last parameter is optional. The main responsibility of the getProperty method is to return the value of
the specified property of the specified instance of the type.

 This section walks you through the internal implementation of the getProperty method to help you
understand the following:

 ❑ The extensibility points of this method, which sets the stage for later discussions of why, when,
and how to extend the getProperty method of the TypeDescriptor class

❑ The role that the last argument of the getProperty method plays, and why and when you
should specify this argument

 Listing 10-13 shows the getProperty static method.

 Listing 10-13: The get Property Static Method of the TypeDescriptor Class

 Sys.Preview.TypeDescriptor.getProperty =
function Sys$Preview$TypeDescriptor$getProperty(instance, propertyName, key)
{
 if (Sys.Preview.ICustomTypeDescriptor.isImplementedBy(instance))
 return instance.getProperty(propertyName, key);

 var td = Sys.Preview.TypeDescriptor.getTypeDescriptor(instance);
 ...

 var propertyInfo = td._getProperties()[propertyName];
 var getter = instance[‘get_’ + propertyInfo.name];
 var object = getter.call(instance);
 if (key)
 object = key.indexOf(‘.’) === -1 ? (object[key]) :
 (Sys.Preview.TypeDescriptor._evaluatePath(object, key));

 return object;
}

 The getProperty method first checks whether the instance implements the ICustomTypeDescriptor
interface. If so, the method delegates the responsibility of retrieving the property value to the
 getProperty method of the instance itself. Note that the method simply returns the value returned
from the getProperty method of the instance:

c10.indd 374c10.indd 374 8/20/07 6:08:21 PM8/20/07 6:08:21 PM

Chapter 10: Type Description Extensions

375

 if (Sys.Preview.ICustomTypeDescriptor.isImplementedBy(instance))
 return instance.getProperty(propertyName, key);

 Therefore, you can customize the functionality of the getProperty method by having your type
 implement the ICustomTypeDescriptor interface. As you’ll see later, your type’s implementation of
the getProperty method of this interface must use whatever logic necessary to retrieve the value of the
property with the specified name.

 If the instance does not implement the ICustomTypeDescriptor interface, the getProperty method
takes the following actions:

 ❑ It calls the getTypeDescriptor static method on the TypeDescriptor class, passing in the instance
to return a reference to the TypeDescriptor object that describes the type of the instance in a
 generic fashion:

 var td = Sys.Preview.TypeDescriptor.getTypeDescriptor(instance);

 This is the first step you must take every time you need to use the ASP.NET AJAX type
 inspection capabilities. (This was also the first step taken in Listings 10-4 , 10-6 , and 10-9 .)

 ❑ It calls the _getProperties method on the TypeDescriptor object to return a reference to the
 _properties array property of the object. It uses the property name as an index into this array
to return the object literal that describes the property with the specified name:

 var propertyInfo = td._getProperties()[propertyName];

 As discussed earlier, this object literal contains up to four name/value pairs where each pair
provides a piece of metadata information about the property. The first name/value pair specifies
the name of the property where the name part of the pair is name , and the value part is a string
that contains the name of the property. The getProperty method uses name to access the value
part (the string containing the name of the property) and appends this string to the string
“get_” to arrive at the name of the getter method that gets the value of the property.

❑ It uses the name of the getter method as an index into the instance to return a reference to the
getter method itself:

 var getter = instance[‘get_’ + propertyInfo.name];

 ❑ It invokes the call method on the getter method, passing in the instance to return the value of
the property:

 var object = getter.call(instance);

 The third optional parameter of the getProperty method is named key . The meaning of key depends
on the implementation of the getProperty method. The default implementation (which is what’s
shown in Listing 10-13) interprets the key as the name of a descendant subproperty of the specified
property. The descendant subproperties of a property include the subproperties of the property,
the subproperties of the subproperties of the property, the subproperties of the subproperties of the
 subproperties of the property, and so on. Therefore, if you call the getProperty method with the third
argument, the method assumes that you’re asking for the value of a descendant subproperty whose
name is given by the key parameter.

c10.indd 375c10.indd 375 8/20/07 6:08:21 PM8/20/07 6:08:21 PM

Chapter 10: Type Description Extensions

376

 If the key does not contain the character dot (.), the getProperty method assumes that you’re asking
for the value of the immediate subproperty, as shown in boldfaced portion of the following code
fragment:

 object = key.indexOf(‘.’) === -1 ? (object[key]) :
 (Sys.Preview.TypeDescriptor._evaluatePath(object, key));

 Otherwise, the method calls the _evaluatePath method, where it iterates through the descendant
 subproperties of the specified property to find the subproperty whose name is given by the key , as
shown in Listing 10-14 .

 Listing 10-14: The _evaluatePath Static Method of the TypeDescriptor Class

 Sys.Preview.TypeDescriptor._evaluatePath =
function Sys$Preview$TypeDescriptor$_evaluatePath(instance, path)
{
 var part;
 var parts = path.split(‘.’);
 var current = instance;
 for(var i = 0; i < parts.length; i++)
 {
 part = parts[i];
 current = current[part];
 if(typeof(current) === ‘undefined’ || current === null)
 return null;
 }
 return current;
}

 The great thing about the getProperty method is that it enables you to access the value of the property
of an ASP.NET AJAX type instance without having to know the real type of the instance. This enables
you to access the values of the properties of ASP.NET AJAX objects in type-agnostic fashion, which
means that you can write one set of JavaScript code to query the property values of any ASP.NET AJAX
object of any type.

 get Attribute
 The TypeDescriptor class features a static method named getAttribute that takes two parameters. The
first parameter references an instance of an ASP.NET AJAX type. The second parameter is a string that con-
tains the name of an attribute of the type. The main goal of the getAttribute method is to retrieve and
return the value of the specified attribute of a specified instance. Listing 10-15 shows this method.

 Listing 10-15: The get Attribute Static Method of the TypeDescriptor Class

 Sys.Preview.TypeDescriptor.getAttribute =
function Sys$Preview$TypeDescriptor$getAttribute(instance, attributeName)
{
 var td = Sys.Preview.TypeDescriptor.getTypeDescriptor(instance);
 return td._getAttributes()[attributeName];
}

c10.indd 376c10.indd 376 8/20/07 6:08:22 PM8/20/07 6:08:22 PM

Chapter 10: Type Description Extensions

377

 The getAttribute method first invokes the getTypeDescriptor static method on the TypeDescriptor
class, passing in the instance to return a reference to the TypeDescriptor object that describes the type of
the instance in a generic fashion:

 var td = Sys.Preview.TypeDescriptor.getTypeDescriptor(instance);

 Next, it invokes the _getAttributes method on the TypeDescriptor object to return a reference to the
object’s _attributes collection, and uses the attribute name as an index into this collection to return
the attribute’s value:

 return td._getAttributes()[attributeName];

 set Proper ty
 The setProperty method of the TypeDescriptor class takes up to four parameters. The first
 parameter references an instance of an ASP.NET AJAX type. The second parameter is a string that
 contains the name of a property of the type. The third parameter contains the value of the property. The
fourth parameter is optional. The main goal of the setProperty method is to set the specified property
of the specified instance to a specified value.

 This section walks you through the internal implementation of the setProperty method to help you
understand the following:

 ❑ The extensibility points of this method

❑ The role the last argument of the setProperty method plays, and why and when you should
specify this argument

 Listing 10-16 shows this method.

 Listing 10-16: The set Property Static Method of the TypeDescriptor Class

 Sys.Preview.TypeDescriptor.setProperty =
function Sys$Preview$TypeDescriptor$setProperty(instance, propertyName, value, key)
{
 if (Sys.Preview.ICustomTypeDescriptor.isImplementedBy(instance))
 {
 instance.setProperty(propertyName, value, key);
 return;
 }

 var td = Sys.Preview.TypeDescriptor.getTypeDescriptor(instance);
 ...
 var propertyInfo = td._getProperties()[propertyName]; if (key)
 {
 var getter = instance[‘get_’ + propertyInfo.name];
 var object = getter.call(instance);
 if(key.indexOf(‘.’) === -1)
 object[key] = value;

(continued)

c10.indd 377c10.indd 377 8/20/07 6:08:22 PM8/20/07 6:08:22 PM

Chapter 10: Type Description Extensions

378

 Listing 10-16 (continued)

 else
 Sys.Preview.TypeDescriptor._setPath(object, key, value);
 }

 else
 {
 var setter = instance[‘set_’ + propertyInfo.name];
 value = Sys.Preview.TypeDescriptor._evaluateValue(propertyInfo.type,
 propertyInfo.isDomElement,
 propertyInfo.isInteger,
 value);
 setter.call(instance, value);
 }
}

 The setProperty method first checks whether the instance implements the ICustomTypeDescriptor
interface. If so, it delegates the responsibility of setting the value of the property to the setProperty
method of the instance itself:

 if (Sys.Preview.ICustomTypeDescriptor.isImplementedBy(instance))
 {
 instance.setProperty(propertyName, value, key);
 return;
 }

 You can customize the setProperty method by having your type implement the ICustomTypeDescriptor
interface. The setProperty method of this interface must use the appropriate logic to set the specified prop-
erty to the specified value.

 If the instance does not implement the ICustomTypeDescriptor interface, the setProperty method
takes these actions to set the value of the property. First, it invokes the getTypeDescriptor static
method on the TypeDescriptor class, passing in the instance to return a reference to the
 TypeDescriptor object that describes the type of the instance in generic fashion:

 var td = Sys.Preview.TypeDescriptor.getTypeDescriptor(instance);

 This is always the first step whenever you need to use the type description capabilities of the ASP.NET
AJAX client-side framework.

 Next, the method invokes the _getProperties method on the TypeDescriptor object to return a
 reference to the _properties object that contains one object literal for each property of the type, and
uses the property name as an index into this object to return a reference to the object literal associated
with the property with the specified name:

 var propertyInfo = td._getProperties()[propertyName];

 What the setProperty method does next depends on whether you have invoked the method with the
fourth argument — the key value.

c10.indd 378c10.indd 378 8/20/07 6:08:22 PM8/20/07 6:08:22 PM

Chapter 10: Type Description Extensions

379

 If you did not specify a key , the setProperty method assumes that you’re trying to set the value of the
property itself, not one of its subproperties. As such, the method appends the name of the property to
the string “set_” to arrive at the name of the setter method that sets the value of the property:

 var setter = instance[‘set_’ + propertyInfo.name];

 Next, the method invokes the _evaluateValue static method on the TypeDescriptor class:

 value = Sys.Preview.TypeDescriptor._evaluateValue(propertyInfo.type,
 propertyInfo.isDomElement,
 propertyInfo.isInteger,
 value);

 As you’ll see shortly, this method converts the specified value to the type that the property expects if the
value is not of the same type as the property type:

 Then, the setProperty method invokes the call method on the setter method to set the value of the
specified property to the specified value:

 setter.call(instance, value);

 If you specified a key , the setProperty method assumes that you’re not trying to set the value of the
property with the specified name. Instead, you want to set the value of the descendant subproperty
whose fully qualified name, including its complete containment hierarchy, is given by the key parameter.
As such, the setProperty method first appends the name of the property to the string “get_” to arrive
at the name of the getter method for the property with the specified name:

 var getter = instance[‘get_’ + propertyInfo.name];

 It then invokes the call method on the getter method, passing in the instance to return the value of the
specified property:

 var object = getter.call(instance);

 Next, it checks whether key contains the dot (.) character. If not, it assumes that you’re trying to set the
value of the immediate subproperty whose name is given by key :

 if(key.indexOf(‘.’) === -1) object[key] = value;

 If the key contains the dot (.) character, it calls the _setPath method on the TypeDescriptor class, as
shown in Listing 10-17 .

 Listing 10-17: The _setPath Static Method of the TypeDescriptor Class

 Sys.Preview.TypeDescriptor._setPath =
function Sys$Preview$TypeDescriptor$_setPath(instance, path, value)
{
 var current = instance;
 var parts = path.split(‘.’);
 var part;

(continued)

c10.indd 379c10.indd 379 8/20/07 6:08:22 PM8/20/07 6:08:22 PM

Chapter 10: Type Description Extensions

380

 Listing 10-17 (continued)

 for(var i = 0; i < parts.length-1; i++)
 {
 part = parts[i];
 current = current[part];
 if(!current) break;
 }

 if(current)
 current[parts[parts.length-1]] = value;
}

 The _setPath method searches through the descendant subproperties of the specified property to find
the subproperty whose fully qualified name (including its complete containment hierarchy) is given by
 key , and then sets its value:

 else
 Sys.Preview.TypeDescriptor._setPath(object, key, value);

 Now let’s move on to the internal implementation of the _evaluateValue method of the
 TypeDescriptor class. It is important that you understand what kinds of type conversions this method
supports because if you call the setProperties method to set the value of a property to a value whose
type the _evaluateValue method cannot convert, the call will fail.

 Listing 10-18 shows the _evaluateValue method.

 Listing 10-18: The _evaluateValue Static Method of the TypeDescriptor Class

 Sys.Preview.TypeDescriptor._evaluateValue =
function Sys$Preview$TypeDescriptor$_evaluateValue(targetType, isDomElement,
 isInteger, value)
{
 var valueType = typeof(value);
 if(isDomElement)
 {
 if(valueType === “string”)
 value = $get(value);
 }

 else if(targetType === Object || targetType === Sys.Component ||
 targetType.inheritsFrom(Sys.Component))
 {
 if(valueType === “string”)
 value = $find(value);
 }

 else
 {
 if(targetType !== String && valueType === “string”)
 {
 if(Type.isEnum(targetType))
 value = targetType.parse(value, true);
 else

(continued)

c10.indd 380c10.indd 380 8/20/07 6:08:23 PM8/20/07 6:08:23 PM

Chapter 10: Type Description Extensions

381

 Listing 10-18 (continued)

 {
 value = targetType.parse(value);
 if (targetType === Number && isInteger)
 value = Math.floor(value);
 }
 }

 else if(targetType === String && valueType !== “string”)
 value = value.toString();

 else if(targetType === Number && isInteger)
 value = Math.floor(value);
 }

 return value;
}

 The _evaluateValue static method of the TypeDescriptor class takes four parameters. The first parameter
references the type of the property. The second parameter is a Boolean value that specifies whether the prop-
erty references a DOM element. The third parameter is a Boolean value that specifies whether the property is
an integer. The fourth parameter is the value to be assigned to the property. The _evaluateValue method
supports the following three important type conversion scenarios:

 ❑ If the property references a DOM element and the value to be assigned to the property is a
string, the _evaluateValue assumes that the string contains the value of the DOM element’s
 id HTML attribute and, consequently, calls the $get global JavaScript function to return a refer-
ence to the associated DOM element. In a way, the _evaluateValue method converts the string
into a DOM element, which can then be assigned to the property as its value:

 if(isDomElement)
 {
 if(valueType === “string”)
 value = $get(value);
 }

❑ If the property references an ASP.NET AJAX component, and the value to be assigned to the
property is a string, the _evaluateValue method assumes that the string contains the value of
the id property of a component and, consequently, uses the $find global JavaScript function to
return a reference to the associated component, which can then been assigned to the property.
In a way, the _evaluateValue method converts this string into an ASP.NET AJAX component:

 else if(targetType === Object || targetType === Sys.Component ||
 targetType.inheritsFrom(Sys.Component))
 {
 if(valueType === “string”) value = $find(value);
 }

❑ If the property is of type enumeration , and the value to be assigned to the property is a string,
the _evaluateValue method calls the parse method on the type to convert the string into the
type of the property, which can then be assigned to the property:

c10.indd 381c10.indd 381 8/20/07 6:08:23 PM8/20/07 6:08:23 PM

Chapter 10: Type Description Extensions

382

 value = targetType.parse(value, true);

❑ If the property is not of type string , but the value to be assigned to the property is a string, the
 _evaluateValue method calls the parse or parseInvariant method on the type to convert
the string into the type of the property, which can then be assigned to the property:

 value = (targetType.parseInvariant || targetType.parse)(value);

 ❑ If the property is of type string , but the value to be assigned to the property is not a string, the
 _evaluateValue method calls the toString method on the value to convert the value into a
string, which can then be assigned to the property:

 else if(targetType === String && valueType !== “string”)
 value = value.toString();

❑ If the property is of type integer , the _evaluateValue method passes the value to be assigned
to the property into the floor static method of the Math class. The return value of this static
method can then be assigned to the property:

 else if(targetType === Number && isInteger)
 value = Math.floor(value);

 ❑ In all other cases, no conversion is done, and the value is used as is.

 invoke Method
 The TypeDescriptor class exposes a static method named InvokeMethod that takes three
parameters. The first parameter references the type instance on which the specified method must be
invoked. The second parameter is a string that contains the name of the method to be invoked. The third
parameter is an object literal that contains one name/value pair for each parameter of the method where
the name part of each pair is a string that contains the name of the associated parameter and the value
part contains the value of the parameter.

 This section discusses the internal implementation of the invokeMethod static method to introduce the
extensibility points of the method. Listing 10-19 shows this method.

 Listing 10-19: The invoke Method Static Method of the TypeDescriptor Class

 Sys.Preview.TypeDescriptor.invokeMethod =
function Sys$Preview$TypeDescriptor$invokeMethod(instance, methodName, parameters)
{
 if (Sys.Preview.ICustomTypeDescriptor.isImplementedBy(instance))
 return instance.invokeMethod(methodName, parameters);

 var td = Sys.Preview.TypeDescriptor.getTypeDescriptor(instance);
 ...

 var methodInfo = td._getMethods()[methodName];
 var method = instance[methodInfo.name];

(continued)

c10.indd 382c10.indd 382 8/20/07 6:08:23 PM8/20/07 6:08:23 PM

Chapter 10: Type Description Extensions

383

 Listing 10-19 (continued)

 if (!parameters || !methodInfo.parameters ||!methodInfo.parameters.length)
 return method.call(instance);

 else
 {
 var arguments = [];
 for (var i = 0; i < methodInfo.parameters.length; i++)
 {
 var parameterInfo = methodInfo.parameters[i];
 var value = parameters[parameterInfo.name];
 value = Sys.Preview.TypeDescriptor._evaluateValue(
 parameterInfo.type,
 parameterInfo.isDomElement,
 parameterInfo.isInteger,
 value);
 arguments[i] = value;
 }

 return method.apply(instance, arguments);
 }
}

 The InvokeMethod first checks whether the instance implements the ICustomTypeDescriptor
 interface. If so, it delegates the responsibility of invoking the specified method to the invokeMethod of
the instance itself:

 if (Sys.Preview.ICustomTypeDescriptor.isImplementedBy(instance))
 return instance.invokeMethod(methodName, parameters);

 You can customize the invokeMethod method by having your type implement the ICustomTypeDescriptor
interface. Your type’s implementation of the invokeMethod method of the interface must use whatever logic
is deemed appropriate to invoke the specified method and to return the value of the method.

 If the instance does not implement the ICustomTypeDescriptor interface, the invokeMethod method
takes the following actions:

 ❑ It invokes the getTypeDescriptor static method on the TypeDescriptor class, passing in
the instance to return a reference to the TypeDescriptor object that describes the type of the
 instance as usual:

 var td = Sys.Preview.TypeDescriptor.getTypeDescriptor(instance);

 ❑ It invokes the _getMethods method on the TypeDescriptor object to return a reference to the
 _methods object, which contains one object literal for each method of the type and uses the
name of the method as an index into this object to return a reference to the object literal
 associated with the method with the specified name:

 var methodInfo = td._getMethods()[methodName];

 ❑ It uses the name of the method as an index into the instance to return a reference to the method itself:

c10.indd 383c10.indd 383 8/20/07 6:08:24 PM8/20/07 6:08:24 PM

Chapter 10: Type Description Extensions

384

 var method = instance[methodInfo.name];

 ❑ It iterates through the parameters of the method and calls the _evaluateValue method for each
enumerated parameter to convert the specified value to the type that the parameter expects,
which is then passed as the value of the parameter when the method is invoked:

 return method.apply(instance, arguments);

 get Proper tyType
 This section discusses the implementation of the getPropertyType method to help you understand the
following:

❑ The extensibility points of this method

❑ The role that the last argument of the getPropertyType method plays, and why and when you
should specify this argument

 The getPropertyType static method of the TypeDescriptor class takes three parameters, as shown in
Listing 10-20 . The first parameter references the instance that owns the property whose type is being
queried. The second parameter is a string that contains the name of the property. The third parameter is
optional. The main responsibility of this method is to return a reference to the type of the property with
the specified name or a reference to the type of the descendant subproperty whose fully qualified name,
including its complete containment hierarchy, is given by the key parameter.

 Listing 10-20: The get PropertyType Static Method of the TypeDescriptor Class

 Sys.Preview.TypeDescriptor.getPropertyType =
function Sys$Preview$TypeDescriptor$getPropertyType(instance, propertyName, key)
{
 if (Sys.Preview.ICustomTypeDescriptor.isImplementedBy(instance))
 return Object;

 if (key)
 return Object;

 var td = Sys.Preview.TypeDescriptor.getTypeDescriptor(instance);
 if(!td)
 return Object;

 var propertyInfo = td._getProperties()[propertyName];
 return propertyInfo.type || null;
}

 The getPropertyType static method first checks whether the instance implements the
 ICustomTypeDescriptor interface, and if so, it returns Object as the type of the specified property:

 if (Sys.Preview.ICustomTypeDescriptor.isImplementedBy(instance))
 return Object;

c10.indd 384c10.indd 384 8/20/07 6:08:24 PM8/20/07 6:08:24 PM

Chapter 10: Type Description Extensions

385

 If the instance does not implement the ICustomTypeDescriptor interface, the getPropertyType
method checks whether the caller has specified a value for the key parameter, and if so, it returns
 Object as the type:

 if (key)
 return Object;

 If the caller has not specified the key parameter value, the getPropertyType method first calls the
 getTypeDescriptor method as usual to return a reference to the TypeDescriptor object that describes
the type of the instance:

 var td = Sys.Preview.TypeDescriptor.getTypeDescriptor(instance);

 Next, it invokes the _getProperties method on the TypeDescriptor object, passing in the instance to
return a reference to the _properties object of the TypeDescriptor object and uses the property name
as an index into this object to return a reference to the object literal associated with the property:

 var propertyInfo = td._getProperties()[propertyName];

 Finally, the getPropertyType method simply returns the value part of the name/value pair of the
object literal that specifies the type of the property:

 return propertyInfo.type || null;

 This object literal contains several name/value pairs, where each name/value pair provides specific
metadata information about the property that the object literal represents.

 Using the ASP . NET AJAX Type Description
Capabilities

 This section presents an example that shows you how to use the methods of the TypeDescriptor class
discussed in this chapter. The example implements a custom client control named CustomTable that can
display any type of data records. It is a well-known fact that different types of data sources support
 different types of data records. If the CustomTable control were aware of the actual type of data records
being displayed, it would be tied to a particular type of data source and would not be able to display
data records from other types of data sources. This is where the ASP.NET AJAX type description
 capabilities come into play. As you’ll see in this section, these capabilities enable the CustomTable client
control to display data records of any type.

 Because the implementation of this control makes use of an ASP.NET AJAX class named
 StringBuilder , the next section covers this class before diving into the implementation of the
 CustomTable control.

 StringBuilder
 Listing 10-21 presents the internal implementation of the StringBuilder ASP.NET AJAX class. As the
name suggests, you can use an instance of this class to build a string from its constituent substrings.
Every StringBuilder object maintains two internal collections named _ parts and _value , where the

c10.indd 385c10.indd 385 8/20/07 6:08:24 PM8/20/07 6:08:24 PM

Chapter 10: Type Description Extensions

386

former is used to collect the constituent substrings of the final string and the latter is used to store
 different versions of the final string. The only difference between these versions is the substring that is
used as the separator between the constituent substrings of the final string.

 Listing 10-21: The StringBuilder ASP . NET AJAX Class

 Sys.StringBuilder = function Sys$StringBuilder(initialText)
{
 this._parts = (typeof(initialText) !== ‘undefined’ &&
 initialText !== null && initialText !== ‘’) ?
 [initialText.toString()] : [];
 this._value = {};
 this._len = 0;
}

function Sys$StringBuilder$append(text)
{
 this._ parts[this._ parts.length] = text;
}

function Sys$StringBuilder$appendLine(text)
{
 this._ parts[this._ parts.length] =
 ((typeof(text) === ‘undefined’) || (text === null) ||
 (text === ‘’)) ? ‘\r\n’ : text + ‘\r\n’;
}

function Sys$StringBuilder$clear()
{
 this._parts = {};
 this._value = {};
 this._len = 0;
}

function Sys$StringBuilder$isEmpty()
{
 if (this._parts.length === 0)
 return true;
 return this.toString() === ‘’;
}

function Sys$StringBuilder$toString(separator)
{
 separator = separator || ‘’;
 if (typeof(this._value[separator]) === ‘undefined’)
 this._value[separator] = this._parts.join(separator);

 return this._value[separator];
}

(continued)

c10.indd 386c10.indd 386 8/20/07 6:08:25 PM8/20/07 6:08:25 PM

Chapter 10: Type Description Extensions

387

 Listing 10-21 (continued)

Sys.StringBuilder.prototype =
{
 append: Sys$StringBuilder$append,
 appendLine: Sys$StringBuilder$appendLine,
 clear: Sys$StringBuilder$clear,
 isEmpty: Sys$StringBuilder$isEmpty,
 toString: Sys$StringBuilder$toString
}

Sys.StringBuilder.registerClass(‘Sys.StringBuilder’);

 The following sections discuss the constructor and methods of the StringBuilder class.

 Constructor
 As you can see from Listing 10-21 , the constructor of the StringBuilder class takes a single optional
argument. The constructor does not make any assumptions about the type of the object passed into it as
its first argument as long as this object exposes a method named toString , which returns the string rep-
resentation of the object. As the following code snippet taken from Listing 10-21 shows, the constructor
simply stores the string representation of this object into the internal _ parts collection and instantiates
the internal _value dictionary. In other words, after calling the constructor, the internal _ parts array
contains a single substring while the internal _value dictionary is empty.

 this._ parts = (typeof(initialText) !== ‘undefined’ &&
 initialText !== null && initialText !== ‘’) ?
 [initialText.toString()] : [];
 this._value = {};

 append
 As you can see in the following code fragment from Listing 10-21 , the append method of the
 StringBuilder class takes a single argument and adds it to the _ parts array:

 this._parts[this._parts.length] = text;

 append Line
 As the following code fragment from Listing 10-21 shows, the appendLine method does what the
 append method does plus one more thing: it also adds a new line, hence the name appendLine .

 this._parts[this._parts.length] =
 ((typeof(text) === ‘undefined’) || (text === null) || (text === ‘’)) ?
 ‘\r\n’ : text + ‘\r\n’;

 clear
 As the following code fragment from Listing 10-21 shows, the clear method does exactly what its name
says it does — it clears both the _ parts and _value collections.

 this._parts = [];
 this._value = {};
 this._len = 0;

c10.indd 387c10.indd 387 8/20/07 6:08:25 PM8/20/07 6:08:25 PM

Chapter 10: Type Description Extensions

388

 is Empty
 As the name suggests, the isEmpty method returns a Boolean value that specifies whether the _ parts
array is empty:

 if (this._parts.length === 0)
 return true;
 return this.toString() === ‘’;

 to String
 Listing 10-21 presents a simplified version of the internal implementation of the toString method. As
you can see in the following code fragment, this method takes a string as its argument and calls the join
method on the _ parts array, passing in this string to return a string that contains the strings stored in
the _ parts array, separated by the string passed into the toString method. Note that the toString
method uses the string passed into it as an index into the _value dictionary to store the string returned
from the join method.

 function Sys$StringBuilder$toString(separator)
{
 separator = separator || ‘’;
 if (typeof(this._value[separator]) === ‘undefined’)
 this._value[separator] = this._parts.join(separator);

 return this._value[separator];
}

 As you can see, the _value dictionary stores different concatenations of the strings stored in the _parts
array. The only difference between these concatenations is the string used as the separator between the
concatenated strings.

 Listing 10-22 presents a page that uses the StringBuilder class. If you run this page, you should see
the pop-up message shown in Figure 10-5 . Note that this message displays two strings that contain the
same substrings. The only difference between the two is the separator strings. One uses the string “,” as
the separator, and the other uses the string “||” as the separator.

 Listing 10-22: A Page that uses the StringBuilder Class

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function pageLoad()
 {
 var sb = new Sys.StringBuilder();
 sb.append(“s1”);
 sb.append(“s2”);
 sb.append(“s3”);
 sb.append(“s4”);

(continued)

c10.indd 388c10.indd 388 8/20/07 6:08:25 PM8/20/07 6:08:25 PM

Chapter 10: Type Description Extensions

389

 Listing 10-22 (continued)

 alert(sb.toString(“,”) + “\n\n” + sb.toString(“||”));
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />
 </form>
</body>
</html>

(continued)

Figure 10-5

 CustomTable
 Listing 10-23 presents the contents of a JavaScript file named CustomTable.js , which contains the
 implementation of the CustomTable client control. This client control exposes a property named
 dataSource and a method named dataBind . The control also exposes a getter and a setter method
named get_dataSource and set_dataSource , which allow you to get and set the value of the
 dataSource property. As you’ll see later, you must assign the collection containing the data records to be
displayed to the dataSource property, and call the dataBind method to have the control display the records
in a table. The CustomTable client control derives from the Control base class, like any other client control:

 CustomComponents.CustomTable.registerClass(“CustomComponents.CustomTable”,
 Sys.UI.Control);

 Listing 10-23: The CustomTable.js File

 Type.registerNamespace(“CustomComponents”);

CustomComponents.CustomTable =
function CustomComponents$CustomTable(associatedElement)
{
 CustomComponents.CustomTable.initializeBase(this, [associatedElement]);
}

 function CustomComponents$CustomTable$get_dataSource()
{
 return this._dataSource;
}

c10.indd 389c10.indd 389 8/20/07 6:08:25 PM8/20/07 6:08:25 PM

Chapter 10: Type Description Extensions

390

Listing 10-23 (continued)

function CustomComponents$CustomTable$set_dataSource(value)
{
 this._dataSource = value;
}

function CustomComponents$CustomTable$dataBind()
{
 var sb = new Sys.StringBuilder(‘<table align=”center” id=”products” ‘);
 sb.append(‘style=”background-color:LightGoldenrodYellow;’);
 sb.append(‘border-color:Tan;border-width:1px; color:Black”’);
 sb.append(‘ cellpadding=”5”>’);
 var propertyNames = [];
 for (var i=0; i<this._dataSource.length; i++)
 {
 var dataItem = this._dataSource[i];

 if (i == 0)
 {
 var td = Sys.Preview.TypeDescriptor.getTypeDescriptor(dataItem);

 var properties = td._getProperties();

 sb.append(‘<tr style=”background-color:Tan; font-weight:bold”>’);
 for (var c in properties)
 {
 var propertyObj = properties[c];
 var propertyName = propertyObj.name;
 propertyNames[propertyNames.length] = propertyName;
 sb.append(‘<td>’);
 sb.append(propertyName);
 sb.append(‘</td>’);
 }
 sb.append(‘</tr>’);
 }

 if (i % 2 == 1)
 sb.append(‘<tr style=”background-color:PaleGoldenrod”>’);
 else
 sb.append(‘<tr>’);

 for (var j in propertyNames)
 {
 var propertyName = propertyNames[j];

 var propertyValue = Sys.Preview.TypeDescriptor.getProperty(dataItem,
 propertyName, null);

 var typeName = Object.getTypeName(propertyValue);

(continued)

c10.indd 390c10.indd 390 8/20/07 6:08:26 PM8/20/07 6:08:26 PM

Chapter 10: Type Description Extensions

391

Listing 10-23 (continued)

 if (typeName !== ‘String’ && typeName !== ‘Number’ && typeName !== ‘Boolean’)
 {
 var convertToStringMethodName = Sys.Preview.TypeDescriptor.getAttribute(
 propertyValue, “convertToStringMethodName”);

 if (convertToStringMethodName)
 propertyValue = Sys.Preview.TypeDescriptor.invokeMethod(propertyValue,
 convertToStringMethodName, null);
 }

 sb.append(‘<td>’)
 sb.append(propertyValue);
 sb.append(‘</td>’);
 }

 sb.append(‘</tr>’);
 }

 sb.append(‘</table>’);
 this.get_element().innerHTML = sb.toString();
}

CustomComponents.CustomTable.prototype =
{
 get_dataSource : CustomComponents$CustomTable$get_dataSource,
 set_dataSource : CustomComponents$CustomTable$set_dataSource,
 dataBind : CustomComponents$CustomTable$dataBind
}

CustomComponents.CustomTable.registerClass(“CustomComponents.CustomTable”,
 Sys.UI.Control);

if(typeof(Sys)!==’undefined’)
 Sys.Application.notifyScriptLoaded();

 Now, let’s walk through the implementation of the dataBind method of the CustomTable control. This
method first instantiates a StringBuilder object and calls the append method a couple of times,
 passing in strings that contain the opening tag of the table HTML element and its associated HTML
attributes:

 var sb = new Sys.StringBuilder(‘<table align=”center” id=”products” ‘);
 sb.append(‘style=”background-color:LightGoldenrodYellow;’); (‘border-color:Tan;
 border-width:1px; color:Black”’);
 sb.append(‘ cellpadding=”5”>’);

c10.indd 391c10.indd 391 8/20/07 6:08:26 PM8/20/07 6:08:26 PM

Chapter 10: Type Description Extensions

392

 Next, the method iterates through the data records in the dataSource collection property and performs
these tasks. First, it accesses a reference to the enumerated data record:

 var dataItem = this._dataSource[i];

 Next, it checks whether the enumerated data record is the first record of the collection:

 if (i == 0)

 If so, it calls the getTypeDescriptor static method on the TypeDescriptor class, passing in the
 reference to the data record to return a reference to the TypeDescriptor object that describes the type of
the data record:

 var td = Sys.Preview.TypeDescriptor.getTypeDescriptor(dataItem);

 Note that the CustomTable control has no idea what the type of the data record is. The control only has
access to the TypeDescriptor object that describes the type of the data record.

 Next, the dataBind method calls the _getProperties instance method on the TypeDescriptor object
that describes the enumerated data record to return a reference to the _properties dictionary of the
 TypeDescriptor object:

 var properties = td._getProperties();

 As previously discussed, the TypeDescriptor object exposes an internal dictionary named
 _ properties that contains one object literal for each property of the type that the TypeDescriptor
object describes. The CustomTable control has no idea what the names and types of these properties
are — it only has access to the object literal associated with the property.

 Next, the dataBind method calls the append method on the StringBuilder object to add a string that
contains the opening tag of a <tr> HTML element with its associated attributes:

 sb.append(‘<tr style=”background-color:Tan; font-weight:bold”>’);

 As you’ll see shortly, this <tr> HTML element will display the header texts of the table.

 Next, the dataBind method iterates through the object literals returned from the call into the
 _getProperties method of the TypeDescriptor object and performs these tasks for each enumerated
object literals. Recall that each object literal is associated with a particular property of the type that the
 TypeDescriptor object represents:

 var propertyObj = properties[c];

 The dataBind method then calls the name property on the enumerated object literal to access the name
of the associated property, and stores the property in a local array:

 var propertyName = propertyObj.name;
 propertyNames[propertyNames.length] = propertyName;

c10.indd 392c10.indd 392 8/20/07 6:08:26 PM8/20/07 6:08:26 PM

Chapter 10: Type Description Extensions

393

 Next, it calls the append method on the StringBuilder object to append a string that contains a <td>
HTML element that displays the name of the property, which acts as the header text:

 sb.append(‘<td>’);
 sb.append(propertyName);
 sb.append(‘</td>’);

 After adding all the substrings that display the header texts of the table to the StringBuilder object,
the dataBind method adds a string containing the opening tag of the <tr> HTML element that will
 display the field values of the current data record:

 if (i % 2 == 1)
 sb.append(‘<tr style=”background-color:PaleGoldenrod”>’);
 else
 sb.append(‘<tr>’);

 Next, the dataBind method iterates through all the property names stored in the local array:

 var propertyName = propertyNames[j];

 First, it calls the getProperty static method on the TypeDescriptor class, passing in two arguments. The
first argument references the current data record, and the second argument contains the property name:

 var propertyValue = Sys.Preview.TypeDescriptor.getProperty(dataItem,
 propertyName, null);

 As discussed earlier, the getProperty method returns the value of the property with the specified name.

 Next, the dataBind method calls the getTypeName static method on the Object class, passing in the
value of the property with the specified name:

 var typeName = Object.getTypeName(propertyValue);

 This returns a string that contains the fully qualified name of the type of the value, including its
namespace hierarchy.

 Next, the dataBind method checks whether the type of the value is of the primitive types, such as
 String , Number , and Boolean . If not, it has the type convert the value to a string so it can be displayed
in the table. (The current implementation of the CustomTable control displays only string values.) To
accomplish this, the dataBind method calls the getAttribute static method on the TypeDescriptor
class, passing in two parameters. The first parameter contains the value of the property, and the second
parameter is the string “ convertToStringMethodName“ :

 var convertToStringMethodName = Sys.Preview.TypeDescriptor.getAttribute(
 propertyValue, “convertToStringMethodName”);

c10.indd 393c10.indd 393 8/20/07 6:08:27 PM8/20/07 6:08:27 PM

Chapter 10: Type Description Extensions

394

 As discussed earlier, the getAttribute method returns the value of the attribute with the specified
name. In this case, the method returns the value of an attribute named “ convertToStringMethodName ”.
As its name suggests, the value of this attribute contains the name of the method that can convert the
property value to a string. The CustomTable control assumes the following:

 ❑ Each property value is either a primitive type (such as String , Number , or Boolean) or a type
that exposes a method that can convert the value into string.

❑ The type is annotated with an attribute named “ convertToStringMethodName” whose value
specifies the name of the method that can covert the value into string.

 The dataBind method then calls the invokeMethod static method on the TypeDescriptor class,
 passing in two parameters. The first parameter contains the value, and the second parameter contains
the name of the method to be invoked:

 if (convertToStringMethodName)
 propertyValue = Sys.Preview.TypeDescriptor.invokeMethod(propertyValue,
 convertToStringMethodName,null);

 As discussed earlier, the invokeMethod method invokes the method with the specified name on the
specified object and returns the return value of the method. In this case, the return value is the string
 representation of the value. Thanks to the ASP.NET AJAX type description capabilities, the
 CustomTable control is able to convert a value to its string representation without knowing the actual
type of the value.

 Next, the dataBind method calls the append method on the StringBuilder object to append a string
that contains a <td> HTML element that displays the property value:

 sb.append(‘<td>’)
 sb.append(propertyValue);
 sb.append(‘</td>’);

 Finally, the dataBind method calls the get_element method to return a reference to the DOM element
that the CustomTable element represents, and assigns the return value of the call into the toString
method of the StringBuilder object to the innerHTML property of the DOM element:

 this.get_element().innerHTML = sb.toString();

 Thanks to the ASP.NET AJAX type description capabilities, the CustomTable control can now display
records of any type. To see this in action, let’s define a new record type named Product and check
whether the CustomTable control can indeed display data records of type Product .

 Listing 10-24 presents a JavaScript file named Product.js , that contains the code for the Product type.
An instance of the Product type represents a product. As such, the Product type exposes three
 properties named productName , distributorName , and distributorAddress , along with three
 getter methods named get_productName , get_distributorName , and get_distributorAddress
that enable you to access the values of these properties.

c10.indd 394c10.indd 394 8/20/07 6:08:27 PM8/20/07 6:08:27 PM

Chapter 10: Type Description Extensions

395

 Listing 10-24: The Product.js File

 Type.registerNamespace(“CustomComponents”);

CustomComponents.Product =
function CustomComponents$Product(productName, distributorName, distributorAddress)
{
 this._productName = productName;
 this._distributorName = distributorName;
 this._distributorAddress = distributorAddress;
}

function CustomComponents$Product$get_productName()
{
 return this._productName;
}

function CustomComponents$Product$get_distributorName()
{
 return this._distributorName;
}

function CustomComponents$Product$get_distributorAddress()
{
 return this._distributorAddress;
}

CustomComponents.Product.prototype =
{
 get_productName : CustomComponents$Product$get_productName,
 get_distributorName : CustomComponents$Product$get_distributorName,
 get_distributorAddress : CustomComponents$Product$get_distributorAddress
}

CustomComponents.Product.descriptor =
{
 properties : [{name : ‘productName’, type : String, readOnly : true},
 {name : ‘distributorName’, type : String, readOnly : true},
 {name : ‘distributorAddress’, type : CustomComponents.Address,
 readOnly : true}]
}

CustomComponents.Product.registerClass(“CustomComponents.Product”);

if(typeof(Sys)!==’undefined’)
 Sys.Application.notifyScriptLoaded();

 To enable the clients of the Product type (such as the CustomTable control) to use the ASP.NET AJAX
type description capabilities to inspect it, the type also exposes a static property named descriptor

c10.indd 395c10.indd 395 8/20/07 6:08:27 PM8/20/07 6:08:27 PM

Chapter 10: Type Description Extensions

396

whose value is set to an object literal containing a single name/value pair that describes the properties
of the type:

 CustomComponents.Product.descriptor =
{
 properties : [{name : ‘productName’, type : String, readOnly : true},
 {name : ‘distributorName’, type : String, readOnly : true},
 {name : ‘distributorAddress’, type : CustomComponents.Address,
 readOnly : true}]
}

 The name part of this name/value pair is the keyword properties , and the value part is an array that
contains one object literal for each property of the type. In turn, each object literal contains three name/
value pairs. The first name/value pair of the object literal specifies the name of the property, the second
name/value pair specifies the type of the property, and the third name/value pair specifies whether the
property is read only.

 Notice that the second name/value pair of the third object literal (the one associated with the
 distributorAddress property) specifies CustomComponents.Address as the type of this property:

 {name : ‘distributorAddress’, type : Sys.Preview.UI.Address, readOnly : true}

 In other words, the distributorAddress property is not of a primitive type such as String , Number ,
or Boolean . The CustomTable control expects a non-primitive type to do the following:

 ❑ Expose a method that knows how to convert a given value of the type to string

❑ Expose an attribute that specifies the name of the method

 Listing 10-25 presents a JavaScript file named Address.js that contains the implementation of the
 CustomComponents.Address type.

 Listing 10-25: The Content of the Address.js File

 Type.registerNamespace(“CustomComponents”);

CustomComponents.Address =
function CustomComponents$Address(street, city, state, zip)
{
 this._street = street;
 this._city = city;
 this._state = state;
 this._zip = zip;
}

function CustomComponents$Address$convertToString()
{
 return this._street + “, “ + this._city + “, “ + this._state + “ “ + this._zip;
}

(continued)

c10.indd 396c10.indd 396 8/20/07 6:08:28 PM8/20/07 6:08:28 PM

Chapter 10: Type Description Extensions

397

 Listing 10-25 (continued)

CustomComponents.Address.prototype =
{
 convertToString : CustomComponents$Address$convertToString
}

CustomComponents.Address.descriptor =
{
 methods : [{name: ‘convertToString’}],
 attributes : [{name: ‘convertToStringMethodName’, value: ‘convertToString’}]
}

CustomComponents.Address.registerClass(“CustomComponents.Address”);

if(typeof(Sys)!==’undefined’)
 Sys.Application.notifyScriptLoaded();

 The constructor of the CustomComponents.Address type takes four parameters that make up an
address and stores them in its associated fields. Note that the Address type exposes a method named
 convertToString that returns a string representation of an address:

 function CustomComponents$Address$convertToString()
{
 return this._street + “, “ + this._city + “, “ + this._state + “ “ + this._zip;
}

 The clients of the Address type (such as CustomTable) have no way of knowing that the name of this
method is convertToString . Therefore, the Address type method exposes an attribute that specifies
the name of the method:

 CustomComponents.Address.descriptor =
{
 methods : [{name: ‘convertToString’}],
 attributes : [{name: ‘convertToStringMethodName’, value: ‘convertToString’}]
}

 Now, let’s see if the CustomTable control can indeed display records of type Product . Listing 10-26
 contains a page that uses the CustomTable control to display records of type Product .

 Listing 10-26: A Page that Uses the CustomTable Control to Display Product Records

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function pageLoad()

(continued)

c10.indd 397c10.indd 397 8/20/07 6:08:28 PM8/20/07 6:08:28 PM

Chapter 10: Type Description Extensions

398

 Listing 10-26 (continued)

 {
 var products = [];
 var product;
 var distributoraddress;
 for (var i=0; i<4; i++)
 {
 distributoraddress =
 new CustomComponents.Address(“street”+i, “city”+i, “state”+i, “zip”+i);

 product = new CustomComponents.Product(“Product”+i, “Distributor”+i,
 distributoraddress);
 products[i] = product;
 }

 var customTable = $create(CustomComponents.CustomTable,
 {dataSource : products}, null, null,
 $get(“myDiv”));
 customTable.dataBind();
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 <asp:ScriptReference Path=”CustomTable.js” />
 <asp:ScriptReference Path=”Address.js” />
 <asp:ScriptReference Path=”Product.js” />
 </Scripts>
 </asp:ScriptManager>
 <div id=”myDiv”>
 </div>
 </form>
</body>
</html>

 Now, let’s walk through the implementation of the pageLoad method. This method first creates
 several Product objects and stores them in a local array named products . Because the constructor
of the Product type requires an Address object as its third argument, the pageLoad method creates
an Address object:

 distributoraddress =
 new CustomComponents.Address(“street”+i, “city”+i, “state”+i, “zip”+i);

 Then, it creates the associated Product object, passing in the Address object:

 product = new CustomComponents.Product(“Product”+i, “Distributor”+i,
 distributoraddress);

 After creating the Product objects and storing them in the products array, the pageLoad method
invokes the $create shortcut method to create and initialize an instance of the CustomTable control

c10.indd 398c10.indd 398 8/20/07 6:08:28 PM8/20/07 6:08:28 PM

Chapter 10: Type Description Extensions

399

and add this instance to the _components collection of the current Application object. Note that the
 pageLoad method passes an object literal with a single name/value pair into the create method to
have the method assign the products array to the dataSource property of the CustomTable control:

 var customTable = $create(CustomComponents.CustomTable,
 {dataSource : products}, null, null, $get(“myDiv”));

 Finally, the pageLoad method calls the dataBind method on the CustomTable control to have the
 control display the specified products:

 customTable.dataBind();

 If you run the page shown in Listing 10-26 , you should get the result shown in Figure 10-6 . As you can see,
the CustomTable control is capable of displaying data records of type Product . Thanks to the ASP.NET
AJAX type inspection capabilities, the CustomTable control is able to invoke the convertToString
method of the Address type to convert the Address objects into their string representations.

Figure 10-6

 Dynamic Injection of Metadata Information
 The main idea behind the metadata inspection capabilities of the ASP.NET AJAX client-side framework
is to allow a given ASP.NET AJAX type to dynamically discover the complete information about the
properties, methods, events, and attributes of another type at runtime.

 As discussed earlier, the descriptor static property of an ASP.NET AJAX type references an object
 literal that contains up to four name/value pairs. These name/value pairs provide metadata information
about the properties, methods, events, and attributes of the type. The default implementation of the
 TypeDescriptor class’s getTypeDescriptor method uses the descriptor property of a type as the
source for the metadata information about its properties, methods, events, and attributes (shown
 previously in Listings 10-25 and 10-26). Therefore, this default implementation assumes that the type
statically contains this metadata information.

c10.indd 399c10.indd 399 8/20/07 6:08:28 PM8/20/07 6:08:28 PM

Chapter 10: Type Description Extensions

400

 There are runtime circumstances where a type that does not statically contain the required metadata
information may need to provide this information to operate properly. The TypeDescriptor class
exposes four methods named addProperty , addMethod , addEvent , and addAttribute that allow you
to dynamically inject the required metadata information into the TypeDescriptor object that describes
the type. As discussed earlier, other types do not directly inspect the metadata information of a type.
Instead, they call the getTypeDescriptor static method on the TypeDescriptor object to instantiate
and return the TypeDescriptor object that describes the type. They then use this TypeDescriptor
object to inspect the metadata information. Therefore, the dynamic injection of metadata information into
the TypeDescriptor object will give other types the illusion that the type itself contains the metadata.

 The following sections discuss the addProperty , addMethod , addEvent , and addAttribute methods.
Keep in mind that all four of these methods are instance methods. As such, they must be invoked on an
instance of the TypeDescriptor class, not the class itself.

 add Property
 The addProperty instance method of the TypeDescriptor class enables you to inject metadata
 information about a particular property. As Listing 10-27 shows, the addProperty instance takes five
parameters. The first parameter is a string that contains the name of the property. The second parameter
references the type of the property. The third parameter is a Boolean that specifies whether the property
is read only. The fourth parameter is a Boolean that specifies whether the property references a DOM
 element. The fifth parameter is an array that contains the attributes of the property.

 Listing 10-27: The add Property Instance Method of the TypeDescriptor Class

 Sys.Preview.TypeDescriptor.prototype.addProperty =
function Sys$Preview$TypeDescriptor$addProperty(propertyName, propertyType,
 readOnly, isDomElement,
 associatedAttributes)
{
 if (!readOnly)
 readOnly = false;

 var attribs;
 if (associatedAttributes)
 {
 attribs = { };
 for (var i = 4; i < arguments.length; i += 2)
 {
 var attribute = arguments[i];
 var value = arguments[i + 1];
 attribs[attribute] = value;
 }
 }
 return this._getProperties()[propertyName] =
 { name: propertyName,
 type: propertyType,
 ‘readOnly’: readOnly,
 ‘isDomElement’: isDomElement,
 attributes: attribs };
}

c10.indd 400c10.indd 400 8/20/07 6:08:29 PM8/20/07 6:08:29 PM

Chapter 10: Type Description Extensions

401

 The boldface portion of the following code fragment from Listing 10-27 shows that the addProperty
method creates an object literal with five name/value pairs. The first name/value pair specifies the name
of the property. The second name/value pair specifies the type of the property. The third name/value
pair specifies whether the property is read only. The fourth name/value pair specifies whether the
 property references a DOM element. The fifth name/value pair specifies the attributes of the property.

 this._getProperties()[propertyName] =
 { name: propertyName,
 type: propertyType,
 ‘readOnly’: readOnly,
 ‘isDomElement’: isDomElement,
 attributes: attribs };

 As the boldface portion of the following code fragment shows, the addProperty method calls the
 _getProperties method to return a reference to the _properties dictionary of the TypeDescriptor
object. It then uses the property name as an index into this dictionary to store the object literal into the
dictionary.

 return this._getProperties()[propertyName] =
 { name: propertyName,
 type: propertyType,
 ‘readOnly’: readOnly,
 ‘isDomElement’: isDomElement,
 attributes: attribs };

 add Method
 The addMethod instance method of the TypeDescriptor class enables you to dynamically inject metadata
information about a specific method into the TypeDescriptor object that represents an ASP.NET AJAX
type. As Listing 10-28 shows, this method takes two arguments. The first argument is a string that contains
the name of the method. The second argument is an array of object literals, where each object literal
describes a parameter of the method.

 Listing 10-28: The add Method Instance Method of the TypeDescriptor Class

 Sys.Preview.TypeDescriptor.prototype.addMethod =
function Sys$Preview$TypeDescriptor$addMethod(methodName,
 associatedParameters,
 isDomElement)
{
 return this._getMethods()[methodName] =
 { name: methodName, parameters: associatedParameters };
}

 The addMethod method creates an object literal with two name/value pairs to describe the specified
method. The first name/value pair specifies the name of the method, and the second name/value pair
specifies the parameters of the method, as shown in the boldface portion of the following code fragment:

 this._getMethods()[methodName] =
 { name: methodName, parameters: associatedParameters } ;

c10.indd 401c10.indd 401 8/20/07 6:08:29 PM8/20/07 6:08:29 PM

Chapter 10: Type Description Extensions

402

 The addMethod method then calls the _getMethods method on the TypeDescriptor object to return a
reference to the _methods dictionary. It then uses the method name as an index into this dictionary to
store the object literal into the dictionary, as shown in the boldface portion of the following code
fragment:

 return this._getMethods()[methodName] =
 { name: methodName, parameters: associatedParameters };

 When you call addMethod , you must pass an array of object literals into the method. The
 TypeDescriptor class includes a convenient method named createParameter that you can use to
 create the object literal that describes a given parameter as shown in Listing 10-29 . This method takes
four arguments. The first argument is a string that contains the name of the parameter. The second
 argument references the type of the parameter. The third argument is a Boolean that specifies whether
the parameter references a DOM element. The fourth argument is a Boolean that specifies whether the
parameter is an integer. As you can see, this method simply creates and returns an object literal. Note
that this method is a static method and must be called on the TypeDescriptor class itself.

 Listing 10-29: The create Parameter Static Method of the TypeDescriptor Class

 Sys.Preview.TypeDescriptor.createParameter =
function Sys$Preview$TypeDescriptor$createParameter(parameterName, parameterType,
 isDomElement, isInteger)
{
 return { name: parameterName, type: parameterType,
 ‘isDomElement’: isDomElement, ‘isInteger’: !!isInteger };
}

 add Event
 The addEvent method of the TypeDescriptor class allows you to dynamically inject metadata infor-
mation about a given event into the TypeDescriptor object that describes a given ASP.NET AJAX type.
The addEvent method takes a single argument, which is a string that contains the name of the event.
Listing 10-30 shows this method.

 Listing 10-30: The add Event Instance Method of the TypeDescriptor Class

 Sys.Preview.TypeDescriptor.prototype.addEvent =
function Sys$Preview$TypeDescriptor$addEvent(eventName)
{
 return this._getEvents()[eventName] = { name: eventName };
}

 The addEvent method creates an object literal with a single name/value pair that specifies the name of
the event, as shown in the boldface portion of the following code fragment from Listing 10-30 :

 this._getEvents()[eventName] = { name: eventName } ;

c10.indd 402c10.indd 402 8/20/07 6:08:30 PM8/20/07 6:08:30 PM

Chapter 10: Type Description Extensions

403

 The method then calls the _getEvents method to return a reference to the _events dictionary. It uses
the name of the event as an index into this dictionary to store the object literal, as shown in the boldface
portion of the following code fragment:

 return this._getEvents()[eventName] = { name: eventName };

 add Attribute
 The addAttribute method of the TypeDescriptor class enables you to dynamically inject metadata
information about a given attribute into the TypeDescriptor object that describes a given ASP.NET
AJAX type. The addAttribute method takes two arguments. The first argument is a string that contains
the name of the attribute, and the second argument contains the value of the attribute. Listing 10-31
shows this method.

 Listing 10-31: The add A ttribute Instance Method of the Type D escriptor Class

 Sys.Preview.TypeDescriptor.prototype.addAttribute =
function Sys$Preview$TypeDescriptor$addAttribute(attributeName, attributeValue)
{
 this._getAttributes()[attributeName] = attributeValue;
}

 The addAttribute method calls the _getAttributes method to return a reference to the
 _attributes dictionary, and uses the name of the attribute as an index into this dictionary to store the
value of the attribute.

 ICustomTypeDescriptor
 As Listing 10-32 shows, the ICustomTypeDescriptor interface exposes three instance methods named
 getProperty , setProperty , and invokeMethod .

 Listing 10-32: The ICustomTypeDescriptor Interface

 Sys.Preview.ICustomTypeDescriptor = function Sys$Preview$ICustomTypeDescriptor()
{
 throw Error.notImplemented();
}

function Sys$Preview$ICustomTypeDescriptor$getProperty()
{
 throw Error.notImplemented();
}

function Sys$Preview$ICustomTypeDescriptor$setProperty()
{
 throw Error.notImplemented();
}

(continued)

c10.indd 403c10.indd 403 8/20/07 6:08:30 PM8/20/07 6:08:30 PM

Chapter 10: Type Description Extensions

404

 Listing 10-32 (continued)

function Sys$Preview$ICustomTypeDescriptor$invokeMethod()
{
 throw Error.notImplemented();
}

Sys.Preview.ICustomTypeDescriptor.prototype =
{
 getProperty: Sys$Preview$ICustomTypeDescriptor$getProperty,
 setProperty: Sys$Preview$ICustomTypeDescriptor$setProperty,
 invokeMethod: Sys$Preview$ICustomTypeDescriptor$invokeMethod
}

Sys.Preview.ICustomTypeDescriptor.registerInterface(
 ‘Sys.Preview.ICustomTypeDescriptor’);

 As discussed earlier, you can customize the getProperty , setProperty , and invokeMethod methods
of the TypeDescriptor class by having your type implement the ICustomTypeDescriptor interface.

 You may be wondering why and when you should have your type implement this interface to customize
the previously mentioned methods of the TypeDescriptor class. As discussed earlier in this chapter, the
default implementation of these TypeDescriptor class methods use the descriptor static property of
a type to retrieve the required information about the properties, events, methods, and attributes of the
type. And there may be times when a type must expose some information to the outside world as if it
were the value of one of its properties.

 As an example, consider the ASP.NET AJAX DataRow type shown in Listing 10-33 . As the name suggests,
instances of the DataRow type are used to represent tabular data records, where each record consists of one
or more data fields (such as database records). A DataRow object takes an object literal that describes the
data fields of a record and presents the properties of this object literal as if they were its own properties.

 Listing 10-33: A Page that Uses the DataRow Type

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function pageLoad()
 {
 var dataRow = new Sys.Preview.Data.DataRow(
 {productName: ‘p1’, unitPrice: 30, distributor: ‘d1’});

 alert (“Product Name: “ + dataRow.getProperty(“productName”) +
 “\nUnit Price: “ + dataRow.getProperty(“unitPrice”) +
 “\nDistributor: “ + dataRow.getProperty(“distributor”));
 }
 </script>
</head>

(continued)

c10.indd 404c10.indd 404 8/20/07 6:08:30 PM8/20/07 6:08:30 PM

Chapter 10: Type Description Extensions

405

Figure 10-7

 Listing 10-33 (continued)

<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”Server”>
 <Scripts>
 <asp:ScriptReference Path=”PreviewScriptjs” />
 </Scripts>
 </asp:ScriptManager>
 </form>
</body>
</html>

 This page creates a DataRow object, passing the following object literal:

 {productName: ‘p1’, unitPrice: 30, distributor: ‘d1’}

 This object exposes three properties named productName , unitPrice , and distributor . The
 following code fragment from Listing 10-33 calls the getProperty method directly on the DataRow
object instead of the object literal, passing in the names of the properties of the object to access the values
of these properties as if they were the properties of the DataRow object itself:

 alert (“Product Name: “ + dataRow.getProperty(“productName”) +
 “\nUnit Price: “ + dataRow.getProperty(“unitPrice”) +
 “\nDistributor: “ + dataRow.getProperty(“distributor”));

 If you run the page shown in Listing 10-33 , you should see the result shown in Figure 10-7 .

 Summary
 This chapter walked you through some of the important type description capabilities of the ASP.NET
AJAX client-side framework. As you saw in this chapter, the DataRow class implements the
 ICustomTypeDescriptor interface to expose its data fields as if they were its own properties. This
enables the clients of the DataRow class to call the getProperty method on the DataRow object itself to
access the values of its data fields. The DataRow class is part of a rich set of ASP.NET AJAX types that fall
under the category of data sources, which are covered in the next two chapters.

c10.indd 405c10.indd 405 8/20/07 6:08:30 PM8/20/07 6:08:30 PM

c10.indd 406c10.indd 406 8/20/07 6:08:31 PM8/20/07 6:08:31 PM

 Data Classes
 Tabular data, such as relational data, plays a central role in today’s data-driven Web applications.
The .NET Framework comes with three rich classes named DataColumn , DataRow , and
 DataTable that you can use in your .NET code to represent and to program against tabular data.

 The ASP.NET AJAX client-side framework comes with the same set of data classes — DataColumn ,
 DataRow , and DataTable — that emulate their .NET countparts. You can use these data classes in
your client-side code to represent and program against tabular data such as relational data. This
chapter discusses these three ASP.NET AJAX data classes. All these classes belong to a namespace
named Sys.Preview.Data :

 Type.registerNamespace(‘Sys.Preview.Data’);

 The ASP.NET AJAX DataTable class implements an interface named I Data . The chapter begins
with this interface.

 I Data
 Most ASP.NET AJAX client data classes, such as DataTable , implement an ASP.NET AJAX interface
named IData , either directly or indirectly. As a matter of fact, if none of the existing data classes
meet your requirements, you can write a new data class that implements this interface. Implement-
ing this interface enables your custom data class to seamlessly integrate into the ASP.NET AJAX
 client-side framework. For example, the ASP.NET AJAX Selector client control can bind to any
data class that implements the I Data interface (as discussed in more detail later).

 Listing 11-1 contains the definition of this interface. As you can see, the I Data interface exposes
the following five methods:

❑ add : Your custom data class’s implementation of this method must add the specified data
row to the internal collection where data rows are stored.

c11.indd 407c11.indd 407 8/20/07 8:14:13 PM8/20/07 8:14:13 PM

Chapter 11: Data Classes

408

❑ clear : Your custom data class’s implementation of this method must clear the internal
 collection where data rows are stored.

❑ get_length : Your custom data class’s implementation of this method must return an integer
that specifies the total number of data rows in the internal collection where data rows are stored.

❑ getRow : Your custom data class’s implementation of this method must return a reference to the
specified data row.

❑ remove : Your custom data class’s implementation of this method must remove the specified
data row from the internal collection where data rows are stored.

 Listing 11-1: The Definition of the I Data Interface

 Sys.Preview.Data.IData = function Sys$Preview$Data$IData()
{
 throw Error.notImplemented();
}

function Sys$Preview$Data$IData$add()
{
 throw Error.notImplemented();
}

function Sys$Preview$Data$IData$clear()
{
 throw Error.notImplemented();
}

function Sys$Preview$Data$IData$get_length()
{
 throw Error.notImplemented();
}

function Sys$Preview$Data$IData$getRow()
{
 throw Error.notImplemented();
}

function Sys$Preview$Data$IData$remove()
{
 throw Error.notImplemented();
}

Sys.Preview.Data.IData.prototype =
{
 add: Sys$Preview$Data$IData$add,
 clear: Sys$Preview$Data$IData$clear,
 get_length: Sys$Preview$Data$IData$get_length,
 getRow: Sys$Preview$Data$IData$getRow,
 remove: Sys$Preview$Data$IData$remove
}

Sys.Preview.Data.IData.registerInterface(‘Sys.Preview.Data.IData’);

c11.indd 408c11.indd 408 8/20/07 8:14:14 PM8/20/07 8:14:14 PM

Chapter 11: Data Classes

409

 DataColumn
 The instances of the .NET DataColumn class are used to represent the columns of a data table. For example,
each column of a relational database table is represented by a DataColumn instance. The ASP.NET AJAX
client-side framework exposes an ASP.NET AJAX class named DataColumn , which emulates the .NET
 DataColumn . Listing 11-2 presents the internal implementation of this client class.

 Listing 11-2: The ASP.NET AJAX DataColumn Client Class

 Sys.Preview.Data.DataColumn =
function Sys$Preview$Data$DataColumn(columnName, dataType, defaultValue,
 isKey, isReadOnly)
{
 this._columnName = columnName;
 this._dataType = dataType;
 this._defaultValue = defaultValue;
 this._readOnly = isReadOnly;
 this._key = isKey;
}

function Sys$Preview$Data$DataColumn$get_columnName()
{
 return this._columnName;
}

function Sys$Preview$Data$DataColumn$get_dataType()
{
 return this._dataType;
}

function Sys$Preview$Data$DataColumn$get_defaultValue()
{
 return this._defaultValue;
}

function Sys$Preview$Data$DataColumn$get_isKey()
{
 return this._key;
}

function Sys$Preview$Data$DataColumn$get_readOnly()
{
 return !!this._readOnly;
}

function Sys$Preview$Data$DataColumn$dispose()
{
 this._columnName = null;
 this._dataType = null;
 this._defaultValue = null;
}

(continued)

c11.indd 409c11.indd 409 8/20/07 8:14:14 PM8/20/07 8:14:14 PM

Chapter 11: Data Classes

410

 Listing 11-2 (continued)

Sys.Preview.Data.DataColumn.prototype =
{
 get_columnName: Sys$Preview$Data$DataColumn$get_columnName,
 get_dataType: Sys$Preview$Data$DataColumn$get_dataType,
 get_defaultValue: Sys$Preview$Data$DataColumn$get_defaultValue,
 get_isKey: Sys$Preview$Data$DataColumn$get_isKey,
 get_readOnly: Sys$Preview$Data$DataColumn$get_readOnly,
 dispose: Sys$Preview$Data$DataColumn$dispose
}

Sys.Preview.Data.DataColumn.parseFromJson =
function Sys$Preview$Data$DataColumn$parseFromJson(json)
{
 return new Sys.Preview.Data.DataColumn(json.name,
 typeof(json.dataType === ‘string’) ? eval(json.dataType) : json.dataType,
 json.defaultValue, json.isKey, json.readOnly);
}

Sys.Preview.Data.DataColumn.descriptor =
{
 properties: [{ name: ‘columnName’, type: String, readOnly: true },
 { name: ‘dataType’, type: Sys.Type, readOnly: true },
 { name: ‘defaultValue’, readOnly: true },
 { name: ‘isKey’, type: Boolean, readOnly: true },
 { name: ‘readOnly’, type: Boolean, readOnly: true }]
}

Sys.Preview.Data.DataColumn.registerClass(‘Sys.Preview.Data.DataColumn’, null,
 Sys.IDisposable);

 The constructor of the DataColumn class takes the following five parameters:

❑ columnName : This parameter is a string that contains the name of the data field that the
 DataColumn object represents. For example, if you want to create a DataColumn object to repre-
sent the ProductName database field of the Products database table, you must pass the string
value “ProductName” into the constructor of the DataColumn class as the first parameter.

❑ dataType : This parameter references the data type of the data field that the DataColumn object
represents. For example, if you want to create a DataColumn object to represent the UnitPrice
database field of the Products database table, you must pass Number into the constructor of the
 DataColumn class as the second argument.

❑ defaultValue : This parameter contains the default value for the data field that the DataColumn
object represents. The type of this parameter depends on the type of data field.

❑ isKey : This parameter is a Boolean value that specifies whether the data field that the
 DataColumn represents is a primary key field. For example, if you want to create a DataColumn
object to represent the ProductID primary key field of the Products database table, you must
pass true into the constructor of the DataColumn class as the fourth argument.

❑ isReadOnly : This parameter is a Boolean value that specifies whether the data field that the
 DataColumn represents is editable.

c11.indd 410c11.indd 410 8/20/07 8:14:15 PM8/20/07 8:14:15 PM

Chapter 11: Data Classes

411

 As Listing 11-2 shows, the DataColumn client class exposes five properties with the same names as
these parameters: columnName , dataType , defaultValue , isKey , and isReadOnly . Like any other
ASP.NET AJAX client class, this class exposes a static property named descriptor . The descriptor
property is set to an object literal that contains a single name/value pair describing the properties of the
 DataColumn class:

 Sys.Preview.Data.DataColumn.descriptor =
{
 properties: [{ name: ‘columnName’, type: String, readOnly: true },
 { name: ‘dataType’, type: Sys.Type, readOnly: true },
 { name: ‘defaultValue’, readOnly: true },
 { name: ‘isKey’, type: Boolean, readOnly: true },
 { name: ‘readOnly’, type: Boolean, readOnly: true }]
}

 The DataColumn client class exposes five getter methods named get_columnName , get_dataType ,
 get_defaultValue , get_isKey , and get_isReadOnly that return the values of the columnName ,
 dataType , defaultValue , isKey , and isReadOnly properties of the class. The DataColumn class does
not expose any setter methods for these properties. You must set the values of these properties through
the constructor of the class when you’re instantiating the class. This fact has also been reflected in the
 descriptor static property of the class, where all object literals describing the properties of the class
contain the readOnly: tru e name/value pair.

 In general, there are two ways to create a DataColumn object to represent the data field of a given data
table. One approach is to use the constructor of the DataColumn class directly as discussed earlier.
Another approach is to invoke the parseFromJson method on the DataColumn class. As Listing 11-2
shows, the DataColumn class exposes this method as a static method, which means that you must call
this method on the class itself:

 Sys.Preview.Data.DataColumn.parseFromJson =
function Sys$Preview$Data$DataColumn$parseFromJson(json)
{
 return new Sys.Preview.Data.DataColumn(json.columnName,
 typeof(json.dataType === ‘string’) ? eval(json.dataType) : json.dataType,
 json.defaultValue, json.isKey, json.readOnly);
}

 This approach enables you to pass an object that contains the required information about a data field
into the parseFromJson static method, and have this method instantiate and return the associated
 DataColumn object. For example, the following code fragment presents the object literal representation
of the Products database table’s UnitPrice data field:

 {
 columnName: ‘UnitPrice’, dataType: Number, defaultValue: 100,
 isKey: false, isReadOnly: true
}

 As you can see, the object literal that represents a data field contains five name/value pairs that specify
the data field name, type, and default value; whether the data field is a primary key; and whether the
data field is editable.

c11.indd 411c11.indd 411 8/20/07 8:14:15 PM8/20/07 8:14:15 PM

Chapter 11: Data Classes

412

 Now you can call the parseFromJson static method on the DataColumn class, passing in the object
 literal representation of the data field to instantiate and return the DataColumn object that represents the
data field:

 var dataColumn = Sys.Preview.Data.DataColumn.parseFromJson (
 {
 columnName: ‘UnitPrice’, dataType: Number,
 defaultValue: 100, isKey: false,
 isReadOnly: true
 });

 DataRow
 In .NET, every data row is represented by an instance of a .NET class named DataRow . The ASP.NET AJAX
client-side framework includes a client class named DataRow that emulates its .NET counterpart. The
 following sections discuss the members of this client class.

 Constructor
 Listing 11-3 shows the constructor of the DataRow client class.

 Listing 11-3: The DataRow Client Class

 Sys.Preview.Data.DataRow =
function Sys$Preview$Data$DataRow(objectDataRow, dataTableOwner, index)
{
 this._owner = dataTableOwner;
 this._row = objectDataRow;
 this._index = index;
}

 DataRow takes the following three parameters:

❑ objectDataRow : This parameter references a JavaScript object that contains the data field
names and values of the data row that the DataRow object being instantiated will represent. An
example of such an object is a JavaScript object literal that contains one name/value pair for
each data field, where the name part of the pair is the name of the data field, and the value part
is the value of the data field. For example, the following JavaScript object literal represents a
data row in the Products database table:

 {productName: ‘p1’, unitPrice: 30, distributor: ‘d1’}

❑ dataTableOwner : This parameter references the Sys.Preview.Data.DataTable object that
owns the DataRow object being instantiated. This DataTable object represents the data table
that owns the data row the DataRow object represents. (DataTable is discussed in more
 detail later.)

c11.indd 412c11.indd 412 8/20/07 8:14:15 PM8/20/07 8:14:15 PM

Chapter 11: Data Classes

413

❑ index : This parameter is an integer that specifies the index of the DataRow object being instanti-
ated in the collection that contains all DataRow objects for a particular DataTable object. This
collection is maintained by the DataTable object. (DataTable is discussed in more detail later.)

 The constructor of the DataRow client class respectively stores the values of the objectDataRow ,
 dataTableOwner , and index parameters in three internal fields named _row , _owner , and _index for
future reference. In other words, every DataRow object maintains a reference to the DataTable object
that owns it and knows its index in the underlying collection.

 descriptor
 As Listing 11-4 shows, the DataRow client class exposes a static property named descriptor that
describes the members of the class.

 Listing 11-4: The descriptor Property of the DataRow Class

 Sys.Preview.Data.DataRow.descriptor =
{
 properties: [{ name: ‘$isDirty’, type: Boolean, readOnly: true },
 { name: ‘$index’, type: Number, readOnly: true },
 { name: ‘$selected’, type: Boolean }],
 events: [{ name: ‘propertyChanged’, readOnly: true }]
}

 The DataRow class exposes three properties and a single event as follows:

❑ $isDirty : This read-only property returns a Boolean value that specifies whether any of
the data field values of the DataRow object has changed value. Note that the name of this
 property begins with the dollar sign character. As you’ll see later, when the ASP.NET AJAX
 JavaScriptSerializer class is serializing an object, it skips the properties with names that
begin with a dollar sign.

❑ $index : This read-only property returns an integer that specifies the index of the DataRow object in
the underlying collection where the DataRow objects belonging to the same DataTable object are
stored. As mentioned earlier, this collection is maintained internally by the DataTable object itself.

❑ $selected : This read/write property returns a Boolean value that specifies whether the current
 DataRow has been selected.

❑ propertyChanged : The DataRow object raises this event when it’s selected or deselected and
when its _row field or isDirty property changes value.

 The DataRow class exposes the get_is Dirty , get_index , and get_selected getter methods to allow
its clients to access the values of these three properties. Because the $selected property is writable,
the class also exposes a setter method named set_selected to allow its clients to set the value of this
 property. This setter method calls an internal method named _onPropertyChanged to raise the
 propertyChanged event.

c11.indd 413c11.indd 413 8/20/07 8:14:15 PM8/20/07 8:14:15 PM

Chapter 11: Data Classes

414

 function Sys$Preview$Data$DataRow$get_isDirty()
{
 return typeof(this._row._original) === “object”;
}

function Sys$Preview$Data$DataRow$get_index()
{
 return this._index;
}

function Sys$Preview$Data$DataRow$get_selected()
{
 return this._selected;
}

function Sys$Preview$Data$DataRow$set_selected(value)
{
 if (this._selected !== value)
 {
 this._selected = value;
 this._onPropertyChanged(“$selected”);
 }
}

 I CustomTypeDescriptor
 The DataRow class implements the ICustomTypeDescriptor interface as shown in the boldfaced portion
of the following code fragment:

 Sys.Preview.Data.DataRow.registerClass(‘Sys.Preview.Data.DataRow’, null,
 Sys.Preview.ICustomTypeDescriptor ,
 Sys.INotifyPropertyChange, Sys.IDisposable);

 An ASP.NET AJAX client class normally implements the ICustomTypeDescriptor to expose informa-
tion that is not directly exposed through its properties, as if they were the values of its own properties.
This allows the clients of the class to access this information as if they were accessing the values of class
properties.

 A DataRow object represents a data row from a data table. As such, it contains the names and values of
the data fields of its associated data row. What if the DataRow class could somehow expose the names
and values of its constituent data fields as if they were the names and values of its own properties? For
example, consider the following data row from the Products database table:

ProductName UnitPrice Distributor

Product1 100 Distributor1

c11.indd 414c11.indd 414 8/20/07 8:14:16 PM8/20/07 8:14:16 PM

Chapter 11: Data Classes

415

 Now, let’s instantiate a DataRow object to represent this data row as follows:

 var dataRow = new Sys.Preview.Data.DataRow(
 {productName: ‘product1’, unitPrice: 100, distributor: ‘Distributor1’});

 Wouldn’t it be great if the clients of this DataRow object could treat the productName , unitPrice , and
 distributor data fields as if they were the properties of the DataRow class itself? This would allow the
clients to access the values of these data fields as if they were accessing the values of properties with
the same names, which means that these clients could call the getProperty method directly on the
 DataRow object itself to access the value of a specified data field, like this:

 var productName = dataRow.getProperty(“productName”);
var unitPrice = dataRow.getProperty(“unitPrice”);
var distributor = dataRow.getProperty(“distributor”);

 The DataRow class implements the I CustomTypeDescriptor interface to achieve this goal. In the previ-
ous chapter, you learned that this interface exposes three methods named getProperty , setProperty ,
and invokeMethod . The following sections walk you through the DataRow class’s implementation of
these methods to help you gain the experience you’ll need to implement the ICustomTypeDescriptor
interface.

 get Property
 Listing 11-5 presents the DataRow class’s implementation of the I CustomTypeDescriptor interface’s
 getProperty method.

 Listing 11-5: The get Property Method

 function Sys$Preview$Data$DataRow$getProperty(name, key)
{
 if (!name)
 return typeof(this._row._rowObject) !== “undefined” ?
 this._row._rowObject : this._row;

 switch(name)
 {
 case “$isDirty”:
 return this.get_isDirty();

 case “$index”:
 return this._index;

 case “$selected”:
 return this.get_selected();
 }

 return Sys.Preview.TypeDescriptor.getProperty(this._row, name, key);
}

 This method first checks whether the property whose value is being queried is one of the DataRow
class’s own properties: $isDirty , $index , or $selected . If so, it returns the value of the associated
property.

c11.indd 415c11.indd 415 8/20/07 8:14:16 PM8/20/07 8:14:16 PM

Chapter 11: Data Classes

416

 Your custom type’s implementation of the I CustomTypeDescriptor interface’s getProperty meth-
odmust do the same — it must first check whether the property whose value is being queried is one of
its own properties. If so, it must return the value of the property. Otherwise, the clients of your cus-
tom type would not be able to access the values of your type properties in a generic fashion via the
 get Property method.

 As Listing 11-5 shows, if the property whose value is being queried is not one of the DataRow class’s
own properties, the DataRow class’s implementation of the get Property method delegates the respon-
sibility of returning the value of the specified property to the type of the _row field. The constructor of
the DataRow class stores the value of its first parameter in the _row field (as previously shown in Listing
 11-3). This parameter references a JavaScript object that contains the names and values of the data fields
of the data row that the DataRow object represents.

 This means that the type of the JavaScript object that you pass into the constructor of the DataRow class
as its first parameter must treat the names and values of its constituent data fields as its own properties.
For example, an object literal that contains one name/value pair for each data field is an example of a
JavaScript object that exposes the names and values of its constituent data fields as its own properties.

 set Property
 Listing 11-6 presents the DataRow class’s implementation of the I CustomTypeDescriptor interface’s
 setProperty method . As discussed earlier, the DataRow class exposes three properties named
 $isDirty , $index , and $selected . The $selected property is the only property that the clients of the
 DataRow object can set. As far as the clients of the class are concerned, the other two properties are
read-only.

 Listing 11-6: The DataRowState Enumeration

 Sys.Preview.Data.DataRowState = function Sys$Preview$Data$DataRowState()
{
 throw Error.invalidOperation();
}

Sys.Preview.Data.DataRowState.prototype =
{
 Unchanged: 0,
 Added: 1,
 Deleted: 2,
 Detached: 3,
 Modified: 4
}

Sys.Preview.Data.DataRowState.registerEnum(‘Sys.Preview.Data.DataRowState’);

 The setProperty method first checks whether the property whose value is being set is the $selected
property. If so, it simply calls the set_selected setter method to set the property value and returns, as
follows:

 if (name === “$selected”)
 {
 this.set_selected(value);
 return;
 }

c11.indd 416c11.indd 416 8/20/07 8:14:17 PM8/20/07 8:14:17 PM

Chapter 11: Data Classes

417

 Your custom type’s implementation of the I CustomTypeDescriptor interface’s setProperty method
must do the same — it must check whether the property whose value is being set is one of its own
 properties. If so, it must set the value of the property and return.

 If the property whose value is being set is not the $selected property, the DataRow object simply dele-
gates the responsibility of setting the value of the property to the setProperty method of its _row field.
This field references a JavaScript object that contains the names and values of the data fields in the data
row that the DataRow object represents, as follows:

 Sys.Preview.TypeDescriptor.setProperty(this._row, name, value, key);

 This normally happens when you call the set Property method on the DataRow object to set the value
of a specified data field. In other words, you’re setting the value of a data field as if the DataRow object
exposed a property with the same name as the data field and you’re setting the value of this property.

 As Listing 11-6 shows, the set Property method of the DataRow class takes a few other steps before
 calling the set Property method of its _row field. This is because the DataRow object needs to mark
itself as dirty even though it delegates the responsibility of setting the value of the property (or data field)
to its _row field. Here are the steps that the set Property method of the DataRow class takes before
invoking the set Property method of the _row field:

1. It iterates through the data fields that the _row field contains and copies these data field names
and values into a local object named original :

 var original = {};
 for (var columnName in this._row)
 {
 if ((columnName.charAt(0) !== ‘_’) &&
 (typeof(this._row[columnName]) !== “function”))
 original[columnName] = this._row[columnName];
 }

2. It stores this local object into a field named _original , on the _row field:

 this._row._original = original;

3. It calls an internal setter method named _set_state to change the state of the DataRow object
to Modified :

 this._set_state(Sys.Preview.Data.DataRowState.Modified);

 The implementation of the _set_state method is as follows:

 function Sys$Preview$Data$DataRow$_set_state(value)
{
 this._state = value;
}

 Note that the _set_state method is an internal method and must not be directly called from your
code. This allows the DataRow class to have complete control over when it should be marked as dirty.

c11.indd 417c11.indd 417 8/20/07 8:14:17 PM8/20/07 8:14:17 PM

Chapter 11: Data Classes

418

The DataRow class exposes a getter method named get_state that you can call to query the state of the
 DataRow object, as follows:

 function Sys$Preview$Data$DataRow$get_state()
{
 return this._state;
}

 A DataRow object could be in one of the states defined by the DataRowState enumeration presented in
Listing 11-7 .

 Listing 11-7: The set Property Method of the DataRow Class

function Sys$Preview$Data$DataRow$setProperty(name, value, key)
{
 if (name === “$selected”)
 {
 this.set_selected(value);
 return;
 }

 if (this._row[name] === value)
 return;

 var isDirty = this.get_isDirty();
 if (!isDirty && this._owner &&
 (this.get_state() === Sys.Preview.Data.DataRowState.Unchanged))
 {
 var original = {};
 for (var columnName in this._row)
 {
 if ((columnName.charAt(0) !== ‘_’) &&
 (typeof(this._row[columnName]) !== “function”))
 original[columnName] = this._row[columnName];
 }
 this._row._original = original;
 this._set_state(Sys.Preview.Data.DataRowState.Modified);
 }

 Sys.Preview.TypeDescriptor.setProperty(this._row, name, value, key);

 this._onPropertyChanged(name);

 if (!isDirty)
 this._onPropertyChanged(“$isDirty”);

 this._owner.raiseRowChanged(this._row);
}

 When the get_isDirty getter method is invoked, this method checks whether the _original field
value of the _row field has been set. If so, it returns true to inform its caller that the DataRow object has
been modified:

c11.indd 418c11.indd 418 8/20/07 8:14:17 PM8/20/07 8:14:17 PM

Chapter 11: Data Classes

419

 function Sys$Preview$Data$DataRow$get_isDirty()
{
 return typeof(this._row._original) === “object”;
}

 The set Property method finally calls the _onPropertyChanged method to raise the propertyChanged
event:

 this._onPropertyChanged(name);

 if (!isDirty)
 this._onPropertyChanged(“$isDirty”);

 It also calls the raiseRowChanged method on the _owner field. This field references the DataTable
object that owns the DataRow object (as shown previously in Listing 11-3). The DataTable class and its
 raiseRowChanged method are discussed later in this chapter, but for now suffice it to say that the owner
 DataTable object is notified every time one of its constituent DataRow objects changes:

 this._owner.raiseRowChanged(this._row);

 invoke Method
 As Listing 11-8 shows, the DataRow class’s implementation of the I CustomTypeDescriptor interface’s
 invoke Method method does not do anything. In general, your custom type’s implementation of any
interface must implement all the members of the interface. Even if there is a member that you’re not inter-
ested in, you must still provide an implementation that does nothing.

 Listing 11-8: The invoke Method Method

 function Sys$Preview$Data$DataRow$invokeMethod(methodName, parameters)
{
}

 Owner
 As Listing 11-9 shows, the DataRow class exposes a getter method named get_table that you can call
on a DataRow object to return a reference to the DataTable object that owns the DataRow .

 Listing 11-9: The get_table Getter Method

 function Sys$Preview$Data$DataRow$get_table()
{
 return this._owner;
}

 Note that the DataRow object exposes an internal setter method named _set_table that specifies a
given DataTable object as the owner of the DataRow object:

 function Sys$Preview$Data$DataRow$_set_table(value)
{
 this._owner = value;
}

c11.indd 419c11.indd 419 8/20/07 8:14:17 PM8/20/07 8:14:17 PM

Chapter 11: Data Classes

420

 This setter method is for internal use, and you must never call it from your code. The only way to specify
the DataTable object that owns a DataRow object is when you’re calling the constructor of the DataRow
class (as previously shown in Listing 11-3) to instantiate the DataRow object. You cannot change the
 DataTable object that owns a given DataRow object after you create the DataRow object.

 I NotifyPropertyChange
 As the boldface portion of the following code fragment shows, the DataRow class implements the
 INotifyPropertyChange interface discussed in the previous chapters:

 Sys.Preview.Data.DataRow.registerClass(‘Sys.Preview.Data.DataRow’, null,
 Sys.Preview.ICustomTypeDescriptor,
 Sys.INotifyPropertyChange, Sys.IDisposable);

 Implementing this interface allows a type such as DataRow to raise the propertyChanged event.

 The DataRow class follows the ASP.NET AJAX event implementation pattern discussed in the previous
chapters to implement the propertyChanged event. This pattern requires an ASP.NET AJAX type to
take the following steps:

1. Expose a private field named _events , which references an EventHandlerList object where
the event handlers registered for the events of the type will be stored.

2. Expose a getter method named get_events or get_eventHandlerList that returns a reference
to this EventHandlerList object.

3. Expose a method named add_ EventName where EventName stands for the name of the event,
which is propertyChanged in the case of the DataRow type. This method must call the
 addHandler method on the EventHandlerList to add the specified JavaScript function as an
event handler for the event with the specifed name.

4. Expose a method named remove_ EventName where EventName stands for the name of the event,
which is propertyChanged in the case of the DataRow type. This method must call the
 removeHandler method on the EventHandlerList object to remove the specified JavaScript
function from the list of event handlers registered for the event with the specified name.

5. Expose a method named on EventName where EventName stands for the name of the event. This
method must call the getHandler method on the EventHandlerList object to return a refer-
ence to a JavaScript function whose invocation automatically invokes all event handlers regis-
tered for the event with the specified name. Next, it must instantiate an instance of the event
data class associated with the event with the specified name. Finally, it must call the JavaScript
function returned from the getHandler method passing in the event data class instance. Calling
this function automatically calls all event handlers registered for the specified event, passing in
the event data class instance.

 Following this standard ASP.NET AJAX event implementation pattern, the DataRow class first exposes
the get_events method shown in Listing 11-10 .

c11.indd 420c11.indd 420 8/20/07 8:14:18 PM8/20/07 8:14:18 PM

Chapter 11: Data Classes

421

 Listing 11-10: The get_events Method

 function Sys$Preview$Data$DataRow$get_events()
{
 if (!this._events)
 this._events = new Sys.EventHandlerList();

 return this._events;
}

 Next, it implements two methods named add_ propertyChanged and remove_propertyChanged as
shown in Listing 11-11 . Notice that the names of these two methods follow the naming convension speci-
fied in the ASP.NET AJAX event implementation pattern. These two methods are also the methods of the
 I NotifyPropertyChange interface that the DataRow class must implement.

 Listing 11-11: The add_property Changed and remove_property Changed Methods

 function Sys$Preview$Data$DataRow$add_propertyChanged(handler)
{
 this.get_events().addHandler(“propertyChanged”, handler);
}

function Sys$Preview$Data$DataRow$remove_propertyChanged(handler)
{
 this.get_events().removeHandler(“propertyChanged”, handler);
}

 Following the ASP.NET AJAX event implementation pattern, the DataRow class exposes a method
named _onPropertyChanged that raises the propertyChanged event. As you saw before, a DataRow
object calls the _onPropertyChanged method every time either of the following occurs:

❑ Its $selected property changes value, which occurs when the DataRow object is selected or
deselected.

❑ Its $isDirty property changes value, which occurs when the constituent data fields of the
 DataRow object change value.

 You can use the add_ propertyChanged method to register a callback as an event handler for the
 DataRow object’s propertyChanged event.

 Listing 11-12 shows the _onPropertyChanged method.

 Listing 11-12: The _ on PropertyChanged Method

 function Sys$Preview$Data$DataRow$_onPropertyChanged(propertyName)
{
 var handler = this.get_events().getHandler(“propertyChanged”);
 if (handler)
 handler(this, new Sys.PropertyChangedEventArgs(propertyName));
}

c11.indd 421c11.indd 421 8/20/07 8:14:18 PM8/20/07 8:14:18 PM

Chapter 11: Data Classes

422

 When the _onPropertyChanged method is invoked, it first calls the get_events method to return a
reference to the internal EventHandlerList object that contains all event handlers registered for the
 DataRow object’s events. Then it calls the getHandler method on this EventHandlerList object to
return a reference to a JavaScript function whose invocation automatically invokes all event handlers
registered for the the DataRow object’s propertyChanged event.

 var handler = this.get_events().getHandler(“propertyChanged”);

 Finally, the _onPropertyChange method invokes this JavaScript function:

 handler(this, new Sys.PropertyChangedEventArgs(propertyName));

 Note that the method passes a Sys.PropertyChangedEventArgs object that encapsulates the name of
the property whose value has changed into the event handler.

 DataTable
 The .NET DataTable class is a powerful data class that is used to represent a data table such as a rela-
tional database table. The ASP.NET AJAX client-side framework includes a powerful client data class
named DataTable that emulates the .NET DataTable class and provides client-side programmers with
features that are similar to what its .NET counterpart offers. The following sections discuss the members
of the DataTable client data class.

 Constructor
 As Listing 11-13 shows, the constructor of the DataTable class takes two parameters. The first parameter
is an array of DataColumn objects, where each DataColumn object represents a particular data column of
the data table that the DataTable object being instantiated will represent. The second parameter, which
is optional, is an array of JavaScript objects, where each JavaScript object contains the data field names
and values of a particular data row of the data table that the DataTable object being instantiated will
represent.

 Listing 11-13: The Constructor of the DataTable Class

 Sys.Preview.Data.DataTable =
function Sys$Preview$Data$DataTable(columns, tableArray)
{
 this._array = Array.isInstanceOfType(tableArray) ? tableArray : [];
 this._columns = Array.isInstanceOfType(columns) ? columns : [];
 this._rows = [];
 this._deletedRows = [];
 this._newRows = [];
 this._updatedRows = [];
 this._columnDictionary = {};
 this._keys = null;
 this._events = null;
}

c11.indd 422c11.indd 422 8/20/07 8:14:18 PM8/20/07 8:14:18 PM

Chapter 11: Data Classes

423

 The DataTable class exposes the following internal fields:

❑ _array : This field is an array that contains one JavaScript object for each data row of the data
table that the DataTable object represents. Each JavaScript object contains the data field names
and values of its associated data row. This JavaScript object is known as a row object.

❑ _columns : This field is an array that contains one DataColumn object for each data column of
the data table that the DataTable object represents. Each DataColumn object specifies the
 following information about its associated data column:

❑ Its column name, type, and default value

❑ Whether it is a primary key field

❑ Whether it is editable

 ❑ _rows : This field is an array that contains one DataRow object for each data row of the data table
that the DataTable object represents. Each DataRow object provides the following information
about its associated data row:

❑ A JavaScript object (via the get_rowObject getter method) that contains the data field
names and values of the associated data row. The DataRow class exposes a getter method
named get_rowObject that returns a reference to this JavaScript object:

 function Sys$Preview$Data$DataRow$get_rowObject()
{
 return typeof(this._row._rowObject) !== “undefined” ?
 this._row._rowObject : this._row;
}

❑ The _row field references the object that is passed into the constructor of the DataRow class
as its first argument (as shown previously in Listing 11-3). If this object references an exist-
ing DataRow object, the get_rowObject method returns a reference to the _rowObject
field of this DataRow object (which is the object used to instantiate this DataRow object in
the first place). Otherwise, it just returns a reference to the _row field itself (which is the
object used to instantiate the current DataRow object).

❑ A Boolean value (via the get_selected getter method) that specifies whether the associ-
ated data row has been selected.

❑ A DataRowState enumeration value (via the get_state getter method) that specifies the
state of the associated data row.

❑ A Boolean value (via the get_isDirty getter method) that specifies whether the associ-
ated data row is dirty. (A data row is considered dirty when one of its constituent data
fields changes value.)

❑ _deletedRows : This field is an array that contains references to row objects associated with the
 DataRow objects that represent the to-be deleted data rows of the data table that the DataTable
object represents.

 Here’s what “ to-be deleted data rows” means. The DataTable class works in what is known as
 disconnected mode, which means that the DataTable object is not connected to the data table that
it represents. The DataTable object is an in-memory representation of its associated data table,
which could be sitting in some relational database in some remote server. Therefore, changes

c11.indd 423c11.indd 423 8/20/07 8:14:19 PM8/20/07 8:14:19 PM

Chapter 11: Data Classes

424

made to this in-memory representation do not automatically propagate to the underlying data
table, which means that deleting a DataRow object from the _rows array does not automatically
delete the associated data row in the underlying data table. You have to explicitly propagate the
changes to the underlying data table. This propagation can be done either immediately after a Da-
taRow object is removed from the _rows array, or you can accumulate the row objects associated
with the deleted DataRow objects in the _deletedRows array and commit the changes in one shot
to improve the performance of your application.

❑ _newRows : This field is an array that contains references to row objects associated with the
 DataRow objects that represent the to-be added data rows of the data table that the DataTable
 object represents.

 Because the DataTable object is an in-memory representation of its associated data table,
changes made to this in-memory representation do not automatically propagate to the underly-
ing data table, which means that adding a new DataRow object to the _rows array does not
 automatically add a new data row to the underlying data table. You have to explicitly propagate
the changes to the underlying data table. This propagation can be done either immediately after
a DataRow object is added to the _rows array, or you can accumulate the row objects associated
with the new DataRow objects in the _newRows array and commit the changes in one shot to
 improve the performance of your application.

❑ _updatedRows : This field is an array that contains references to row objects associated with the
 DataRow objects that represent the to-be updated data rows of the data table that the DataTable
object represents.

 Because the DataTable object is an in-memory representation of its associated data table,
changes made to this in-memory representation do not automatically propagate to the underly-
ing data table. You can propagate the changes either immediately after a DataRow object in the
 _rows array is updated, or you can accumulate the row objects associated with the updated
 DataRow objects in the _updatedRows array and commit the changes in one shot.

❑ _columnDictionary : This field is a dictionary of DataColumn objects, where each DataColumn
object represents a data column of the data table associated with the DataTable object.

 The _columns field also stores the same set of DataColumn objects. You can think of the
_columnDictionary field as a cache to improve performance. As you’ll see later, every
time you access a DataColumn object from the _columns array, it gets cached in the
_columnDictionary field, which means that the next request for the same DataColumn
 object is serviced from the cache.

❑ _keys : This field is an array that contains all DataColumn objects associated with the primary
key data fields of the data table that the DataTable object represents.

❑ _events : This field references the EventHandlerList object that contains all event handlers
registered for the events of the DataTable object. As you’ll see later, the DataTable class
 exposes two events named propertyChanged and collectionChanged .

 I Data
 As you can see in the boldface portion of the following code fragment, the DataTable class implements
the I Data interface:

c11.indd 424c11.indd 424 8/20/07 8:14:19 PM8/20/07 8:14:19 PM

Chapter 11: Data Classes

425

 Sys.Preview.Data.DataTable.registerClass(‘Sys.Preview.Data.DataTable’, null,
 Sys.Preview.Data.IData ,
 Sys.INotifyPropertyChange,
 Sys.Preview.INotifyCollectionChanged,
 Sys.IDisposable);

 The I Data interface exposes five methods named add , clear , get_length , getRow , and remove (as
previously shown in Listing 11-3). The following sections discuss the DataTable class’s implementation
of these five methods to help you gain the skills you need to provide your own custom implementation
for this interface. Keep in mind that implementing this interface allows a data class such as DataTable
to seamlessly integrate into the ASP.NET AJAX client-side framework, where the data class can be
bound to client controls such as Selector . You’ll see an example of such a data binding scenario later in
this chapter.

 add
 The main responsibility of the add method is to add a new DataRow object to the list of existing DataRow
objects of the DataTable object on which the method is invoked. Listing 11-14 shows this method.

 Listing 11-14: The add Method

 function Sys$Preview$Data$DataTable$add(rowObject)
{
 var row;
 if (Sys.Preview.Data.DataRow.isInstanceOfType(rowObject))
 {
 row = rowObject;
 row._set_table(this);
 rowObject = rowObject.get_rowObject();
 }

 else
 row = new Sys.Preview.Data.DataRow(rowObject, this);

 var index = this._array.length;
 row._set_index(index);
 var columns = this.get_columns();
 if (columns)
 {
 for(var i = columns.length - 1; i >= 0; i--)
 {
 var column = columns[i];
 if (typeof(rowObject[column.get_columnName()]) === “undefined”)
 rowObject[column.get_columnName()] = column.get_defaultValue();
 }
 }

 var oldIsDirty = this.get_isDirty();
 this._array[index] = rowObject;
 this._rows[index] = row;
 Array.add(this._newRows, rowObject);
 row._set_state(Sys.Preview.Data.DataRowState.Added);

(continued)

c11.indd 425c11.indd 425 8/20/07 8:14:20 PM8/20/07 8:14:20 PM

Chapter 11: Data Classes

426

 Listing 11-14 (continued)

 this._onCollectionChanged(Sys.Preview.NotifyCollectionChangedAction.Add, row);
 this._onPropertyChanged(“length”);
 if (!oldIsDirty)
 this._onPropertyChanged(“isDirty”);

 return row;
}

 The add method of the DataTable class takes a single argument, which can be of one of the following types:

❑ Sys.Preview.Data.DataRow : In this case, you’re adding an already instantiated DataRow
 object into the list of DataRow objects of the DataTable object. The add method calls the
set_table method on this DataRow object, passing in a reference to the DataTable object to
specify the DataTable object as its owner:

 row = rowObject;
 row._set_table(this);

 The add method then calls the get_rowObject method to return a reference to the row object
associated with the DataRow object. Every DataRow object is associated with an object known as
a row object, which contains the names and values of all data fields of the DataRow object. The
 DataRow object exposes a method named get_rowObject that returns a reference to its associ-
ated row object:

 rowObject = rowObject.get_rowObject();

❑ A JavaScript object such as an object literal: In this case, the add method calls the constructor of
the DataRow class, passing in the row object to instantiate a new DataRow object:

 row = new Sys.Preview.Data.DataRow(rowObject, this);

 In either case, the add method accesses the length of the _array collection that contains the row objects
and assigns it as the index of the new DataRow object:

 var index = this._array.length;
 row._set_index(index);

 Next, the add method calls the get_columns method to return an array that contains the DataColumn
objects:

 var columns = this.get_columns();

 It then iterates through these objects and takes the following steps for each enumerated DataColumn object:

1. It calls the get_columnName method on the enumerated DataColumn object to access the name
of the column, and uses this name as an index into the row object to determine whether the row
object contains a value for the data column with the specified name:

c11.indd 426c11.indd 426 8/20/07 8:14:20 PM8/20/07 8:14:20 PM

Chapter 11: Data Classes

427

 var column = columns[i];
 if (typeof(rowObject[column.get_columnName()]) === “undefined”)

2. If the row object does not contain a value for the specified data column, the add method calls the
 get_defaultValue method on the enumerated DataColumn object to return the default value
for the specified data column and assigns the value to the associated data field of the row object:

 rowObject[column.get_columnName()] = column.get_defaultValue();

3. It stores the current value of the isDirty property of the DataTable object in a local variable:

 var oldIsDirty = this.get_isDirty();

4. It stores the new row object in the _array collection (which contains all row objects associated
with the DataRow objects in the _rows array):

 this._array[index] = rowObject;

5. It stores the new DataRow object in the _rows collection (which contains all DataRow objects
that belong to the same DataTable object):

 this._rows[index] = row;

 6. It stores the new row object in the _newRows collection (which contains the row objects associ-
ated with the newly-added DataRow objects):

 Array.add(this._newRows, rowObject);

7. It calls the _set_state method on the new DataRow object to set its state to Added to indicate
that the DataRow object has been added to its owner DataTable object:

 row._set_state(Sys.Preview.Data.DataRowState.Added);

8. It invokes the _onCollectionChanged method to raise the collectionChanged event
 (discussed in more detail later in this section):

 this._onCollectionChanged(Sys.Preview.NotifyCollectionChangedAction.Add, row);

 9. It calls the _onPropertyChanged method to raise the propertyChanged event because the
value of the length property of the DataTable has changed due to the addition of the new
 DataRow object:

 this._onPropertyChanged(“length”);

 If the DataTable wasn’t marked as dirty to begin with, the add method calls the _onPropertyChanged
method to signal that the value of the isDirty property has changed due to the addition of the new
data row:

 if (!oldIsDirty)
 this._onPropertyChanged(“isDirty”);

c11.indd 427c11.indd 427 8/20/07 8:14:20 PM8/20/07 8:14:20 PM

Chapter 11: Data Classes

428

 clear
 The main responsibility of the clear method is to clear the current DataTable object. Listing 11-15
 presents the internal implementation of the clear method of the DataTable class.

 Listing 11-15: The clear Method

 function Sys$Preview$Data$DataTable$clear()
{
 if (this.get_length() > 0)
 {
 var oldIsDirty = this.get_isDirty();
 for (var i = this._array.length - 1; i >= 0; i--)
 {
 var row = this._array[i];
 if (row && !Array.contains(this._newRows, row))
 {
 Array.add(this._deletedRows, row);
 this._rows[i]._set_state(Sys.Preview.Data.DataRowState.Deleted);
 }
 }
 this._rows = [];
 this._array = [];
 this._newRows = [];
 this._updatedRows = [];
 this._onCollectionChanged
 (Sys.Preview.NotifyCollectionChangedAction.Reset, null);
 this._onPropertyChanged(“length”);
 if (!oldIsDirty)
 this._onPropertyChanged(“isDirty”);
 }
}

 The clear method first calls the get_isDirty method to return the Boolean value that specifies
whether the DataTable object is currently dirty:

 var oldIsDirty = this.get_isDirty();

 Next, it iterates through the row objects stored in the _array collection and takes the following steps for
each enumerated row object:

1. It checks whether the _newRows collection contains the enumerated row object. As discussed
previously, the _newRows collection contains the row objects associated with newly-added
 DataRow objects. If this collection does not contain the enumerated row object, the clear
method does the following:

a. It adds the row object to the _deletedRows array (which contains the deleted row objects
associated with the deleted DataRow objects):

 Array.add(this._deletedRows, row);

b. It calls the _set_state method on the DataRow object associated with the enumerated
row object to set its state to Deleted :

c11.indd 428c11.indd 428 8/20/07 8:14:20 PM8/20/07 8:14:20 PM

Chapter 11: Data Classes

429

 this._rows[i]._set_state(Sys.Preview.Data.DataRowState.Deleted);

2. It clears the _rows , _array , _newRows , and _updatedRows collections:

 this._rows = [];
 this._array = [];
 this._newRows = [];
 this._updatedRows = [];

3. It calls the _onCollectionChanged method to raise the collectionChanged event:

 this._onCollectionChanged(Sys.Preview.NotifyCollectionChangedAction.Reset, null);

 4. It calls the _onPropertyChanged method to raise the propertyChanged event for the length
property:

 this._onPropertyChanged(“length”);

 If the DataTable wasn’t dirty to begin with, the clear method calls the _onPropertyChanged method
to raise the propertyChanged event for the isDirty property:

 if (!oldIsDirty)
 this._onPropertyChanged(“isDirty”);

 get_length
 As Listing 11-16 shows, the get_length method of the DataTable class returns the length of the
_array array. This array contains the row objects associated with all DataRow objects in the _rows array.

 Listing 11-16: The get_length Method

 function Sys$Preview$Data$DataTable$get_length()
{
 return this._array.length;
}

 get Row
 As you can see in Listing 11-17 , the getRow method returns the DataRow object in the _rows array with
the specified index.

 Listing 11-17: The get Row Method

 function Sys$Preview$Data$DataTable$getRow(index)
{
 var row = this._rows[index];
 if (!row)
 {
 var rowObject = this._array[index];
 if (rowObject)

(continued)

c11.indd 429c11.indd 429 8/20/07 8:14:21 PM8/20/07 8:14:21 PM

Chapter 11: Data Classes

430

 Listing 11-17 (continued)

 {
 row = Sys.Preview.Data.DataRow.isInstanceOfType(rowObject) ? rowObject :
 new Sys.Preview.Data.DataRow(rowObject, this, index);
 this._rows[index] = row;
 }
 }
 return row;
}

 The DataTable also exposes a method named getItem that simply delegates to the getRow method, as
shown in Listing 11-18 .

 Listing 11-18: The get Item Method

 function Sys$Preview$Data$DataTable$getItem(index)
{
 return this.getRow(index);
}

 Remove
 Listing 11-19 shows the DataTable class’s Remove method.

 Listing 11-19: The Remove Method of the DataTable Class

 function Sys$Preview$Data$DataTable$remove(rowObject)
{
 if (Sys.Preview.Data.DataRow.isInstanceOfType(rowObject))
 rowObject = rowObject.get_rowObject();

 var oldIsDirty = this.get_isDirty();
 var index = Array.indexOf(this._array, rowObject);
 var row = this.getItem(index);
 if(typeof(this._array.removeAt) === “function”)
 this._array.removeAt(index);

 else
 Array.removeAt(this._array, index);

 Array.removeAt(this._rows, index);
 index = Array.indexOf(this._newRows, rowObject);
 if (index !== -1)
 Array.removeAt(this._newRows, index);

 else
 Array.add(this._deletedRows, rowObject);

 row._set_state(Sys.Preview.Data.DataRowState.Deleted);

c11.indd 430c11.indd 430 8/20/07 8:14:21 PM8/20/07 8:14:21 PM

Chapter 11: Data Classes

431

 this._onCollectionChanged(Sys.Preview.NotifyCollectionChangedAction.Remove, row);
 this._onPropertyChanged(“length”);
 if (oldIsDirty !== this.get_isDirty())
 this._onPropertyChanged(“isDirty”);
}

 The Remove method takes a JavaScript object as its argument. The object can be a DataRow or a row
object. Remove first checks whether this object is a DataRow . If so, it calls the get_rowObject method on
the DataRow object to return a reference to its associated row object:

 if (Sys.Preview.Data.DataRow.isInstanceOfType(rowObject))
 rowObject = rowObject.get_rowObject();

 Next, the Remove method calls the get_isDirty method to return and store the current value of the
 isDirty property in a local variable named oldIsDirty for future reference:

 var oldIsDirty = this.get_isDirty();

 This is done because the code following this line of code could change the current value of this property:

 The Remove method then determines the index of the row object in the _array array, which contains all
row objects associated with the DataRows object of the current DataTable object:

 var index = Array.indexOf(this._array, rowObject);

 Next, the Remove method calls the getItem method, passing in the index of the row object to return a
reference to DataRow object associated with the row object:

 var row = this.getItem(index);

 It then calls the removeAt method to remove the row object from the _array array:

 if(typeof(this._array.removeAt) === “function”)
 this._array.removeAt(index);

 else
 Array.removeAt(this._array, index);

 Next, it invokes the removeAt static method on the Array class to remove the DataRow object from the
 _rows array, which contains all the DataRow objects that the current DataTable owns:

 Array.removeAt(this._rows, index);

 It then checks whether the _newRows array contains the row object; and if so, it removes the row object
from this array as well:

 index = Array.indexOf(this._newRows, rowObject);
 if (index !== -1)
 Array.removeAt(this._newRows, index);

 else
 Array.add(this._deletedRows, rowObject);

c11.indd 431c11.indd 431 8/20/07 8:14:21 PM8/20/07 8:14:21 PM

Chapter 11: Data Classes

432

 Next, it calls the internal _set_state method on the DataRow object to change its state to Deleted :

 row._set_state(Sys.Preview.Data.DataRowState.Deleted);

 As you can see, _set_state is an internal method and you should not directly use this method in your
own code.

 Then, the Remove method calls the _onCollectionChanged method to raise the
collectionChanged event:

 this._onCollectionChanged(Sys.Preview.NotifyCollectionChangedAction.Remove, row);

 This is expected because the Remove method is removing a row object from the _array collection.

 Next, the Remove method calls the _onPropertyChanged method to raise the propertyChanged event
for the length property of the DataTable object:

 this._onPropertyChanged(“length”);

 Again this is expected because the Remove method is removing a row object from the _array collection
and, consequently, changing the length of the collection.

 Finally, the Remove method calls the get_is Dirty method to access the current value of the is Dirty
property of the DataTable object and compares this value with the old value. If they are different, it
calls the _onPropertyChanged method to raise the propertyChanged event for the is Dirty property:

 if (oldIsDirty !== this.get_isDirty())
 this._onPropertyChanged(“isDirty”);

 Descriptor
 As Listing 11-20 shows, the DataTable class exposes a static property named descriptor , which enables
its clients to use the ASP.NET AJAX type inspection capabilities to inspect its members at runtime.

 Listing 11-20: The descriptor Property of the DataTable Class

 Sys.Preview.Data.DataTable.descriptor =
{
 properties: [{ name: ‘columns’, type: Array, readOnly: true },
 { name: ‘keyNames’, type: Array, readOnly: true },
 { name: ‘length’, type: Number, readOnly: true },
 { name: ‘isDirty’, type: Boolean, readOnly: true }],
 methods: [{ name: ‘add’ },
 { name: ‘clear’ },
 { name: ‘remove’ }],
 events: [{ name: ‘collectionChanged’, readOnly: true },
 { name: ‘propertyChanged’, readOnly: true }]
}

 The descriptor property of the DataTable class is set to an object literal that contains the following
three name/value pairs:

c11.indd 432c11.indd 432 8/20/07 8:14:22 PM8/20/07 8:14:22 PM

Chapter 11: Data Classes

433

❑ The first name/value pair describes the properties of the DataTable class. The name part of the
name/value pair is properties , and the value part is an array of four object literals that
 describe the columns , keyNames , length , and is Dirty properties of the DataTable class.
Each object literal itself contains three name/value pairs, where the first pair specifies the name
of the property, the second pair describes the type of the property, and the last pair specifies
whether the property is editable.

 properties: [{ name: ‘columns’, type: Array, readOnly: true },
 { name: ‘keyNames’, type: Array, readOnly: true },
 { name: ‘length’, type: Number, readOnly: true },
 { name: ‘isDirty’, type: Boolean, readOnly: true }]

❑ The second name/value pair describes the methods of the DataTable class. The name of the
pair is methods , and the value is an array of three object literals that describe the add , clear ,
and remove methods of the DataTable class:

 methods: [{ name: ‘add’ },
 { name: ‘clear’ },
 { name: ‘remove’ }],

❑ The third name/value pair describes the events of the DataTable class. The name part of the
pair is the keyword events , and the value part is an array of two object literals that describe
the collectionChanged and propertyChanged events of the DataTable class:

 events: [{ name: ‘collectionChanged’, readOnly: true },
 { name: ‘propertyChanged’, readOnly: true }]

 As Listing 11-21 shows, the DataTable class exposes three getter methods named get_columns ,
get_keyNames , and get_isDirty that you can invoke to access the values of the columns , keyNames ,
and is Dirty properties of a given DataTable object.

 Listing 11-21: The get_columns, get_key Names, and get_is Dirty Getter Methods

 function Sys$Preview$Data$DataTable$get_columns()
{
 return this._columns;
}

function Sys$Preview$Data$DataTable$get_keyNames()
{
 if (!this._keys)
 {
 this._keys = [];
 var len = this._columns.length;
 for (var i = 0; i < len; i++)
 {
 var col = this._columns[i];
 if (col.get_isKey())
 Array.add(this._keys, col.get_columnName());
 }

(continued)

c11.indd 433c11.indd 433 8/20/07 8:14:22 PM8/20/07 8:14:22 PM

Chapter 11: Data Classes

434

Listing 11-21 (continued)

 }
 return this._keys;
}

function Sys$Preview$Data$DataTable$get_isDirty()
{
 return (this._deletedRows.length !== 0) ||
 (this._newRows.length !== 0) ||
 (this._updatedRows.length !== 0);
}

 The DataTable object properties that the getter methods expose include the following:

❑ The columns property is an array that contains all the DataColumn objects that the
DataTable owns.

❑ The keyNames property is an array that contains the column names of all DataColumn objects
that represent the primary key data fields of the data table that the DataTable represents.

❑ The is Dirty property is a Boolean value that specifies whether the DataTable object is dirty.
A DataTable object is considered dirty when one or more of the following arrays contains one
or more row objects:

❑ _deletedRows : This array contains the row objects associated with the deleted DataRow
objects of the DataTable object.

❑ _newRows : This array contains the row objects associated with the newly added DataRow
objects.

❑ _updatedRows : This array contains the row objects associated with the updated DataRow
objects.

 return (this._deletedRows.length !== 0) ||
 (this._newRows.length !== 0) ||
 (this._updatedRows.length !== 0);

 I NotifyPropertyChange
 The boldface portion of the following code fragment shows how the DataTable class implements the
 I NotifyPropertyChange interface discussed in the previous chapters:

 Sys.Preview.Data.DataTable.registerClass(‘Sys.Preview.Data.DataTable’, null,
 Sys.Preview.Data.IData,
 Sys.INotifyPropertyChange,
 Sys.Preview.INotifyCollectionChanged,
 Sys.IDisposable);

 Listing 11-22 presents the DataTable class’s implementation of the members of the
I NotifyPropertyChange interface. This interface exposes the following two methods:

c11.indd 434c11.indd 434 8/20/07 8:14:22 PM8/20/07 8:14:22 PM

Chapter 11: Data Classes

435

❑ add_propertyChanged : This method adds the specified method as an event handler for the
 propertyChanged event.

❑ remove_propertyChanged : This method removes the specified method from the list of event
handlers registered for the propertyChanged event.

 Listing 11-22: The DataTable Class’s Implementation of the I NotifyPropertyChange
Interface

 function Sys$Preview$Data$DataTable$get_events()
{
 if (!this._events)
 this._events = new Sys.EventHandlerList();

 return this._events;
}

function Sys$Preview$Data$DataTable$add_propertyChanged(handler)
{
 this.get_events().addHandler(“propertyChanged”, handler);
}

function Sys$Preview$Data$DataTable$remove_propertyChanged(handler)
{
 this.get_events().removeHandler(“propertyChanged”, handler);
}

function Sys$Preview$Data$DataTable$_onPropertyChanged(propertyName)
{
 var handler = this.get_events().getHandler(“propertyChanged”);
 if (handler)
 handler(this, new Sys.PropertyChangedEventArgs(propertyName));
}

 The DataTable class’s implementation of the propertyChanged event follows the event implementa-
tion pattern discussed in the previous chapters. As previously discussed, implementing an event
requires an ASP.NET AJAX class to support a private field of type EventHandlerList named _events
where the event handlers registered for the events of the class will be stored. The class must also expose
a getter method named get_events that returns a reference to this EventHandlerList object:

 function Sys$Preview$Data$DataTable$get_events()
{
 if (!this._events)
 this._events = new Sys.EventHandlerList();

 return this._events;
}

 The DataTable class’s implementation of the add_propertyChanged method of the
 I NotifyPropertyChange interface first calls the get_events method to return a reference to
the EventHandlerList object that maintains all the event handlers registered for the events of the

c11.indd 435c11.indd 435 8/20/07 8:14:23 PM8/20/07 8:14:23 PM

Chapter 11: Data Classes

436

 DataTable class, and then calls the addHandler method on this EventHandlerList object to add
the specified method as the event handler for the propertyChanged event:

 this.get_events().addHandler(“propertyChanged”, handler);

 The DataTable class’s implementation of the I NotifyPropertyChange interface’s remove_
propertyChanged method works the same as the add_propertyChanged method, with one difference.
Instead of invoking the addHandler method, it invokes the removeHandler method to remove the spec-
ified handler from the list of handlers registered for the propertyChanged event of the DataTable class:

 this.get_events().removeHandler(“propertyChanged”, handler);

 Following the event implementation pattern discussed in the previous chapters, the DataTable class
exposes a method named _onPropertyChanged that raises the propertyChanged event:

 function Sys$Preview$Data$DataTable$_onPropertyChanged(propertyName)
{
 var handler = this.get_events().getHandler(“propertyChanged”);
 if (handler)
 handler(this, new Sys.PropertyChangedEventArgs(propertyName));
}

 The _onPropertyChanged method first calls the get_events method to return a reference to the
 EventHandlerList that maintains all the event handlers registered for the events of the DataTable
class. Then it calls the getHandler method on the EventHandlerList object. This method returns a
JavaScript function whose invocation automatically invokes all event handlers registered for the
propertyChanged event of the DataTable class. Finally, the _onPropertyChanged method instantiates
a PropertyChangedEventArgs object that encapsulates the name of the property whose value has
changed. This instance is finally passed into the event handlers registered for the propertyChanged
event. This enables the event handlers to determine the value of which property has changed.

 I NotifyCollectionChanged
 The boldface portion of the following code fragment shows how the DataTable class implements an
interface named I NotifyCollectionChanged :

 Sys.Preview.Data.DataTable.registerClass(‘Sys.Preview.Data.DataTable’, null,
 Sys.Preview.Data.IData,
 Sys.INotifyPropertyChange,
 Sys.Preview.INotifyCollectionChanged,
 Sys.IDisposable);

 Implementing this interface enables an ASP.NET AJAX class to raise an event named collectionChanged .
This event is useful in ASP.NET AJAX classes that contain one or more collections and want to inform their
clients when the contents of these collections change. For example, the DataTable class contains the
 _array collection where all the row objects associated with the DataRow objects of the current DataTable
object are stored. Implementing the I NofiyCollectionChanged interface enables the DataTable class to
raise the collectionChanged event when any of the following occurs:

c11.indd 436c11.indd 436 8/20/07 8:14:23 PM8/20/07 8:14:23 PM

Chapter 11: Data Classes

437

❑ A new row object is added to the _array collection.

❑ A row object is removed from the _array collection.

❑ A row object in the _array collection is updated. Because a row object contains the names and
values of the data fields of its associated DataRow object, updating a row object means updating
the values of these data fields.

 As Listing 11-23 shows, this interface exposes two methods named add_collectionChanged and
 remove_collectionChanged . Your custom ASP.NET AJAX type’s implementation of these two meth-
ods must add the specified event handler to and remove the specified event handler from the internal
collection where your type maintains the event handlers registered for its events. This collection is an
object of type EventHandlerList as discussed earlier.

 Listing 11-23: The INotifyCollectionChanged Interface

 Sys.Preview.INotifyCollectionChanged =
function Sys$Preview$INotifyCollectionChanged()
{
 throw Error.notImplemented();
}

function Sys$Preview$INotifyCollectionChanged$add_collectionChanged()
{
 throw Error.notImplemented();
}

function Sys$Preview$INotifyCollectionChanged$remove_collectionChanged()
{
 throw Error.notImplemented();
}

Sys.Preview.INotifyCollectionChanged.prototype =
{
 add_collectionChanged:
 Sys$Preview$INotifyCollectionChanged$add_collectionChanged,
 remove_collectionChanged:
 Sys$Preview$INotifyCollectionChanged$remove_collectionChanged
}

Sys.Preview.INotifyCollectionChanged.registerInterface(
 ‘Sys.Preview.INotifyCollectionChanged’);

 As you can see in Listing 11-24 , the DataTable class follows the same event implementation pattern
 discussed earlier to implement the collectionChanged event.

c11.indd 437c11.indd 437 8/20/07 8:14:23 PM8/20/07 8:14:23 PM

Chapter 11: Data Classes

438

 Listing 11-24: The DataTable Class’s Implementation of the I NotifyCollectionChanged
Interface

 function Sys$Preview$Data$DataTable$add_collectionChanged(handler)
{
 this.get_events().addHandler(“collectionChanged”, handler);
}

function Sys$Preview$Data$DataTable$remove_collectionChanged(handler)
{
 this.get_events().removeHandler(“collectionChanged”, handler);
}

function Sys$Preview$Data$DataTable$_onCollectionChanged(action, changedItem)
{
 var handler = this.get_events().getHandler(“collectionChanged”);
 if (handler)
 handler(this, new Sys.Preview.CollectionChangedEventArgs(action, changedItem));
}

 Note that the DataTable class exposes a method named _onCollectionChanged that raise the
 collectionChanged event. This method passes an instance of an event data class named
CollectionChangedEventArgs into the event handlers registered for the collectionChanged event
when it calls these handlers. Listing 11-25 presents the implementation of the
 CollectionChangedEventArgs event data class.

 Listing 11-25: The CollectionChangedEventArgs Event Data Class

 Sys.Preview.CollectionChangedEventArgs =
function Sys$Preview$CollectionChangedEventArgs(action, changedItem)
{
 Sys.Preview.CollectionChangedEventArgs.initializeBase(this);
 this._action = action;
 this._changedItem = changedItem;
}

function Sys$Preview$CollectionChangedEventArgs$get_action()
{
 return this._action;
}

function Sys$Preview$CollectionChangedEventArgs$get_changedItem()
{
 return this._changedItem;
}

Sys.Preview.CollectionChangedEventArgs.prototype =
{
 get_action: Sys$Preview$CollectionChangedEventArgs$get_action,
 get_changedItem: Sys$Preview$CollectionChangedEventArgs$get_changedItem
}

c11.indd 438c11.indd 438 8/20/07 8:14:23 PM8/20/07 8:14:23 PM

Chapter 11: Data Classes

439

Sys.Preview.CollectionChangedEventArgs.descriptor =
{
 properties: [
 {name: ‘action’,type: Sys.Preview.NotifyCollectionChangedAction,readOnly: true},
 {name: ‘changedItem’, type: Object, readOnly: true}]
}

Sys.Preview.CollectionChangedEventArgs.registerClass(
 ‘Sys.Preview.CollectionChangedEventArgs’,
 Sys.EventArgs);

 The constructor of the CollectionChangedEventArgs event data class takes two arguments. The first
argument is an enumeration of type NotifyCollectionChangedAction , and the second argument
 references an object. As Listing 11-26 shows, the NofityCollectionChangedAction enumeration has
the following three values:

❑ Add : This enumeration value specifies that the JavaScript object passed into the
 CollectionChangedEventArgs constructor as its second argument has been added to the
 collection. In the case of the DataTable class, this JavaScript object is a row object associated
with a new DataRow object being added to the DataTable object.

❑ Remove : This enumeration value specifies that the object passed into the
CollectionChangedEventArgs constructor as its second argument has been removed from
the collection. In the case of the DataTable class, this object is a row object associated with a
 DataRow object being removed from the DataTable object.

❑ Reset : This enumeration value specifies that the collection has been cleared.

 Listing 11-26: The NotifyCollectionChangedAction Enumeration

 Sys.Preview.NotifyCollectionChangedAction =
function Sys$Preview$NotifyCollectionChangedAction()
{
 throw Error.invalidOperation();
}

Sys.Preview.NotifyCollectionChangedAction.prototype =
{
 Add: 0,
 Remove: 1,
 Reset: 2
}

Sys.Preview.NotifyCollectionChangedAction.registerEnum(
 ‘Sys.Preview.NotifyCollectionChangedAction’);

 create Row
 The DataTable class comes with a method named create Row that you can use to create and optionally
initialize a new DataRow object. You must call this method to create a new DataRow object instead of

c11.indd 439c11.indd 439 8/20/07 8:14:24 PM8/20/07 8:14:24 PM

Chapter 11: Data Classes

440

using the new operator directly. Listing 11-27 contains the code for the create Row method. As you can
see, this method takes an optional parameter that provides initial values for the data fields of the newly
created DataRow object.

 Listing 11-27: The create Row Method

 function Sys$Preview$Data$DataTable$createRow(initialData)
{
 var obj = {};
 var undef = {};
 for (var i = this._columns.length - 1; i >= 0; i--)
 {
 var column = this._columns[i];
 var columnName = column.get_columnName();
 var val = undef;
 if (initialData)
 val = Sys.Preview.TypeDescriptor.getProperty(initialData, columnName);

 if ((val === undef) || (typeof(val) === “undefined”))
 val = column.get_defaultValue();

 obj[columnName] = val;
 }
 var row = new Sys.Preview.Data.DataRow(obj, this, -1);
 row._set_state(Sys.Preview.Data.DataRowState.Detached);
 return row;
}

 Now, let’s walk through this listing. As previously discussed, the DataTable class contains an array
named _columns that contains all the DataColumn objects of the DataTable object. The create Row
method iterates through the DataColumn objects in this array and takes the following steps for each
 enumerated object:

1. It calls the get_columnName method on the enumerated DataColumn object to access the name
of the column:

 var columnName = column.get_columnName();

2. It calls the get Property static method on the TypeDescriptor class, passing in the optional object
passed into the create Row method to return the value of the data field with the specified name:

 var val = undef;
 if (initialData)
 val = Sys.Preview.TypeDescriptor.getProperty(initialData, columnName);

 The object that you pass into the create Row method must return the value of a data field as if it
were returning the value of a property with the same name as the data field.

 If the object passed into the create Row method does not contain a property with the same
name as the data field, the method calls the get_defaultValue method on the enumerated
 DataColumn object to return the default value of the associated data field and uses this value
as the value of the data field:

 if ((val === undef) || (typeof(val) === “undefined”))
 val = column.get_defaultValue();

c11.indd 440c11.indd 440 8/20/07 8:14:24 PM8/20/07 8:14:24 PM

Chapter 11: Data Classes

441

 3. It stores the data field name and value into a local object:

 obj[columnName] = val;
 }

 As you’ll see shortly, this local object will be used as the row object for the new DataRow object.

 The create Row method then calls the constructor of the Data,Row class, passing in the local object just
created and a reference to the current DataTable object to instantiate the new DataRow object. Note that
the create Row method passes –1 as the third argument of the constructor. This argument specifies the
index of the DataRow object in the _rows collection of the DataTable object. Because the DataRow object
has not yet been added to the _rows collection of the DataTable object, it has no index:

 var row = new Sys.Preview.Data.DataRow(obj, this, -1);

 Next, the create Row method calls the internal _set_state method to set the state of the newly created
 DataRow object to Detached to signal that the DataRow object is still detached from its DataTable object:

 row._set_state(Sys.Preview.Data.DataRowState.Detached);

 As you’ll see later, the state of the DataRow object will be changed to Added when it is actually added to
the _rows collection of the DataTable object.

 get Changes
 The DataTable class exposes a method named getChanges , as shown in Listing 11-28 .

 Listing 11-28: The get Changes Method

 function Sys$Preview$Data$DataTable$getChanges()
{
 return {updated : this._updatedRows, inserted : this._newRows,
 deleted : this._deletedRows};
}

 This method returns an object literal that contains the following three name/value pairs:

❑ The first name/value pair describes the collection that contains the updated row objects. The
name part of this pair is the keyword updated , and the value part references the _updatedRows
array that contains the updated row objects. Therefore, you can use the following code fragment
to get a reference to the _updatedRows array:

 var dt;
. . .
var jsonObj = dt.getChanges();
var updatedRows = jsonObj.updated;
for (var rowObject in updatedRows)
{
 // Do something with the updated row object
}

c11.indd 441c11.indd 441 8/20/07 8:14:24 PM8/20/07 8:14:24 PM

Chapter 11: Data Classes

442

❑ The second name/value pair describes the collection that contains the new row objects. The
name part of this pair is the keyword inserted , and the value part references the _newRows
array that contains the new row objects. Therefore, you can use the following code fragment to
get a reference to the _ newRows array:

 var dt;
. . .
var jsonObj = dt.getChanges();
var newRows = jsonObj.inserted;
for (var rowObject in newRows)
{
 // Do something with the new row object
}

❑ The third name/value pair describes the collection that contains the deleted row objects. The
name part of this pair is the keyword deleted , and the value part references the _deletedRows
array that contains the deleted row objects. Therefore, you can use the following code fragment
to get a reference to the _deletedRows array:

 var dt;
. . .
var jsonObj = dt.getChanges();
var deletedRows = jsonObj. deleted;
for (var rowObject in deletedRows)
{
 // Do something with the deleted row object
}

 get Column
 As previously discussed, the DataTable class stores all its constituent DataColumn objects in an internal
array named _columns . As you can see in Listing 19-29, the getColumn method returns a reference to
the DataColumn with the specified column name. This method caches each requested DataColumn
object in an internal cache named _columnDictionary to improve performance. Subsequent requests
for the same DataColumn objects are serviced from this cache.

 Listing 11-29: The get Column Method

 function Sys$Preview$Data$DataTable$getColumn(name)
{
 var col = this._columnDictionary[name];
 if (col)
 return col;

 for (var c = this._columns.length - 1; c >= 0; c--)
 {
 var column = this._columns[c];
 if (column.get_columnName() === name)
 {

c11.indd 442c11.indd 442 8/20/07 8:14:25 PM8/20/07 8:14:25 PM

Chapter 11: Data Classes

443

 this._columnDictionary[name] = column;
 return column;
 }
 }
 return null;
}

 raise RowChanged
 The set Property method of a DataRow object calls the raiseRowChanged method on the DataTable
object that owns the DataRow object, passing in the updated row object (as previously shown in
Listing 11-7).

 Listing 11-30 shows the raiseRowChanged method. This method adds the updated row object to the
 _updatedRows array of the DataTable object and calls the _onPropertyChanged method to raise
the propertyChanged event for the is Dirty property.

 Listing 11-30: The raise RowChanged Method

 function Sys$Preview$Data$DataTable$raiseRowChanged(changedItem)
{
 if ((Array.indexOf(this._updatedRows, changedItem) === -1) &&
 (Array.indexOf(this._newRows, changedItem) === -1))
 {
 var oldIsDirty = this.get_isDirty();
 Array.add(this._updatedRows, changedItem);
 if (!oldIsDirty)
 this._onPropertyChanged(“isDirty”);
 }
}

 parse FromJson
 The DataTable class exposes a static method named parseFromJson that creates a DataTable object
from a JavaScript object, which is normally an object literal. This object must contain the following two
name/value pairs:

❑ The first name/value pair must describe the columns of the data table. The name part of the pair
must be the keyword columns , and the value part must be an array of object literals where each
object literal describes a column. In turn, each object literal must expose the following five
name/value pairs:

❑ The first name/value pair must describe the column name. The name part must be name ,
and the value part must be a string that contains the column name.

❑ The second name/value pair must describe the data type of the column. The name part
must be dataType , and the value part must reference the actual data type.

❑ The third name/value pair must describe the default value. The name part must be
 defaultValue , and the value part must reference the actual default value.

c11.indd 443c11.indd 443 8/20/07 8:14:25 PM8/20/07 8:14:25 PM

Chapter 11: Data Classes

444

❑ The fourth name/value pair must describe whether the column is a primary key column. The
name part of the pair must be isKey , and the value part must be a Boolean value.

❑ The fifth name/value pair must describe whether the column is editable. The name part
must be readOnly , and the value part must be a Boolean value.

 For example, the following three object literals describe the ProductId , ProductName , and
 UnitPrice columns of the Products data table:

 {name: ‘ProductId’, dataType: Number, defaultValue: 1,
isKey: true, readOnly: true}

{name: ‘ProductName’, dataType: String, defaultValue: ‘Unknown’,
isKey: false, readOnly: true}

{name: ‘UnitPrice’, dataType: Number, defaultValue: 50,
isKey: false, readOnly: false}

 Note that the value part of the fourth name/value pair of the object literal that describes the
 ProductId column has been set to true to signal that this column is a primary key column. If
the primary key of a data table consists of multiple columns, you must set the value of the
fourth name/value pair of all the object literals that describe the constituent columns of the
 primary key to true .

❑ The second name/value pair must describe the data rows of the data table. The name part of the
pair must be rows , and the value part must be an array of object literals where each object literal
describes a data row. In turn, each object literal must contain one name/value pair for each data
field of the data row. The name part of each pair must be a string that contains the name of the
data field, and the value part must reference the actual value of the data field. For example, the
following three object literals describe three data rows of the Products data table:

 {‘ProductId’: 1, ‘ProductName’: ‘Product1’, ‘UnitPrice’: 100}
{‘ProductId’: 2, ‘ProductName’: ‘Product2’, ‘UnitPrice’: 50}
{‘ProductId’: 3, ‘ProductName’: ‘Product3’, ‘UnitPrice’: 80}

 Here is an example of an object literal that can be passed into the parseFromJson static method of the
 DataTable class:

 {
 columns: [{name: ‘ProductId’, dataType: Number, defaultValue: 1,
 isKey: true, readOnly: true},

 {name: ‘ProductName’, dataType: String, defaultValue: ‘Unknown’,
 isKey: false, readOnly: true},

 {name: ‘UnitPrice’, dataType: Number, defaultValue: 50,
 isKey: false, readOnly: false}],

 rows: [{‘ProductId’: 1, ‘ProductName’: ‘Product1’, ‘UnitPrice’: 100},
 {‘ProductId’: 2, ‘ProductName’: ‘Product2’, ‘UnitPrice’: 50},
 {‘ProductId’: 3, ‘ProductName’: ‘Product3’, ‘UnitPrice’: 80}]
}

c11.indd 444c11.indd 444 8/20/07 8:14:25 PM8/20/07 8:14:25 PM

Chapter 11: Data Classes

445

 This object literal describes the Products data table with three columns named ProductId ,
 ProductName , and UnitPrice and three data rows, as shown in the following table.

 Listing 11-31 shows the parseFromJson method.

 Listing 11-31: The parseFromJson Method

 Sys.Preview.Data.DataTable.parseFromJson =
function Sys$Preview$Data$DataTable$parseFromJson(json)
{
 var columnArray = null;
 if(json.columns)
 {
 columnArray = [];
 for(var i=0; i < json.columns.length; i++)
 Array.add(columnArray,
 Sys.Preview.Data.DataColumn.parseFromJson(json.columns[i]));
 }
 return new Sys.Preview.Data.DataTable(columnArray, json.rows);
}

 As discussed earlier, the object literal passed into the parseFromJson method contains two name/value
pairs whose name parts are columns and rows . The method uses columns to access its associated
value part, which is an array of object literals where each object literal describes a column of the data
table. The method iterates through these object literals and passes each enumerated object literal into the
 parseFromJson static method of the DataColumn class:

 for(var i=0; i < json.columns.length; i++)
 Array.add(columnArray,
 Sys.Preview.Data.DataColumn.parseFromJson(json.columns[i]));

 The parseFromJson static method of the DataColumn class creates a DataColumn object from the
specified object literal representation. Note that Listing 11-31 stores all these DataColumn objects into
a local array.

 The parseFromJson method of the DataTable class then uses the rows on the object literal to access its
associated value part, which is an array of object literals where each object literal describes a data row.
The method then passes this array and the local array that contains the DataColumn objects into the
 DataTable constructor to instantiate the DataTable object.

ProductID ProductName UnitPrice

1 Product1 100

2 Product2 50

3 Product3 80

c11.indd 445c11.indd 445 8/20/07 8:14:26 PM8/20/07 8:14:26 PM

Chapter 11: Data Classes

446

 Using DataColumn, DataRow, and DataTable
 This section provides an example of how you can use the DataColumn , DataRow , and DataTable client
classes in your own client-side code. In Chapter 10 , we implemented a custom client control named
 CustomTable that uses the ASP.NET AJAX type inspection capabilities to display data records of any
type. This custom client control exposes a method named dataBind that iterates through the data
records to display them, as shown in Listing 11-32 .

 Listing 11-32: The dataBind Method of the CustomTable Client Control

 function CustomComponents$CustomTable$dataBind()
{
 var sb = new Sys.StringBuilder(‘<table align=”center” id=”products” ‘);
 sb.append(‘style=”background-color:LightGoldenrodYellow; border-color:Tan;
 border-width:1px; color:Black”’);
 sb.append(‘ cellpadding=”5”>’);
 var propertyNames = [];
 for (var i=0; i< this._dataSource.length ; i++)
 {
 var dataItem = this._dataSource[i] ;

 if (i == 0)
 {
 var td = Sys.Preview.TypeDescriptor.getTypeDescriptor(dataItem);

 var properties = td._getProperties();

 sb.append(‘<tr style=”background-color:Tan; font-weight:bold”>’);
 for (var c in properties)
 {
 var propertyJsonObj = properties[c];
 var propertyName = propertyJsonObj.name;
 propertyNames[propertyNames.length] = propertyName;
 sb.append(‘<td>’);
 sb.append(propertyName);
 sb.append(‘</td>’);
 }
 sb.append(‘</tr>’);
 }

 if (i % 2 == 1)
 sb.append(‘<tr style=”background-color:PaleGoldenrod”>’);
 else
 sb.append(‘<tr>’);

 for (var j in propertyNames)
 {
 var propertyName = propertyNames[j];

 var propertyValue = Sys.Preview.TypeDescriptor.getProperty(dataItem,
 propertyName, null);

 var typeName = Object.getTypeName(propertyValue);

c11.indd 446c11.indd 446 8/20/07 8:14:26 PM8/20/07 8:14:26 PM

Chapter 11: Data Classes

447

 if (typeName !== ‘String’ && typeName !== ‘Number’ && typeName !== ‘Boolean’)
 {
 var convertToStringMethodName = Sys.Preview.TypeDescriptor.getAttribute(
 propertyValue, “convertToStringMethodName”);

 if (convertToStringMethodName)
 propertyValue = Sys.Preview.TypeDescriptor.invokeMethod(propertyValue,
 convertToStringMethodName);
 }

 sb.append(‘<td>’)
 sb.append(propertyValue);
 sb.append(‘</td>’);
 }

 sb.append(‘</tr>’);
 }

 sb.append(‘</table>’);
 this.get_element().innerHTML = sb.toString();
}

 As the boldface portions of this code listing show, the current implementation of the dataBind method
assumes that the data source is an array because of the following:

❑ It relies on the length property, which is only supported on arrays:

 for (var i=0; i<this._dataSource.length; i++)

❑ It relies on indexing into the data source to access the current data row:

 var dataItem = this._dataSource[i] ;

 This means that the current implementation of the CustomTable client control would not allow the con-
trol to work with other types of data sources such as DataTable . To fix this problem, you need to add
support for any data source that implements the I Data interface — which is the DataTable in this case.

 Another problem with the current implementation of the CustomTable client control is that it does not
provide its clients with a mechanism to specify the values of the data-source data fields that should be
displayed.

 Listing 11-33 presents a new implementation of the dataBind method that supports both arrays and
 I Data type data sources.

c11.indd 447c11.indd 447 8/20/07 8:14:26 PM8/20/07 8:14:26 PM

Chapter 11: Data Classes

448

 Listing 11-33: The Content of the New Version of CustomTable.js File that Contains the
New Version of the CustomTable Control

 Type.registerNamespace(“CustomComponents”);

CustomComponents.CustomTable =
function CustomComponents$CustomTable(associatedElement)
{
 CustomComponents.CustomTable.initializeBase(this, [associatedElement]);
}

function CustomComponents$CustomTable$get_dataSource()
{
 return this._dataSource;
}

function CustomComponents$CustomTable$set_dataSource(value)
{
 this._dataSource = value;
}

 function CustomComponents$CustomTable$set_dataFieldNames(value)
 {
 this._dataFieldNames = value;
 }

 function CustomComponents$CustomTable$get_dataFieldNames()
 {
 return this._dataFieldNames;
 }

function CustomComponents$CustomTable$dataBind()
{
 var isArray = true;

 if (this._dataSource && Sys.Preview.Data.IData.isImplementedBy(this._dataSource))
 isArray = false;

 else if (Array.isInstanceOfType(this._dataSource))
 throw Error.createError(‘Unknown data source type!’);

 var sb = new Sys.StringBuilder(‘<table align=”center” id=”products” ‘);
 sb.append(‘style=”background-color:LightGoldenrodYellow;’);
 sb.append(‘border-color:Tan;border-width:1px; color:Black”’);
 sb.append(‘ cellpadding=”5”>’);
 var propertyNames = [];

 var length = isArray ? this._dataSource.length : this._dataSource.get_length();

 for (var i=0; i<length; i++)
 {
 var dataItem = isArray ? this._dataSource[i] : this._dataSource.getRow(i);

c11.indd 448c11.indd 448 8/20/07 8:14:26 PM8/20/07 8:14:26 PM

Chapter 11: Data Classes

449

 if (i == 0)
 {
 sb.append(‘<tr style=”background-color:Tan; font-weight:bold”>’);
 for (var c in this._dataFieldNames)
 {
 sb.append(‘<td>’);
 sb.append(this._dataFieldNames[c]);
 sb.append(‘</td>’);
 }
 sb.append(‘</tr>’);
 }

 if (i % 2 == 1)
 sb.append(‘<tr style=”background-color:PaleGoldenrod”>’);
 else
 sb.append(‘<tr>’);

 for (var j in this._dataFieldNames)
 {
 var dataFieldName = this._dataFieldNames[j];

 var dataFieldValue = Sys.Preview.TypeDescriptor.getProperty(dataItem,
 dataFieldName, null);
 var typeName = Object.getTypeName(dataFieldValue);

 if (typeName !== ‘String’ && typeName !== ‘Number’ && typeName !== ‘Boolean’)
 {
 var convertToStringMethodName =
 Sys.Preview.TypeDescriptor.getAttribute(dataFieldValue,
 “convertToStringMethodName”);

 if (convertToStringMethodName)
 dataFieldValue =
 Sys.Preview.TypeDescriptor.invokeMethod(dataFieldValue,
 convertToStringMethodName);
 }

 sb.append(‘<td>’)
 sb.append(dataFieldValue);
 sb.append(‘</td>’);
 }

 sb.append(‘</tr>’);
 }

 sb.append(‘</table>’);
 this.get_element().innerHTML = sb.toString();
}

CustomComponents.CustomTable.prototype =
{

(continued)

c11.indd 449c11.indd 449 8/20/07 8:14:27 PM8/20/07 8:14:27 PM

Chapter 11: Data Classes

450

Listing 11-33 (continued)

 get_dataSource : CustomComponents$CustomTable$get_dataSource,
 set_dataSource : CustomComponents$CustomTable$set_dataSource,
 get_dataFieldNames : CustomComponents$CustomTable$get_dataFieldNames,
 set_dataFieldNames : CustomComponents$CustomTable$set_dataFieldNames,
 dataBind : CustomComponents$CustomTable$dataBind
}

CustomComponents.CustomTable.registerClass(“CustomComponents.CustomTable”,
 Sys.UI.Control);

if(typeof(Sys)!==’undefined’)
 Sys.Application.notifyScriptLoaded();

 As the boldface portion of this code listing shows, the new implementation of the CustomTable control
exposes the following:

❑ A new property of a type array named dataFieldNames

❑ A new setter method named set_dataFieldNames that enables you to specify the names of
those data fields whose values should be displayed in the CustomTable client control:

 function CustomComponents$CustomTable$set_dataFieldNames(value)
{
 this._dataFieldNames = value;
}

❑ A new getter method named get_dataFieldNames that returns a reference to the array
 containing the names of the data fields whose values should be displayed in the CustomTable
client control:

 function CustomComponents$CustomTable$get_dataFieldNames()
{
 return this._dataFieldNames;
}

 Next, let’s take a look at the dataBind method of the CustomTable control. As previously discussed, the
main responsibility of this method is to iterate through the data records and display the data field values
of each record.

 The new implementation of this method begins with the following code fragment from Listing 11-33 :

 var isArray = true;

 if (this._dataSource && Sys.Preview.Data.IData.isImplementedBy(this._dataSource))
 isArray = false;

 else if (Array.isInstanceOfType(this._dataSource))
 throw Error.create(‘Unknown data source type!’);

 This code first checks whether the specified data source implements the I Data interface. If so, it sets a
local Boolean variable named isArray to false to signal that the data source is not an array. Next, the
code raises an exception if the data source is neither of type Array nor of type I Data .

c11.indd 450c11.indd 450 8/20/07 8:14:27 PM8/20/07 8:14:27 PM

Chapter 11: Data Classes

451

 Notice how the dataBind method determines the total number of data records in the specified data source:

 var length = isArray ? this._dataSource.length : this._dataSource.get_length();

 If isArray is set to true , it means the data source is of type Array and, consequently, it calls the length
property on the data source to access the total data record count. If isArray is set to false , it means the
data source is of type I Data and, consequently, it calls the get_length method on the data source to
return the total data record count. As previously discussed, the I Data interface exposes a method named
 get_length .

 Also note how the dataBind method gets the reference to the current data row of the specified
data source:

 for (var i=0; i<length; i++)
 {
 var dataItem = isArray ? this._dataSource[i] : this._dataSource.getRow(i);

 If isArray is set to true , it means the data source is of type Array and, consequently, it uses a typical
array indexing to return the reference to the current data row. If isArray is set to false , it means the
data source is of type I Data and, consequently, it uses the getRow method to return the reference to the
current data row. As discussed previously, the I Data interface exposes a method named getRow .

 As the following code fragment from Listing 11-33 shows, the dataBind method only displays the
header text for data fields whose names are included in the dataFieldNames property:

 if (i == 0)
 {
 sb.append(‘<tr style=”background-color:Tan; font-weight:bold”>’);
 for (var c in this._dataFieldNames)
 {
 sb.append(‘<td>’);
 sb.append(this._dataFieldNames[c]);
 sb.append(‘</td>’);
 }
 sb.append(‘</tr>’);
 }

 As the following code fragment from Listing 11-33 shows, the dataBind method iterates through only
the data fields whose names are included in the dataFieldNames array:

 for (var j in this._dataFieldNames)
 {
 var dataFieldName = this._dataFieldNames[j];
 var dataFieldValue = Sys.Preview.TypeDescriptor.getProperty(dataItem,

 dataFieldName, null);

 . . .

 sb.append(‘<td>’)
 sb.append(dataFieldValue);
 sb.append(‘</td>’);
 }

c11.indd 451c11.indd 451 8/20/07 8:14:27 PM8/20/07 8:14:27 PM

Chapter 11: Data Classes

452

 Note that the method invokes the get Property static method on the TypeDescriptor class, passing in
the reference to the current data row to return the value of the data field with the specified field name.
As you can see, the get Property method allows the CustomTable client control to access the value of a
data field, with the specified name, of the current data row as if it were accessing the value of a property,
with the same name as the data field, of the current data row. This is possible only if one of the following
conditions are met:

❑ The data fields themselves are the properties of the data row. This is the case when the data row
is an object literal that contains one name/value pair for each data field, where the name part of
the pair contains the name of the data field and the value part contains the value of the data
field. Here is an example:

 {‘ProductName’: ‘Product1’}

❑ The data row implements the I CustomTypeDescriptor interface where its implementation of
the get Property method of this interface returns the value of the specified data field. As dis-
cussed earlier, the DataRow class is one of the ASP.NET AJAX classes that implement this inter-
face. As such, if you bind a DataTable object to the CustomTable client control, the following
code will be able to extract the value of each data field.

 Listing 11-34 contains a page that binds a DataTable to the CustomTable client control. If you run this
page, you should see the result shown in Figure 11-1 .

 Listing 11-34: A Page that Uses the New Implementation of the CustomTable Control

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function pageLoad()
 {
 var dataColumns = [];
 dataColumns[dataColumns.length] =
 new Sys.Preview.Data.DataColumn(‘ProductId’, Number, 1, true, true);
 dataColumns[dataColumns.length] =
 new Sys.Preview.Data.DataColumn(‘ProductName’, String, ‘Unknown’,
 true, false);
 dataColumns[dataColumns.length] =
 new Sys.Preview.Data.DataColumn(‘UnitPrice’, Number, 50, true,
 false);

 var dataTable = new Sys.Preview.Data.DataTable(dataColumns);
 var rowObject = {‘ProductId’: 1, ‘ProductName’: ‘Product1’, ‘UnitPrice’: 60};
 var dataRow = dataTable.createRow(rowObject);
 dataTable.add(dataRow);

 rowObject = {‘ProductId’: 2, ‘ProductName’: ‘Product2’, ‘UnitPrice’: 40};
 dataRow = dataTable.createRow(rowObject);

c11.indd 452c11.indd 452 8/20/07 8:14:28 PM8/20/07 8:14:28 PM

Chapter 11: Data Classes

453

 dataTable.add(dataRow);

 rowObject = {‘ProductId’: 3, ‘ProductName’: ‘Product3’, ‘UnitPrice’: 20};
 dataRow = dataTable.createRow(rowObject);
 dataTable.add(dataRow);

 var customTable = new CustomComponents.CustomTable($get(“myDiv”));
 var dataFieldNames = [‘ProductName’, ‘UnitPrice’];
 customTable.set_dataFieldNames(dataFieldNames);
 customTable.set_dataSource(dataTable);
 customTable.dataBind();
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 <asp:ScriptReference Path=”CustomTable.js” />
 </Scripts>
 </asp:ScriptManager>
 <div id=”myDiv”>
 </div>
 </form>
</body>
</html>

 Now, let’s walk through the implementation of the pageLoad method shown in Listing 11-34 . This
method first creates three DataColumn objects to represent the ProductId , ProductName , and
 UnitPrice columns of the Products table. The method passes four parameters into the constructor of

Figure 11-1

c11.indd 453c11.indd 453 8/20/07 8:14:28 PM8/20/07 8:14:28 PM

Chapter 11: Data Classes

454

the DataColumn class. The first parameter is a string that contains the name of the column (for example,
 ‘ProductId’); the second parameter references the actual data type of the column (for example,
 Number); the third parameter contains the default value of the column (for example, 1); the fourth
parameter is a Boolean value that specifies whether the column is read-only; and the fifth parameter is a
Boolean value that specifies whether the column is a primary key:

 var dataColumns = [];
 dataColumns[dataColumns.length] =
 new Sys.Preview.Data.DataColumn(‘ProductId’, Number, 1, true, true);
 dataColumns[dataColumns.length] =
 new Sys.Preview.Data.DataColumn(‘ProductName’, String, ‘Unknown’,
 true, false);
 dataColumns[dataColumns.length] =
 new Sys.Preview.Data.DataColumn(‘UnitPrice’, Number, 50, true,
 false);

 Next, the pageLoad method calls the constructor of the DataTable class, passing in the array that con-
tains the three DataColumn objects to create a DataTable object that represents the Products table:

 var dataTable = new Sys.Preview.Data.DataTable(dataColumns);

 Then, the pageLoad method repeats the following steps three times to create and add three DataRow
objects to the DataTable object:

1. It creates an object literal that contains three name/value pairs where each name/value pair de-
scribes a particular data field of the DataRow object being added:

 var rowObject = {‘ProductId’: 1, ‘ProductName’: ‘Product1’, ‘UnitPrice’: 60};

 This object literal will be used as the row object of the DataRow object being added.

2. It calls the create Row instance method on the DataTable object, passing in the row object from
step 1 to instantiate the DataRow object associated with the row object:

 var dataRow = dataTable.createRow(rowObject);

 As discussed earlier, the create Row method uses the name/value pairs of this row object to
 initialize the data fields of the newly instantiated DataRow object.

3. It calls the add instance method on the DataTable object, passing in the newly instantiated
 DataRow object to add the DataRow object to the DataTable object:

 dataTable.add(dataRow);

 Keep in mind that the create Row method creates the DataRow object, but does not add it to the
 DataTable object.

 The pageLoad method then instantiates the CustomTable client control:

 var customTable = new CustomComponents.CustomTable($get(“myDiv”));

 Next, it calls the set_dataFieldNames method on the client control, passing in an array that contains
the names of the data fields that you want the control to display:

c11.indd 454c11.indd 454 8/20/07 8:14:28 PM8/20/07 8:14:28 PM

Chapter 11: Data Classes

455

 var dataFieldNames = [‘ProductName’, ‘UnitPrice’];
 customTable.set_dataFieldNames(dataFieldNames);

 It then calls the set_dataSource method, passing in the DataTable object to specify this object as the
data source of the CustomTable control:

 customTable.set_dataSource(dataTable);

 Finally, it calls the dataBind method on the CustomTable control to have the control display the speci-
fied data fields of the data rows that the DataTable contains:

 customTable.dataBind();

 Listing 11-34 explicitly created the required DataColumn and DataRow objects. Listing 11-35 uses a dif-
ferent approach where you do not need to explicitly create these objects. As the boldface portion of this
code listing shows, you can form an object literal that contains information about all the columns and
rows of the Products table, and pass this object literal into the parseFromJson static method of the
 DataTable class to instantiate and initialize the DataTable object.

 Listing 11-35: A Page that Uses a DataTable Control without Explicitly Instantantiating
the Required DataColumn and DataRow Objects

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function pageLoad()
 {
 var jsonObj =
 {
 columns: [{name: ‘ProductId’, dataType: Number, defaultValue: 1,
 isKey: true, readOnly: true},

 {name: ‘ProductName’, dataType: String, defaultValue: ‘Unknown’,

 isKey: false, readOnly: true},

 {name: ‘UnitPrice’, dataType: Number, defaultValue: 50,
 isKey: false, readOnly: false}],

 rows: [{‘ProductId’: 1, ‘ProductName’: ‘Product1’, ‘UnitPrice’: 60},
 {‘ProductId’: 2, ‘ProductName’: ‘Product2’, ‘UnitPrice’: 40},
 {‘ProductId’: 3, ‘ProductName’: ‘Product3’, ‘UnitPrice’: 20}]
 };

 var dataTable = Sys.Preview.Data.DataTable.parseFromJson(jsonObj);

 var customTable = new CustomComponents.CustomTable($get(“myDiv”));
 var dataFieldNames = [‘ProductName’, ‘UnitPrice’];

(continued)

c11.indd 455c11.indd 455 8/20/07 8:14:29 PM8/20/07 8:14:29 PM

Chapter 11: Data Classes

456

Listing 11-35 (continued)

 customTable.set_dataFieldNames(dataFieldNames);
 customTable.set_dataSource(dataTable);
 customTable.dataBind();
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 <asp:ScriptReference Path=”CustomTable.js” />
 <asp:ScriptReference Path=”Address.js” />
 <asp:ScriptReference Path=”Product.js” />
 </Scripts>
 </asp:ScriptManager>
 <div id=”myDiv”>
 </div>
 </form>
</body>
</html>

 Summary
 This chapter provided in-depth coverage of three important ASP.NET AJAX data classes: DataColumn ,
 DataRow , and DataTable . It then implemented a custom client control that can display data from data
sources such as DataTable that implement the I Data interface.

 The page shown in Listing 11-35 manually created and populated the DataTable object that binds to the
 CustomTable client control. In data-driven Web applications, data normally comes from a server. This
means that ASP.NET AJAX applications need to communicate with the server. This is where the client-
server communication layer of the ASP.NET AJAX client-side framework comes into play. The next chap-
ter discusses this layer and its constituent ASP.NET AJAX types.

c11.indd 456c11.indd 456 8/20/07 8:14:29 PM8/20/07 8:14:29 PM

 Client-Server
Communications

 The ASP.NET AJAX client-server communication layer consists of several important types that are
discussed in this chapter. These types emulate their ASP.NET/.NET counterparts, which enables
you to use similar server-side network programming techniques in your client-side network
 programming. The types in the ASP.NET AJAX client-server communication layer belong to the
following namespace:

 Type.registerNamespace(‘Sys.Net’);

 WebRequest
 The ASP.NET AJAX WebRequest client class represents a Web request that the client-side code
makes to the server. The following sections discuss the important members of this class.

 Constructor
 As you can see in Listing 12-1 , the WebRequest constructor defines the following fields:

 ❑ _url : A string that contains the target URL for the request.

❑ _headers : A dictionary that contains the names and values of the request headers.

❑ _body : A string that contains the body of the request.

❑ _userContext : Contains a JavaScript object that provides application-specific contextual
information.

❑ _httpVerb : A string that contains the HTTP verb being used to make the request.

❑ _executor : A field of type WebRequestExecutor that references the WebRequestExecutor
object responsible for executing the request. The WebRequestExecutor base class and its
subclasses are discussed later, but for now suffice it to say that every WebRequest object is
associated with a WebRequestExecutor object whose main responsibility is to execute or
make the request.

c12.indd 457c12.indd 457 8/20/07 6:09:16 PM8/20/07 6:09:16 PM

Chapter 12: Client-Server Communications

458

❑ _invokeCalled : A Boolean value that ensures that the request is executed or made only once.

❑ _timeout : The field that specifies the request timeout. The request automatically gets canceled
if the server response does not arrive within the time interval specified by this field.

 Listing 12-1: The Constructor of the WebRequest Class

 Sys.Net.WebRequest = function SysNetWebRequest()
{
 this._url = “”;
 this._headers = { };
 this._body = null;
 this._userContext = null;
 this._httpVerb = null;
 this._executor = null;
 this._invokeCalled = false;
 this._timeout = 0;
}

 Target URL
 As Listing 12-2 shows, the WebRequest class exposes a getter named get_url and a setter named
 set_url that you can use to get and set the target URL of the Web request.

 Listing 12-2: Getting and Setting the Target URL

 function SysNetWebRequest$get_url()
{
 return this._url;
}

function SysNetWebRequest$set_url(value)
{
 this._url = value;
}

 HTTP Verb
 As Listing 12-3 shows, the WebRequest class exposes a getter named get_httpVerb and a setter named
 set_httpVerb that you can use to get and set the HTTP verb being used to send the Web request. If
 neither the HTTP verb nor the body of the Web request is specified, the GET HTTP verb will be used by
default.

 Listing 12-3: Getting and Setting the HTTP Verb

 function SysNetWebRequest$get_httpVerb()
{
 if (this._httpVerb === null)
 {
 if (this._body === null)
 return “GET”;

 return “POST”;

c12.indd 458c12.indd 458 8/20/07 6:09:16 PM8/20/07 6:09:16 PM

Chapter 12: Client-Server Communications

459

 }
 return this._httpVerb;
}

function SysNetWebRequest$set_httpVerb(value)
{
 this._httpVerb = value;
}

 Body
 You invoke the get_body and set_body instance methods on the WebRequest object to get and set the
body of the request, as shown in Listing 12-4 . Keep in mind that the body of a request is of type string .

 Listing 12-4: Getting and Setting the Body of the Web Request

 function SysNetWebRequest$get_body()
{
 return this._body;
}

function SysNetWebRequest$set_body(value)
{
 this._body = value;
}

 Timeout
 You invoke the get_timeout and set_timeout instance methods on the WebRequest object to get and
set the Web request timeout, as shown in Listing 12-5 . Note that the get_timeout method calls the
 get_defaultTimeout static method on an ASP.NET AJAX class named _WebRequestManager to
return the default timeout if the timeout has been set to 0 . The _WebRequestManager class and its
 methods are discussed later, but for now suffice it to say that when you load your ASP.NET AJAX
 application, the ASP.NET AJAX client-side framework automatically creates an instance of the
_WebRequestManager class. The main job of this instance is to manage all Web requests made to the
server. Every ASP.NET AJAX application can have only one instance of the _WebRequestManager class.

 Listing 12-5: Getting and Setting the Web Request Timeout

 function SysNetWebRequest$get_timeout()
{
 if (this._timeout === 0)
 return Sys.Net.WebRequestManager.get_defaultTimeout();

 return this._timeout;
}

function SysNetWebRequest$set_timeout(value)
{
 this._timeout = value;
}

c12.indd 459c12.indd 459 8/20/07 6:09:17 PM8/20/07 6:09:17 PM

Chapter 12: Client-Server Communications

460

 Web Request Executor
 The ASP.NET AJAX client-side framework includes a client class named WebRequestExecutor . The
main job of a WebRequestExecutor object is to execute or make a specified Web request. You call the
 get_executor and set_executor methods on the WebRequest object to get and set the
 WebRequestExecutor object responsible for executing the Web request, as shown in Listing 12-6 .

 Listing 12-6: Getting and Setting the Web Request Executor

 function SysNetWebRequest$get_executor()
{
 return this._executor;
}

function SysNetWebRequest$set_executor(value)
{
 if (this._executor !== null && this._executor.get_started())
 throw Error.invalidOperation(Sys.Res.setExecutorAfterActive);

 this._executor = value;
 this._executor._set_webRequest(this);
}

 Note that the set_executor method invokes an internal method named _set_webRequest on the
 WebRequestExecutor object to specify the current WebRequest object as the WebRequest object that
the WebRequestExecutor object must execute.

 Keep in mind that, by convention, any member of an ASP.NET AJAX class whose name begins with the
underscore character (_) is considered an internal method. Consequently, you cannot call these methods
from your client-side code.

 The set_executor setter method raises an exception if you attempt to set the executor of a WebRequest
object after the request has been sent to the server. As you’ll see later, the WebRequestExecutor base
class exposes a method named get_started that returns a Boolean value specifying whether the
request has already been sent to the server.

 Headers
 Call the get_headers method shown in Listing 12-7 on the WebRequest object to get a reference to the
 _headers dictionary, which contains the names and values of the request headers.

 Listing 12-7: Getting the Web Request Headers

 function SysNetWebRequest$get_headers()
{
 return this._headers;
}

c12.indd 460c12.indd 460 8/20/07 6:09:17 PM8/20/07 6:09:17 PM

Chapter 12: Client-Server Communications

461

 Completed Event
 The WebRequest class exposes an event named completed , which is raised when the Web request has
been completed. The WebRequest class follows the event implementation pattern discussed in the
 previous chapters to implement the completed event as follows:

 1. It exposes a field of type EventHandlerList named _events that references an
 EventHandlerList object where all the event handlers registered for the events of the
 WebRequest class will be stored.

2. It exposes a getter method named get_eventHandlerList that returns a reference to this
 EventHandlerList object, as shown in Listing 12-8 .

 Listing 12-8: The get_events Method

 function SysNetWebRequest$_get_eventHandlerList()
{
 if (!this._events)
 this._events = new Sys.EventHandlerList();

 return this._events;
}

3. It implements a method named add_completed that calls the addHandler method on the
 EventHandlerList to add the specified function as an event handler for the completed event
of the WebRequest object, as shown in Listing 12-9 .

 Listing 12-9: The add_completed Method

 function SysNetWebRequest$add_completed(handler)
{
 this._get_eventHandlerList().addHandler(“completed”, handler);
}

4. It implements a method named remove_completed that calls the removeHandler method on
the EventHandlerList to remove the specified event handler from the list of the event
 handlers registered for the completed event, as shown in Listing 12-10 .

 Listing 12-10: The remove_completed Method

 function SysNetWebRequest$remove_completed(handler)
{
 this._get_eventHandlerList().removeHandler(“completed”, handler);
}

5. It implements a method named completed that raises the completed event, as shown in
Listing 12-11 .

c12.indd 461c12.indd 461 8/20/07 6:09:17 PM8/20/07 6:09:17 PM

Chapter 12: Client-Server Communications

462

 Listing 12-11: The completed Method

 function SysNetWebRequest$completed(eventArgs) {
 var handler = Sys.Net.WebRequestManager._get_eventHandlerList().getHandler(
 “completedRequest”);
 if (handler)
 handler(this._executor, eventArgs);

 handler = this._get_eventHandlerList().getHandler(“completed”);
 if (handler)
 handler(this._executor, eventArgs);
}

 This method calls the getHandler method on the EventHandlerList object. As discussed in the
 previous chapters, the getHandler method returns a reference to a JavaScript function whose invocation
automatically invokes all event handlers registered for a specified event, which is the completed event
in this case:

 handler = this._get_eventHandlerList().getHandler(“completed”);
 if (handler)
 handler(this._executor, eventArgs);

 As you’ll see later, the _ WebRequestManager class exposes an event named completedRequest , which
maps to the completed event of the WebRequest object being executed. In other words, the
_ WebRequestManager class must raise its completedRequest event when the WebRequest object
raises its completed event. The _ WebRequestManager class also uses the same event implementation
pattern to implement the completedRequest event, which means that this class also exposes
an _events field of type EventHandlerList that references an EventHandlerList object containing
all event handlers registered for the events of the WebRequestManager object.

 As Listing 12-11 shows, the completed method of the WebRequest object calls the getHandler method
on the EventHandlerList object that contains the event handlers registered for the events of the
 WebRequestManager object to return a reference to the JavaScript function whose invocation
 automatically invokes all the event handlers registered for the completedRequest event. The
 completed method then invokes this JavaScript function, passing in a reference to the
 WebRequestExecutor object. This tricks the event handlers registered for the completedRequest event
of the WebRequestManager object into thinking that the WebRequestExecutor object itself raised the
event and called these handlers.

 Invoking a Web Request
 You call the invoke instance method on the WebRequest object that represents a Web request to make the
request to the server. As Listing 12-12 shows, this method delegates the responsibility of executing the request
to the executeRequest method of the current WebRequestManager instance. (The _ WebRequestManager
class and its methods are discussed later in this chapter.) Note that the WebRequest object uses an internal
Boolean flag named _invokeCalled to ensure that the same request is not executed more than once.

c12.indd 462c12.indd 462 8/20/07 6:09:18 PM8/20/07 6:09:18 PM

Chapter 12: Client-Server Communications

463

 Listing 12-12: Invoking a Web Request

 function SysNetWebRequest$invoke()
{
 if (this._invokeCalled)
 throw Error.invalidOperation(Sys.Res.invokeCalledTwice);

 Sys.Net.WebRequestManager.executeRequest(this);
 this._invokeCalled = true;
}

 WebRequestExecutor
 As discussed in the previous section, every ASP.NET AJAX Web request is represented by an
instance of the WebRequest class. The ASP.NET AJAX client-side framework includes a class named
 WebRequestExecutor whose sole responsibility is to execute a given Web request represented by
a given WebRequest object. The following sections discuss the main members of the
 WebRequestExecutor class.

 Constructor
 As you can see in Listing 12-13 , the WebRequestExecutor constructor defines the following two fields:

 ❑ _webRequest : This field references the WebRequest object that the WebRequestExecutor
 object executes.

❑ _ resultObject : This field references the JSON object that contains the data received from the
server. For example, this can be the JSON representation of a DataTable object and,
 consequently, can be passed into the parseFromJson static method of the DataTable class to
deserialize the DataTable object.

 Listing 12-13: The Constructor of the WebRequestExecutor Class

 Sys.Net.WebRequestExecutor = function SysNetWebRequestExecutor()
{
 this._webRequest = null;
 this._resultObject = null;
}

 WebRequest
 You invoke the get_webRequest instance method on the WebRequestExecutor object responsible for
executing a given request to get a reference to the WebRequest object that represents the request, as
shown in Listing 12-14 .

c12.indd 463c12.indd 463 8/20/07 6:09:18 PM8/20/07 6:09:18 PM

Chapter 12: Client-Server Communications

464

 Listing 12-14: Getting and Setting the WebRequest Object

 function SysNetWebRequestExecutor$get_webRequest()
{
 return this._webRequest;
}

function SysNetWebRequestExecutor$_set_webRequest(value)
{
 if (this.get_started())
 throw Error.invalidOperation(String.format(Sys.Res.cannotCallOnceStarted,
 ‘set_webRequest’));

 this._webRequest = value;
}

 As this code listing shows, the WebRequestExecutor class contains an internal setter method
named _set_webRequest that specifies the WebRequest object that the current WebRequestExecutor
must execute. You should never call this method to set the WebRequest object for a
 WebRequestExecutor object. Instead, you must call the set_executor instance method on the
 WebRequest object to specify its associated WebRequestExecutor object. As previously shown in
 Listing 12-6 , the set_executor method of the WebRequest object calls the _set_webRequest internal
method under the hood to register itself with the specified WebRequestExecutor .

 The _set_webRequest internal method first calls the get_started method to return a Boolean value
that specifies whether the request has already been made. If the request has already been made, it raises
an exception.

 get_started
 The WebRequestExecutor exposes a method named get_started that you can call on the
 WebRequestExecutor object to check whether the request has already been sent to the server. As Listing
 12-15 shows, the WebRequestExecutor base class does not implement this method. Instead, the
 subclasses of the WebRequestExecutor base class must implement this method to include the logic
 necessary to determine whether the request has already been made.

 Listing 12-15: The get_started Method

 function SysNetWebRequestExecutor$get_started()
{
 throw Error.notImplemented();
}

 get_responseAvailable
 You can call the get_responseAvailable method on a WebRequestExecutor object to return a
 Boolean value that specifies whether the response from the server has arrived, as shown in Listing 12-16 .
It is the responsibility of the subclasses of the WebRequestExecutor base class must implement this
method to incorporate the necessary logic.

c12.indd 464c12.indd 464 8/20/07 6:09:18 PM8/20/07 6:09:18 PM

Chapter 12: Client-Server Communications

465

 Listing 12-16: The get_responseAvailable Method

 function SysNetWebRequestExecutor$get_responseAvailable()
{
 throw Error.notImplemented();
}

 get_timedOut
 You can call the get_timedOut method on a WebRequestExecutor object to return a Boolean value
that specifies whether the specified request has timed out, as shown in Listing 12-17 . Again it is the
responsibility of the subclasses of the WebRequestExecutor base class to implement this method.

 Listing 12-17: The get_timedOut Method

 function SysNetWebRequestExecutor$get_timedOut()
{
 throw Error.notImplemented();
}

 get_aborted
 You can invoke this method on a WebRequestExecutor object to return a Boolean value that specifies
whether the Web request has aborted, as shown in Listing 12-18 . Once again it is the responsibility of the
subclasses of the WebRequestExecutor base class to implement this method.

 Listing 12-18: The get_aborted Method

 function SysNetWebRequestExecutor$get_aborted()
{
 throw Error.notImplemented();
}

 get_responseData
 You can invoke this method on a WebRequestExecutor object to return a string that contains the data
received from the server as shown in Listing 12-19 . The subclasses of the WebRequestExecutor base
class must implement this method as well.

 Listing 12-19: The get_responseData Method

 function SysNetWebRequestExecutor$get_responseData()
{
 throw Error.notImplemented();
}

c12.indd 465c12.indd 465 8/20/07 6:09:19 PM8/20/07 6:09:19 PM

Chapter 12: Client-Server Communications

466

 get_statusCode
 You can invoke this method on a WebRequestExecutor object to return an integer that specifies the
 status code of the server response as shown in Listing 12-20 . The subclasses of the WebRequestExecutor
base class must implement this method.

 Listing 12-20: The get_statusCode Method

 function SysNetWebRequestExecutor$get_statusCode()
{
 throw Error.notImplemented();
}

 get_statusText
 You can invoke this method on a WebRequestExecutor object to return a string that contains the status
text of the server response as shown in Listing 12-21 . The subclasses of the WebRequestExecutor base
class must implement this method.

 Listing 12-21: The get_statusText Method

 function SysNetWebRequestExecutor$get_statusText()
{
 throw Error.notImplemented();
}

 get_xml
 You can invoke this method on a WebRequestExecutor object to return an XML document that contains
the data received from the server as shown in Listing 12-22 . The subclasses of the WebRequestExecutor
base class must implement this method.

 Listing 12-22: The get_xml Method

 function SysNetWebRequestExecutor$get_xml()
{
 throw Error.notImplemented();
}

 get_object
 You can invoke this method on a WebRequestExecutor object to return a JavaScript object that contains
the data received from the server as shown in Listing 12-23 .

c12.indd 466c12.indd 466 8/20/07 6:09:19 PM8/20/07 6:09:19 PM

Chapter 12: Client-Server Communications

467

 Listing 12-23: The get_object Method

 function SysNetWebRequestExecutor$get_object()
{
 if (!this._resultObject)
 this._resultObject = Sys.Serialization.JavaScriptSerializer.deserialize(
 this.get_responseData());

 return this._resultObject;
}

 As this code listing shows, the get_object method calls the deserialize static method on the
 JavaScriptSerializer class to deserialize a JavaScript object from the string that contains the JSON
representation of the object. For example, you can use this method to deserialize a DataTable object
from its JSON representation.

 executeRequest
 You can call this method on a WebRequestExecutor object to execute its associated WebRequest object,
that is, to make the specified request as shown in Listing 12-24 . The subclasses of the WebRequestExecutor
base class must implement this method.

 Listing 12-24: The executeRequest Method

 function SysNetWebRequestExecutor$executeRequest()
{
 throw Error.notImplemented();
}

 abort
 You can invoke this method on a WebRequestExecutor object as shown in Listing 12-25 . This method
aborts the associated WebRequest object. The subclasses of the WebRequestExecutor base class must
implement this method.

 Listing 12-25: The abort Method

 function SysNetWebRequestExecutor$abort()
{
 throw Error.notImplemented();
}

 getResponseHeader
 You can invoke this method on a WebRequestExecutor object to return the value of the response header
with the specified name as shown in Listing 12-26 . The subclasses of the WebRequestExecutor base
class must implement this method.

c12.indd 467c12.indd 467 8/20/07 6:09:19 PM8/20/07 6:09:19 PM

Chapter 12: Client-Server Communications

468

 Listing 12-26: The getResponseHeader Method

 function SysNetWebRequestExecutor$getResponseHeader(header)
{
 throw Error.notImplemented();
}

 getAllResponseHeaders
 You can invoke this method on a WebRequestExecutor object to return all response headers as shown
in Listing 12-27 . The subclasses of the WebRequestExecutor base class must implement this method.

 Listing 12-27: The getAllResponseHeaders Method

 function SysNetWebRequestExecutor$getAllResponseHeaders()
{
 throw Error.notImplemented();
}

 WebRequestManager
 When an ASP.NET AJAX application is loading, the ASP.NET AJAX client-side framework instantiates a
single instance of an ASP.NET AJAX client class named _WebRequestManager and assigns the instance
to a global variable named Sys.Net.WebRequestManager . You cannot create a new instance of this class.
Instead, you use the WebRequestManager to get a reference to the instance that the ASP.NET AJAX
 client-side framework has created for your application. This sole instance of the _WebRequestManager
class is responsible for managing all the Web requests made in the current application. As such, any
 settings that you specify on this instance will be applied to all Web requests made in the application. The
following sections discuss the main methods of the _WebRequestManager class.

 Constructor
 As Listing 12-28 shows, the constructor of this class is an internal method, which means you cannot call
it from within your client code.

 Listing 12-28: The _WebRequestManager Constructor

 Sys.Net._WebRequestManager = function SysNet_WebRequestManager()
{
 this._this = this;
 this._defaultTimeout = 0;
 this._defaultExecutorType = “Sys.Net.XMLHttpExecutor”;
}

 This constructor defines the following three fields:

❑ _this : This field references the instance of the class that the ASP.NET AJAX client-side
 framework creates for the current application.

c12.indd 468c12.indd 468 8/20/07 6:09:19 PM8/20/07 6:09:19 PM

Chapter 12: Client-Server Communications

469

❑ _defaultTimeout : This field specifies the default timeout for all the Web requests made in the
current application. If you do not explicitly specify the timeout for a given WebRequest object, this
default value will be used. As Listing 12-28 shows, the constructor of the _WebRequestManager
class assigns a value of 0 to this field. However, as you’ll see later, you can specify a different
 default timeout value.

❑ _defaultExecutorType : This field is a string that contains the fully qualified name of the
 subtype of the WebRequestExecutor type that will be used as the default executor type. If
you do not explicitly specify a WebRequestExecutor object for a given WebRequest object,
an instance of this default subtype will be used. As Listing 12-28 shows, the constructor of the
 _WebRequestManager class assigns the string value “Sys.Net.XMLHttpExecutor” to this
field. However, as you’ll see later, you can specify a different subtype of the
 WebRequestExecutor base class as the default executor type.

 Default Timeout
 As stated in the previous section, the default timeout is 0 by default. However, the _WebRequestManager
class exposes a setter named set_defaultTimout that you can invoke on the WebRequestManager
object to specify a different value as the default timeout, as shown in Listing 12-29 .

 Listing 12-29: Getting and Setting the Default Timeout

 function SysNet_WebRequestManager$get_defaultTimeout()
{
 return this._defaultTimeout;
}

function SysNet_WebRequestManager$set_defaultTimeout(value)
{
 this._defaultTimeout = value;
}

 Default Executor Type
 As stated earlier, the default executor type is XMLHttpExecutor by default. However, the
 _WebRequestManager class exposes a setter named set_defaultExecutorType that you can invoke
on the WebRequestManager object to specify a different type of executor as the default executor type, as
shown in Listing 12-30 .

 Listing 12-30: Getting and Setting the Default Executor Type

 function SysNet_WebRequestManager$get_defaultExecutorType()
{
 return this._defaultExecutorType;
}
function SysNet_WebRequestManager$set_defaultExecutorType(value)
{
 this._defaultExecutorType = value;
}

c12.indd 469c12.indd 469 8/20/07 6:09:20 PM8/20/07 6:09:20 PM

Chapter 12: Client-Server Communications

470

 Events
 The _WebRequestManager class exposes the following two events:

 ❑ invokingRequest : The WebRequestManager object fires this event when it’s about to invoke
or execute a Web request. If you need to run some application-specific logic before a Web
 request is executed, implement a JavaScript function that encapsulates this logic, and register
the function as the event handler for the invokingRequest event.

❑ completedRequest : The WebRequestManager object fires this event when the execution of a
request is completed.

 The _WebRequestManager class follows the typical ASP.NET AJAX event implementation pattern to
implement these events as follows:

 1. It defines a new field named _events that references an EventHandlerList object where the
event handlers registered for the events of the _WebRequestManager class will be stored. Then
it defines a new getter method named _get_eventHandlerList that returns a reference to this
 EventHandlerList object, as shown in Listing 12-31 . Note that this getter method is internal,
so you cannot call it from within your client code.

 Listing 12-31: The _get_eventHandlerList Method

 function SysNet_WebRequestManager$_get_eventHandlerList()
{
 if (!this._events)
 this._events = new Sys.EventHandlerList();

 return this._events;
}

 2. It defines an add_invokingRequest method that calls the addHandler method on the
 EventHandlerList object to add the specified function as the event handler for the
 invokingRequest event, as shown in Listing 12-32 .

 Listing 12-32: The add_invokingRequest Method

 function SysNet_WebRequestManager$add_invokingRequest(handler)
{
 this._get_eventHandlerList().addHandler(“invokingRequest”, handler);
}

 If you need to run some application-specific code before a Web request is executed, wrap your
code in a JavaScript function. Then invoke the add_invokingRequest method on the
Sys.Net.WebRequestManager object, passing in a reference to the wrapping JavaScript function.
(The Sys.Net.WebRequestManager object is the sole instance of the _WebRequestManager class
in a given ASP.NET AJAX application.)

 3. It implements a method named remove_invokingRequest that invokes the removeHandler
method on the EventHandlerList object to remove the specified handler from the list of event
handlers registered for the invokingRequest event, as shown in Listing 12-33 .

c12.indd 470c12.indd 470 8/20/07 6:09:20 PM8/20/07 6:09:20 PM

Chapter 12: Client-Server Communications

471

 Listing 12-33: The remove_invokingRequest Method

 function SysNet_WebRequestManager$remove_invokingRequest(handler)
{
 this._get_eventHandlerList().removeHandler(“invokingRequest”, handler);
}

4. It repeats steps 2 and 3 to implement similar methods named add_completedRequest and
 remove_completedRequest for the completedRequest event, as shown in Listings Listing 12-34
and Listing 12-35 .

 Listing 12-34: The add_completedRequest Method

 function SysNet_WebRequestManager$add_completedRequest(handler)
{
 this._get_eventHandlerList().addHandler(“completedRequest”, handler);
}

 Listing 12-35: The remove_completedRequest method

 function SysNet_WebRequestManager$remove_completedRequest(handler) {
 this._get_eventHandlerList().removeHandler(“completedRequest”, handler);
}

 Any settings you specify on the WebRequestManager object will be applied to all Web requests made in
the application. Therefore, any event handler that you register through the add_invokingRequest and
 add_completedRequest methods of the WebRequestManager object will be called for every Web
request made in the application.

 Executing a Web Request
 The _WebRequestManager class exposes an instance method named executeRequest . This method
takes a single argument that references a WebRequest object and executes the Web request, as shown in
Listing 12-36 .

 Listing 12-36: The executeRequest method

 function SysNet_WebRequestManager$executeRequest(webRequest)
{
 var executor = webRequest.get_executor();
 if (!executor)
 {
 var failed = false;
 try
 {
 var executorType = eval(this._defaultExecutorType);
 executor = new executorType();
 }

(continued)

c12.indd 471c12.indd 471 8/20/07 6:09:20 PM8/20/07 6:09:20 PM

Chapter 12: Client-Server Communications

472

Listing 12-36 (continued)

 catch (e)
 {
 failed = true;
 }

 if (failed || !Sys.Net.WebRequestExecutor.isInstanceOfType(executor) ||
 !executor)
 throw Error.argument(“defaultExecutorType”,
 String.format(Sys.Res.invalidExecutorType,
 this._defaultExecutorType));
 webRequest.set_executor(executor);
 }

 if (executor.get_aborted())
 return;

 var evArgs = new Sys.Net.NetworkRequestEventArgs(webRequest);
 var handler = this._get_eventHandlerList().getHandler(“invokingRequest”);
 if (handler)
 handler(this, evArgs);

 if (!evArgs.get_cancel())
 executor.executeRequest();
}

 The executeRequest method calls the get_executor method on the WebRequest object to return a
reference to the WebRequestExecutor object responsible for executing the Web request:

 var executor = webRequest.get_executor();

 If no WebRequestExecutor object has been specified for the WebRequest object, it uses the default
 executor type. The _WebRequestManager contains a field named _defaultExecutorType whose value
is a string containing the fully qualified name of a subtype of the WebRequestExecutor type. The
 executeRequest method passes this string into the JavaScript eval method to return a reference to the
actual type:

 var executorType = eval(this._defaultExecutorType);

 Next, executeRequest uses the JavaScript new operator to instantiate an instance of this type:

 executor = new executorType();

 Then it calls the set_executor method on the WebRequest object to register the executor object as its
executor:

 webRequest.set_executor(executor);

 Next, executeRequest instantiates an instance of an ASP.NET AJAX event data class named
 NetworkRequestEventArgs , passing in a reference to the WebRequest object:

 var evArgs = new Sys.Net.NetworkRequestEventArgs(webRequest);

c12.indd 472c12.indd 472 8/20/07 6:09:21 PM8/20/07 6:09:21 PM

Chapter 12: Client-Server Communications

473

 Then it calls the getHandler method on the EventHandlerList object that contains all event handlers
registered for the invokingRequest event of the WebRequestManager object:

 var handler = this._get_eventHandlerList().getHandler(“invokingRequest”);

 This method returns a JavaScript function whose invocation automatically invokes all these event
handlers:

 Next, executeRequest invokes the JavaScript function and, consequently, all event handlers registered
for the invokingRequest event:

 if (handler)
 handler(this, evArgs);

 The NetworkRequestEventArgs object gets passed into the event handlers; therefore, if you registered
an event handler for the invokingRequest event of the WebRequestManager object, you can access the
 NetworkRequestEventArgs object from within your handler. As you’ll see later, this object provides
access to the WebRequest object that represents the current Web request. This enables you to use
 application-specific business rules to determine whether the WebRequestManager object may proceed
with the execution of the specified request. If the execution of the current Web request does indeed break
your business rules, you can set the cancel property of the NetworkRequestEventArgs object to true
to instruct the WebRequestManager object to abort the execution of the current Web request.

 As Listing 12-36 shows, the executeRequest method calls the get_cancel method on the
 NetworkRequestEventArgs object to determine whether your event handler has set the cancel
 property of this object to true . If not, it invokes the executeRequest method on the executor associated
with the current Web request to execute the request:

 if (!evArgs.get_cancel())
 executor.executeRequest();

 NetworkRequestEventArgs
 Event handlers registered for the invokingRequest event of the WebRequestManager object receive an
object of type NetworkRequestEventArgs . As Listing 12-37 shows, this type derives from the
 CancelEventArgs base class.

 Listing 12-37: The NetworkRequestEventArgs Event Data Class

 Sys.Net.NetworkRequestEventArgs = function
SysNetNetworkRequestEventArgs(webRequest)
{
 Sys.Net.NetworkRequestEventArgs.initializeBase(this);
 this._webRequest = webRequest;
}

function SysNetNetworkRequestEventArgs$get_webRequest()
{
 return this._webRequest;
}

(continued)

c12.indd 473c12.indd 473 8/20/07 6:09:21 PM8/20/07 6:09:21 PM

Chapter 12: Client-Server Communications

474

Listing 12-37 (continued)

Sys.Net.NetworkRequestEventArgs.prototype =
{
 get_webRequest: SysNetNetworkRequestEventArgs$get_webRequest
}

Sys.Net.NetworkRequestEventArgs.registerClass(‘Sys.Net.NetworkRequestEventArgs’,
 Sys.CancelEventArgs);

 The CancelEventArgs base class exposes two methods named get_cancel and set_cancel . An event
handler can call the set_cancel method to set the value of the cancel property to true . This tells the
 WebRequestManager object that it must abort the execution of the current Web request.

 The NetworkRequestEventArgs class also exposes a getter method named get_webRequest that an
event handler can invoke to get a reference to the current WebRequest object, which contains the complete
information about the current Web request. An event handler can use this information to check whether
the execution of the current request would break any application-specific business rules. If so, it can
call the set_cancel method on the NetworkRequestEventArgs object to tell the WebRequestManager
object to abort the execution of the current request.

 XMLHttpRequest
 The XMLHttpRequest is a wrapper around the browser-specific logic that instantiates the
 XMLHttpRequest object, as shown in Listing 12-38 .

 Listing 12-38: The XMLHttpRequest Class

 if (!window.XMLHttpRequest)
{
 window.XMLHttpRequest = function window$XMLHttpRequest()
 {
 var progIDs = [‘Msxml2.XMLHTTP’, ‘Microsoft.XMLHTTP’];

 for (var i = 0; i < progIDs.length; i++)
 {
 var xmlHttp = new ActiveXObject(progIDs[i]);
 return xmlHttp;
 }

 return null;
 }
}

 XMLDOM
 The XMLDOM encapsulates the browser-specific logic that creates an XML document. As Listing 12-39
shows, the constructor of this class takes a string that contains the XML data and returns a reference to
an XMLDOM document that contains the data.

c12.indd 474c12.indd 474 8/20/07 6:09:21 PM8/20/07 6:09:21 PM

Chapter 12: Client-Server Communications

475

 Listing 12-39: The XMLDOM Class

 window.XMLDOM = function window$XMLDOM(markup)
{
 if (!window.DOMParser)
 {
 var progIDs = [‘Msxml2.DOMDocument.3.0’, ‘Msxml2.DOMDocument’];
 for (var i = 0; i < progIDs.length; i++)
 {
 var xmlDOM = new ActiveXObject(progIDs[i]);

 xmlDOM.async = false;
 xmlDOM.loadXML(markup);
 xmlDOM.setProperty(‘SelectionLanguage’, ‘XPath’);
 return xmlDOM;
 }
 return null;
 }

 else
 {
 var domParser = new window.DOMParser();
 return domParser.parseFromString(markup, ‘text/xml’);
 }
 return null;
}

 XMLHttpExecutor
 The members of the WebRequestExecutor base class define the API that every Web request executor
must implement. The ASP.NET AJAX client-side framework includes an implementation of this API
named XMLHttpExecutor :

 Sys.Net.XMLHttpExecutor.registerClass(‘Sys.Net.XMLHttpExecutor’,
 Sys.Net.WebRequestExecutor);

 This implementation uses the XMLHttpRequest class discussed in the previous section to make Web
requests to the server. As such, most of the members of XMLHttpExecutor class, one way or another,
map to settings on the XMLHttpRequest class.

 Constructor
 As Listing 12-40 shows, the constructor of the XMLHttpExecutor class defines the following fields and
methods:

 ❑ _xmlHttpRequest : This field references the XMLHttpRequest object that the
 XMLHttpExecutor object uses to make the current Web request to the server.

❑ _webRequest : This field references the WebRequest object that represents the current Web
 request and contains the complete information about the request.

c12.indd 475c12.indd 475 8/20/07 6:09:22 PM8/20/07 6:09:22 PM

Chapter 12: Client-Server Communications

476

❑ _responseAvailable : This Boolean field specifies whether the server response has arrived.

❑ _timedOut : This Boolean field specifies whether the current request has timed out.

 ❑ _aborted : This Boolean field specifies whether the current request has aborted.

❑ _started : This Boolean field specifies whether the execution of the current request has
 startedand has been sent to the server.

❑ _onReadyStateChange : The XMLHttpExecutor class registers this internal method as an event
handler for the onreadystatechange event of the XMLHttpRequest object being used to make
the current request to the server.

❑ _clearTimer : This internal method clears the timer.

❑ _onTimeout : This internal method is invoked when the current request times out.

 Listing 12-40: The Constructor of the XMLHttpExecutor Class

 Sys.Net.XMLHttpExecutor = function SysNetXMLHttpExecutor()
{
 Sys.Net.XMLHttpExecutor.initializeBase(this);

 var _this = this;
 this._xmlHttpRequest = null;
 this._webRequest = null;
 this._responseAvailable = false;
 this._timedOut = false;
 this._timer = null;
 this._aborted = false;
 this._started = false;

 this._onReadyStateChange = function () { . . . }

 this._clearTimer = function this$_clearTimer() { . . . }

 this._onTimeout = function this$_onTimeout() { . . . }
}

 The following sections walk you through the implementation of the _onReadyStateChange ,
 _clearTimer , and _onTimeout internal methods.

 _onReadyStateChange
 The XMLHttpExecutor registers the _onReadyStateChange method as an event handler for the
 onreadystatechange event of the XMLHttpRequest object, as shown in Listing 12-41 .

 Listing 12-41: The _onReadyStateChange Method

 this._onReadyStateChange = function ()
 {
 if (_this._xmlHttpRequest.readyState === 4 /*complete*/)
 {
 _this._clearTimer();
 _this._responseAvailable = true;
 _this._webRequest.completed(Sys.EventArgs.Empty);

c12.indd 476c12.indd 476 8/20/07 6:09:22 PM8/20/07 6:09:22 PM

Chapter 12: Client-Server Communications

477

 if (_this._xmlHttpRequest != null)
 {
 _this._xmlHttpRequest.onreadystatechange = Function.emptyMethod;
 _this._xmlHttpRequest = null;
 }
 }
 }

 This method checks the value of the readyState property of the XMLHttpRequest object. If the value
is set to 4, meaning the request is completed and the response has arrived, the method takes the
 following steps:

1. It clears the timer:

 _this._clearTimer();

 As you’ll see later, this timer is what makes a request time out after a specified period of time.

2. It sets the _responseAvailable field to true to signal that the server response has arrived:

 _this._responseAvailable = true;

3. It invokes the completed method on the WebRequest object to inform the object that the
 request is completed and the response has arrived:

 _this._webRequest.completed(Sys.EventArgs.Empty);

 As shown previously in Listing 12-11 , the completed method invokes all event handlers regis-
tered for the completedRequest event of the WebRequestManager and the completed event
of the WebRequest .

 _clearTimer
 As Listing 12-42 shows, the _clearTimer method simply calls the clearTimeout method on the
 window object. As mentioned, a timer causes a request to time out after a specified period of time.

 Listing 12-42: The _clearTimer Method

 this._clearTimer = function this$_clearTimer()
 {
 if (_this._timer != null)
 {
 window.clearTimeout(_this._timer);
 _this._timer = null;
 }
 }

 _onTimeout
 The XMLHttpExecutor object calls the _onTimeout method when the request times out, as shown in
Listing 12-43 .

c12.indd 477c12.indd 477 8/20/07 6:09:22 PM8/20/07 6:09:22 PM

Chapter 12: Client-Server Communications

478

 Listing 12-43: The _onTimeout Method

 this._onTimeout = function this$_onTimeout()
 {
 if (!_this._responseAvailable)
 {
 _this._clearTimer();
 _this._timedOut = true;
 _this._xmlHttpRequest.onreadystatechange = Function.emptyMethod;
 _this._xmlHttpRequest.abort();
 _this._webRequest.completed(Sys.EventArgs.Empty);
 _this._xmlHttpRequest = null;
 }
 }

 This method first checks whether the server response has arrived. If not, it clears the timer:

 _this._clearTimer();

 Then, it sets the _timedOut field to true to signal that the request has timed out:

 _this._timedOut = true;

 Next, it unregisters the _onReadyStateChange method (which was previously registered by
 XMLHttpExecutor as an event handler for the XMLHttpRequest object’s onreadystatechange):

 _this._xmlHttpRequest.onreadystatechange = Function.emptyMethod;

 Then, it calls the abort method on the XMLHttpRequest object to abort the current request:

 _this._xmlHttpRequest.abort();

 Next, it calls the completed method on the WebRequest object that represents the current request to
inform the object that the current request has completed:

 _this._webRequest.completed(Sys.EventArgs.Empty);

 As previously shown in Listing 12-11 , the completed method invokes all event handlers registered for
the completedRequest event of the WebRequestManager and the completed event of the
 WebRequest . However, the completion of a request does not mean that the server response has arrived.
Therefore, when your completedRequest or completed event’s event handler is invoked, you should
not make the assumption that everything went fine and the server response has arrived.

 Finally, the _onTimeout method discards the current XMLHttpRequest , because every request must use
a new XMLHttpRequest object:

 _this._xmlHttpRequest = null;

c12.indd 478c12.indd 478 8/20/07 6:09:22 PM8/20/07 6:09:22 PM

Chapter 12: Client-Server Communications

479

 get_timedOut
 You can call the get_timedOut method on the XMLHttpExecutor object responsible for executing a
 WebRequest object to access the value of the _timedOut Boolean field (see Listing 12-44). This field
specifies whether the current request has timed out.

 Listing 12-44: The get_timedOut Method

 function SysNetXMLHttpExecutor$get_timedOut()
{
 /// <value type=”Boolean”></value>
 return this._timedOut;
}

 get_started
 You can call the get_started method on the XMLHttpExecutor object responsible for executing a
 WebRequest object to access the value of the _started Boolean field (see Listing 12-45). This field
 specifies whether the execution of the current request has started and the current request has been sent
to the server.

 Listing 12-45: The get_started Method

 function SysNetXMLHttpExecutor$get_started()
{
 /// <value type=”Boolean”></value>
 return this._started;
}

 get_responseAvailable
 You can call the get_ responseAvailable method on the XMLHttpExecutor object responsible for
executing a WebRequest object to access the value of the _responseAvailable Boolean field (see
 Listing 12-46). This field specifies whether the server response has arrived.

 Listing 12-46: The get_responseAvailable Method

 function SysNetXMLHttpExecutor$get_responseAvailable()
{
 /// <value type=”Boolean”></value>
 return this._responseAvailable;
}

 get_aborted
 You can call the get_aborted method on the XMLHttpExecutor object responsible for executing a
 WebRequest object to access the value of the _aborted Boolean field (see Listing 12-47). This field
 specifies whether the current request has been aborted.

c12.indd 479c12.indd 479 8/20/07 6:09:23 PM8/20/07 6:09:23 PM

Chapter 12: Client-Server Communications

480

 Listing 12-47: The get_aborted Method

 function SysNetXMLHttpExecutor$get_aborted()
{
 /// <value type=”Boolean”></value>
 return this._aborted;
}

 Executing the Request
 The executeRequest method is at the heart of the XMLHttpExecutor class. The main job of this
method is to execute the current request, as shown in Listing 12-48 .

 Listing 12-48: The executeRequest Method

 function SysNetXMLHttpExecutor$executeRequest()
{
 this._webRequest = this.get_webRequest();

 if (this._started)
 throw Error.invalidOperation(String.format(Sys.Res.cannotCallOnceStarted,
 ‘executeRequest’));

 if (this._webRequest === null)
 throw Error.invalidOperation(Sys.Res.nullWebRequest);

 var body = this._webRequest.get_body();
 var headers = this._webRequest.get_headers();
 this._xmlHttpRequest = new XMLHttpRequest();
 this._xmlHttpRequest.onreadystatechange = this._onReadyStateChange;
 var verb = this._webRequest.get_httpVerb();
 this._xmlHttpRequest.open(verb, this._webRequest.getResolvedUrl(),
 true /*async*/);
 if (headers)
 {
 for (var header in headers)
 {
 var val = headers[header];
 if (typeof(val) !== “function”)
 this._xmlHttpRequest.setRequestHeader(header, val);
 }
 }

 if (verb.toLowerCase() === “post”)
 {
 // If it’s a POST but no Content-Type was specified, default to
 // application/x-www-form-urlencoded
 if ((headers === null) || !headers[‘Content-Type’])
 this._xmlHttpRequest.setRequestHeader(‘Content-Type’,
 ‘application/x-www-form-urlencoded’);

 // If POST with no body, default to “”(FireFox needs this)
 if (!body)
 body = “”;

c12.indd 480c12.indd 480 8/20/07 6:09:23 PM8/20/07 6:09:23 PM

Chapter 12: Client-Server Communications

481

 }

 var timeout = this._webRequest.get_timeout();
 if (timeout > 0)
 this._timer = window.setTimeout(Function.createDelegate(this, this._onTimeout),
 timeout);

 this._xmlHttpRequest.send(body);
 this._started = true;
}

 As this listing shows, the executeRequest method first calls the get_webRequest method to return
a reference to the WebRequest object that represents the request being executed, and then assigns
this reference to the _webRequest field for future reference:

 this._webRequest = this.get_webRequest();

 Next, it calls the get_body method on the WebRequest object to return a string that contains the body of
the Web request:

 var body = this._webRequest.get_body();

 Then, it calls the get_headers method on the WebRequest object to return a dictionary that contains the
names and values of all request headers:

 var headers = this._webRequest.get_headers();

 Then, it creates an XMLHttpRequest object, which will be used to make the request to the server:

 this._xmlHttpRequest = new XMLHttpRequest();

 Next, it registers the _onReadyStateChange method as the event handler for the onreadystatechange
event of the XMLHttpRequest object:

 this._xmlHttpRequest.onreadystatechange = this._onReadyStateChange;

 Then, it calls the get_httpVerb method on the WebRequest object to return a string that contains the
HTTP verb to be used to make the request:

 var verb = this._webRequest.get_httpVerb();

 Next, it calls the open method on the XMLHttpRequest object, passing three parameters. The first
parameter is the string that contains the HTTP verb; the second parameter is the string that contains the
target URL; and third parameter is the Boolean value true , which tells the XMLHttpRequest object to
make an asynchronous request to the server:

 this._xmlHttpRequest.open(verb, this._webRequest.getResolvedUrl(),
 true /*async*/);

 All requests made using the XMLHttpExecutor are asynchronous, because the last parameter passed
into the open method of the XMLHttpRequest object is hardcoded to true .

c12.indd 481c12.indd 481 8/20/07 6:09:23 PM8/20/07 6:09:23 PM

Chapter 12: Client-Server Communications

482

 Next, executeRequest iterates through the items of the dictionary that contains the names and values
of all request headers, and then calls the setRequestHeader method on the XMLHttpRequest object for
each enumerated item to set the value of the specified header:

 for (var header in headers)
 {
 var val = headers[header];
 if (typeof(val) !== “function”)
 this._xmlHttpRequest.setRequestHeader(header, val);
 }

 If the HTTP verb is POST and the Content-Type header has not been specified, executeRequest calls
the setRequestHeader method on the XMLHttpRequest object to use application/x-www-form-
urlencoded as the value of the Content-Type header:

 if ((headers === null) || !headers[‘Content-Type’])
 this._xmlHttpRequest.setRequestHeader(‘Content-Type’,
 ‘application/x-www-form-urlencoded’);

 Next, executeRequest calls the get_timeout method on the WebRequest object to access the current
Web request timeout:

 var timeout = this._webRequest.get_timeout();

 Then, it calls the createDelegate static method on the Function class to create a delegate that
 represents the _onTimeout method:

 var delegate = Function.createDelegate(this, this._onTimeout);

 Next, it invokes the setTimeout method on the window object to have the delegate called after the
amount of time specified by the timeout value. When this delegate is finally invoked, the delegate
 internally invokes the _onTimeout method on the XMLHttpExecutor method:

 this._timer = window.setTimeout(delegate, timeout);

 Then, executeRequest invokes the send method on the XMLHttpRequest object, passing in the body
of the request to make the request to the server:

 this._xmlHttpRequest.send(body);

 Finally, it sets the _started Boolean field to true to signal that the request has already been made:

 this._started = true;

 getResponseHeader
 When the server response arrives, you can call the getResponseHeader method on the
 XMLHttpExecutor object, passing in the name of the response header to access the value of
the header. As Listing 12-49 shows, this method simply calls the getResponseHeader method on
the XMLHttpRequest object. However, before you can call this method, you must first call the

c12.indd 482c12.indd 482 8/20/07 6:09:24 PM8/20/07 6:09:24 PM

Chapter 12: Client-Server Communications

483

get_responseAvailable method on the XMLHttpExecutor object to make sure that the server
response has arrived; otherwise, getResponseHeader raises an exception if it is called before the
 server response arrives.

 Listing 12-49: The getResponseHeader Method

 function SysNetXMLHttpExecutor$getResponseHeader(header)
{
 /// <param name=”header” type=”String”></param>
 /// <returns type=”String”></returns>
 if (!this._responseAvailable)
 throw Error.invalidOperation(String.format(Sys.Res.cannotCallBeforeResponse,
 ‘getResponseHeader’));

 if (!this._xmlHttpRequest)
 throw Error.invalidOperation(String.format(Sys.Res.cannotCallOutsideHandler,
 ‘getResponseHeader’));

 var result = this._xmlHttpRequest.getResponseHeader(header);

 if (!result)
 result = “”;

 return result;
}

 getAllResponseHeaders
 After the server response arrives, you can call the getAllResponseHeaders method on the
 XMLHttpExecutor object to return a dictionary that contains the names and values of all the response
headers. As Listing 12-50 shows, this method simply calls the getAllResponseHeaders method on
the XMLHttpRequest object. However, before you can call this method, you must first call the
get_responseAvailable method on the XMLHttpExecutor object to make sure that the server
response has arrived; otherwise, getAllResponseHeaders raises an exception if it is called before
the server response arrives.

 Listing 12-50: The getAllResponseHeaders Method

 function SysNetXMLHttpExecutor$getAllResponseHeaders()
{
 /// <returns type=”String”></returns>
 if (!this._responseAvailable)
 throw Error.invalidOperation (
 String.format (Sys.Res.cannotCallBeforeResponse, ‘getAllResponseHeaders’));
 if (!this._xmlHttpRequest)
 throw Error.invalidOperation (
 String.format(Sys.Res.cannotCallOutsideHandler, ‘getAllResponseHeaders’));
 return this._xmlHttpRequest.getAllResponseHeaders();
}

c12.indd 483c12.indd 483 8/20/07 6:09:24 PM8/20/07 6:09:24 PM

Chapter 12: Client-Server Communications

484

 get_responseData
 After the arrival of the server response, call this method on the XMLHttpExecutor object to return a
string that contains the server data. As you can see in Listing 12-51 , this method simply returns the value
of the responseText property of the XMLHttpRequest object used to make the request. If this method
is invoked before the response arrives, it will raise an exception.

 Listing 12-51: The get_responseData Method

 function SysNetXMLHttpExecutor$get_responseData()
{
 /// <value type=”String”></value>
 if (!this._responseAvailable)
 throw Error.invalidOperation (
 String.format(Sys.Res.cannotCallBeforeResponse, ‘get_responseData’));
 if (!this._xmlHttpRequest)
 throw Error.invalidOperation (
 String.format(Sys.Res.cannotCallOutsideHandler, ‘get_responseData’));
 return this._xmlHttpRequest.responseText;
}

 get_statusCode
 You can call this method on the XMLHttpExecutor object to access the HTTP status code of the server
response. As Listing 12-52 shows, this method simply returns the value of the status property of the
 XMLHttpRequest object used to make the request. Before calling this method, you must call the
 get_responseAvailable method on the XMLHttpExecutor object to ensure that the server response
has arrived and avoid getting an exception.

 Listing 12-52: The get_statusCode Method

 function SysNetXMLHttpExecutor$get_statusCode()
{
 /// <value type=”Number”></value>
 if (!this._responseAvailable)
 throw Error.invalidOperation (
 String.format(Sys.Res.cannotCallBeforeResponse, ‘get_statusCode’));

 if (!this._xmlHttpRequest)
 throw Error.invalidOperation (
 String.format(Sys.Res.cannotCallOutsideHandler, ‘get_statusCode’));
 return this._xmlHttpRequest.status;
}

 get_statusText
 You can call this method on the XMLHttpExecutor object to return a string that contains the HTTP
 status text of the server response. This method returns the value of the statusText property of the
 XMLHttpRequest object used to make the request, as shown in Listing 12-53 . Like the previous methods,
this method raises an exception if it is called before the response arrives.

c12.indd 484c12.indd 484 8/20/07 6:09:24 PM8/20/07 6:09:24 PM

Chapter 12: Client-Server Communications

485

 Listing 12-53: The get_statusText Method

 function SysNetXMLHttpExecutor$get_statusText()
{
 /// <value type=”String”></value>
 if (!this._responseAvailable)
 throw Error.invalidOperation (
 String.format(Sys.Res.cannotCallBeforeResponse, ‘get_statusText’));

 if (!this._xmlHttpRequest)
 throw Error.invalidOperation (
 String.format(Sys.Res.cannotCallOutsideHandler, ‘get_statusText’));
 return this._xmlHttpRequest.statusText;
}

 get_xml
 Invoke this method on the XMLHttpExecutor object to return an XML document that contains the server
data. As you can see in Listing 12-54 , this method returns the responseXML property value of the
 XMLHttpRequest object used to make the request. This method encapsulates the logic that you would
have to implement otherwise. For example, the server may not set the Content-Type header to text/
xml to signal the client that the response contains XML data, which means that the responseXML
 property of the XMLHttpRequest method will return null . The get_xml method calls the XMLDOM
 constructor, passing in the XMLHttpRequest method’s responseText property value to load the con-
tent of this property into an XML document.

 Listing 12-54: The get_xml Method

 function SysNetXMLHttpExecutor$get_xml()
{
 /// <value></value>
 if (!this._responseAvailable)
 throw Error.invalidOperation (
 String.format(Sys.Res.cannotCallBeforeResponse, ‘get_xml’));

 if (!this._xmlHttpRequest)
 throw Error.invalidOperation(
 String.format(Sys.Res.cannotCallOutsideHandler, ‘get_xml’));
 var xml = this._xmlHttpRequest.responseXML;
 if (!xml || !xml.documentElement)
 {
 // This happens if the server doesn’t set the content type to text/xml.
 xml = new XMLDOM(this._xmlHttpRequest.responseText);

 // If we still couldn’t get an XML DOM, the data is probably not XML
 if (!xml || !xml.documentElement)
 return null;
 }
 // REVIEW: todo this used to use Sys.Runtime get_hostType
 else if (navigator.userAgent.indexOf(‘MSIE’) !== -1)
 xml.setProperty(‘SelectionLanguage’, ‘XPath’);

(continued)

c12.indd 485c12.indd 485 8/20/07 6:09:25 PM8/20/07 6:09:25 PM

Chapter 12: Client-Server Communications

486

Listing 12-54 (continued)

 // For Firefox parser errors have document elements of parser error
 if (xml.documentElement.namespaceURI ===
 “http://www.mozilla.org/newlayout/xml/parsererror.xml” &&
 xml.documentElement.tagName === “parsererror”)
 return null;

 // For Safari, parser errors are always the first child of the root
 if (xml.documentElement.firstChild &&
 xml.documentElement.firstChild.tagName === “parsererror”)
 return null;

 return xml;
}

 abort
 You can call this method on the XMLHttpExecutor object to abort the execution of a request, as shown
in Listing 12-55 .

 Listing 12-55: The abort Method

 function SysNetXMLHttpExecutor$abort()
{
 if (!this._started)
 throw Error.invalidOperation(Sys.Res.cannotAbortBeforeStart);

 // aborts are no ops if we are done, timedout, or aborted already
 if (this._aborted || this._responseAvailable || this._timedOut)
 return;

 this._aborted = true;
 this._clearTimer();

 if (this._xmlHttpRequest && !this._responseAvailable)
 {
 // Remove the onreadystatechange first otherwise abort would
 // trigger readyState to become 4
 this._xmlHttpRequest.onreadystatechange = Function.emptyMethod;
 this._xmlHttpRequest.abort();

 this._xmlHttpRequest = null;
 var handler = this._webRequest._get_eventHandlerList().getHandler(“completed”);
 if (handler)
 handler(this, Sys.EventArgs.Empty);
 }
}

 The abort method first sets the _aborted Boolean field to true to signal that the request is aborted:

 this._aborted = true;

 Next, it clears the timer:

c12.indd 486c12.indd 486 8/20/07 6:09:25 PM8/20/07 6:09:25 PM

Chapter 12: Client-Server Communications

487

 this._clearTimer();

 Then, it unregisters the _onReadyStateChange event handler:

 this._xmlHttpRequest.onreadystatechange = Function.emptyMethod;

 Next, it calls the abort method on the XMLHttpRequest object used to make the request:

 this._xmlHttpRequest.abort();

 Next, it discards the XMLHttpRequest object to ensure that the next request is made using a new
XMLHttpRequest object:

 this._xmlHttpRequest = null;

 Then, it calls the getHandler method on the EventHandlerList object that contains all event handlers
registered for the XMLHttpExecutor object’s events:

 var handler = this._webRequest._get_eventHandlerList().getHandler(“completed”);

 This returns a reference to a JavaScript function whose invocation automatically invokes all event
 handlers registered for the XMLHttpExecutor object’s completed event.

 The abort method invokes this JavaScript function and, consequently, all event handlers registered for
the completed event, passing in a reference to the XMLHttpExecutor object.

 handler(this, Sys.EventArgs.Empty);

 Using WebRequest, WebRequestManager,
and XMLHttpExecutor

 The page shown in Listing 12-56 uses WebRequest to make an asynchronous postback request to the
server. If you run this page, you should see the result shown in Figure 12-1 .

 Listing 12-56: A Page that Uses the WebRequest

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<script runat=”server”>
 void Page_Load(object sender, EventArgs e)
 {
 if (Request.Headers[“CustomClientClasses_AsyncPostBack”] != null)
 {
 if (Request[“passwordtbx”] == “password” &&
 Request[“usernametbx”] == “username”)

(continued)

c12.indd 487c12.indd 487 8/20/07 6:09:25 PM8/20/07 6:09:25 PM

Chapter 12: Client-Server Communications

488

Listing 12-56 (continued)

 {
 Response.Write(“Shahram|Khosravi|22223333|Some Department|”);
 Response.End();
 }

 else
 throw new Exception(“Wrong credentials”);
 }
 }
</script>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function completedCallback(sender, eventArgs)
 {
 if (sender.get_timedOut())
 {
 alert(“Request timed out!”);
 return;
 }
 if (sender.get_aborted())
 {
 alert(“Request aborted!”);
 return;
 }

 if (sender.get_statusCode() !== 200)
 {
 alert(“Error occured!”);
 return;
 }

 var reply = sender.get_responseData();
 var delimiter = “|”;
 var replyIndex = 0;
 var delimiterIndex;

 var employeeinfotable = $get(“employeeinfo”);
 employeeinfotable.style.visibility = “visible”;

 delimiterIndex = reply.indexOf(delimiter, replyIndex);
 var firstname = reply.substring(replyIndex, delimiterIndex);
 var firstnamespan = $get(“firstname”);
 firstnamespan.innerText = firstname;
 replyIndex = delimiterIndex + 1;

 delimiterIndex = reply.indexOf(delimiter, replyIndex);
 var lastname = reply.substring(replyIndex, delimiterIndex);
 var lastnamespan = $get(“lastname”);
 lastnamespan.innerText = lastname;
 replyIndex = delimiterIndex + 1;

c12.indd 488c12.indd 488 8/20/07 6:09:25 PM8/20/07 6:09:25 PM

Chapter 12: Client-Server Communications

489

 delimiterIndex = reply.indexOf(delimiter, replyIndex);
 var employeeid = reply.substring(replyIndex, delimiterIndex);
 var employeeidspan = $get(“employeeid”);
 employeeidspan.innerText = employeeid;
 replyIndex = delimiterIndex + 1;

 delimiterIndex = reply.indexOf(delimiter, replyIndex);
 var departmentname = reply.substring(replyIndex, delimiterIndex);
 var departmentnamespan = $get(“departmentname”);
 departmentnamespan.innerText = departmentname;
 }

 function submitCallback(evt)
 {
 var usernametbx = $get(“usernametbx”);
 var passwordtbx = $get(“passwordtbx”);
 var requestBody = new Sys.StringBuilder();
 requestBody.append(“usernametbx”);
 requestBody.append(‘=’);
 requestBody.append(encodeURIComponent(usernametbx.value));
 requestBody.append(‘&’);
 requestBody.append(“passwordtbx”);
 requestBody.append(‘=’);
 requestBody.append(encodeURIComponent(passwordtbx.value));

 var request = new Sys.Net.WebRequest();
 request.set_url(document.form1.action);
 request.get_headers()[‘CustomClientClasses_AsyncPostBack’] = ‘true’;
 request.get_headers()[‘Cache-Control’] = ‘no-cache’;
 request.set_timeout(90000);
 request.add_completed(completedCallback);
 request.set_body(requestBody.toString());
 request.invoke();
 }

 function pageLoad()
 {
 var submitbtn = $get(“submitbtn”);
 $addHandler(submitbtn, “click”, submitCallback);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 </Scripts>
 </asp:ScriptManager>
 Username: <asp:TextBox runat=”server” ID=”usernametbx” />

 Password: <asp:TextBox runat=”server” ID=”passwordtbx”
 TextMode=”Password” />

(continued)

c12.indd 489c12.indd 489 8/20/07 6:09:26 PM8/20/07 6:09:26 PM

Chapter 12: Client-Server Communications

490

Listing 12-56 (continued)

 <button id=”submitbtn” type=”button”>Submit</button>

 <table id=”employeeinfo” style=”background-color:LightGoldenrodYellow;
 border-color:Tan; border-width:1px;
 color:Black; visibility:hidden”
 cellpadding=”2”>
 <tr style=”background-color:Tan; font-weight:bold”>
 <th colspan=”2”>Your Information</th>
 </tr>
 <tr>
 <td style=” font-weight:bold”>First Name</td>
 <td></td>
 </tr>

 <tr style=”background-color:PaleGoldenrod”>
 <td style=” font-weight:bold”>Last Name</td>
 <td></td>
 </tr>

 <tr>
 <td style=” font-weight:bold”>Employee ID</td>
 <td></td>
 </tr>

 <tr style=”background-color:PaleGoldenrod”>
 <td style=” font-weight:bold”>Department</td>
 <td></td>
 </tr>
 </table>

 </form>
</body>
</html>

Figure 12-1

 As this figure shows, the page consists of two text fields, where the end user can enter his or her user-
name and password. When this page is loaded and the pageLoad method is invoked, it registers the
 submitCallback method as an event handler for the click event of the Submit button:

c12.indd 490c12.indd 490 8/20/07 6:09:26 PM8/20/07 6:09:26 PM

Chapter 12: Client-Server Communications

491

 function pageLoad()
 {
 var submitbtn = $get(“submitbtn”);
 $addHandler(submitbtn, “click”, submitCallback);
 }

 When the user clicks the Submit button, the button raises the click event and, consequently, calls the
 submitCallback JavaScript function:

 function submitCallback(evt)
 {
 var usernametbx = $get(“usernametbx”);
 var passwordtbx = $get(“passwordtbx”);
 var requestBody = new Sys.StringBuilder();
 requestBody.append(“usernametbx”);
 requestBody.append(‘=’);
 requestBody.append(usernametbx.value);
 requestBody.append(‘&’);
 requestBody.append(“passwordtbx”);
 requestBody.append(‘=’);
 requestBody.append(passwordtbx.value);

 var request = new Sys.Net.WebRequest();
 request.set_url(document.form1.action);
 request.get_headers()[‘CustomClientClasses_AsyncPostBack’] = ‘true’;
 request.get_headers()[‘Cache-Control’] = ‘no-cache’;
 request.set_timeout(90000);
 request.add_completed(completedCallback);
 request.set_body(requestBody.toString());
 request.invoke();
 }

 The submitCallback function first calls the $get global JavaScript function twice to return references
to the username and password text fields:

 var usernametbx = $get(“usernametbx”);
 var passwordtbx = $get(“passwordtbx”);

 Next, submitCallback instantiates a StringBuilder that will accumulate the data that makes up the
body of the request:

 var requestBody = new Sys.StringBuilder();

 Then, it appends a string that consists of two substrings separated by the equal sign (=), where the first
substring contains the value of the UniqueID property of the username TextBox server control, and the
second substring contains the value that the end user entered into this server control:

 requestBody.append(“usernametbx”);
 requestBody.append(‘=’);
 requestBody.append(encodeURIComponent(usernametbx.value));

 Keep in mind that every server control renders its UniqueID property value as the name attribute on the
server control element on the current page.

c12.indd 491c12.indd 491 8/20/07 6:09:26 PM8/20/07 6:09:26 PM

Chapter 12: Client-Server Communications

492

 The name = value format is used to send the value of the username text field to the server in order to do
what the browser does when it’s posting the form data back to the server, but in asynchronous fashion.
Browsers follow the name = value format to submit the value of a form element such as a text field to
the server, where the name part of this format is a string that contains the value of the name HTML
 attribute of the form element, and the value part is a string that contains the value of the form element.

 Next, it appends the string “&” :

 requestBody.append(‘&’);

 Then, submitCallback appends a string that consists of two substrings separated by the equal sign (=),
where the first substring contains the value of the UniqueID property of the password TextBox server
control, and the second substring contains the value that the end user entered into this server control:

 requestBody.append(“passwordtbx”);
 requestBody.append(‘=’);
 requestBody.append(encodeURIComponent(passwordtbx.value));

 The string ‘&’ is used as a separator between the name = value strings because the browser uses the
same string as a separator. The body of the request is a string that consists of one or more substrings
separated by the string ‘&’ , where each substring uses the name = value format to store the value of
the form element with the specified name HTML attribute value.

 Next, submitCallback instantiates a WebRequest object to represent the current request. As you’ll see
shortly, this object will contain the complete information about the current request:

 var request = new Sys.Net.WebRequest();

 Then, it calls the set_url method on the WebRequest object to set the target URL for the current
request. The value of the form DOM element’s action property is used as the target URL so the page
will not be posted back to itself (which is what the browser would do):

 request.set_url(document.form1.action);

 Next, submitCallback calls the get_headers method on the WebRequest object to return a dictionary
that contains the names and values of the request headers:

 var requestHeaders = request.get_headers();

 Then, it adds a custom header named ‘CustomClientClasses_AsyncPostBack’ to the header diction-
ary, and sets its value to true to signal the server that the current request is an asynchronous postback:

 requestHeaders[‘CustomClientClasses_AsyncPostBack’] = ‘true’;

 Next, it calls the set_timeout method on the WebRequest object to set the timeout for the current
request so it will automatically time out if the server response does not arrive within the specified time:

 request.set_timeout(90000);

 Because this is an asynchronous request, you must register a callback for the completed event of the
 WebRequest object so you will be informed when the server response arrives. The submitCallback

c12.indd 492c12.indd 492 8/20/07 6:09:27 PM8/20/07 6:09:27 PM

Chapter 12: Client-Server Communications

493

function calls the add_completed method on the WebRequest object to register the
 completedCallback JavaScript function as an event handler for the completed event of the object:

 request.add_completed(completedCallback);

 Next, the submitCallback method calls the set_body method on the WebRequest object to specify the
contents of the StringBuilder as the body of the request:

 request.set_body(requestBody.toString());

 Finally, submitCallback calls the invoke method on the WebRequest object to sent the request to the server:

 request.invoke();

 The WebRequestExecutor object that executes the current request raises the requestCompleted event
and, consequently, calls the completedCallback JavaScript function when the request is completed:

 function completedCallback(sender, eventArgs)
 {
 if (sender.get_timedOut())
 {
 alert(“Request timed out!”);
 return;
 }

 if (sender.get_aborted())
 {
 alert(“Request aborted!”);
 return;
 }

 if (sender.get_statusCode() !== 200)
 {
 alert(“Error occured!”);
 return;
 }

 var reply = sender.get_responseData();
 var delimiter = “|”;
 var replyIndex = 0;
 var delimiterIndex;

 var employeeinfotable = $get(“employeeinfo”);
 employeeinfotable.style.visibility = “visible”;

 delimiterIndex = reply.indexOf(delimiter, replyIndex);
 var firstname = reply.substring(replyIndex, delimiterIndex);
 var firstnamespan = $get(“firstname”);
 firstnamespan.innerText = firstname;
 replyIndex = delimiterIndex + 1;

 delimiterIndex = reply.indexOf(delimiter, replyIndex);
 var lastname = reply.substring(replyIndex, delimiterIndex);

(continued)

c12.indd 493c12.indd 493 8/20/07 6:09:27 PM8/20/07 6:09:27 PM

Chapter 12: Client-Server Communications

494

 var lastnamespan = $get(“lastname”);
 lastnamespan.innerText = lastname;
 replyIndex = delimiterIndex + 1;

 delimiterIndex = reply.indexOf(delimiter, replyIndex);
 var employeeid = reply.substring(replyIndex, delimiterIndex);
 var employeeidspan = $get(“employeeid”);
 employeeidspan.innerText = employeeid;
 replyIndex = delimiterIndex + 1;

 delimiterIndex = reply.indexOf(delimiter, replyIndex);
 var departmentname = reply.substring(replyIndex, delimiterIndex);
 var departmentnamespan = $get(“departmentname”);
 departmentnamespan.innerText = departmentname;
 }

 A request is considered completed when one of the following occurs:

 ❑ The request times out because the server response did not arrive on time.

❑ The request is aborted because some code called the abort method to explicitly abort the
 request. (You’ll see an example of this in the following chapters.)

❑ A server error occurs, such as when the server code raises an exception.

❑ Everything proceeds as planned, and the server response arrives.

 As you can see, the completion of a request does not necessarily mean that everything went fine and the
server response has arrived. That’s why the completedCallback JavaScript function first calls the
 get_timedOut method on the WebRequestExecutor object to check whether the current request has
timed out:

 if (sender.get_timedOut())
 {
 alert(“Request timed out!”);
 return;
 }

 Next, it calls the get_aborted method on the WebRequestExecutor object to check whether the cur-
rent request was aborted:

 if (sender.get_aborted())
 {
 alert(“Request aborted!”);
 return;
 }

 Then, it calls the get_statusCode method on the WebRequestExecutor object to check whether the
status code of the response is something other than 200 , meaning a server error has occurred:

 if (sender.get_statusCode() !== 200)
 {
 alert(“Error occured!”);
 return;
 }

c12.indd 494c12.indd 494 8/20/07 6:09:27 PM8/20/07 6:09:27 PM

Chapter 12: Client-Server Communications

495

 If the request neither timed out nor was aborted, and if there was no server error, this indicates that the
server response has arrived and, consequently, the completed event was raised. As such, the
 completedCallback JavaScript function calls the get_responseData method on the
 WebRequestExecutor object to return the string that contains the response data:

 var reply = sender.get_responseData();

 Next, the completedCallback function calls the $get global JavaScript function to return a reference to
the table that will be used to display the employee’s information, and sets its visibility to visible :

 var employeeinfotable = $get(“employeeinfo”);
 employeeinfotable.style.visibility = “visible”;

 As you’ll see later, the server uses the firstname|lastname|employeeID|departmentName| format
to serialize the information about the current employee. The completedCallback function takes the fol-
lowing steps to parse the string that contains the server data:

 1. It accesses the index of the first delimiter (|) character and uses that to extract the first name of
the employee:

 delimiterIndex = reply.indexOf(delimiter, replyIndex);
 var firstname = reply.substring(replyIndex, delimiterIndex);

2. It uses the $get global JavaScript function to return a reference to the HTML element
 responsible for displaying the first name of the employee, and sets its innerText property to
the first name of the employee:

 var firstnamespan = $get(“firstname”);
 firstnamespan.innerText = firstname;

3. It repeats steps 1 and 2 to extract the last name, employee id, and department name from the
string that contains the server data, and displays them in their associated HTML
elements:

 replyIndex = delimiterIndex + 1;

 delimiterIndex = reply.indexOf(delimiter, replyIndex);
 var lastname = reply.substring(replyIndex, delimiterIndex);
 var lastnamespan = $get(“lastname”);
 lastnamespan.innerText = lastname;
 replyIndex = delimiterIndex + 1;

 delimiterIndex = reply.indexOf(delimiter, replyIndex);
 var employeeid = reply.substring(replyIndex, delimiterIndex);
 var employeeidspan = $get(“employeeid”);
 employeeidspan.innerText = employeeid;
 replyIndex = delimiterIndex + 1;

 delimiterIndex = reply.indexOf(delimiter, replyIndex);
 var departmentname = reply.substring(replyIndex, delimiterIndex);
 var departmentnamespan = $get(“departmentname”);
 departmentnamespan.innerText = departmentname;

c12.indd 495c12.indd 495 8/20/07 6:09:28 PM8/20/07 6:09:28 PM

Chapter 12: Client-Server Communications

496

 Now let’s look at what happens on the server side when the asynchronous postback request arrives. As
shown in the following excerpt from Listing 12-56 , the Page_Load method is where all the action on the
server side occurs:

 void Page_Load(object sender, EventArgs e)
 {
 if (Request.Headers[“CustomClientClasses_AsyncPostBack”] != null)
 {
 if (Request[“passwordtbx”] == “password” &&
 Request[“usernametbx”] == “username”)
 {
 Response.Write(“Shahram|Khosravi|22223333|Some Department|”);
 Response.Flush();
 Response.End();
 }

 else
 throw new Exception(“Wrong credentials”);
 }
 }

 This Page_Load method first checks whether the current request contains a custom header named
 CustomClientClasses_AsyncPostBack , which indicates that the current request is an asynchronous
page postback:

 if (Request.Headers[“CustomClientClasses_AsyncPostBack”] != null)

 Next, it validates the user’s credentials. To keep this discussion focused, Listing 12-56 uses a very
 simple validation logic. This logic expects the username and password to be the strings password and
 username . If the validation succeeds, the Page_Load method takes the following steps:

 1. It creates a string that contains four substrings separated by the | character containing the first
name, last name, employee id, and department name of the employee whose credentials were
just validated. It then calls the Write method on the ASP.NET Response object to write this
string into the response output stream:

 Response.Write(“Shahram|Khosravi|22223333|Some Department|”);

 2. It calls the End method on the Response object:

 Response.End();

 Figure 12-2 shows the results after the end user clicks the Submit button. Note that the page renders the
employee information in a table.

 The WebRequestExecutor defines the API that must be implemented by its subclasses in order to execute
a WebRequest object. However, as you may have noticed, there is no sign of the WebRequestExecutor in
Listing 12-56 . This is because when you don’t explicitly specify a WebRequestExecutor for a WebRequest
object, it uses XMLHttpExecutor by default. XMLHttpExecutor is a subclass of the WebRequestExecutor
base class that provides an implementation of the API that uses the XMLHttpRequest . If, for whatever rea-
son, you’re not happy with this implementation of the API, you can provide your own API implementa-
tion and use your own custom WebRequestExecutor to execute requests for your applications.

c12.indd 496c12.indd 496 8/20/07 6:09:28 PM8/20/07 6:09:28 PM

Chapter 12: Client-Server Communications

497

 Listing 12-57 shows a version of the Listing 12-56 where the XMLHttpExecutor is explicitly specified
and used. The boldface portion is the only difference between these two code listings.

 Listing 12-57: A Page that Explicitly Uses a WebRequestExecutor

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<script runat=”server”>
 void Page_Load(object sender, EventArgs e)
 {
 //Same as Listing 12-56
 }
</script>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function completedCallback(sender, eventArgs)
 {
 //Same as Listing 12-56
 }
 function submitCallback(evt)
 {
 var usernametbx = $get(“usernametbx”);
 var passwordtbx = $get(“passwordtbx”);
 var requestBody = new Sys.StringBuilder();

Figure 12-2

(continued)

c12.indd 497c12.indd 497 8/20/07 6:09:28 PM8/20/07 6:09:28 PM

Chapter 12: Client-Server Communications

498

Listing 12-57 (continued)

 requestBody.append(“usernametbx”);
 requestBody.append(‘=’);
 requestBody.append(usernametbx.value);
 requestBody.append(‘&’);
 requestBody.append(“passwordtbx”);
 requestBody.append(‘=’);
 requestBody.append(passwordtbx.value);

 var request = new Sys.Net.WebRequest();
 var executor = new Sys.Net.XMLHttpExecutor();
 request.set_executor(executor);
 request.set_url(document.form1.action);
 request.get_headers()[‘CustomClientClasses_AsyncPostBack’] = ‘true’;
 request.get_headers()[‘Cache-Control’] = ‘no-cache’;
 request.set_timeout(90000);
 request.add_completed(completedCallback);
 request.set_body(requestBody.toString());
 executor.executeRequest();
 }

 function pageLoad()
 {
 //Same as Listing 12-56
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <!-- Same as Listing 12-56 -->
 </form>
</body>
</html>

 The submitCallback function in this listing first instantiates an instance of the
 XMLHttpExecutor class:

 var executor = new Sys.Net.XMLHttpExecutor();

 Then it calls the set_executor method on the WebRequest object to set the newly-instantiated
 XMLHttpExecutor object as the executor for the WebRequest object:

 request.set_executor(executor);

 Finally, submitCallback calls the executeRequest method on the newly instantiated XMLHttpExecutor
object to execute the request:

 executor.executeRequest();

 However, you don’t have to call this method to execute the request — you can call the invoke method to
do so instead .

c12.indd 498c12.indd 498 8/20/07 6:09:29 PM8/20/07 6:09:29 PM

Chapter 12: Client-Server Communications

499

 As discussed earlier, every ASP.NET AJAX page can have only one instance of the _WebRequestManager
class. The ASP.NET AJAX client-side framework automatically creates this instance and assigns it to a
global variable named Sys.Net.WebRequestManager when the page is loaded for the first time. You
cannot instantiate a new instance of this class. Instead, you must use the Sys.Net.WebRequestManager
global variable to access the current _WebRequestManager instance.

 The current _ WebRequestManager instance manages all the requests the current page makes to the
server. As such, the settings specified for the current _WebRequestManager are applied to all requests.
Listing 12-58 presents a new version of Listing 12-56 that makes explicit use of the WebRequestManager .

 Listing 12-58: A Page that Makes Explicit Use of the WebRequestManager

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<script runat=”server”>
 void Page_Load(object sender, EventArgs e)
 {
 if (Request.Headers[“CustomClientClasses_AsyncPostBack”] != null)
 {
 if (Request[“passwordtbx”] == “password” &&
 Request[“usernametbx”] == “username”)
 {
 Response.Write(“Shahram|Khosravi|22223333|Some Department|”);
 Response.End();
 }

 else
 throw new Exception(“Wrong credentials”);
 }
 }
</script>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function invokingRequestCallback(sender, args)
 {
 var request = args.get_webRequest();
 var builder = new Sys.StringBuilder();
 builder.append(“Default request timeout: “);
 builder.append(sender.get_defaultTimeout());
 builder.append(“\r\n\r\nDefault executor type: “);
 builder.append(sender.get_defaultExecutorType());
 builder.append(“\r\n\r\nTarget URL: “);
 builder.append(request.get_url());
 builder.append(“\r\n\r\nHTTP verb: “);
 builder.append(request.get_httpVerb());
 builder.append(“\r\n\r\nRequest body: “);
 builder.append(request.get_body());

(continued)

c12.indd 499c12.indd 499 8/20/07 6:09:29 PM8/20/07 6:09:29 PM

Chapter 12: Client-Server Communications

500

Listing 12-58 (continued)

 builder.append(“\r\n\r\nRequest timeout: “);
 builder.append(request.get_timeout());
 builder.append(“\r\n\r\nRequest headers: “);
 var headers = request.get_headers();
 for(var header in headers)
 {
 builder.append(“\r\n\t”);
 builder.append(header);
 builder.append(“: “);
 builder.append(headers[header]);
 }
 builder.append(“\r\n\r\nClick the Cancel button to cancel the request”);
 builder.append(“ or OK button to submit the request.”);

 var result = Sys.Preview.UI.Window.messageBox(builder.toString(),
 Sys.Preview.UI.MessageBoxStyle.OKCancel);

 if (result == Sys.Preview.UI.DialogResult.Cancel)
 args.set_cancel(true);
 }

 function completedCallback(sender, eventArgs)
 {
 if (sender.get_timedOut())
 {
 alert(“Request timed out!”);
 return;
 }

 if (sender.get_aborted())
 {
 alert(“Request aborted!”);
 return;
 }

 if (sender.get_statusCode() !== 200)
 {
 alert(“Error occured!”);
 return;
 }

 var reply = sender.get_responseData();
 var delimiter = “|”;
 var replyIndex = 0;
 var delimiterIndex;

 var employeeinfotable = $get(“employeeinfo”);
 employeeinfotable.style.visibility = “visible”;

 delimiterIndex = reply.indexOf(delimiter, replyIndex);
 var firstname = reply.substring(replyIndex, delimiterIndex);
 var firstnamespan = $get(“firstname”);
 firstnamespan.innerText = firstname;
 replyIndex = delimiterIndex + 1;

c12.indd 500c12.indd 500 8/20/07 6:09:29 PM8/20/07 6:09:29 PM

Chapter 12: Client-Server Communications

501

 delimiterIndex = reply.indexOf(delimiter, replyIndex);
 var lastname = reply.substring(replyIndex, delimiterIndex);
 var lastnamespan = $get(“lastname”);
 lastnamespan.innerText = lastname;
 replyIndex = delimiterIndex + 1;

 delimiterIndex = reply.indexOf(delimiter, replyIndex);
 var employeeid = reply.substring(replyIndex, delimiterIndex);
 var employeeidspan = $get(“employeeid”);
 employeeidspan.innerText = employeeid;
 replyIndex = delimiterIndex + 1;

 delimiterIndex = reply.indexOf(delimiter, replyIndex);
 var departmentname = reply.substring(replyIndex, delimiterIndex);
 var departmentnamespan = $get(“departmentname”);
 departmentnamespan.innerText = departmentname;
 }

 function submitCallback(evt)
 {
 var usernametbx = $get(“usernametbx”);
 var passwordtbx = $get(“passwordtbx”);
 var requestBody = new Sys.StringBuilder();
 requestBody.append(“usernametbx”);
 requestBody.append(‘=’);
 requestBody.append(usernametbx.value);
 requestBody.append(‘&’);
 requestBody.append(“passwordtbx”);
 requestBody.append(‘=’);
 requestBody.append(passwordtbx.value);

 var request = new Sys.Net.WebRequest();
 request.set_timeout(70000);
 request.set_url(document.form1.action);
 request.get_headers()[‘CustomClientClasses_AsyncPostBack’] = ‘true’;
 request.get_headers()[‘Cache-Control’] = ‘no-cache’;
 request.set_body(requestBody.toString());
 request.invoke();
 }

 function pageLoad()
 {
 var submitbtn = $get(“submitbtn”);
 $addHandler(submitbtn, “click”, submitCallback);
 Sys.Net.WebRequestManager.set_defaultTimeout(90000);
 Sys.Net.WebRequestManager.set_defaultExecutorType(“Sys.Net.XMLHttpExecutor”);
 Sys.Net.WebRequestManager.add_invokingRequest(invokingRequestCallback);
 Sys.Net.WebRequestManager.add_completedRequest(completedCallback);

 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>

(continued)

c12.indd 501c12.indd 501 8/20/07 6:09:29 PM8/20/07 6:09:29 PM

Chapter 12: Client-Server Communications

502

Listing 12-58 (continued)

 <asp:ScriptManager ID=”ScriptManager1” runat=”server”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 </Scripts>
 </asp:ScriptManager>
 Username: <asp:TextBox runat=”server” ID=”usernametbx” />

 Password: <asp:TextBox runat=”server” ID=”passwordtbx”
 TextMode=”Password” />

 <button id=”submitbtn”type=”button”>Submit</button>

 <table id=”employeeinfo” style=”background-color:LightGoldenrodYellow; border-
color:Tan; border-width:1px; color:Black; visibility:hidden” cellpadding=”2”>
 <tr style=”background-color:Tan; font-weight:bold”>
 <th colspan=”2”>Your Information</th>
 </tr>
 <tr>
 <td style=” font-weight:bold”>First Name</td>
 <td></td>
 </tr>

 <tr style=”background-color:PaleGoldenrod”>
 <td style=” font-weight:bold”>Last Name</td>
 <td></td>
 </tr>

 <tr>
 <td style=” font-weight:bold”>Employee ID</td>
 <td></td>
 </tr>

 <tr style=”background-color:PaleGoldenrod”>
 <td style=” font-weight:bold”>Department</td>
 <td></td>
 </tr>
 </table>

 </form>
</body>
</html>

 First, let’s walk through the implementation of the pageLoad method, as shown in the following excerpt
from Listing 12-58 :

 function pageLoad()
 {
 var submitbtn = $get(“submitbtn”);
 $addHandler(submitbtn, “click”, submitCallback);
 Sys.Net.WebRequestManager.set_defaultTimeout(90000);
 Sys.Net.WebRequestManager.set_defaultExecutorType(“Sys.Net.XMLHttpExecutor”);
 Sys.Net.WebRequestManager.add_invokingRequest(invokingRequestCallback);
 Sys.Net.WebRequestManager.add_completedRequest(completedCallback);
 }

c12.indd 502c12.indd 502 8/20/07 6:09:30 PM8/20/07 6:09:30 PM

Chapter 12: Client-Server Communications

503

 As the boldface portion of this code shows, the pageLoad method first calls the set_defaultTimeout
method on the current WebRequestManager instance to set the default timeout for all the requests:

 Sys.Net.WebRequestManager.set_defaultTimeout(90000);

 This means that all requests will use the specified timeout value unless you explicitly call the set_timout
method on a particular WebRequest to specify a different timeout value (see Listing 12-58).

 Next, pageLoad calls the set_defaultExecutorType method on the current WebRequestManager
instance to specify the XMLHttpExecutor as the default executor type for all requests:

 Sys.Net.WebRequestManager.set_defaultExecutorType(“Sys.Net.XMLHttpExecutor”);

 Strictly speaking, this call does not make a difference, because the WebRequestManager instance uses
this executor by default anyway:

 Next, pageLoad calls the add_invokingRequest method on the current WebRequestManager
instance to register the invokingRequestCallback JavaScript function as an event handler for the
 invokingRequest event of the WebRequestManager instance:

 Sys.Net.WebRequestManager.add_invokingRequest(invokingRequestCallback);

 The WebRequestManager instance will call this JavaScript function for every asynchronous request that
the current page makes before the request is actually made:

 Next, pageLoad calls the add_completedRequest method on the current WebRequestManager
instance to register the completedCallback JavaScript function as an event handler for the
 completedRequest event of the WebRequestManager instance:

 Sys.Net.WebRequestManager.add_completedRequest(completedCallback);

 The WebRequestManager instance will call this JavaScript function for every single asynchronous
request that the current page makes when the request is finally completed. As discussed earlier, the
 completion of a request does not necessarily mean that everything went fine and the server response has
arrived.

 Next, let’s walk through the implementation of the invokingRequestCallback JavaScript function, as
shown in the following excerpt from Listing 12-58 :

 function invokingRequestCallback(sender, args)
 {
 var request = args.get_webRequest();
 var builder = new Sys.StringBuilder();
 builder.append(“Default request timeout: “);
 builder.append(sender.get_defaultTimeout());
 builder.append(“\r\n\r\nDefault executor type: “);
 builder.append(sender.get_defaultExecutorType());
 builder.append(“\r\n\r\nTarget URL: “);
 builder.append(request.get_url());
 builder.append(“\r\n\r\nHTTP verb: “);
 builder.append(request.get_httpVerb());

(continued)

c12.indd 503c12.indd 503 8/20/07 6:09:30 PM8/20/07 6:09:30 PM

Chapter 12: Client-Server Communications

504

(continued)

 builder.append(“\r\n\r\nRequest body: “);
 builder.append(request.get_body());
 builder.append(“\r\n\r\nRequest timeout: “);
 builder.append(request.get_timeout());
 builder.append(“\r\n\r\nRequest headers: “);
 var headers = request.get_headers();
 for(var header in headers)
 {
 builder.append(“\r\n\t”);
 builder.append(header);
 builder.append(“: “);
 builder.append(headers[header]);
 }
 builder.append(“\r\n\r\nDo want to cancel this request?”);

 var result = Sys.Preview.UI.Window.messageBox(builder.toString(),
 Sys.Preview.UI.MessageBoxStyle.OKCancel);

 if (result == Sys.Preview.UI.DialogResult.Cancel)
 args.set_cancel(true);
 }

 This function takes two arguments. The first argument references the current WebRequestManager
instance. The second argument references the NetworkRequestEventArgs object that contains the event
data for the invokingRequest event of the current WebRequestManager instance.

 The invokingRequestCallback function first calls the get_webRequest method on the
 NetworkRequestEventArgs object to return a reference to the WebRequest object that represents the
current request:

 var request = args.get_webRequest();

 Next, it creates a StringBuilder , which will be used to accumulate the complete information about the
current request:

 var builder = new Sys.StringBuilder();

 Next, it calls the get_defaultTimeout method on the current WebRequestManager instance to return
the default timeout, and appends this value to the StringBuilder :

 builder.append(“Default request timeout: “);
 builder.append(sender.get_defaultTimeout());

 Then, it calls the get_defaultExecutorType method on the current WebRequestManager instance to
return the string that contains the fully qualified name of the type of the default executor, including its
namespace hierarchy, and appends this information to the StringBuilder :

 builder.append(“\r\n\r\nDefault executor type: “);
 builder.append(sender.get_defaultExecutorType());

c12.indd 504c12.indd 504 8/20/07 6:09:30 PM8/20/07 6:09:30 PM

Chapter 12: Client-Server Communications

505

 Next, it calls the get_url method on the WebRequest object that represents the current request to return
a string that contains the target URL, and appends this string to the StringBuilder :

 builder.append(“\r\n\r\nTarget URL: “);
 builder.append(request.get_url());

 Then, it calls the get_httpVerb method on the WebRequest object to return a string that contains
the HTTP verb being used to make the current request, and appends this information to the
 StringBuilder :

 builder.append(“\r\n\r\nHTTP verb: “);
 builder.append(request.get_httpVerb());

 Next, it calls the get_body method on the WebRequest object to return a string that contains the body of
the current request, and appends this string to the StringBuilder :

 builder.append(“\r\n\r\nRequest body: “);
 builder.append(request.get_body());

 Then, it calls the get_timeout method on the WebRequest object to return a string that contains the
timeout value for the current request, and appends this string to the StringBuilder :

 builder.append(“\r\n\r\nRequest timeout: “);
 builder.append(request.get_timeout());

 Note that this value may be different from the value returned from the call into the get_defaultTimeout
method on the current WebRequestManager instance.

 Next, invokingRequestCallback calls the get_headers method on the WebRequest object to return
the dictionary that contains the names and values of the request headers:

 builder.append(“\r\n\r\nRequest headers: “);
 var headers = request.get_headers();

 Then it iterates through these headers and appends their names and values to the StringBuilder :

 for(var header in headers)
 {
 builder.append(“\r\n\t”);
 builder.append(header);
 builder.append(“: “);
 builder.append(headers[header]);
 }
 builder.append(“\r\n\r\nDo want to cancel this request?”);

 Next, it launches the ASP.NET AJAX messageBox to display the content of the StringBuilder :

 var result = Sys.Preview.UI.Window.messageBox(builder.toString(),
 Sys.Preview.UI.MessageBoxStyle.OKCancel);

c12.indd 505c12.indd 505 8/20/07 6:09:31 PM8/20/07 6:09:31 PM

Chapter 12: Client-Server Communications

506

 This content contains the complete information about the current request. Note that this messageBox
contains both the OK and Cancel buttons.

 Finally, invokingRequestCallback checks whether the end user has clicked the Cancel button. If so,
it calls the set_cancel method on the NetworkRequestEventArgs object to request the current
 WebRequestManager instance to cancel the current request:

 if (result == Sys.Preview.UI.DialogResult.Cancel)
 args.set_cancel(true);

 If you run Listing 12-58 , enter the string “username” for the username and the string “password” for
the password, and click the Submit button, you should see the pop-up box shown in Figure 12-3 .

Figure 12-3

 If you click the OK button on this pop-up box, the request will be made and the result will be displayed
as expected. If you click the Cancel button, the current WebRequestManager instance will automatically
cancel the request as specified in Listing 12-36 .

 Canceling a request is different from aborting the request. To abort a request, the abort method must be
explicitly called on the WebRequestExecutor object responsible for executing the request. As shown in
the following excerpt from Listing 12-36 , the executeRequest method of the WebRequestManager does
not call the abort method when it is canceling a request:

 function SysNet_WebRequestManager$executeRequest(webRequest)
{
 var executor = webRequest.get_executor();

c12.indd 506c12.indd 506 8/20/07 6:09:31 PM8/20/07 6:09:31 PM

Chapter 12: Client-Server Communications

507

 if (!executor)
 {
 var failed = false;
 try
 {
 var executorType = eval(this._defaultExecutorType);
 executor = new executorType();
 }

 catch (e)
 {
 failed = true;
 }

 if (failed || !Sys.Net.WebRequestExecutor.isInstanceOfType(executor) ||
 !executor)
 throw Error.argument(“defaultExecutorType”,
 String.format(Sys.Res.invalidExecutorType,
 this._defaultExecutorType));

 webRequest.set_executor(executor);
 }

 if (executor.get_aborted())
 return;

 var evArgs = new Sys.Net.NetworkRequestEventArgs(webRequest);
 var handler = this._get_eventHandlerList().getHandler(“invokingRequest”);
 if (handler)
 handler(this, evArgs);

 if (!evArgs.get_cancel())
 executor.executeRequest();
}

 As the boldface portion of this code excerpt shows, canceling a request simply means not calling the
 executeRequest method on the WebRequestExecutor object. Therefore, if you click the Cancel button
on the pop-up box shown in Figure 12-3 , the completedCallback method and, consequently, the bold-
face portion shown in the following code never gets called:

 function completedCallback(sender, eventArgs)
 {
 if (sender.get_timedOut())
 {
 alert(“Request timed out!”);
 return;
 }

 if (sender.get_aborted())
 {
 alert(“Request aborted!”);
 return;
 }

(continued)

c12.indd 507c12.indd 507 8/20/07 6:09:31 PM8/20/07 6:09:31 PM

Chapter 12: Client-Server Communications

508

 if (sender.get_statusCode() !== 200)
 {
 alert(“Error occured!”);
 return;
 }

 var reply = sender.get_responseData();
 ...
 }

 Listing 12-59 presents the definition of the two ASP.NET AJAX enumerators used in Listing 12-58 :
 DialogResult and MessageBoxStyle .

 Listing 12-59: The DialogResult and MessageBoxStyle Enumerators

 Sys.Preview.UI.DialogResult = function Sys$Preview$UI$DialogResult()
{
 throw Error.invalidOperation();
}

Sys.Preview.UI.DialogResult.prototype =
{
 OK: 0,
 Cancel: 1
}
Sys.Preview.UI.DialogResult.registerEnum(‘Sys.Preview.UI.DialogResult’);

Sys.Preview.UI.MessageBoxStyle = function Sys$Preview$UI$MessageBoxStyle()
{
 throw Error.invalidOperation();
}

Sys.Preview.UI.MessageBoxStyle.prototype =
{
 OK: 0,
 OKCancel: 1
}

Sys.Preview.UI.MessageBoxStyle.registerEnum(‘Sys.Preview.UI.MessageBoxStyle’);

 The DialogResult enumerator represents the result of an ASP.NET AJAX pop-up dialog box that
 contains up to two buttons: OK and/or Cancel. The value of OK specifies that the OK button was clicked,
and the value of Cancel specifies that the Cancel button was clicked. Listing 12-58 used the
 DialogResult enumerator to determine whether to cancel the current request.

 The MessageBoxStyle enumerator specifies the style of an ASP.NET AJAX message box. This enumera-
tor takes two values: OK and OKCancel . The OK value instructs the message box to display only the OK
button, and the OKCancel value instructs it to display both the OK and Cancel buttons.

 Listing 12-60 presents the implementation of the Window class. This class is a wrapper around the alert ,
 confirm , and prompt methods of the window object.

c12.indd 508c12.indd 508 8/20/07 6:09:32 PM8/20/07 6:09:32 PM

Chapter 12: Client-Server Communications

509

 Listing 12-60: The Window Class

 Sys.Preview.UI.Window = function Sys$Preview$UI$Window()
{
 throw Error.invalidOperation();
}

Sys.Preview.UI.Window.messageBox =
function Sys$Preview$UI$Window$messageBox(text, style)
{
 if (!style)
 style = Sys.Preview.UI.MessageBoxStyle.OK;

 var result = Sys.Preview.UI.DialogResult.OK;
 switch (style)
 {
 case Sys.Preview.UI.MessageBoxStyle.OK:
 window.alert(text);
 break;
 case Sys.Preview.UI.MessageBoxStyle.OKCancel:
 if (window.confirm(text) === false)
 result = Sys.Preview.UI.DialogResult.Cancel;
 break;
 }

 return result;
}

Sys.Preview.UI.Window.inputBox =
function Sys$Preview$UI$Window$inputBox(promptText, defaultValue)
{
 if (!defaultValue)
 defaultValue = ‘’;

 return window.prompt(promptText, defaultValue);
}

 The Window class exposes two static methods named messageBox and inputBox . Because these two
methods are static, they must be invoked directly on the Window class itself. You should never instantiate
an instance of the Window class. As the following excerpt from Listing 12-60 shows, the constructor of
this class raises an invalideOperation exception if you try to instantiate the class:

 Sys.Preview.UI.Window = function Sys$Preview$UI$Window()
{
 throw Error.invalidOperation();
}

 The messageBox static method of the Window class takes two parameters. The first parameter is a string
that contains the message being displayed. The second parameter is a MessageBoxSyle enumerator
value that specifies whether the message box must contain only the OK button or both the OK and
 Cancel buttons. If the second parameter is not provided, the message box defaults to displaying only the
OK button.

c12.indd 509c12.indd 509 8/20/07 6:09:32 PM8/20/07 6:09:32 PM

Chapter 12: Client-Server Communications

510

 The messageBox method checks the value of its second parameter. If it is set to OK, messageBox calls the
 alert method on the window object to display the alert pop-up box, which contains only the OK button:

 case Sys.Preview.UI.MessageBoxStyle.OK:
 window.alert(text);
 break;

 If the second parameter is set to OKCancel , the messageBox method calls the confirm method on the
 window object to launch the confirmation pop-up box, which contains both the OK and Cancel buttons:

 case Sys.Preview.UI.MessageBoxStyle.OKCancel:
 if (window.confirm(text) === false)
 result = Sys.Preview.UI.DialogResult.Cancel;
 break;

 Note that if the confirm method returns false , the messageBox method returns the enumerator value
of DialogResult.Cancel to its caller.

 Finally, the messageBox static method returns a DialogResult enumerator value that specifies whether
the end user clicked the OK or Cancel button.

 The inputBox static method of the Window class takes two parameters. The first parameter is a string
that contains the prompt text. The second parameter is a string that contains the default value for the text
field on the inputBox . The inputBox method delegates to the prompt method of the window object,
which means that the return value of the inputBox method is the same as the return value of the
 prompt method:

 Sys.Preview.UI.Window.inputBox =
function Sys$Preview$UI$Window$inputBox(promptText, defaultValue)
{
 if (!defaultValue)
 defaultValue = ‘’;

 return window.prompt(promptText, defaultValue);
}

 Summary
 This chapter provided in-depth coverage of the ASP.NET AJAX client-server communication layer and
its constituent WebRequest , WebRequestExecutor , XMLHttpExecutor , and WebRequestManager com-
ponents. It then used examples to show you how to use these components in your own applications.

 The next chapter shows you how to use these components in your ASP.NET AJAX applications to
exchange SOAP messages with XML Web services.

c12.indd 510c12.indd 510 8/20/07 6:09:32 PM8/20/07 6:09:32 PM

 Consuming Web Services
Via Soap Messages

 The previous chapter discussed the ASP.NET AJAX client-server communication layer and its
 constituent components. You learned how to use WebRequest , WebRequestManager , and
 WebRequestExecutor to make asynchronous requests to the server right from within your client-
side code. This chapter builds on what you learned in the previous chapter to show you how to
consume Web services in your ASP.NET AJAX applications. The chapter begins by implementing
an ASP.NET Web service. It then shows you how to use the techniques that you learned in the
 previous chapter to consume this Web service in an ASP.NET AJAX application.

 Building the Web Service
 In the previous chapter, a Web page was implemented that uses the WebRequest ,
WebRequestExecutor , and WebRequestManager ASP.NET AJAX client classes to make an asyn-
chronous page post back to the server to retrieve detailed information about a given employee.
In Listing 12-58 , the Page_Load method is the server-side method responsible for validating an
employee’s credentials and returning the detailed employee information back to the requesting
browser.

 This section implements a Web service that does exactly what the Page_Load method does — it
 validates user credentials and returns the detailed employee information to the requesting
browser. In other words, instead of asynchronously posting back to itself to validate user creden-
tials and retrieve the employee information, the page makes an asynchronous call into this Web
service. Although the end result is the same — both approaches validate user credentials and
retrieve the employee information — the mechanisms are quite different. Whereas one uses page
post back, the other calls into a Web service.

 Listing 13-1 presents the implementation of this Web service called EmployeeInfo . It exposes a
single Web-callable method named GetEmployeeInfo that takes the username and password as
its argument, validates user credentials, and returns the employee information. As you can see, the
 GetEmployeeInfo method does exactly what the Page_Load method did in the previous chapter.

c13.indd 511c13.indd 511 8/20/07 6:11:47 PM8/20/07 6:11:47 PM

Chapter 13: Consuming Web Services Via Soap Messages

512

 Listing 13-1: The EmployeeInfo Web Service

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;

[WebService(Namespace = “http://www.employees/”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class EmployeeInfo : System.Web.Services.WebService
{
 [WebMethod]
 public string GetEmployeeInfo(string username, string password)
 {
 if (password == “password” && username == “username”)
 return “Shahram|Khosravi|22223333|Some Department|”;

 return “Validation failed”;
 }
}

 If you run EmployeeInfo in Visual Studio, you should see the page shown in Figure 13-1 .

 If you click the Service Description link shown in Figure 13-1 , it takes you to a page that is known as
the Web Service Description Language (WSDL; pronounced whiz-dull) document. The next section
describes this document.

 If you click the GetEmployeeInfo link shown in Figure 13-1 , it takes you to a page that displays HTTP
request and response messages, known as SOAP messages. These messages are described in subsequent
sections.

 WSDL Documents
 The WSDL document of an XML Web service provides you with the following information about the
method of the XML Web service that you want to invoke:

Figure 13-1

c13.indd 512c13.indd 512 8/20/07 6:11:48 PM8/20/07 6:11:48 PM

Chapter 13: Consuming Web Services Via Soap Messages

513

❑ The names, types, and order of the arguments of the method

❑ The types and order of the return values of the method

❑ The name of the method

❑ The communication protocol through which the method must be accessed

❑ The URL of the site from which the method must be accessed

❑ The name of the class to which the method belongs

 The WSDL document uses the XML constructs of the WSDL markup language to provide all this infor-
mation about a given method of the XML Web service. Listing 13-2 shows the WSDL document that
describes the EmployeeInfo XML Web service. The following sections discuss different parts of this
WSDL document in detail.

 Listing 13-2: The WSDL Document that Describes the EmployeeInfo XML Web Service

 <?xml version=”1.0” encoding=”utf-8” ?>
<wsdl:definitions xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:tm=”http://microsoft.com/wsdl/mime/textMatching/”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:mime=”http://schemas.xmlsoap.org/wsdl/mime/”
xmlns:tns=”http://www.employees/” xmlns:s=”http://www.w3.org/2001/XMLSchema”
xmlns:soap12=”http://schemas.xmlsoap.org/wsdl/soap12/”
xmlns:http=”http://schemas.xmlsoap.org/wsdl/http/”
targetNamespace=”http://www.employees/” xmlns=”http://schemas.xmlsoap.org/wsdl/”>

 <types>
 <s:schema elementFormDefault=”qualified”
 targetNamespace=”http://www.employees/”>

 <s:element name=”GetEmployeeInfo”>
 <s:complexType>
 <s:sequence>
 <s:element minOccurs=”0” maxOccurs=”1” name=”username”
 type=”s:string” />
 <s:element minOccurs=”0” maxOccurs=”1” name=”password”
 type=”s:string” />
 </s:sequence>
 </s:complexType>
 </s:element>

 <s:element name=”GetEmployeeInfoResponse”>
 <s:complexType>
 <s:sequence>
 <s:element minOccurs=”0” maxOccurs=”1” name=”GetEmployeeInfoResult”
 type=”s:string” />
 </s:sequence>
 </s:complexType>
 </s:element>

 </s:schema>
 </types>

(continued)

c13.indd 513c13.indd 513 8/20/07 6:11:48 PM8/20/07 6:11:48 PM

Chapter 13: Consuming Web Services Via Soap Messages

514

Listing 13-2 (continued)

 <message name=”GetEmployeeInfoSoapIn”>
 <part name=”parameters” element=”tns:GetEmployeeInfo” />
 </message>
 <message name=”GetEmployeeInfoSoapOut”>
 <part name=”parameters” element=”tns:GetEmployeeInfoResponse” />
 </message>

 <portType name=”EmployeeInfoSoap”>
 <operation name=”GetEmployeeInfo”>
 <input message=”tns:GetEmployeeInfoSoapIn” />
 <output message=”tns:GetEmployeeInfoSoapOut” />
 </operation>
 </portType>

 <binding name=”EmployeeInfoSoap12” type=”tns:EmployeeInfoSoap”>
 <soap12:binding transport=”http://schemas.xmlsoap.org/soap/http” />
 <operation name=”GetEmployeeInfo”>
 <soap12:operation soapAction=”http://www.employees/GetEmployeeInfo”
 style=”document” />
 <input>
 <soap12:body use=”literal” />
 </input>
 <output>
 <soap12:body use=”literal” />
 </output>
 </operation>
 </binding>

 <service name=”EmployeeInfo”>
 <port name=”EmployeeInfoSoap12” binding=”tns:EmployeeInfoSoap12”>
 <soap12:address
 location=”http://localhost/WebServicesViaSoap/EmployeeInfo.asmx” />
 </port>
 </service>

</definitions>

 A WSDL document, like all XML documents, has a single outermost element called the document ele-
ment. The document element of a WSDL document is named <definitions> . This element contains the
following child elements: <types> , <message> , <portType> , <binding> , and <service> . These child
elements are discussed in the following sections.

 Complete coverage of the WSDL markup language and WSDL documents is beyond the scope of this
book. This chapter covers only the aspects of WSDL markup language and WSDL documents that relate
specifically to the chapter topic.

 Argument Names, Types, and Order
 The <types> section of the WSDL document shown in the following excerpt from Listing 13-2 uses an
XML schema <element> element with the name attribute value of GetEmployeeInfo to describe the
names, types, and order of the arguments of the XML Web service’s GetEmployeeInfo method:

c13.indd 514c13.indd 514 8/20/07 6:11:48 PM8/20/07 6:11:48 PM

Chapter 13: Consuming Web Services Via Soap Messages

515

 <s:element name=”GetEmployeeInfo”>
 <s:complexType>
 <s:sequence>
 <s:element minOccurs=”0” maxOccurs=”1” name=”username”
 type=”s:string” />
 <s:element minOccurs=”0” maxOccurs=”1” name=”password”
 type=”s:string” />
 </s:sequence>
 </s:complexType>
 </s:element>

 This <element> element contains a <sequence> element, which in turn contains two <element>
 elements. The <sequence> element is used to specify the order of the arguments of the method, and the
two <element> elements are used to specify the names and types of the arguments. The order of the two
 <element> elements within the <sequence> element determines the order of the method’s arguments.
The name and type attributes of each <element> element determine the name and type of the respective
argument of the method.

 Return Value Types and Order
 The <types> section of the WSDL document shown in the following excerpt from Listing 13-2 uses an
 <element> element with the name attribute value of GetEmployeeInfoResponse to describe the
names, types, and order of the return values of the XML Web service’s GetEmployeeInfo method:

 <s:element name=”GetEmployeeInfoResponse”>
 <s:complexType>
 <s:sequence>
 <s:element minOccurs=”0” maxOccurs=”1” name=”GetEmployeeInfoResult”
 type=”s:string” />
 </s:sequence>
 </s:complexType>
 </s:element>

 This <element> element contains a <sequence> element, which in turn contains an <element>
 element. The <sequence> element specifies the order of the return values of the method. Because the
 GetEmployeeInfo method returns a single value, the order is not an issue. The type attribute of
the <element> element specifies the GetEmployeeInfo method’s return value type.

 Describing the Method
 In a non-distributed environment, invoking the GetEmployeeInfo method is considered a single action,
where the caller passes two string values as the arguments of the method and receives a string value as
the return value. However, in a distributed environment, invoking the GetEmployeeInfo method is sim-
ulated through the exchange of two messages: a request message and a response message. The request
message contains the two input string values, and the response message is the return string value.

 The WSDL document shown in Listing 13-2 uses a <message> element with the name attribute value of
 GetEmployeeInfoSoapIn to represent the request message, and a <part> element to represent the
 content of the message. As previously discussed, the content of the request message is just the two input
string values, and the WSDL document’s <types> section uses an <element> element with the name
attribute value of GetEmployeeInfo to describe the names, types, and order of the GetEmployeeInfo

c13.indd 515c13.indd 515 8/20/07 6:11:49 PM8/20/07 6:11:49 PM

Chapter 13: Consuming Web Services Via Soap Messages

516

method’s arguments.Therefore, the <part> element simply references this <element> element of the
 <types> section. This reference is assigned to the element attribute of the <part> element as follows:

 <message name=”GetEmployeeInfoSoapIn”>
 <part name=”parameters” element=”tns:GetEmployeeInfo” />
</message>

 The WSDL document uses a <message> element with the name attribute value of GetEmployeeInfoSoapOut
to represent the response message, and a <part> element to represent the content of the message. As previ-
ously discussed, the response message is the return value of the GetEmployeeInfo method, and the <types>
section uses an <element> element with the name attribute value of GetEmployeeInfoResponse to describe
the GetEmployeeInfo method’s return value type. Therefore, the <part> element simply references this
 <element> element of the <types> section, as follows:

 <message name=”GetEmployeeInfoSoapOut”>
 <part name=”parameters” element=”tns:GetEmployeeInfoResponse” />
 </message>

 These two <message> elements define the two messages that simulate the GetEmployeeInfo method.
The WSDL document shown in Listing 13-2 uses an <operation> element with the name attribute
value of GetEmployeeInfo to represent the GetEmployeeInfo method itself, and the <input> and
 <output> elements to represent the contents of the GetEmployeeInfo method. Because the content of
the GetEmployeeInfo method is just the request and response messages that simulate the method, the
 <input> and <output> elements simply refer to the respective request and response messages as
follows:

 <portType name=”EmployeeInfoSoap”>
 <operation name=”GetEmployeeInfo”>
 <input message=”tns:GetEmployeeInfoSoapIn” />
 <output message=”tns:GetEmployeeInfoSoapOut” />
 </operation>
 </portType>

 Notice that the <operation> element is the child element of the <portType> element. The <portType>
element is used to group different methods of the XML Web service when the XML Web service exposes
numerous methods. This doesn’t apply to this example because the XML Web service exposes a single method.

 Describing the Communication Protocol for
Accessing the Method

 The WSDL document uses the <binding> element to describe the communication protocol and message
format that clients must use to access the GetEmployeeInfo method, as shown in the following excerpt
from Listing 13-2 :

 <binding name=”EmployeeInfoSoap12” type=”tns:EmployeeInfoSoap”>
 <soap12:binding transport=”http://schemas.xmlsoap.org/soap/http” />
 <operation name=”GetEmployeeInfo”>
 <soap12:operation soapAction=”http://www.employees/GetEmployeeInfo”
 style=”document” />
 <input>
 <soap12:body use=”literal” />
 </input>

c13.indd 516c13.indd 516 8/20/07 6:11:49 PM8/20/07 6:11:49 PM

Chapter 13: Consuming Web Services Via Soap Messages

517

 <output>
 <soap12:body use=”literal” />
 </output>
 </operation>
 </binding>

 The WSDL document uses the <portType> element to group the related methods of the XML Web ser-
vice. Grouping is very useful when it comes to defining the communication protocol. It wouldn’t make
sense to force the clients of the XML Web service to use different communication protocols to access
 different methods of the same group. That’s why the WSDL document defines a single communication
protocol to access all methods in the same portType . The type attribute of the <binding> element
refers to the <portType> element for which the communication protocol is defined.

 The WSDL document uses the <soap12:binding> element to specify that its clients must use SOAP 1.2
messages to access the methods of the respective portType . The transport attribute of the <soap12:
binding> element specifies that SOAP messages must be exchanged via HTTP protocol. The style
attribute of the <soap12:binding> element specifies that SOAP messages must use document
style instead of RPC style.

 The <soap12:binding> element specifies the settings that apply to all methods of the respective
 portType . However, there are some settings that are method-specific. For example, XML Web services
assign a unique string id to each method for identification purposes. The SOAPAction header of the
respective HTTP message is normally set to the unique string id of the respective method.

 The WSDL document uses an <operation> element to represent a method. The operation element that
represents the GetEmployeeInfo method is reused in the <binding> element to set the appropriate
parameters of the method.

 The <soap12:operation> element is used to set the parameters of a given method of the XML Web
 service. The soapAction attribute of the <soap12:operation> element is set to the unique string id
that uniquely identifies the method among other methods of the XML Web service. The style attribute
overrides the style setting of the <soap12:binding> element.

 The <soap12:operation> element specifies the settings that apply to the entire method. However, the
 GetEmployeeInfo method consists of two messages. The <soap12:body> element allows you to set
the parameters that apply to individual messages. The WSDL document uses a <part> element to spec-
ify the content of a message. The use attribute of the <soap12:body> element is set to “literal” to
signal that the content of the message is literally the content of the <part> element, and there is no need
for further encoding.

 Specifying the Site for Method Access
 The WSDL document uses the <port> element to specify the URL of the site where clients access the
method, as shown in the following excerpt from Listing 13-2 :

 <port name=”EmployeeInfoSoap12” binding=”tns:EmployeeInfoSoap12”>
 <soap12:address
 location=”http://localhost/WebServicesViaSoap/EmployeeInfo.asmx” />
 </port>

c13.indd 517c13.indd 517 8/20/07 6:11:49 PM8/20/07 6:11:49 PM

Chapter 13: Consuming Web Services Via Soap Messages

518

 The binding attribute of the <port> element refers to the <binding> element that describes the
 communication protocol clients must use to access the method. Because the <binding> element defines
the communication protocol for a portType (a group of methods), the <port> element specifies the URL
of the site from which all the methods of a given portType can be accessed. It would not make much
sense to force users to access different methods of the same group from different sites. The location
attribute of the <soap12:address> element determines the URL of the site where the clients can access
the method. The same <port> element may contain more than one <soap12:address> element. This
means that the same method may be accessed from different sites.

 Specifying the Method Class
 The WSDL document uses the name attribute of the <service> element to specify the name of the class
(from the client perspective to be exact) that the method belongs to, as shown in the following excerpt
from Listing 13-2 :

 <service name=”EmployeeInfo”>
 <port name=”EmployeeInfoSoap12” binding=”tns:EmployeeInfoSoap12”>
 <soap12:address
location=”http://localhost/WebServicesViaSoap/EmployeeInfo.asmx” />
 </port>
 </service>

 SOAP Messages
 XML Web services and their clients exchange data through messages known as SOAP messages. A SOAP
message is an XML document that uses the SOAP XML markup language to describe the data being
exchanged. A SOAP message, like any other XML document, has a single element known as the docu-
ment element. The document element in a SOAP message is an XML element named <Envelope> . This
document element contains an optional child element named <Header> and a mandatory child element
named <Body> . The <Envelope> , <Header> , and <Body> elements belong to the http://schemas
.xmlsoap.org/soap/envelope/ namespace.

 If you click the GetEmployeeInfo link previously shown in Figure 13-1 , it takes you to a page that
 contains Listings 13-3 and 13-4 . Listing 13-3 shows the HTTP request message, which is the HTTP
 message that the client of the EmployeeInfo Web service must send to the Web service to invoke its
 GetEmployeeInfo method. Listing 13-4 shows the HTTP response message, which is the HTTP message
that the Web service sends to clients in response to the HTTP request message.

 Listing 13-3: The HTTP Request Message

 POST /WebServicesViaSoap/EmployeeInfo.asmx HTTP/1.1
Host: localhost
Content-Type: application/soap+xml; charset=utf-8
Content-Length: length

<?xml version=”1.0” encoding=”utf-8”?>
<soap12:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap12=”http://www.w3.org/2003/05/soap-envelope”>

c13.indd 518c13.indd 518 8/20/07 6:11:50 PM8/20/07 6:11:50 PM

Chapter 13: Consuming Web Services Via Soap Messages

519

 <soap12:Body>
 <GetEmployeeInfo xmlns=”http://www.employees/”>
 <username>
 String
 </username>
 <password>
 String
 </password>
 </GetEmployeeInfo>
 </soap12:Body>
</soap12:Envelope>

 Listing 13-4: The HTTP Response Message

 HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: length

<?xml version=”1.0” encoding=”utf-8”?>
<soap12:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap12=”http://www.w3.org/2003/05/soap-envelope”>
 <soap12:Body>
 <GetEmployeeInfoResponse xmlns=”http://www.employees/”>
 <GetEmployeeInfoResult>string</GetEmployeeInfoResult>
 </GetEmployeeInfoResponse>
 </soap12:Body>
</soap12:Envelope>

 Here is a question for you: What is the relationship between the WSDL document shown previously in
Listing 13-2 and the HTTP request and response messages shown in Listings 13-3 and 13-4 ? Here is
another related question: Does this mean that every time you want to know what type of HTTP
request message a Web service expects to receive from its clients and what type of HTTP response mes-
sage the clients of a Web service should expect to receive from the Web service, you have to run the
Web service in Visual Studio as you did for the EmployeeInfo Web service to access a page similar to
the page shown in Figure 13-1 , and from there go to the page that contains the HTTP request and
response messages? When you click the GetEmployeeInfo link shown in Figure 13-1 to go to the page
that displays the formats of the HTTP request and response messages, how does this page figure out
what these formats are? And how did this page know that the client and Web service must use the
HTTP protocol to communicate with one another?

 The answer to all these questions is the WSDL document. The page parses the WSDL document to find
out what communication protocol must be used and what the format of the request and response
message should be. Here’s how it works. The transport attribute of the <binding> element’s <soap12:
binding> child element tells you that the client and Web service must use SOAP over HTTP to communi-
cate with one another, as shown in the boldface portion of the following excerpt from Listing 13-2 :

 <binding name=”EmployeeInfoSoap12” type=”tns:EmployeeInfoSoap”>
 <soap12:binding transport=”http://schemas.xmlsoap.org/soap/http” />
 <operation name=”GetEmployeeInfo”>
 <soap12:operation soapAction=”http://www.employees/GetEmployeeInfo”
 style=”document” />

(continued)

c13.indd 519c13.indd 519 8/20/07 6:11:50 PM8/20/07 6:11:50 PM

Chapter 13: Consuming Web Services Via Soap Messages

520

(continued)

 <input>
 <soap12:body use=”literal” />
 </input>
 <output>
 <soap12:body use=”literal” />
 </output>
 </operation>
 </binding>

 Next, let’s discuss the HTTP request message shown in Listing 13-3 . This HTTP request message, like
any other HTTP message, has two main parts: header and body. The header of the message consists of
the following four lines:

❑ The first line specifies the virtual path of the Web service on the server:

 POST /WebServicesViaSoap/EmployeeInfo.asmx HTTP/1.1

 This virtual path information comes from the WSDL document. First, you search the WSDL doc-
ument for the <service> element with the same name attribute value as the Web service itself,
which is EmployeeInfo , as shown in the following excerpt from Listing 13-2 :

 <service name=”EmployeeInfo”>
 <port name=”EmployeeInfoSoap12” binding=”tns:EmployeeInfoSoap12”>
 <soap12:address
location=”http://localhost/WebServicesViaSoap/EmployeeInfo.asmx” />
 </port>
 </service>

 The location attribute of the <soap12:address> child element specifies the virtual path of
the Web service on the server as you can see in the boldface portion of the code excerpt.

❑ The second line specifies the hostname or host IP address of the server where the Web service is
located:

 Host: localhost

 This hostname information comes from the WSDL document. First, you search the WSDL document
for the <service> element with the same name attribute value as the Web service itself, which is
 EmployeeInfo , as shown in the following excerpt from Listing 13-2 :

 <service name=”EmployeeInfo”>
 <port name=”EmployeeInfoSoap12” binding=”tns:EmployeeInfoSoap12”>
 <soap12:address
location=”http://localhost/WebServicesViaSoap/EmployeeInfo.asmx” />
 </port>
 </service>

 The location attribute of the <soap12:address> child element specifies the server hostname
as you can see in the lower boldface portion of the code excerpt.

❑ The third line specifies the content type of the HTTP message body. Because the body of this
message contains a SOAP message, the content type is set to application/soap+xml :

c13.indd 520c13.indd 520 8/20/07 6:11:50 PM8/20/07 6:11:50 PM

Chapter 13: Consuming Web Services Via Soap Messages

521

 Content-Type: application/soap+xml; charset=utf-8

 ❑ The fourth line specifies the length (in bytes) of the message body:

 Content-Length: length

 The body of the HTTP request message shown in Listing 13-3 contains a SOAP message. This SOAP
message is an XML document with the <Envelope> document element that contains a <Body> child
element. Note that the <Body> child element contains the following XML fragment:

 <GetEmployeeInfo xmlns=”http://www.employees/”>
 <username>string</username>
 <password>string</password>
 </GetEmployeeInfo>

 The outermost XML element of this XML fragment has the same name as the Web method being
invoked, which is the GetEmployeeInfo method. The body of the <GetEmployeeInfo> element con-
tains two elements with the same names as the parameters of the method being invoked: username and
 password . The string within the opening and closing tags of the <username> and <password> elements
specify the values being passed into the GetEmployeeInfo method.

 Listing 13-4 contains the HTTP response message that the EmployeeInfo Web service sends back to the
client in response to the HTTP request message shown in Listing 13-3 . The HTTP response message has
two parts: header and body. The header consists of the following three lines:

❑ The first line consists of three parts:

 ❑ The first part specifies the version of the HTTP protocol that the server supports, which is
version 1.1 in this case.

❑ The second part specifies the HTTP response status code, which is 200 in this case. A status
code value of 200 signals that no error occurred on the server side.

❑ The third part specifies the HTTP response status text, which is OK in this case .

 ❑ The second line specifies the content type of the response message body. Because the body of the
response message is a SOAP message, the content type is set to application/soap+xml :

 Content-Type: application/soap+xml; charset=utf-8

 ❑ The third line specifies the length (in bytes) of the response message body.

 The body of the HTTP response message shown in Listing 13-4 contains a SOAP message. Note that the
 <Body> of this SOAP message contains the following XML fragment:

 <GetEmployeeInfoResponse xmlns=”http://www.employees/”>
 <GetEmployeeInfoResult>string</GetEmployeeInfoResult>
 </GetEmployeeInfoResponse>

 This XML fragment contains a child XML element named <GetEmployeeInfoResult> that encapsu-
lates the return value of the GetEmployeeInfo method of the Web service.

c13.indd 521c13.indd 521 8/20/07 6:11:51 PM8/20/07 6:11:51 PM

Chapter 13: Consuming Web Services Via Soap Messages

522

 All the information about the method, its parameters, and return value also comes from the WSDL
 document. First, you search the WSDL document shown in Listing 13-2 for the <service> element with
the same name attribute value as the Web service itself, which is EmployeeInfo :

 <service name=”EmployeeInfo”>

 . . .
 </service>

 Next, you retrieve the binding attribute value of the <service> element’s <port> child element:

 <service name=”EmployeeInfo”>

 <port binding=”tns:EmployeeInfoSoap12”

 name=”EmployeeInfoSoap12”>
 <soap12:address
location=”http://localhost/WebServicesViaSoap/EmployeeInfo.asmx” />
 </port>
 </service>

 Then, you search the WSDL document for the <binding> element whose name is given by the binding
attribute value of the <port> child element:

 <binding name=”EmployeeInfoSoap12”

 type=”tns:EmployeeInfoSoap”>
 . . .
 </binding>

 Next, you retrieve type attribute value of the <binding> element and the name attribute value of its
child <operation> element:

 <binding name=”EmployeeInfoSoap12”

 type=”tns:EmployeeInfoSoap”>

 <soap12:binding transport=”http://schemas.xmlsoap.org/soap/http” />

 <operation name=”GetEmployeeInfo”>

 . . .
 </operation>
 </binding>

 As you can see, the name attribute value of this child <operation> element is just the name of the Web
method, GetEmployeeInfo .

 Now that you know the name of the method, you need to get information about this method’s parame-
ters. For that, you first search the WSDL document for the <portType> whose name attribute value is
given by the type attribute value of the <binding> element, and then you search for the <operation>

c13.indd 522c13.indd 522 8/20/07 6:11:51 PM8/20/07 6:11:51 PM

Chapter 13: Consuming Web Services Via Soap Messages

523

child element of this <portType> whose name attribute value is given by the name attribute value of
the <binding> element’s <operation> child element:

 <portType name=”EmployeeInfoSoap”>
 <operation name=”GetEmployeeInfo”>

 . . .
 </operation>
 </portType>

 Next, you retrieve the values of the message attributes of the <input> and <output> child elements of
the <operation> element:

 <portType name=”EmployeeInfoSoap”>
 <operation name=”GetEmployeeInfo”>

 <input message=”tns:GetEmployeeInfoSoapIn” />
 <output message=”tns:GetEmployeeInfoSoapOut” />

 </operation>
 </portType>

 Next, you search the WSDL document for the <message> elements whose name attribute values are
given by the values of the message attributes of the <input> and <output> child elements:

 <message name=”GetEmployeeInfoSoapIn”>

 . . .
</message>

<message name=”GetEmployeeInfoSoapOut”>

 . . .
</message>

 Then, you retrieve the values of the element attributes of the <part> child elements of the two
 <message> elements:

 <message name=”GetEmployeeInfoSoapIn”>

 <part element=”tns:GetEmployeeInfo”

 name=”parameters” />
</message>
<message name=”GetEmployeeInfoSoapOut”>

 <part element=”tns:GetEmployeeInfoResponse”

 name=”parameters” />
</message>

c13.indd 523c13.indd 523 8/20/07 6:11:51 PM8/20/07 6:11:51 PM

Chapter 13: Consuming Web Services Via Soap Messages

524

 Next, you search the <types> section of the WSDL document for <element> elements with same name
attribute values as the element attribute values of the two <part> child elements:

 <s:element name=”GetEmployeeInfo”>
 <s:complexType>
 <s:sequence>
 <s:element minOccurs=”0” maxOccurs=”1” name=”username”
 type=”s:string” />
 <s:element minOccurs=”0” maxOccurs=”1” name=”password”
 type=”s:string” />
 </s:sequence>
 </s:complexType>
 </s:element>

 <s:element name=”GetEmployeeInfoResponse”>
 <s:complexType>
 <s:sequence>
 <s:element minOccurs=”0” maxOccurs=”1” name=”GetEmployeeInfoResult”
 type=”s:string” />
 </s:sequence>
 </s:complexType>
 </s:element>

 The two <element> elements define the schemas of the XML fragment enclosed within the opening and
closing tags of the <Body> element of the request and response SOAP messages:

 <GetEmployeeInfo xmlns=”http://www.employees/”>
 <username>string</username>
 <password>string</password>
 </GetEmployeeInfo>

 <GetEmployeeInfoResponse xmlns=”http://www.employees/”>
 <GetEmployeeInfoResult>string</GetEmployeeInfoResult>
 </GetEmployeeInfoResponse>

 As you can see, you can write client-side code that does the following:

1. It uses WebRequest , WebRequestExecutor , and WebRequestManager to download the WSDL
document from the server and load it into an XMLDOM document.

2. It uses the methods and properties of the XMLDOM class to search the WSDL document as just
 discussed to determine the format of the SOAP request and response messages .

3. It uses WebRequest , WebRequestExecutor , and WebRequestManager to send the HTTP
 request to the server and receive the HTTP response from the server.

 To keep this discussion focused, let’s skip the implementation of the first two steps and use Listings 13-3
and 13-4 to implement the third step. In this step, WebRequest , WebRequestExecutor , and WebRe-
questManager are used to send a SOAP request message over HTTP to the server and receive a SOAP
response message over HTTP from the server, as shown in Listing 13-5 .

c13.indd 524c13.indd 524 8/20/07 6:11:51 PM8/20/07 6:11:51 PM

Chapter 13: Consuming Web Services Via Soap Messages

525

 Listing 13-5: A Page that Exchanges SOAP Messages with the Web Service

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function invokingRequestCallback(sender, args)
 {
 var request = args.get_webRequest();
 var builder = new Sys.StringBuilder();
 builder.append(“Default request timeout: “);
 builder.append(sender.get_defaultTimeout());
 builder.append(“\r\n\r\nDefault executor type: “);
 builder.append(sender.get_defaultExecutorType());
 builder.append(“\r\n\r\nTarget URL: “);
 builder.append(request.get_url());
 builder.append(“\r\n\r\nHTTP verb: “);
 builder.append(request.get_httpVerb());
 builder.append(“\r\n\r\nRequest body: “);
 builder.append(request.get_body());
 builder.append(“\r\n\r\nRequest timeout: “);
 builder.append(request.get_timeout());
 builder.append(“\r\n\r\nRequest headers: “);
 var headers = request.get_headers();
 for(var header in headers)
 {
 builder.append(“\r\n\t”);
 builder.append(header);
 builder.append(“: “);
 builder.append(headers[header]);
 }
 builder.append(“\r\n\r\nClick the Cancel button to cancel the request or OK
 button to submit the request.”);

 var result = Sys.Preview.UI.Window.messageBox(builder.toString(),
 Sys.Preview.UI.MessageBoxStyle.OKCancel);

 if (result == Sys.Preview.UI.DialogResult.Cancel)
 args.set_cancel(true);
 }

 function completedCallback(sender, eventArgs)
 {
 if (sender.get_timedOut())
 {
 alert(“Request timed out!”);
 return;
 }

(continued)

c13.indd 525c13.indd 525 8/20/07 6:11:52 PM8/20/07 6:11:52 PM

Chapter 13: Consuming Web Services Via Soap Messages

526

Listing 13-5 (continued)

 if (sender.get_aborted())
 {
 alert(“Request aborted!”);
 return;
 }

 if (sender.get_statusCode() !== 200)
 {
 alert(“Error occured!”);
 return;
 }

 var reply2 = sender.get_xml();
 var nodes = reply2.getElementsByTagName(“GetEmployeeInfoResult”);
 var reply = nodes[0].firstChild.nodeValue ;

 var delimiter = “|”;
 var replyIndex = 0;
 var delimiterIndex;

 var employeeinfotable = $get(“employeeinfo”);
 employeeinfotable.style.visibility = “visible”;

 delimiterIndex = reply.indexOf(delimiter, replyIndex);
 var firstname = reply.substring(replyIndex, delimiterIndex);
 var firstnamespan = $get(“firstname”);
 firstnamespan.innerText = firstname;
 replyIndex = delimiterIndex + 1;

 delimiterIndex = reply.indexOf(delimiter, replyIndex);
 var lastname = reply.substring(replyIndex, delimiterIndex);
 var lastnamespan = $get(“lastname”);
 lastnamespan.innerText = lastname;
 replyIndex = delimiterIndex + 1;

 delimiterIndex = reply.indexOf(delimiter, replyIndex);
 var employeeid = reply.substring(replyIndex, delimiterIndex);
 var employeeidspan = $get(“employeeid”);
 employeeidspan.innerText = employeeid;
 replyIndex = delimiterIndex + 1;

 delimiterIndex = reply.indexOf(delimiter, replyIndex);
 var departmentname = reply.substring(replyIndex, delimiterIndex);
 var departmentnamespan = $get(“departmentname”);
 departmentnamespan.innerText = departmentname;
 }

 function submitCallback(evt)
 {
 var usernametbx = $get(“usernametbx”);
 var passwordtbx = $get(“passwordtbx”);

c13.indd 526c13.indd 526 8/20/07 6:11:52 PM8/20/07 6:11:52 PM

Chapter 13: Consuming Web Services Via Soap Messages

527

 var requestBodyBuilder = new Sys.StringBuilder();

 requestBodyBuilder.append(‘<?xml version=”1.0” encoding=”utf-8”?>’);
 requestBodyBuilder.append(‘<soap12:Envelope ‘);
 requestBodyBuilder.append(
 ‘xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” ‘);
 requestBodyBuilder.append(‘xmlns:xsd=”http://www.w3.org/2001/XMLSchema” ‘);
 requestBodyBuilder.append(
 ‘xmlns:soap12=”http://www.w3.org/2003/05/soap-envelope”>’);
 requestBodyBuilder.append(‘<soap12:Body>’);
 requestBodyBuilder.append(‘<GetEmployeeInfo xmlns=”http://www.employees/”>’);
 requestBodyBuilder.append(‘<username>’);
 requestBodyBuilder.append(usernametbx.value);
 requestBodyBuilder.append(‘</username>’);
 requestBodyBuilder.append(‘<password>’);
 requestBodyBuilder.append(passwordtbx.value);
 requestBodyBuilder.append(‘</password>’);
 requestBodyBuilder.append(‘</GetEmployeeInfo>’);
 requestBodyBuilder.append(‘</soap12:Body>’);
 requestBodyBuilder.append(‘</soap12:Envelope>’);

 var requestBody = requestBodyBuilder.toString();
 var request = new Sys.Net.WebRequest();
 request.set_timeout(70000);
 request.set_httpVerb(“POST”);
 request.set_url(“EmployeeInfo.asmx”);
 request.get_headers()[‘Content-Type’] =
 ‘application/soap+xml; charset=utf-8’;
 request.get_headers()[‘Content-Length’] = requestBody.length;
 request.set_body(requestBody);
 request.invoke();
 }

 function pageLoad()
 {
 var submitbtn = $get(“submitbtn”);
 $addHandler(submitbtn, “click”, submitCallback);
 Sys.Net.WebRequestManager.set_defaultTimeout(90000);
 Sys.Net.WebRequestManager.set_defaultExecutorType(“Sys.Net.XMLHttpExecutor”);
 Sys.Net.WebRequestManager.add_invokingRequest(invokingRequestCallback);
 Sys.Net.WebRequestManager.add_completedRequest(completedCallback);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 </Scripts>

(continued)

c13.indd 527c13.indd 527 8/20/07 6:11:52 PM8/20/07 6:11:52 PM

Chapter 13: Consuming Web Services Via Soap Messages

528

Listing 13-5 (continued)

 </asp:ScriptManager>
 Username: <asp:TextBox runat=”server” ID=”usernametbx” />

 Password: <asp:TextBox runat=”server” ID=”passwordtbx”
 TextMode=”Password” />

 <button id=”submitbtn” type=”button”>Submit</button>

 <table id=”employeeinfo” style=”background-color:LightGoldenrodYellow;
 border-color:Tan; border-width:1px;
 color:Black; visibility:hidden”
 cellpadding=”2”>
 <tr style=”background-color:Tan; font-weight:bold”>
 <th colspan=”2”>Your Information</th>
 </tr>
 <tr>
 <td style=” font-weight:bold”>First Name</td>
 <td></td>
 </tr>

 <tr style=”background-color:PaleGoldenrod”>
 <td style=” font-weight:bold”>Last Name</td>
 <td></td>
 </tr>

 <tr>
 <td style=” font-weight:bold”>Employee ID</td>
 <td></td>
 </tr>

 <tr style=”background-color:PaleGoldenrod”>
 <td style=” font-weight:bold”>Department</td>
 <td></td>
 </tr>
 </table>

 </form>
</body>
</html>

 First, let’s walk through the implementation of the submitCallback JavaScript function. The page
shown in Listing 13-5 registers this JavaScript function as an event handler for the click event of the
Submit button.

 The submitCallback function first instantiates a StringBuilder that will be used to create the string
that contains the body of the HTTP request message:

 var requestBodyBuilder = new Sys.StringBuilder();

c13.indd 528c13.indd 528 8/20/07 6:11:52 PM8/20/07 6:11:52 PM

Chapter 13: Consuming Web Services Via Soap Messages

529

 As you can see in the following excerpt from Listing 13-3 , the body of the request begins with the xml
declaration:

 <?xml version=”1.0” encoding=”utf-8”?>

 As such, this xml declaration is the first line that submitCallback adds to the StringBuilder :

 requestBodyBuilder.append(‘<?xml version=”1.0” encoding=”utf-8”?>’);

 The second line in Listing 13-3 (shown again in the following excerpt) is the opening tag of the
 Envelope XML element and its attributes:

 <soap12:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap12=”http://www.w3.org/2003/05/soap-envelope”>

 This element is the outermost element in a SOAP message, and as such, it’s the next thing that
 submitCallback adds to the StringBuilder :

 requestBodyBuilder.append(‘<soap12:Envelope ‘);
 requestBodyBuilder.append(
 ‘xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” ‘);
 requestBodyBuilder.append(‘xmlns:xsd=”http://www.w3.org/2001/XMLSchema” ‘);
 requestBodyBuilder.append(
 ‘xmlns:soap12=”http://www.w3.org/2003/05/soap-envelope”>’);

 The next line in Listing 13-3 (shown again in the following excerpt) is the opening tag of the SOAP
request message’s Body XML element:

 <soap12:Body>

 This element contains the body of the SOAP message. Therefore, it’s the next line that submitCallback
adds to the StringBuilder :

 requestBodyBuilder.append(‘<soap12:Body>’);

 The next line in Listing 13-3 (shown again in the following excerpt) is the opening tag of the XML element
that represents the Web method being invoked, which is the GetEmployeeInfo method in this case:

 <GetEmployeeInfo xmlns=”http://www.employees/”>

 As such, this is the next line that submitCallback adds to the StringBuilder :

 requestBodyBuilder.append(‘<GetEmployeeInfo xmlns=”http://www.employees/”>’);

 The next line in Listing 13-3 (shown again in the following excerpt) is the opening tag of the XML ele-
ment that represents the first parameter of the Web method being invoked, which is the username
parameter in this case:

 <username>

c13.indd 529c13.indd 529 8/20/07 6:11:53 PM8/20/07 6:11:53 PM

Chapter 13: Consuming Web Services Via Soap Messages

530

 Therefore, this is the next line that submitCallback adds to the StringBuilder :

 requestBodyBuilder.append(‘<username>’);

 The next line in Listing 13-3 is the string that contains the value of the username parameter of the
 GetEmployeeInfo Web method. Therefore, the submitCallback method first calls the $get JavaScript
function to return a reference to the username text field and then calls the value property on this text
field to access the value that the end user entered into the text field. The method then adds this value to
the StringBuilder :

 var usernametbx = $get(“usernametbx”);
 requestBodyBuilder.append(usernametbx.value);

 The next line in Listing 13-3 (shown again in the following excerpt) is the closing tag of the XML
 element that represents the first parameter of the Web method being invoked, which is the username
parameter in this case:

 </username>

 As such, this is the next line that submitCallback adds to the StringBuilder :

 requestBodyBuilder.append(‘</username>’);

 The next line in Listing 13-3 (shown again in the following excerpt) is the opening tag of the XML
 element that represents the second parameter of the Web method being invoked, which is the password
parameter in this case:

 <password>

 Therefore, this is the next line that submitCallback adds to the StringBuilder :

 requestBodyBuilder.append(‘<password>’);

 The next line in Listing 13-3 is the string that contains the value of the GetEmployeeInfo Web method’s
 password parameter. Therefore, the submitCallback method first calls the $get JavaScript function to
return a reference to the password text field, and then calls the value property on the text field to access
the value that the end user entered into the text field. The method then adds this value to the
 StringBuilder :

 var passwordtbx = $get(“passwordtbx”);
 requestBodyBuilder.append(passwordtbx.value);

 Next, submitCallback adds the closing tag of the XML element that represents the second parameter,
the closing tag of the XML element that represents the GetEmployeeInfo Web method, the closing tags
of the Body element, and finally the closing tag of the Envelope element, as shown in the following
excerpt from Listing 13-3 :

 requestBodyBuilder.append(‘</password>’);
 requestBodyBuilder.append(‘</GetEmployeeInfo>’);
 requestBodyBuilder.append(‘</soap12:Body>’);
 requestBodyBuilder.append(‘</soap12:Envelope>’);

c13.indd 530c13.indd 530 8/20/07 6:11:53 PM8/20/07 6:11:53 PM

Chapter 13: Consuming Web Services Via Soap Messages

531

 Next, the submitCallback method stores the contents of the StringBuilder (which contains the body
of the request being made to the server) into a local variable named requestBody StringBuilder :

 var requestBody = requestBodyBuilder.toString();

 Then, submitCallback instantiates a WebRequest object to represent the current request:

 var request = new Sys.Net.WebRequest();

 Next, submitCallback calls the set_timeout method on the WebRequest object to set the request
timeout:

 request.set_timeout(70000);

 The header of the HTTP request message begins with the following line when the HTTP verb POST is
used to submit the request to the server:

 POST /WebServicesViaSoap/EmployeeInfo.asmx HTTP/1.1

 Therefore, the submitCallback method calls the set_httpVerb method on the WebRequest object to
specify that the HTTP verb POST must be used to submit the request to the server:

 request.set_httpVerb(“POST”);

 The first two header lines of the HTTP request message specify the virtual path of the Web service on the
server and the hostname or IP address of the server, as shown in the following excerpt from Listing 13-3 :

 POST /WebServicesViaSoap/EmployeeInfo.asmx HTTP/1.1
Host: localhost

 Therefore, the submitCallback method calls the set_url method on the WebRequest object to specify
the hostname and the virtual path of the Web service on the host:

 request.set_url(“EmployeeInfo.asmx”);

 The third header line of the HTTP request message (shown in the following excerpt from Listing 13-3)
specifies application/soap+xml as the content type for the body of the request because the body
 contains a SOAP message:

 Content-Type: application/soap+xml; charset=utf-8

 Therefore, the submitCallback method first calls the get_headers method on the WebRequest object
to return a reference to the dictionary that contains the names and values of the request headers, and
then assigns application/soap+xml as the value of the Content_Type header:

 request.get_headers()[‘Content-Type’] = ‘application/soap+xml; charset=utf-8’;

 The fourth header line of the HTTP request message in Listing 13-3 specifies the value of the
Content-Length header. This header specifies the length (in bytes) of the body of the message.

c13.indd 531c13.indd 531 8/20/07 6:11:53 PM8/20/07 6:11:53 PM

Chapter 13: Consuming Web Services Via Soap Messages

532

The submitCallback method first calls the get_headers method again on the WebRequest object to
return the dictionary that contains the names and values of the request headers, and then assigns the
value of the length property of the requestBody local variable (which contains the entire SOAP
 message being sent to the server) as the Content-Length request header value:

 request.get_headers()[‘Content-Length’] = requestBody.length;

 Next, submitCallback calls the set_body method on the WebRequest object to specify the contents of
the requestBody local variable as the body of the HTTP request being sent to the server:

 request.set_body(requestBody);

 Finally, the submitCallback method calls the invoke method on the WebRequest object to send the
request to the server:

 request.invoke();

 When the server response finally arrives, the WebRequest object automatically invokes the
 completedCallback JavaScript function. The pageLoad method registers this function as an event
handler for the requestCompleted event of the current WebRequestManager instance. This method
begins by ensuring that the request hasn’t timed out or aborted and no server error has occurred:

 if (sender.get_timedOut())
 {
 alert(“Request timed out!”);
 return;
 }

 if (sender.get_aborted())
 {
 alert(“Request aborted!”);
 return;
 }

 if (sender.get_statusCode() !== 200)
 {
 alert(“Error occured!”);
 return;
 }

 Next, the completedCallback method calls the get_xml method on the WebRequestExecutor object
to return the XMLDOM document that contains the server response (shown previously in its entirety in
Listing 13-4):

 var reply2 = sender.get_xml();

c13.indd 532c13.indd 532 8/20/07 6:11:54 PM8/20/07 6:11:54 PM

Chapter 13: Consuming Web Services Via Soap Messages

533

 As the following excerpt from Listing 13-4 shows, the return value of the GetEmployeeInfo method is
encapsulated in an element named <GetEmployeeInforResult> :

 <?xml version=”1.0” encoding=”utf-8”?>
<soap12:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap12=”http://www.w3.org/2003/05/soap-envelope”>
 <soap12:Body>
 <GetEmployeeInfoResponse xmlns=”http://www.employees/”>

 <GetEmployeeInfoResult>string</GetEmployeeInfoResult>

 </GetEmployeeInfoResponse>
 </soap12:Body>
</soap12:Envelope>

 Therefore, the completedCallback method calls the getElementsByTagName method on this
 XMLDOM document to return a reference to the <GetEmployeeInfoResult> element:

 var nodes = reply2.getElementsByTagName(“GetEmployeeInfoResult”);

 Next, the completedCallback method accesses the reply string that the first child element of this
 element encapsulates:

 var reply = nodes[0].firstChild.nodeValue ;

 The rest of the implementation of the completedCallback method is just like the previous version of
the completedCallback method.

 The example used in this section assumed that you know the formats of the request and response mes-
sages. As discussed earlier, the WSDL document can be used to determine the formats of these messages.
As a matter of fact, you can think of the WSDL document as a receipt for building SOAP messages that
the Web service expects to receive from the client and that the client must expect to receive from the Web
service. As thoroughly discussed earlier, you must parse the WSDL document to determine the formats
of these messages.

 Summary
 This chapter showed you how to use the WebRequest , WebRequestExecutor , and WebRequestManager
ASP.NET AJAX client classes to exchange SOAP messages with XML Web services. SOAP messages are
not the only means of communication between Web services and their clients. Another very common
 client-server communication method uses JSON messages, which are discussed in the next chapter.

c13.indd 533c13.indd 533 8/20/07 6:11:54 PM8/20/07 6:11:54 PM

c13.indd 534c13.indd 534 8/20/07 6:11:54 PM8/20/07 6:11:54 PM

 Consuming Web Services
Via JSON Messages

 As you saw in the previous chapter, you can use the XMLHttpExecutor , WebRequestManager ,
and WebRequest classes to make requests to the server. However, this approach requires you to
write lot of code to make a request. The ASP.NET AJAX client-side framework includes a class
named WebServiceProxy that encapsulates all the logic that uses the XMLHttpExecutor ,
WebRequestManager , and WebRequest classes to make a request to the server. This enables you
to make a request with minimal time and effort. The downside of the WebServiceProxy approach
is that it supports only JSON messages. If you need to use normal SOAP messages to communicate
with a Web service, you have to use the techniques discussed in the previous chapter. This chapter
begins by discussing the important members of the WebServiceProxy class.

 WebServiceProxy
 As you can see in Listing 14-1 , the constructor of the WebServiceProxy class doesn’t do anything.

 Listing 14-1: The Constructor of the WebServiceProxy Class

 Sys.Net.WebServiceProxy = function SysNetWebServiceProxy() { }
Sys.Net.WebServiceProxy.registerClass(‘Sys.Net.WebServiceProxy’);

 Timeout
 The WebServiceProxy class exposes a getter named get_timeout and a setter named
set_timeout that enable you to get and set the request timeout, as shown in Listing 14-2 .

c14.indd 535c14.indd 535 8/20/07 6:13:45 PM8/20/07 6:13:45 PM

Chapter 14: Consuming Web Services Via JSON Messages

536

 Listing 14-2: Getting and Setting the Request Timeout

 function SysNetWebServiceProxy$set_timeout(value)
{
 this._timeout = value;
}

function SysNetWebServiceProxy$get_timeout()
{
 return this._timeout;
}

 Default Succeeded Callback
 You call the set_defaultSucceededCallback method on the WebServiceProxy object to specify a
JavaScript function as the default succeeded callback for Web requests (see Listing 14-3). As the name
implies, this JavaScript function is automatically invoked when a request is completed successfully. You
call the get_defaultSucceededCallback method on the WebServiceProxy object to return a refer-
ence to the JavaScript function registered as the default succeeded callback (see Listing 14-3).

 Listing 14-3: Getting and Setting the Default Succeeded Callback

 function SysNetWebServiceProxy$set_defaultSucceededCallback(value)
{
 this._succeeded = value;
}

function SysNetWebServiceProxy$get_defaultSucceededCallback()
{
 return this._succeeded;
}

 Default Failed Callback
 You can call the set_ defaultFailedCallback method on the WebServiceProxy object to
specify a JavaScript function as the default failed callback for Web requests (see Listing 14-4). As the
name suggests, this JavaScript function is automatically invoked when a request fails. Call the
get_defaultFailedCallback method on the WebServiceProxy object to return a reference to
 the JavaScript function registered as the default failed callback (see Listing 14-4).

 Listing 14-4: Getting and Setting the Default Failed Callback

 function SysNetWebServiceProxy$set_defaultFailedCallback(value)
{
 this._failed = value;
}

function SysNetWebServiceProxy$get_defaultFailedCallback()
{
 return this._failed;
}

c14.indd 536c14.indd 536 8/20/07 6:13:46 PM8/20/07 6:13:46 PM

Chapter 14: Consuming Web Services Via JSON Messages

537

 Path
 Call the set_path method on the WebServiceProxy object to specify a URL as the target URL for Web
requests (see Listing 14-5). Call the get_path method on the WebServiceProxy object to return the
 target URL (see Listing 14-5).

 Listing 14-5: Getting and Setting the Path

 function SysNetWebServiceProxy$set_path(value)
{
 this._path = value;
}

function SysNetWebServiceProxy$get_path()
{
 return this._path;
}

 Invoking a Web Method
 Invoking a Web method is at the heart of the WebServiceProxy class. The main responsibility of
the _invoke method is to invoke the Web method with a specified name and parameter names and
 values that belong to a Web service with a specified URL. As you can see in Listing 14-6 , the _invoke
method takes the following parameters:

 ❑ servicePath : This parameter specifies the target URL for the Web service. For example, if
you have a Web service named Service.asmx running locally on your machine, its service
path is as follows:

 http://localhost/Service.asmx

 ❑ methodName : This parameter is a string that contains the name of the Web method being
invoked.

❑ useGet : This parameter is a Boolean value that specifies whether the request must be made
using the GET HTTP verb.

❑ params : This parameter is a dictionary that contains the names and values of the parameters of
the Web method being invoked.

❑ onSuccess : This optional parameter references a JavaScript function that will be called when
the request completes successfully.

❑ onFailure : This optional parameter references a JavaScript function that will be called when
the request fails.

❑ userContext : This optional parameter references a JavaScript object that will be passed into the
JavaScript functions referenced by the onSuccess and onFailure parameters when they’re
 invoked. This enables you to pass arbitrary information into the _invoke method for retrieval
when these JavaScript functions are called. The type of this information depends on the specifics
of your application. The WebServiceProxy class does not do anything with the user context. It
simply keeps it somewhere and passes it into the JavaScript functions referenced by the
 onSuccess and onFailure parameters when they’re invoked.

c14.indd 537c14.indd 537 8/20/07 6:13:46 PM8/20/07 6:13:46 PM

Chapter 14: Consuming Web Services Via JSON Messages

538

 Listing 14-6: The _invoke Method

 function SysNetWebServiceProxy$_invoke(servicePath, methodName, useGet,
 params, onSuccess, onFailure, userContext)
{
 if (onSuccess === null || typeof onSuccess === ‘undefined’)
 onSuccess = this.get_defaultSucceededCallback();

 if (onFailure === null || typeof onFailure === ‘undefined’)
 onFailure = this.get_defaultFailedCallback();

 if (userContext === null || typeof userContext === ‘undefined’)
 userContext = this.get_defaultUserContext();

 return Sys.Net.WebServiceProxy.invoke(servicePath, methodName, useGet, params,
 onSuccess, onFailure, userContext, this.get_timeout());
}

 Note that the _invoke method returns a reference to the WebRequest object that represents the request
made to the Web service.

 Now, let’s walk through the implementation of the _invoke method. If no JavaScript function has
been assigned to the onSuccess parameter as a succeeded callback, the _invoke method calls the
get_defaultSucceededCallback method to return and use the JavaScript function registered as
the default succeeded callback:

 if (onSuccess === null || typeof onSuccess === ‘undefined’)
 onSuccess = this.get_defaultSucceededCallback();

 If no JavaScript function has been assigned to the onFailure parameter as a failed callback, the _invoke
method calls the get_defaultFailedCallback method to return and use the JavaScript function
 registered as the default failed callback:

 if (onFailure === null || typeof onFailure === ‘undefined’)
 onFailure = this.get_defaultFailedCallback();

 If no JavaScript object has been assigned to the userContext parameter, the _invoke method calls the
 get_defaultUserContext method to return and use the JavaScript object registered as the default user
context:

 if (userContext === null || typeof userContext === ‘undefined’)
 userContext = this.get_defaultUserContext();

 Finally, the _invoke method delegates the responsibility of invoking the Web method with a specified
name and parameter names and values to the invoke static method of the WebServiceProxy class:

 return Sys.Net.WebServiceProxy.invoke(servicePath, methodName, useGet, params,
 onSuccess, onFailure, userContext, this.get_timeout());

 Note that the _invoke method passes the return value of the get_timeout method as the last parameter
into the invoke method. This return value specifies the request timeout.

c14.indd 538c14.indd 538 8/20/07 6:13:47 PM8/20/07 6:13:47 PM

Chapter 14: Consuming Web Services Via JSON Messages

539

 invoke
 Listing 14-7 presents the internal implementation of the WebServiceProxy class’s invoke static method.

 Listing 14-7: The invoke Static Method of the WebServiceProxy Class

 Sys.Net.WebServiceProxy.invoke =
function SysNetWebServiceProxy$invoke(servicePath, methodName, useGet, params,
 onSuccess, onFailure, userContext, timeout)
{
 var request = new Sys.Net.WebRequest();

 request.get_headers()[‘Content-Type’] = ‘application/json; charset=utf-8’;
 if (!params)
 params = {};

 var urlParams = params;
 if (!useGet || !urlParams)
 urlParams = {};

 request.set_url(Sys.Net.WebRequest._createUrl(servicePath+”/”+methodName,
 urlParams));
 var body = null;
 if (!useGet)
 {
 body = Sys.Serialization.JavaScriptSerializer.serialize(params);

 if (body === “{}”)
 body = “”;
 }

 request.set_body(body);
 request.add_completed(onComplete);
 if (timeout && timeout > 0)
 request.set_timeout(timeout);

 request.invoke();

 function onComplete(response, eventArgs)
 {
 if (response.get_responseAvailable())
 {
 var statusCode = response.get_statusCode();
 var result = null;

 try
 {
 var contentType = response.getResponseHeader(“Content-Type”);
 if (contentType.startsWith(“application/json”))
 result = response.get_object();

 else if (contentType.startsWith(“text/xml”))
 result = response.get_xml();

 else
 result = response.get_responseData();
 }

(continued)

c14.indd 539c14.indd 539 8/20/07 6:13:47 PM8/20/07 6:13:47 PM

Chapter 14: Consuming Web Services Via JSON Messages

540

 Listing 14-7 (continued)

 catch (ex)
 {
 }

 var error = response.getResponseHeader(“jsonerror”);
 var errorObj = (error === “true”);
 if (errorObj)
 result = new Sys.Net.WebServiceError(false, result.Message,
 result.StackTrace,
 result.ExceptionType);

 if (((statusCode < 200) || (statusCode >= 300)) || errorObj)
 {
 if (onFailure)
 {
 if (!result || !errorObj)
 result = new Sys.Net.WebServiceError(false /*timedout*/,
 String.format(Sys.Res.webServiceFailedNoMsg, methodName), “”, “”);

 result._statusCode = statusCode;
 onFailure(result, userContext, methodName);
 }

 else
 {
 var error;
 if (result && errorObj)
 error = result.get_exceptionType() + “-- “ + result.get_message();

 else
 error = response.get_responseData();

 alert(String.format(Sys.Res.webServiceFailed, methodName, error));
 }
 }

 else if (onSuccess)
 onSuccess(result, userContext, methodName);
 }

 else
 {
 var msg;
 if (response.get_timedOut())
 msg = String.format(Sys.Res.webServiceTimedOut, methodName);

 else
 msg = String.format(Sys.Res.webServiceFailedNoMsg, methodName)

 if (onFailure)
 onFailure(
 new Sys.Net.WebServiceError(response.get_timedOut(), msg, “”, “”),
 userContext, methodName);

c14.indd 540c14.indd 540 8/20/07 6:13:47 PM8/20/07 6:13:47 PM

Chapter 14: Consuming Web Services Via JSON Messages

541

 else
 alert(msg);
 }
 }

 return request;
}

 This method first instantiates a WebRequest object to represent the current Web request:

 var request = new Sys.Net.WebRequest();

 Next, it calls the get_headers method to return a reference to the dictionary that contains the names
and values of the request headers, and assigns the string ‘application/json; charset=utf-8’ as
the value of the Content-Type request header:

 request.get_headers()[‘Content-Type’] = ‘application/json; charset=utf-8’;

 This value instructs the server that the body of the message contains a JSON object. As you’ll see later,
the server-side code uses a serializer to deserialize a .NET object from this JSON representation.

 Next, it checks whether at least one of the following conditions are met:

 ❑ You’re making a GET HTTP request to the server. As previously discussed, the third parameter
passed into the invoke method is a Boolean that specifies whether the GET HTTP verb must be used.

❑ The Web method being invoked does not take any arguments.

 If at least one of these conditions is met, the invoke method passes the dictionary that contains the
names and values of the arguments of the Web method being invoked as the second argument to a
method named _createUrl . If neither of the conditions is met, the invoke method passes an empty
dictionary as the second argument.

 The main responsibility of the _createUrl method is to create a URL that consists of the following two
main parts:

 ❑ The URL part, which itself consists of two parts separated by the forward slash character (/),
where the first part contains the service path (the target URL) of the Web service, and the second
part contains the name of the Web method being invoked. As you can see in the following code
excerpt from Listing 14-7 , the Web method name is passed to the server as part of the URL.

❑ The query string part, which consists of query string parameters and their associated values,
where each parameter and its associated value respectively contain the name and value of an
 argument of the Web method being invoked. As you can see in the following code excerpt from
Listing 14-7 , the names and values of the arguments of the Web method are passed to the server
as a query string if at least one of the previously mentioned conditions is met.

c14.indd 541c14.indd 541 8/20/07 6:13:48 PM8/20/07 6:13:48 PM

Chapter 14: Consuming Web Services Via JSON Messages

542

 var urlParams = params;
 if (!useGet || !urlParams)
 urlParams = {};

 var url = Sys.Net.WebRequest._createUrl(servicePath+”/”+methodName, urlParams);

 Next, the invoke static method calls the set_url getter on the WebRequest object that represents the
 current request to specify the URL returned from the _createUrl method as the target URL of the request:

 request.set_url(url);

 Then, the invoke method checks the value of its third parameter to determine whether it must make a
 POST HTTP request to the server. If so, it invokes a static method named serialize on an ASP.NET
AJAX class named JavaScriptSerializer , passing in the dictionary that contains the names and values
of the arguments of the Web method being invoked to serialize this dictionary into a JSON object. It
assigns this JSON object to a local variable named body , which contains the body of the POST HTTP
request being made to the server.

 var body = null;
 if (!useGet)
 {
 body = Sys.Serialization.JavaScriptSerializer.serialize(params);

 if (body === “{}”)
 body = “”;
 }

 Next, the invoke static method calls the set_body method on the WebRequest object that represents
the current request, passing in the body local variable to set the body of the request:

 request.set_body(body);

 If the request is a GET HTTP request, the body is null . If the request is a POST HTTP request, the body
 contains the JSON representation of the names and values of the parameters of the Web method being
invoked. In other words, the names and values of the parameters are passed as part of query string if the
request is a GET HTTP request, and as part of the body of the request if the request is a POST HTTP request.

 Next, the invoke static method calls the add_completed method on the WebRequest object that represents
the current GET or POST HTTP request, to register a private JavaScript function named onComplete as an
event handler for the completed event of the WebRequest object:

 request.add_completed(onComplete);

 This object raises its completed event when the request finally completes.

 The onComplete function is private to the invoke static method and cannot be accessed from outside
this method (discussed in more detail later in this chapter).

 Next, the invoke static method calls the set_timeout method on the WebRequest object that represents
the current GET or POST HTTP request to set the request timeout:

c14.indd 542c14.indd 542 8/20/07 6:13:48 PM8/20/07 6:13:48 PM

Chapter 14: Consuming Web Services Via JSON Messages

543

 if (timeout && timeout > 0)
 request.set_timeout(timeout);

 Finally, it calls the invoke method on the WebRequest object to make the request to the Web service:

 request.invoke();

 _createUrl
 As Listing 14-8 shows the _createUrl static method of the WebRequest class takes the following two
parameters:

 ❑ url : This parameter is a string that contains the target URL.

❑ queryString : This parameter is a dictionary that contains the names and values of parameters
being sent to the server as a query string. For example, in the case of Listing 14-7 , these parame-
ters are the parameters of the Web method being invoked.

 Listing 14-8 : The _createUrl Static Method of the WebRequest Class

 Sys.Net.WebRequest._createUrl =
function SysNetWebRequest$_createUrl(url, queryString)
{
 if (!queryString)
 return url;

 var qs = Sys.Net.WebRequest._createQueryString(queryString);
 if (qs.length > 0)
 {
 var sep = ‘?’;
 if (url && url.indexOf(‘?’) !== -1)
 sep = ‘&’;
 return url + sep + qs;
 }

 else
 return url;
}

 The _createUrl static method first calls the _createQueryString static method on the WebRequest
class, passing in the dictionary that contains the names and values of the parameters being sent to the
server as a query string:

 var qs = Sys.Net.WebRequest._createQueryString(queryString);

 As you’ll see shortly, this static method builds and returns a valid query string out of the items in this
dictionary.

 Next, the _createUrl method checks whether the URL contains the required ? separator character, which
separates a query string from its associated URL. If it does not contain this character, the _createUrl
method adds it between the URL and the query string:

c14.indd 543c14.indd 543 8/20/07 6:13:48 PM8/20/07 6:13:48 PM

Chapter 14: Consuming Web Services Via JSON Messages

544

 var sep = ‘?’;
 if (url && url.indexOf(‘?’) !== -1)
 sep = ‘&’;
 return url + sep + qs;

 _createQueryString
 Listing 14-9 presents the internal implementation of the WebRequest class’s _createQueryString
static method. As you can see, this method takes the following two parameters:

 ❑ queryString : This parameter references a dictionary that contains the names and values of the
parameters to be embedded in the query string. In the case of Listing 14-7 , this dictionary
 contains the names and values of the parameters of the Web method being invoked.

❑ encodeMethod : This parameter references a JavaScript function that takes a string as its
 parameter and encodes certain characters in the string.

 Listing 14-9 : The _createQueryString Method of the WebRequest Class

 Sys.Net.WebRequest._createQueryString =
function SysNetWebRequest$_createQueryString(queryString, encodeMethod)
{
 if (!encodeMethod)
 encodeMethod = encodeURIComponent;

 var sb = new Sys.StringBuilder();

 var i = 0;
 for (var arg in queryString)
 {
 var obj = queryString[arg];
 if (typeof(obj) === “function”)
 continue;

 var val = Sys.Serialization.JavaScriptSerializer.serialize(obj);
 if (i !== 0)
 sb.append(‘&’);

 sb.append(arg);
 sb.append(‘=’);
 sb.append(encodeMethod(val));

 i++;
 }

 return sb.toString();
}

 The _createQueryString method first checks whether the caller has specified a value for the encodeMethod
parameter. If not, it uses the JavaScript encodeURIComponent function as the encoding method:

 if (!encodeMethod)
 encodeMethod = encodeURIComponent;

c14.indd 544c14.indd 544 8/20/07 6:13:49 PM8/20/07 6:13:49 PM

Chapter 14: Consuming Web Services Via JSON Messages

545

 The encodeURIComponent function takes a string as its parameter and replaces certain characters in the
string with their UTF-8 encoding representations.

 Next, the _createQueryString method creates a StringBuilder object:

 var sb = new Sys.StringBuilder();

 Then, it iterates through the items in the dictionary passed into it as its first argument and takes the
 following steps for each enumerated item (in the case of Listing 14-7 , each enumerated item contains the
name and value of a parameter of the Web method being invoked):

 1. It uses the name of the enumerated item as an index into the dictionary to access the associated
value of the parameter:

 var obj = queryString[arg];

 2. It calls the serialize static method of an ASP.NET AJAX class named JavaScriptSerializer ,
passing in the value of the parameter to serialize this value into its JSON representation:

 var val = Sys.Serialization.JavaScriptSerializer.serialize(obj);

 3. It calls the append method on the StringBuilder object to append the name of the parameter:

 sb.append(arg);

 4. It calls the append method on the StringBuilder object to append the � character:

 sb.append(‘=’);

 5. It calls the append method again, this time to append the JSON representation of the value of
the parameter:

 sb.append(encodeMethod(val));

 Finally, the _createQueryString method returns the content of the StringBuilder object to its caller:

 return sb.toString();

 In the case of Listing 14-7 , the _createQueryString method creates a query string that contains the
names and JSON representations of the values of the parameters of the Web method being invoked.

 Regardless of whether the current request is a GET or POST HTTP request, the Web service must expect
to receive the JSON representations of the parameter values of the Web method being invoked. It must
also be able to deserialize these JSON representations into the objects of the types that the Web method
expects before it passes these parameter values into the method. This requires some changes in the nor-
mal ASP.NET Web service–handling infrastructure to enable it to process requests coming from the
ASP.NET AJAX applications, because the normal ASP.NET Web service handler expects to receive the
names and values of the parameters of the Web method being invoked as part of the body of the SOAP
message. They also expect to receive the SOAP representations of the values of these parameters, not
their JSON representations. This is discussed in more detail later in this chapter.

c14.indd 545c14.indd 545 8/20/07 6:13:49 PM8/20/07 6:13:49 PM

Chapter 14: Consuming Web Services Via JSON Messages

546

 onComplete
 As you saw in Listing 14-7 , the invoke static method of the WebServiceProxy class registers the
onComplete private JavaScript function as the event handler for the completed event of the WebRequest
object that represents the current request. Listing 14-10 shows the internal implementation of this
function.

 Listing 14-10: The onComplete Private JavaScript Function

 function onComplete(response, eventArgs)
 {
 if (response.get_responseAvailable())
 {
 var result = null;

 try
 {
 var contentType = response.getResponseHeader(“Content-Type”);
 if (contentType.startsWith(“application/json”))
 result = response.get_object();

 else if (contentType.startsWith(“text/xml”))
 result = response.get_xml();

 else
 result = response.get_responseData();
 }
 catch (ex) { }

 var error = response.getResponseHeader(“jsonerror”);
 var errorObj = (error === “true”);
 if (errorObj)
 result = new Sys.Net.WebServiceError(false, result.Message,
 result.StackTrace,
 result.ExceptionType);

 var statusCode = response.get_statusCode();

 if (((statusCode < 200) || (statusCode >= 300)) || errorObj)
 {
 if (onFailure)
 {
 if (!result || !errorObj)
 result = new Sys.Net.WebServiceError(false /*timedout*/,
 String.format(Sys.Res.webServiceFailedNoMsg, methodName), “”, “”);

 result._statusCode = statusCode;
 onFailure(result, userContext, methodName);
 }

 else
 {
 var error;
 if (result && errorObj)

c14.indd 546c14.indd 546 8/20/07 6:13:49 PM8/20/07 6:13:49 PM

Chapter 14: Consuming Web Services Via JSON Messages

547

 error = result.get_exceptionType() + “-- “ + result.get_message();

 else
 error = response.get_responseData();

 alert(String.format(Sys.Res.webServiceFailed, methodName, error));
 }
 }

 else if (onSuccess)
 onSuccess(result, userContext, methodName);
 }

 else
 {
 var msg;
 if (response.get_timedOut())
 msg = String.format(Sys.Res.webServiceTimedOut, methodName);

 else
 msg = String.format(Sys.Res.webServiceFailedNoMsg, methodName)

 if (onFailure)
 onFailure(
 new Sys.Net.WebServiceError(response.get_timedOut(), msg, “”, “”),
 userContext, methodName);

 else
 alert(msg);
 }
 }

 When this function is invoked, two parameters are passed into it. The first parameter references the
 WebRequestExecutor object responsible for executing the current request. As discussed in the previous
chapters, the completion of a request does not automatically mean that everything went fine and the
server response has successfully arrived. Because the completed event could be raised for a number
of reasons, the onComplete method must first determine what caused the completed event to fire
(as does any method registered for a WebRequest object’s completed event). The boldface portions of
 Listing 14-10 contain the code that makes this determination.

 As you can see in the following excerpt from Listing 14-10 , if the request has completed because
 something went wrong (for example, because the request timed out), the onComplete function invokes
the failure JavaScript function if such a function has been specified. Otherwise, it simply calls the
 alert function to display the error massage in a pop-up box.

 var msg;
 if (response.get_timedOut())
 msg = String.format(Sys.Res.webServiceTimedOut, methodName);

 else
 msg = String.format(Sys.Res.webServiceFailedNoMsg, methodName)

(continued)

c14.indd 547c14.indd 547 8/20/07 6:13:50 PM8/20/07 6:13:50 PM

Chapter 14: Consuming Web Services Via JSON Messages

548

 if (onFailure)
 onFailure(
 new Sys.Net.WebServiceError(response.get_timedOut(), msg, “”, “”),
 userContext, methodName);

 else
 alert(msg);

 If the request has completed because the server response has successfully arrived, the onComplete
 function performs the following tasks:

 1. It invokes the getResponseHeader method on the WebRequestExecutor object responsible for
executing the current request to return the value of the response header named Content-Type :

 var contentType = response.getResponseHeader(“Content-Type”);

 2. If the value of the Content-Type response header starts with the string “application/json” ,
the response contains a JSON object and, consequently, the onComplete method invokes the
 get_object method on the WebRequestExecutor object to access this JSON object, and stores
the object in a local variable named result :

 if (contentType.startsWith(“application/json”))
 result = response.get_object();

 3. If the value of the Content-Type response header starts with the string “text/xml” , the
 response contains an XML document and, consequently, the onComplete method calls the
get_xml method on the WebRequestExecutor object to access this XML document, and stores
this document in the result local variable:

 else if (contentType.startsWith(“text/xml”))
 result = response.get_xml();

 4. If the value of the Content-Type response header does not start with either the
 “application/json” string or the “text/xml” string, the onComplete method calls the
get_responseData method on the WebRequestExecutor object to access the server response,
and stores it in the result local variable:

 else
 result = response.get_responseData();

 Next, the onComplete method calls the getResponseHeader method on the WebRequestExecutor
object to return the value of a response header named jsonerror :

 var error = response.getResponseHeader(“jsonerror”);

 If the server response contains this response header, and if the value of this header is the string
 “true” , the response contains information about an error that occurred when the server was processing
the current request. The server response is stored in the result local variable, and the server uses the
 jsonerror custom HTTP header to signal the onComplete method that the response contains
 information about an error. This information includes the error message, stack trace, and exception type.
As the following excerpt from Listing 14-10 shows, the onComplete method creates an instance of a
class named Sys.Net.WebServiceError , passing in the error message, stack trace, and exception type,
and stores this instance in the result local variable:

c14.indd 548c14.indd 548 8/20/07 6:13:50 PM8/20/07 6:13:50 PM

Chapter 14: Consuming Web Services Via JSON Messages

549

 var errorObj = (error === “true”);
 if (errorObj)
 result = new Sys.Net.WebServiceError(false, result.Message,
 result.StackTrace,
 result.ExceptionType);

 Next, the invoke method calls the get_statusCode method on the WebRequestExecutor object to
return the HTTP status code of the server response:

 var statusCode = response.get_statusCode();

 The method then checks whether at least one of the following conditions is met:

❑ The HTTP status code is less than 200, or greater than or equal to 300, which indicates that a
server error has occurred.

❑ The server response contains a response header named jsonerror with a value of true .

 Either of these conditions indicates a server error and, consequently, the invoke method takes the
 following steps to report the error:

 1. If the onFailure parameter is not null , it means the caller of the invoke method has specified
a JavaScript function as the value of this parameter. Consequently, the invoke method sets
the _statusCode property of the result local variable to the server response’s HTTP status
code, and invokes the JavaScript function referenced by the onFailure parameter, passing in
three parameters. The first parameter references the result local variable, the second parameter
references the user context object, and the third parameter references the name of the Web
method that was invoked:

 result._statusCode = statusCode;
 onFailure(result, userContext, methodName);

2. If the caller of the invoke method has not specified a value for the onFailure parameter, the
method invokes the alert function to display the error message in a pop-up box:

 alert(String.format(Sys.Res.webServiceFailed, methodName, error));

 3. If the server response HTTP status code is a number equal to or greater than 200 but less than
300, this indicates that everything has gone fine on the server side and, consequently, the
 invoke method invokes the JavaScript function referenced by the onSuccess parameter (if
any), passing in three parameters. The first parameter references the result local variable, the
second parameter references the user context, and the third parameter contains the name of
the Web method invoked:

 else if (onSuccess)
 onSuccess(result, userContext, methodName);

 Using WebServiceProxy
 Listing 14-11 presents a page that uses the WebServiceProxy class. If you run this page, you’ll get the
result shown in Figure 14-1 .

c14.indd 549c14.indd 549 8/20/07 6:13:50 PM8/20/07 6:13:50 PM

Chapter 14: Consuming Web Services Via JSON Messages

550

 Listing 14-11: A Page that Uses the WebServiceProxy Class

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>

 <script type=”text/javascript” language=”javascript”>
 var request;

 function onSuccess(result, userContext, methodName)
 {
 userContext.innerHTML = “ <u>” + result + “ </u>”;
 }

 function onFailure(result, userContext, methodName) { }

 function add()
 {
 var servicePath = “http://localhost/WebServicesViaJSON/Math.asmx”;
 var methodName = “Add”;
 var useGet = false;
 var xValue = $get(“firstNumber”).value;
 var yValue = $get(“secondNumber”).value;
 var params = {x : xValue, y : yValue};

 var userContext = $get(“result”);
 var webServiceProxy = new Sys.Net.WebServiceProxy();
 webServiceProxy.set_timeout(0);
 request = webServiceProxy._invoke(servicePath, methodName, useGet, params,
 onSuccess, onFailure, userContext);
 }
 </script>

</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />
 <table>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 First Number:
 </td>
 <td align=”left”>
 <input type=”text” id=”firstNumber” /></td>
 </tr>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 Second Number:
 </td>
 <td align=”left”>
 <input type=”text” id=”secondNumber” /></td>
 </tr>

c14.indd 550c14.indd 550 8/20/07 6:13:51 PM8/20/07 6:13:51 PM

Chapter 14: Consuming Web Services Via JSON Messages

551

 <tr>
 <td colspan=”2” align=”center”>
 <button onclick=”add()”>
 Add</button></td>
 </tr>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 Result:
 </td>
 <td align=”left”>

 </td>
 </tr>
 </table>
 </form>
</body>
</html>

 This page consists of two text boxes where the end user enters two numbers. When the user clicks the
 Add button, the page connects to the Web service shown in Listing 14-12 in asynchronous fashion,
invokes its Add method, and uses DHTML to display the result of this method. The Web service is
marked with the ScriptService metadata attribute, which enables it to process JSON messages from
the client code. Without this metadata attribute, the Web service will act like a normal Web service,
which responds only to SOAP messages.

 Listing 14-12: The Web Service Used by Listing 14-11

 <%@ WebService Language=”C#” Class=”MyNamespace.Math” %>

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Web.Script.Services;

(continued)

Figure 14 -1

c14.indd 551c14.indd 551 8/20/07 6:13:51 PM8/20/07 6:13:51 PM

Chapter 14: Consuming Web Services Via JSON Messages

552

 Listing 14-12 (continued)

namespace MyNamespace
{
 [WebService(Namespace = “http://tempuri.org/”)]
 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
 [ScriptService]
 public class Math
 {
 [WebMethod]
 public double Add(double x, double y)
 {
 return x + y;
 }
 }
}

 Now let’s walk through the implementation of the add JavaScript function. Note that Listing 14-11
 registers this function as the event handler for the click event of the Add button.

 The add function begins by instantiating an instance of the WebServiceProxy class:

 var webServiceProxy = new Sys.Net.WebServiceProxy();

 Next, it sets the request timeout:

 webServiceProxy.set_timeout(0);

 You must call set_timeout to set the request timeout. Otherwise you’ll get an error.

 Next, the add function specifies the parameters that you need to pass into the _invoke method of the
 WebServiceProxy instance. The first parameter is the service path, which is the URL where the Web
 service is located:

 var servicePath = “http://localhost/WebServicesViaJSON/WebService.asmx”;

 The second parameter is the name of the Web method being invoked, which is the Add method in this case:

 var methodName = “Add”;

 The third parameter is a Boolean value that specifies whether the WebServiceProxy instance must make
a GET or POST HTTP request to the Web service. In this case, you set the Boolean parameter to false
because you want the WebServiceProxy instance to make a POST HTTP request to the Web service:

 var useGet = false;

 The fourth parameter must specify the names and values of the parameters of the Web method being
invoked. As Listing 14-12 shows, the Add Web method takes two parameters named x and y . The add
function retrieves the values of these two parameters from the user-entry text boxes:

 var xValue = $get(“firstNumber”).value;
 var yValue = $get(“secondNumber”).value;
 var params = {x : xValue, y : yValue};

c14.indd 552c14.indd 552 8/20/07 6:13:51 PM8/20/07 6:13:51 PM

Chapter 14: Consuming Web Services Via JSON Messages

553

 The fifth parameter is a reference to a JavaScript function that the WebServiceProxy instance will
 automatically invoke when everything goes fine and the server response arrives. In this case, this is a
JavaScript function named onSuccess , which simply displays the return value of the Add Web method:

 function onSuccess(result, userContext, methodName)
 {
 userContext.innerHTML = “ <u>” + result + “ </u>”;
 }

 The sixth parameter is a reference to a JavaScript function that the WebServiceProxy instance will
 automatically invoke when something goes wrong. In this case, this JavaScript function is named
 onFailure , which will be discussed shortly.

 The seventh (and final) parameter is a reference to the user context. In this case, the user context references
a HTML element with the id value of “result” , where the onSuccess and onFailure JavaScript
functions display the result:

 var userContext = $get(“result”);

 As you can see in the following excerpt from Listing 14-11 , the add function calls the _invoke method
on the WebServiceProxy instance, passing in the seven parameters to invoke the Add Web method:

 request = webServiceProxy._invoke(servicePath, methodName, useGet, params,
 onSuccess, onFailure, userContext);

 The _invoke method returns a reference to the WebRequest object that represents the current request,
and provides you with complete information about the current request.

 WebServiceError
 As shown previously in Listing 14-7 , the invoke static method of the WebServiceProxy class registers
the onComplete method as an event handler for the completed event of the WebRequest object that
represents the request made to the Web service. Listing 14-10 contained the implementation of the
 onComplete method. This implementation is shown again in Listing 14-13 , with highlighted portions
showing how the onComplete method invokes the onFailure JavaScript function when an error occurs.
This function takes three parameters. The first parameter references a Sys.Net.WebServiceError
object that contains the complete information about the error, the second parameter references the user
context, and the third parameter is a string that contains the name of the Web method.

 Listing 14-13: The onComplete Method

 function onComplete(response, eventArgs)
 {
 if (response.get_responseAvailable())
 {
 . . .

 var error = response.getResponseHeader(“jsonerror”);
 var errorObj = (error === “true”);

(continued)

c14.indd 553c14.indd 553 8/20/07 6:13:52 PM8/20/07 6:13:52 PM

Chapter 14: Consuming Web Services Via JSON Messages

554

 Listing 14-13 (continued)

 if (errorObj)
 result = new Sys.Net.WebServiceError(false, result.Message,
 result.StackTrace,
 result.ExceptionType);

 var statusCode = response.get_statusCode();

 if (((statusCode < 200) || (statusCode >= 300)) || errorObj)

 {
 if (onFailure)
 {

 if (!result || !errorObj)
 result = new Sys.Net.WebServiceError(false /*timedout*/,
 String.format(Sys.Res.webServiceFailedNoMsg, methodName), “”, “”);

 result._statusCode = statusCode;
 onFailure(result, userContext, methodName);

 }
 . . .
 }
 . . .
 }

 else
 {

 var msg;
 if (response.get_timedOut())
 msg = String.format(Sys.Res.webServiceTimedOut, methodName);

 else
 msg = String.format(Sys.Res.webServiceFailedNoMsg, methodName)

 if (onFailure)
 onFailure(
 new Sys.Net.WebServiceError(response.get_timedOut(), msg, “”, “”),
 userContext, methodName);

 . . .
 }
 }

 As you can see, the constructor of the Sys.Net.WebServiceError class takes four parameters:

 result = new Sys.Net.WebServiceError(false, result.Message,
 result.StackTrace,
 result.ExceptionType);

 Listing 14-14 presents the definition of the WebServiceError class.

c14.indd 554c14.indd 554 8/20/07 6:13:52 PM8/20/07 6:13:52 PM

Chapter 14: Consuming Web Services Via JSON Messages

555

 Listing 14-14: The WebServiceError Class

 Sys.Net.WebServiceError =
function SysNetWebServiceError(timedOut, message, stackTrace, exceptionType)
{
 this._timedOut = timedOut;
 this._message = message;
 this._stackTrace = stackTrace;
 this._exceptionType = exceptionType;
 this._statusCode = -1;
}

Sys.Net.WebServiceError.prototype =
{
 get_timedOut: SysNetWebServiceError$get_timedOut,
 get_statusCode: SysNetWebServiceError$get_statusCode,
 get_message: SysNetWebServiceError$get_message,
 get_stackTrace: SysNetWebServiceError$get_stackTrace,
 get_exceptionType: SysNetWebServiceError$get_exceptionType
}

Sys.Net.WebServiceError.registerClass(‘Sys.Net.WebServiceError’);

 The constructor of this class takes the following four parameters:

 ❑ timedOut : This Boolean parameter specifies whether the WebServiceError error was raised
because of a request timeout. As Listing 14-14 demonstrates, the WebServiceError constructor
assigns the value of this parameter to a private field named _timedOut . The WebServiceError
class exposes a public getter named get_timedOut that you can call from your client code to
 access the value of this private field:

 function SysNetWebServiceError$get_timedOut()
{
 return this._timedOut;
}

 For example, the last highlighted portion of Listing 14-13 (as shown again in the following code fragment)
invokes the get_timedOut method on the WebRequestExecutor object responsible for executing the
current request to return a Boolean value that specifies whether the request has timed out. Note that
the return value of the get_timedOut method is passed into the constructor of the WebServiceError
class as its first argument:

 var msg;
 if (response.get_timedOut())
 msg = String.format(Sys.Res.webServiceTimedOut, methodName);

 else
 msg = String.format(Sys.Res.webServiceFailedNoMsg, methodName)

 if (onFailure)
 onFailure(
 new Sys.Net.WebServiceError(response.get_timedOut(), msg, “”, “”),
 userContext, methodName);

c14.indd 555c14.indd 555 8/20/07 6:13:52 PM8/20/07 6:13:52 PM

Chapter 14: Consuming Web Services Via JSON Messages

556

 ❑ message : This parameter is a string that contains the error message. As you can see in Listing
 14-14 , the WebServiceError constructor assigns the value of this parameter to a private field
named _message . The WebServiceError class exposes a public getter named get_message
that you can call from your client code to access the value of this private field:

 function SysNetWebServiceError$get_message()
{
 return this._message;
}

 ❑ stackTrace : This parameter is a string that contains the stack trace. As you can see in
 Listing 14-14 , the WebServiceError constructor assigns the value of this parameter to a
 private field named _stackTrace . The WebServiceError class exposes a public getter named
get_stackTrace that you can call from your client code to access the value of this private field:

 function SysNetWebServiceError$get_stackTrace()
{
 return this._stackTrace;
}

 ❑ exceptionType : This parameter is a string that contains the fully qualified name of the
type of the exception that the server side code raised (if any). As you can see in Listing 14-14 ,
the WebServiceError constructor assigns the value of this parameter to a private field
named _exceptionType . The WebServiceError class exposes a public getter named
get_exceptionType that you can call from your client code to access the value of this
private field:

 function SysNetWebServiceError$get_exceptionType()
{
 return this._exceptionType;
}

 Note that the WebServiceError also features a private field named _statusCode whose value is set
outside the constructor, as you can see in the boldfaced part of the following excerpt from Listing 14-13 :

 if (!result || !errorObj)
 result = new Sys.Net.WebServiceError(false /*timedout*/,
 String.format(Sys.Res.webServiceFailedNoMsg, methodName), “”, “”);

 result._statusCode = statusCode;
 onFailure(result, userContext, methodName);

 As a matter of fact, the WebServiceError class exposes a public property named get_statusCode that
you can call from your client code to access the value of the _statusCode private field:

 function SysNetWebServiceError$get_statusCode()
{
 return this._statusCode;
}

c14.indd 556c14.indd 556 8/20/07 6:13:52 PM8/20/07 6:13:52 PM

Chapter 14: Consuming Web Services Via JSON Messages

557

 Using WebServiceError
 Listing 14-15 presents a page that uses the WebServiceError class to get more information about an
error. This page invokes the Divide Web method of the Web service shown in Listing 14-16 . This Web
method takes two parameters, divides the first parameter by the second parameter, and returns the result.
Note that this Web method raises a System.DivideByZeroException exception if its second parameter is 0 .

 Listing 14-15: A Page that Uses the WebServiceError Class

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>

 <script type=”text/javascript” language=”javascript”>
 var request;

 function onSuccess(result, userContext, methodName)
 {
 userContext.innerHTML = “ <u>” + result + “ </u>”;
 }

 function onFailure(result, userContext, methodName)
 {
 var builder = new Sys.StringBuilder();
 builder.append(“timedOut: “);
 builder.append(result.get_timedOut());
 builder.appendLine();
 builder.appendLine();
 builder.append(“message: “);
 builder.append(result.get_message());
 builder.appendLine();
 builder.appendLine();
 builder.append(“stackTrace: “);
 builder.appendLine();
 builder.append(result.get_stackTrace());
 builder.appendLine();
 builder.appendLine();
 builder.append(“exceptionType: “);
 builder.append(result.get_exceptionType());
 builder.appendLine();
 builder.appendLine();
 builder.append(“statusCode: “);
 builder.append(result.get_statusCode());
 builder.appendLine();
 builder.appendLine();
 builder.append(“methodName: “);
 builder.append(methodName);

 alert(builder.toString());
 }

(continued)

c14.indd 557c14.indd 557 8/20/07 6:13:53 PM8/20/07 6:13:53 PM

Chapter 14: Consuming Web Services Via JSON Messages

558

 Listing 14-15 (continued)

 function divide()
 {
 var servicePath = “http://localhost/WebServicesViaJSON/Math.asmx”;
 var methodName = “Divide”;
 var useGet = false;
 var xValue = $get(“firstNumber”).value;
 var yValue = $get(“secondNumber”).value;
 var params = {x : xValue, y : yValue};

 var userContext = $get(“result”);
 var webServiceProxy = new Sys.Net.WebServiceProxy();
 webServiceProxy.set_timeout(0);
 request = webServiceProxy._invoke(servicePath, methodName, useGet, params,
 onSuccess, onFailure, userContext);
 }
 </script>

</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />
 <table>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 First Number:
 </td>
 <td align=”left”>
 <input type=”text” id=”firstNumber” /></td>
 </tr>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 Second Number:
 </td>
 <td align=”left”>
 <input type=”text” id=”secondNumber” /></td>
 </tr>
 <tr>
 <td colspan=”2” align=”center”>
 <button onclick=”divide()”>
 Divide</button></td>
 </tr>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 Result:
 </td>
 <td align=”left”>

 </td>
 </tr>
 </table>
 </form>
</body>
</html>

c14.indd 558c14.indd 558 8/20/07 6:13:53 PM8/20/07 6:13:53 PM

Chapter 14: Consuming Web Services Via JSON Messages

559

 Listing 14-16: The Web Service

 <%@ WebService Language=”C#” Class=”MyNamespace.Math” %>

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Web.Script.Services;

namespace MyNamespace
{
 [WebService(Namespace = “http://tempuri.org/”)]
 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
 [ScriptService]
 public class Math
 {
 [WebMethod]
 public double Divide(double x, double y)
 {
 if (y == 0)
 throw new DivideByZeroException();
 return x / y;
 }
 }
}

 Let’s walk through the implementation of the onFailure method. The WebServiceProxy automatically
invokes this method when something goes wrong. The onFailure method takes three parameters: the
first parameter references the WebServiceError object that provides complete information about
 the error, the second parameter references the user context object, and the third parameter is a string that
contains the name of the Web method invoked.

 The onFailure method method instantiates a StringBuilder and populates it with the complete
information about the error. First, it calls the get_timedOut method on the WebServiceError object to
return a Boolean value that specifies whether the request has timed out, and appends this Boolean value
to the StringBuilder :

 var builder = new Sys.StringBuilder();
 builder.append(“timedOut: “);
 builder.append(result.get_timedOut());
 builder.appendLine();
 builder.appendLine();

 Next, it calls the get_message method on the WebServiceError object to return a string that contains
the error message, and appends this string to the StringBuilder :

 builder.append(“message: “);
 builder.append(result.get_message());
 builder.appendLine();
 builder.appendLine();

c14.indd 559c14.indd 559 8/20/07 6:13:53 PM8/20/07 6:13:53 PM

Chapter 14: Consuming Web Services Via JSON Messages

560

 Then, it calls the get_stackTrace method on the WebServiceError object to return a string that
 contains the stack trace, and appends this string to the StringBuilder :

 builder.append(“stackTrace: “);
 builder.appendLine();
 builder.append(result.get_stackTrace());
 builder.appendLine();
 builder.appendLine();

 Next, it calls the get_exceptionType method on the WebServiceError object to return a string
that contains the fully qualified name of the type of the exception, and appends this string to the
 StringBuilder . In this case, the string is “System.DivideByZeroException” because this is the
exception that the Divide Web service method raises:

 builder.append(“exceptionType: “);
 builder.append(result.get_exceptionType());
 builder.appendLine();
 builder.appendLine();

 Next, it calls the get_statusCode method on the WebServiceError object to return the server
response status code and appends it to the StringBuilder . In this case, this status code will be 500
when the Divide method raises its System.DivideByZeroException :

 builder.append(“statusCode: “);
 builder.append(result.get_statusCode());
 builder.appendLine();
 builder.appendLine();

 Then, it appends the method name to the StringBuilder :

 builder.append(“methodName: “);
 builder.append(methodName);

 Finally, it invokes the alert function to display the content of the StringBuilder in a
pop-up box:

 alert(builder.toString());

 If you run the page shown in Listing 14-16 and enter 0 for the second number, you’ll get the pop-up
box shown in Figure 14-2 , which displays the contents of the previously mentioned
StringBuilder .

c14.indd 560c14.indd 560 8/20/07 6:13:54 PM8/20/07 6:13:54 PM

Chapter 14: Consuming Web Services Via JSON Messages

561

 Calling Page Methods
 As you saw in the previous section, if you have some server-side logic that you need to execute from
your client code, you can create a Web service with a Web method that encapsulates this logic and
invoke this method from your client code. The downside of this approach is that it requires you to move
this logic to a separate file with the extension .asmx . There are times when you need to keep this logic in
your Web page together with the rest of the page.

 The ASP.NET AJAX framework enables you to encapsulate this logic in a method in your Web page and
invoke this method from your client code, provided that this method meets the following requirements:

 ❑ It must be public.

❑ It must be static.

❑ It must be annotated with the WebMethodAttribute metadata attribute.

 Listing 14-17 presents a version of Listing 14-16 where the division logic is encapsulated in a public static
method named Divide on the .aspx page (the first boldface portion of the listing) instead of a Web
 service in a separate .asmx file. The service path is set to the URL of the current page, as shown in the
bottom boldface portion of the listing and again here:

 var servicePath = “/AJAXFuturesEnabledWebSite2/PageMethods.aspx”;

Figure 14 -2

c14.indd 561c14.indd 561 8/20/07 6:13:54 PM8/20/07 6:13:54 PM

Chapter 14: Consuming Web Services Via JSON Messages

562

 Listing 14-17: A Page that Allows You to Invoke its Methods from Your Client Code

 <%@ Page Language=”C#” %>

<%@ Import Namespace=”System.Web.Services” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<script runat=”server”>
 [WebMethod]
 public static double Divide(double x, double y)
 {
 if (y == 0)
 throw new DivideByZeroException();

 return x / y;
 }
</script>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>

 <script type=”text/javascript” language=”javascript”>
 var request;

 function onSuccess(result, userContext, methodName)
 {
 userContext.innerHTML = “ <u>” + result + “ </u>”;
 }

 function onFailure(result, userContext, methodName)
 {
 var builder = new Sys.StringBuilder();
 builder.append(“timedOut: “);
 builder.append(result.get_timedOut());
 builder.appendLine();
 builder.appendLine();
 builder.append(“message: “);
 builder.append(result.get_message());
 builder.appendLine();
 builder.appendLine();
 builder.append(“stackTrace: “);
 builder.appendLine();
 builder.append(result.get_stackTrace());
 builder.appendLine();
 builder.appendLine();
 builder.append(“exceptionType: “);
 builder.append(result.get_exceptionType());
 builder.appendLine();
 builder.appendLine();
 builder.append(“statusCode: “);
 builder.append(result.get_statusCode());
 builder.appendLine();
 builder.appendLine();
 builder.append(“methodName: “);
 builder.append(methodName);

c14.indd 562c14.indd 562 8/20/07 6:13:54 PM8/20/07 6:13:54 PM

Chapter 14: Consuming Web Services Via JSON Messages

563

 alert(builder.toString());
 }

 function divide()
 {
 var servicePath = “/WebServicesViaJSON/PageMethods.aspx”;
 var methodName = “Divide”;
 var useGet = false;
 var xValue = $get(“firstNumber”).value;
 var yValue = $get(“secondNumber”).value;
 var params = {x : xValue, y : yValue};

 var userContext = $get(“result”);
 var webServiceProxy = new Sys.Net.WebServiceProxy();
 webServiceProxy.set_timeout(0);
 request = webServiceProxy._invoke(servicePath, methodName, useGet, params,
 onSuccess, onFailure, userContext);
 }
 </script>

</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />
 <table>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 First Number:
 </td>
 <td align=”left”>
 <input type=”text” id=”firstNumber” /></td>
 </tr>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 Second Number:
 </td>
 <td align=”left”>
 <input type=”text” id=”secondNumber” /></td>
 </tr>
 <tr>
 <td colspan=”2” align=”center”>
 <button onclick=”divide()”>
 Divide</button></td>
 </tr>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 Result:
 </td>
 <td align=”left”>

 </td>
 </tr>
 </table>
 </form>
</body>
</html>

c14.indd 563c14.indd 563 8/20/07 6:13:55 PM8/20/07 6:13:55 PM

Chapter 14: Consuming Web Services Via JSON Messages

564

 Calling Custom Methods
 If you have some application logic that you need to execute from your client script, you can encapsulate
it in a method, and invoke this method from your client script in asynchronous fashion. The fundamental
question is where this method should go. Two options have been discussed thus far:

 ❑ You can turn this method into a Web method, which is part of a Web service in a separate file
with extension .asmx .

❑ You can add this method directly to your Web page.

 There may be times when neither of these two solutions meets your requirements because this method
must be part of a custom class that is neither part of a Web service nor a Web page. The most common
application of this scenario is what is known as a Web services bridge .

 As you saw in previous chapters, the ASP.NET AJAX network programming infrastructure uses
 XMLHttpRequest to communicate with the server. Due to security considerations, XMLHttpRequest
cannot be used to make requests to resources that reside on a site other than the site from which the
 current page was downloaded in the first place.

 Therefore, if your client code needs to communicate with a Web service that does not reside on the same
site from which your client code was downloaded, it has no choice but to do this indirectly through its
downloading site. This means that you need to encapsulate or wrap the logic that invokes the
Web method of the remote Web service in a method on your site, and have your client side invoke this
method instead of directly invoking the remote Web method.

 This raises the following question: Where should this wrapper method go? The ASP.NET AJAX frame-
work provides you with three choices:

 ❑ Make this wrapper method a Web method that belongs to a Web service on your site. This Web
service acts as an intermediary between your client side code and the remote Web service, as
discussed earlier in this chapter.

❑ Make this wrapper method a public static page method that belongs to a Web page on your site.
This public static page method acts as an intermediary between your client side code and the
 remote Web service, as discussed earlier in this chapter.

❑ Make this wrapper method a public method that belongs to a custom class on your site. This
custom class acts as an intermediary between your client side code and the remote Web service.
This option is called a Web services bridge and is discussed in this section.

 To use a Web services bridge, you must take the following steps:

 1. Add your custom class to the App_Code directory of your application. This saves you from
 having to manually compile your class. Another option is to compile your custom class into an
assembly and reference the assembly from your application.

2. Create a file with extension .asbx that describes your custom class, and add the file to the root
directory of your application.

3. Instruct the IIS Web server to hand over to the ASP.NET framework all resource requests with
extension .asbx .

c14.indd 564c14.indd 564 8/20/07 6:13:55 PM8/20/07 6:13:55 PM

Chapter 14: Consuming Web Services Via JSON Messages

565

 The best way to understand these three steps is to look at an example that uses them.

 Listing 14-18 presents a new version of the Divide method shown in Listing 14-17 . As you can see, the
new version is now an instance method of a custom class named Math .

 Listing 14-18: The Math Custom Class

 using System;

namespace CustomComponents
{
 public class Math
 {
 public double Divide(double x, double y)
 {
 if (y == 0)
 throw new DivideByZeroException();

 return x / y;
 }
 }
}

 The second step of the previously mentioned three-step procedure requires you to create a new file with
extension .asbx that describes the Math custom class defined in Listing 14-18 . Listing 14-19 presents the
contents of the Math.asbx file. As you can see, an .asbx file is just an XML file.

 Listing 14-19: The.asbx File that Describes the Math Custom Class

 <?xml version=”1.0” encoding=”utf-8” ?>
<bridge namespace=”MyNamespace” className=”MyMath”>
 <proxy type=”CustomComponents.Math, App_Code”/>
 <method name=”Divide”>
 <input>
 <parameter name=”x” />
 <parameter name=”y” />
 </input>
 </method>
</bridge>

 This XML file, like any other XML file, contains a single element known as the document element. In the
case of the .asbx file, this element is named bridge and exposes two attributes named namespace and
 className . You can set the values of these two attributes to anything, as long as the attribute values do
not violate the standard XML rules.

 The bridge document element contains a child element named proxy that exposes an attribute named
 type . You must set the value of the type attribute to the fully qualified name of your custom class, including
its complete namespace containment hierarchy, plus its location. In this case, the fully qualified name of the
custom class is CustomComponents.Math , which is located in the App_Code directory of the application.

 The proxy element basically describes your custom class. As Listing 14-19 shows this element contains a
child element named method that exposes an attribute named name . You must set this name attribute to
the name of the method being described, which in this case is the Divide method of your custom class.

c14.indd 565c14.indd 565 8/20/07 6:13:55 PM8/20/07 6:13:55 PM

Chapter 14: Consuming Web Services Via JSON Messages

566

 The method element also contains a child element named input that describes the input parameters of
the method. The input child element contains one parameter element for each input parameter of the
method. In this case, the Divide method takes two parameters named x and y , and consequently the
 input element contains two parameter child elements. You must set the name attribute of each
 parameter child element to the name of the parameter of the method that the child element describes.

 Listing 14-20 presents a new version of the page shown in Listing 14-17 . This version uses the bridge
approach to enable the client code to invoke the Math custom class’s Divide method.

 Listing 14-20: A Page that Uses the Bridge Approach

 <%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Web.Services” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>

 <script type=”text/javascript” language=”javascript”>
 var request;

 function onSuccess(result, userContext, methodName)
 {
 userContext.innerHTML = “<u>” + result + “</u>”;
 }

 function onFailure(result, userContext, methodName)
 {
 var builder = new Sys.StringBuilder();
 builder.append(“timedOut: “);
 builder.append(result.get_timedOut());
 builder.appendLine();
 builder.appendLine();
 builder.append(“message: “);
 builder.append(result.get_message());
 builder.appendLine();
 builder.appendLine();
 builder.append(“stackTrace: “);
 builder.appendLine();
 builder.append(result.get_stackTrace());
 builder.appendLine();
 builder.appendLine();
 builder.append(“exceptionType: “);
 builder.append(result.get_exceptionType());
 builder.appendLine();
 builder.appendLine();
 builder.append(“statusCode: “);
 builder.append(result.get_statusCode());
 builder.appendLine();
 builder.appendLine();
 builder.append(“methodName: “);
 builder.append(methodName);

c14.indd 566c14.indd 566 8/20/07 6:13:56 PM8/20/07 6:13:56 PM

Chapter 14: Consuming Web Services Via JSON Messages

567

 alert(builder.toString());
 }

 function divide()
 {
 var servicePath = “/WebServicesViaJSON/Math.asbx”;
 var methodName = “Divide”;
 var useGet = false;
 var xValue = $get(“firstNumber”).value;
 var yValue = $get(“secondNumber”).value;
 var params = {x : xValue, y : yValue};

 var userContext = $get(“result”);
 var webServiceProxy = new Sys.Net.WebServiceProxy();
 webServiceProxy.set_timeout(0);
 request = webServiceProxy._invoke(servicePath, methodName, useGet,
 {args : params},
 onSuccess, onFailure, userContext);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”/>
 <table>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 First Number:
 </td>
 <td align=”left”>
 <input type=”text” id=”firstNumber” /></td>
 </tr>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 Second Number:
 </td>
 <td align=”left”>
 <input type=”text” id=”secondNumber” /></td>
 </tr>
 <tr>
 <td colspan=”2” align=”center”>
 <button onclick=”divide()”>
 Divide</button></td>
 </tr>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 Result:
 </td>
 <td align=”left”>

 </td>
 </tr>
 </table>
 </form>
</body>
</html>

c14.indd 567c14.indd 567 8/20/07 6:13:56 PM8/20/07 6:13:56 PM

Chapter 14: Consuming Web Services Via JSON Messages

568

 As the following excerpt from this code listing shows, the service path is set to the URL of the .asbx file
that describes the Math custom class:

 var servicePath = “/AJAXFuturesEnabledWebSite2/Math.asbx”;

 The other major difference is how you pass the parameters of the method being invoked. As the boldface
portions of Listing 14-20 show, you must create an object literal that contains a single name/value pair,
where the name part of the pair contains args and the value part contains the object literal that contains
one name/value pair for each parameter of the method being invoked. In this case, the Divide method
takes two parameters named x and y , and consequently, this object literal contains two name/value pairs:

 var params = {x : xValue, y : yValue};

 var userContext = $get(“result”);
 var webServiceProxy = new Sys.Net.WebServiceProxy();
 webServiceProxy.set_timeout(0);
 request = webServiceProxy._invoke(servicePath, methodName, useGet,
 {args : params}, onSuccess, onFailure, userContext);

 There are two more things you must do before you can run the page shown in Listing 14-20 . As previ-
ously mentioned, the service path is set to the URL of the .asbx file. Therefore, the request is made for
this .asbx file. When this request arrives at the server, the IIS Web server picks up the request. What
happens next depends on the version of IIS that you’re using:

 ❑ If you’re using IIS 5.1 (the version of IIS running on the Windows XP operating system) or IIS 6.0
(the version of IIS running on Windows 2003 Server), IIS searches its metabase for an ISAPI
 extension that is registered for handling requests for the .asbx extension. If it finds such an
ISAPI extension, it hands the request over to this extension. If it doesn’t find such an extension,
it rejects the request because no one can handle it. You must ensure that the aspnet_isapi
 extension has been registered with the IIS metabase to handle requests for .asbx extensions.
The aspnet_isapi extension acts as an intermediary between IIS and ASP.NET, where it
 receives requests from IIS and hands them over to ASP.NET for processing. You must use the IIS
Manager to register the aspnet_isapi extension to handle requests for the .asbx extensions,
and you must have administrative privileges to do this.

 Your installation of ASP.NET AJAX must automatically take care of the next step for you. If not,
you need to do it yourself. The next step requires you to register a managed HTTP handler fac-
tory named ScriptHandlerFactory for handling requests for .asbx extensions. As previously
mentioned, the IIS hands the request over to the aspnet_isapi extension, which in turn hands
it over to ASP.NET, which in turn hands it over to the ScriptHandlerFactory . To register this
handler factory, you need to add the following XML fragment to the web.config file in your
application:

c14.indd 568c14.indd 568 8/20/07 6:13:56 PM8/20/07 6:13:56 PM

Chapter 14: Consuming Web Services Via JSON Messages

569

 <configuration>
 <system.web>
 <httpHandlers>
 <add verb=”GET, HEAD, POST” path=”*.asbx”
 type=”System.Web.Script.Services.ScriptHandlerFactory,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35”
 validate=”false” />
 </httpHandlers>
 </system.web>
</configuration

 ❑ If you’re using IIS7 (the version of IIS running on Windows Vista) in ISAPI mode, you must
 follow the same procedure as the IIS 5.1 or IIS 6.0 to register the aspnet_isapi extension and
 ScriptHandlerFactory . However, if you’re using IIS7 in the new integrated mode, the
 aspnet_isapi extension drops out of the picture, because IIS7 in integrated mode does not use
ISAPI extensions. This means that you don’t need to register the aspnet_isapi extension.
The IIS7 (in integrated mode) directly passes the request for extension .asbx to the
ScriptHandlerFactory , which means that you have to use the IIS7 Manager to register this
handler factory with IIS7. This registration automatically adds the following XML fragment to
the web.config file of your application:

 <configuration>
 <system.webServer>
 <handlers>
 <add name=”ASBXHandler” verb=”GET,HEAD,POST” path=”*.asbx”
 preCondition=”integratedMode”
 type=”System.Web.Script.Services.ScriptHandlerFactory,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35”/>
 </handlers>
 </system.webServer>
</configuration>

 The last thing that you need to do before you can run the page shown in Listing 14-20 is add the
 following XML fragement to the web.config file of your application if your installation of the ASP.NET
AJAX doesn’t automatically do it for you:

 <configuration>
 <system.web>
 <compilation>
 <buildProviders>
 <add extension=”.asbx”
 type=”Microsoft.Web.Preview.Services.BridgeBuildProvider” />
 </buildProviders>
 </compilation>
 </system.web>
</configuration>

 This XML fragment registers a managed class named BridgeBuildProvider with the ASP.NET compi-
lation infrastructure. As you’ll see later, the BridgeBuildProvider parses the content of the .asbx file

c14.indd 569c14.indd 569 8/20/07 6:13:56 PM8/20/07 6:13:56 PM

Chapter 14: Consuming Web Services Via JSON Messages

570

into a dynamically generated class with the name specified in the className attribute of the <bridge>
document element. The document element also belongs to a namespace with the name specified in the
 namespace attribute of this document element.

 In summary, the main application of the Web services bridge is to enable the client code to invoke a Web
method that belongs to a Web service that does not reside on the same site from which the client code
was downloaded. The ASP.NET AJAX Web services bridge allows you to do the following:

 ❑ Write a custom wrapper class (such as the Math class shown in Listing 14-19) that exposes a
method (such as the Divide method shown in Listing 14-19) that wraps the logic to invoke the
remote Web method. In the case of Listing 14-19 , the Divide wrapper class does not wrap any
such logic. Instead, it performs the division operation locally on the server. An example is given
later in this book where the wrapper method contains the logic that invokes a remote Web method.

❑ Have the client side invoke this wrapper method instead of directly invoking the remote
Web method.

 Under the Hood
 The previous sections showed you three different ways to enable client-side code to invoke a server side
method in asynchronous fashion:

 ❑ Turn the method into a Web method that belongs to a Web service that resides on the same site
from which the client-side code was downloaded in the first place.

❑ Move the method into a Web page that belongs to a Web application that resides on the same
site from which the client-side code was downloaded in the first place.

❑ Move the method into a custom class that resides on the same site from which the client-side
code was downloaded in the first place, and add an .asbx file that describes this custom class
and the method.

 This section takes you under the hood, where you’ll see that all these three approaches are handled by
the same underlying logic. The main goal of this section is to demystify this underlying logic and set the
stage for the next chapter, where you’ll learn how to customize this logic to meet your application
requirements. The best way to understand this underlying logic is to build a functional replica of its
main components. These components include the following:

 ❑ ScriptHandlerFactory

❑ RestHandlerFactory

❑ RestHandler

❑ HandlerWrapper

❑ ScriptModule

 To keep the discussion focused, this section leaves out the dirty little details of these components and
concentrates on how they pertain to the topics in this and the next chapter.

c14.indd 570c14.indd 570 8/20/07 6:13:57 PM8/20/07 6:13:57 PM

Chapter 14: Consuming Web Services Via JSON Messages

571

 ScriptHandlerFactory
 As discussed earlier, when a request for a resource with the extension .asbx or .asmx arrives at the Web
server, the request is handed over to a managed component named ScriptHandlerFactory . This com-
ponent is part of a group of ASP.NET components known as HTTP handler factories . Each HTTP handler
factory is specifically designed to handle requests for a particular set of file extensions. For example, the
 PageHandlerFactory HTTP handler factory is specifically designed to handle requests for extension
 .aspx . The ScriptHandlerFactory component is specifically designed to handle requests for .asbx
and .asmx .

 Every HTTP handler factory implements an interface named IHttpHandlerFactory , as defined in
 Listing 14-21 .

 Listing 14-21: The IHttpHandlerFactory Interface

 public interface IHttpHandlerFactory
{
 IHttpHandler GetHandler(HttpContext context, string requestType,
 string url, string pathTranslated);
 void ReleaseHandler(IHttpHandler handler);
}

 This interface exposes the following two methods:

 ❑ GetHandler : This method takes the following four arguments:

 ❑ context : This argument references the current HTTP context instance. You can think of
this instance as the ASP.NET representation of the current HTTP request/response. As
such, it contains the complete information about the current HTTP request and response.

❑ requestType : This argument is a string that contains the HTTP verb (for example, GET or
 POST) used to make the current request.

❑ url : This argument is a string that contains the virtual path of the requested resource. For
example, if the request is made for an .asbx file, this argument contains the URL of this
file. If the request is made for an .asmx file (a Web service), this argument contains the
URL of this file.

❑ pathTranslated : This argument is a string that contains the physical path of the
 requested resource on the server.

 The main responsibility of the GetHandler method is to instantiate, initialize, and return the
HTTP handler component that knows how to handle the request for the specified extension.
The HTTP handler factory does not actually process the request passed into it. Instead, it
 instantiates an HTTP handler and hands the request over to this component for processing.
Every HTTP handler implements an interface named IHttpHandler ; therefore, the return type
of the GetHandler method is IHttpHandler .

❑ ReleaseHandler : This method takes the HTTP handler instance that the GetHandler method
creates as its argument, and releases all resources that the GetHandler method had to allocate
when it created the handler.

c14.indd 571c14.indd 571 8/20/07 6:13:57 PM8/20/07 6:13:57 PM

Chapter 14: Consuming Web Services Via JSON Messages

572

 Listing 14-22 presents the implementation of a fully functional replica ScriptHandlerFactory .

 Listing 14-22: The ScriptHandlerFactory Class

 using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Reflection;
using System.Web.Compilation;
using System.ComponentModel;
using System.Web.Services;
using System.Web.Script.Serialization;
using System.Collections.Generic;
using System.Collections;
using System.Web.Services.Protocols;
using System.IO;

namespace CustomComponents
{
 public class ScriptHandlerFactory : IHttpHandlerFactory
 {
 private IHttpHandlerFactory _restHandlerFactory;
 private IHttpHandlerFactory _webServiceHandlerFactory;

 public ScriptHandlerFactory()
 {
 this._restHandlerFactory = new RestHandlerFactory();
 this._webServiceHandlerFactory = new WebServiceHandlerFactory();
 }

 public virtual IHttpHandler GetHandler(HttpContext context, string requestType,
 string url, string pathTranslated)
 {
 IHttpHandlerFactory handlerFactory;
 if (RestHandlerFactory.IsRestRequest(context))
 handlerFactory = this._restHandlerFactory;

 else
 handlerFactory = this._webServiceHandlerFactory;

 IHttpHandler handler = handlerFactory.GetHandler(context, requestType,
 url, pathTranslated);
 return new HandlerWrapper(handler, handlerFactory);
 }

 public virtual void ReleaseHandler(IHttpHandler handler)
 {
 ((HandlerWrapper)handler).ReleaseHandler();
 }
 }
}

 Note that the constructor of this replica, just like the actual ScriptHandlerFactory , instantiates instances
of two other HTTP handler factories named RestHandlerFactory and WebServiceHandlerFactory :

c14.indd 572c14.indd 572 8/20/07 6:13:57 PM8/20/07 6:13:57 PM

Chapter 14: Consuming Web Services Via JSON Messages

573

 this._restHandlerFactory = new RestHandlerFactory();
this._webServiceHandlerFactory = new WebServiceHandlerFactory();

 The implementation of the replica RestHandlerFactory is discussed later in this chapter. The
 WebServiceHandlerFactory is the standard ASP.NET HTTP handler factory that handles SOAP requests
made to a Web service. This book does not discuss this handler factory because the ASP.NET AJAX frame-
work uses REST messages as opposed to SOAP messages to interact with the backend Web method.

 Now let’s walk through the implementation of the GetHandler method of the replica
 ScriptHandlerFactory . This method first invokes the IsRestRequest static method on the
 RestHandlerFactory to determine whether the current request is a REST (JSON) request. If so, it
invokes the GetHandler method of the RestHandlerFactory to instantiate, initialize, and return an
HTTP handler that knows how to process REST (JSON) requests. If not, it assumes that the request is a
SOAP request and invokes the GetHandler method of the WebServiceHandlerFactory to instantiate,
initialize, and return an HTTP handler that knows how to process SOAP requests.

 IHttpHandlerFactory handlerFactory;
 if (RestHandlerFactory.IsRestRequest(context))
 handlerFactory = this._restHandlerFactory;

 else
 handlerFactory = this._webServiceHandlerFactory;
 IHttpHandler handler = handlerFactory.GetHandler(context, requestType,
 url, pathTranslated);

 Finally, the GetHandler method instantiates an instance of an HTTP handler named HandlerWrapper
that wraps the HTTP handler returned from the calls into the GetHandler method of
 RestHandlerFactory or WebServiceHandlerFactory :

 return new HandlerWrapper(handler, handlerFactory);

 This wrapper, like any other wrapper, hides the actual type of the HTTP handler from the caller of the
 GetHandler method of the ScriptHandlerFactory . As previously mentioned, the actual HTTP
 handler type depends on whether the GetHandler method of the RestHandlerFactory or the
 GetHandler method of the WebServiceHandlerFactory is invoked — in other words, whether
the current request is a REST or SOAP request.

 If you check out the web.config file of your ASP.NET AJAX application, you’ll see the XML fragment shown
in Listing 14-23 . Note that the boldface portion of this listing will only show up if you are running IIS7.

 Listing 14-23: The web.config File

 <configuration>
 <system.web>
 <httpHandlers>
 <remove verb=”*” path=”*.asmx” />

 <add verb=”*” path=”*.asmx” validate=”false”
 type=”System.Web.Script.Services.ScriptHandlerFactory,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35”/>

(continued)

c14.indd 573c14.indd 573 8/20/07 6:13:58 PM8/20/07 6:13:58 PM

Chapter 14: Consuming Web Services Via JSON Messages

574

 Listing 14-23 (continued)

 <add verb=”GET,HEAD,POST” path=”*.asbx” validate=”false”
 type=”System.Web.Script.Services.ScriptHandlerFactory,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35” />
 </httpHandlers>
 </system.web>

 <system.webServer>
 <handlers>
 <remove name=”WebServiceHandlerFactory-Integrated” />

 <add name=”ScriptHandlerFactory” verb=”*” path=”*.asmx”
 preCondition=”integratedMode”
 type=”System.Web.Script.Services.ScriptHandlerFactory,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35” />

 <add name=”ASBXHandler” verb=”GET,HEAD,POST” path=”*.asbx”
 preCondition=”integratedMode”
 type=”System.Web.Script.Services.ScriptHandlerFactory,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35” />
 </handlers>
 </system.webServer>
</configuration>

 Both the boldface and non-boldfaced portions of this code listing begin by removing the HTTP handler
factory registered for handling the extension .asmx . The non-boldface portion uses the following XML
line to remove this handler:

 <remove verb=”*” path=”*.asmx” />

 The boldface portion uses the following XML line to remove this handler:

 <remove name=”WebServiceHandlerFactory-Integrated” />

 The removed HTTP handler factory in both cases is WebServiceHandlerFactory . Both cases then
 register the ScriptHandlerFactory for handling the requests for extensions .asmx and .asbx . In other
words, requests for these two extensions are now handled by the same HTTP handler factory. As
 discussed earlier, the GetHandler method of ScriptHandlerFactory then uses the IsRestRequest
static method of the RestHandlerFactory to determine whether the current request is a REST or SOAP
request. If the current request is a normal SOAP request, the request is handed back to the originally
removed HTTP handler factory: WebServiceHandlerFactory . This enables ScriptHandlerFactory
to hand all REST requests over to RestHandlerFactory , including the REST requests for extension
 .asmx and the REST requests for extension .asbx .

 RestHandlerFactory
 As discussed earlier, the ScriptHandlerFactory hands the REST requests for both the .asmx and .asbx
extensions to the RestHandlerFactory for processing. Listing 14-24 presents the implementation of a
fully functional RestHandlerFactory replica.

c14.indd 574c14.indd 574 8/20/07 6:13:58 PM8/20/07 6:13:58 PM

Chapter 14: Consuming Web Services Via JSON Messages

575

 Listing 14-24: The RestHandlerFactory

 using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Reflection;
using System.Web.Compilation;
using System.ComponentModel;
using System.Web.Services;
using System.Web.Script.Serialization;
using System.Collections.Generic;
using System.Collections;
using System.Web.Services.Protocols;
using System.IO;

namespace CustomComponents
{
 internal class RestHandlerFactory : IHttpHandlerFactory
 {
 public virtual IHttpHandler GetHandler(HttpContext context, string requestType,
 string url, string pathTranslated)
 {
 if (IsClientProxyRequest(context.Request.PathInfo))
 return new RestClientProxyHandler();

 return RestHandler.CreateHandler(context);
 }

 internal static bool IsRestRequest(HttpContext context)
 {
 if (!IsRestMethodCall(context.Request))
 return IsClientProxyRequest(context.Request.PathInfo);

 return true;
 }

 internal static bool IsRestMethodCall(HttpRequest request)
 {
 if (string.IsNullOrEmpty(request.PathInfo))
 return false;

 if (!request.ContentType.StartsWith(“application/json;”,
 StringComparison.OrdinalIgnoreCase))
 return string.Equals(request.ContentType, “application/json”,
 StringComparison.OrdinalIgnoreCase);

 return true;
 }

 internal static bool IsClientProxyRequest(string pathInfo)
 {
 return string.Equals(pathInfo, “/js”, StringComparison.OrdinalIgnoreCase);
 }

(continued)

c14.indd 575c14.indd 575 8/20/07 6:13:58 PM8/20/07 6:13:58 PM

Chapter 14: Consuming Web Services Via JSON Messages

576

 Listing 14-24 (continued)

 public virtual void ReleaseHandler(IHttpHandler handler) { }
 }
}

 First, let’s walk through the implementation of the IsRestRequest static method. As previously
 discussed, the ScriptHandlerFactory invokes this method to determine whether the current
request is a REST request. In general, the ASP.NET AJAX framework supports the following two types of
REST requests:

 ❑ REST method call: The client code makes this type of REST request to invoke a server-side
method. You saw several examples of this earlier in this chapter.

❑ Client proxy request: The client code makes this type of REST request to download the script
that defines the proxy class. The next chatper discusses this proxy class.

 As Listing 14-24 shows, the IsRestRequest static method first invokes a method named
 IsRestMethodCall to determine whether the currest request is a REST method call request. If not,
the IsRestRequest method invokes the IsClientProxyRequest method to determine whether the
current request is a client proxy request.

 Now let’s walk through the implementation of the IsRestMethodCall method. As you can see in the
following excerpt from Listing 14-24 , this method first calls the PathInfo property on the ASP.NET
 Request object to determine whether the request URL contains a path information trailer. The client
code adds a trailer to the request URL that contains information such as the name of the server method
being invoked. Therefore, the absence of a path information trailer by itself indicates that the current
request cannot be a REST method call.

 internal static bool IsRestMethodCall(HttpRequest request)
 {
 if (string.IsNullOrEmpty(request.PathInfo))
 return false;

 If the request URL contains a path information trailer, the IsRestMethodCall method checks whether
the Content-Type HTTP request header contains the string “application/json” . The client code
adds this value to the Content-Type HTTP header to inform the RestHttpHandler that the current
request is a REST method call, which means that the client is trying to invoke a server method:

 if (!request.ContentType.StartsWith(“application/json;”,
 StringComparison.OrdinalIgnoreCase))
 return string.Equals(request.ContentType, “application/json”,
 StringComparison.OrdinalIgnoreCase);

 return true;
 }

 As discussed earlier, the IsRestRequest method invokes the IsClientProxyRequest method to
determine whether the current request is a client proxy request. This method simply checks whether the
path information trailer is the js or jsdebug string. The client code adds the js path information trailer
to the request URL to inform RestHandlerFactory that it needs to download the release version of the
script that contains the proxy class. The client code adds the jsdebug path information trailer to the

c14.indd 576c14.indd 576 8/20/07 6:13:59 PM8/20/07 6:13:59 PM

Chapter 14: Consuming Web Services Via JSON Messages

577

request URL to inform RestHandlerFactory that it needs to download the debug version of the script
that contains the proxy class. As you can see, the presence of this path information trailer by itself
 signals that the client code has made the current request to download the script that contains the proxy
class. In other words, the current request is not a REST method call request. To keep this discussion focused,
the replica only considers the requests made for downloading the release version. The next chapter discusses
the proxy class and the script code that contains the definition of the proxy class in the next chapter.

 The RestHandlerFactory , like any other HTTP handler factory, implements the GetHandler method
of the IHttpHandlerFactory . As you can see in Listing 14-24 , this method first invokes the
 IsClientProxyRequest method to determine whether the client code has made the current request
to download the script that contains the proxy class. If so, it instantiates and returns an instance of an
HTTP handler named RestClientProxyHandler . If not, it invokes the CreateHandler static method
on an ASP.NET class named RestHandler to instantiate and to return an instance of the RestHandler
HTTP handler. The next chapter discusses the RestClientProxyHandler as part of its coverage of the
proxy class and the script that defines it. For now, suffice it to say that the RestClientProxyHandler
and RestHandler know how to handle REST client proxy and REST method call requests, respectively.

 RestHandler
 Listing 14-25 presents the implementation of the replica RestHandler HTTP handler. As previously
shown in Listing 14-24 , the GetHandler method of RestHandlerFactory invokes the CreateHandler
static method on the RestHandler class to instantiate an instance of this class.

 Listing 14-25: The RestHandler HTTP Handler

 using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.UI;
using System.Reflection;
using System.Web.Compilation;
using System.ComponentModel;
using System.Web.Services;
using System.Web.Script.Serialization;
using System.Collections.Generic;
using System.Collections;
using System.Web.Services.Protocols;
using System.IO;

namespace CustomComponents
{
 internal class RestHandler : IHttpHandler
 {
 private MethodInfo _methodInfo;

 internal static IHttpHandler CreateHandler(HttpContext context)
 {
 string servicePath = context.Request.FilePath;

 Type serviceType = BuildManager.GetCompiledType(servicePath);
 if (serviceType == null)

(continued)

c14.indd 577c14.indd 577 8/20/07 6:13:59 PM8/20/07 6:13:59 PM

Chapter 14: Consuming Web Services Via JSON Messages

578

 Listing 14-25 (continued)

 {
 object obj = BuildManager.CreateInstanceFromVirtualPath(servicePath,
 typeof(Page));
 serviceType = obj.GetType();
 }

 string methodName = context.Request.PathInfo.Substring(1);
 MethodInfo[] infoArray = serviceType.GetMethods();
 MethodInfo minfo = null;
 foreach (MethodInfo info in infoArray)
 {
 object[] objArray = info.GetCustomAttributes(typeof(WebMethodAttribute),
 true);
 if (objArray.Length != 0 && info.Name == methodName)
 {
 minfo = info;
 break;
 }
 }

 RestHandler handler = new RestHandler();
 handler._methodInfo = minfo;
 return handler;
 }

 public void ProcessRequest(HttpContext context)
 {
 string text = new StreamReader(context.Request.InputStream).ReadToEnd();
 IDictionary<string, object> rawParams;
 JavaScriptSerializer serializer = new JavaScriptSerializer();

 if (string.IsNullOrEmpty(text))
 rawParams = new Dictionary<string, object>();

 else
 rawParams = serializer.Deserialize<IDictionary<string, object>>(text);

 ArrayList parameters = new ArrayList();
 ParameterInfo[] infos = _methodInfo.GetParameters();
 TypeConverter converter;
 foreach (KeyValuePair<string, object> entry in rawParams)
 {
 IDictionary<string, object> dictionary =
 entry.Value as IDictionary<string, object>;
 if (dictionary != null)
 parameters.Add(dictionary);

 else
 {
 for (int i = 0; i < infos.Length; i++)
 {
 if (entry.Key == infos[i].Name)
 {
 converter = TypeDescriptor.GetConverter(infos[i].ParameterType);

c14.indd 578c14.indd 578 8/20/07 6:13:59 PM8/20/07 6:13:59 PM

Chapter 14: Consuming Web Services Via JSON Messages

579

 if (converter.CanConvertFrom(entry.Value.GetType()))
 parameters.Add(converter.ConvertFrom(entry.Value));
 }
 }
 }
 }

 object[] methodParameters = new object[parameters.Count];
 parameters.CopyTo(methodParameters);
 object target = Activator.CreateInstance(_methodInfo.DeclaringType);

 object obj3 = _methodInfo.Invoke(target, methodParameters);

 string s = serializer.Serialize(obj3);
 context.Response.ContentType = “application/json”;
 if (s != null)
 context.Response.Write(s);
 }

 public bool IsReusable
 {
 get { return false; }
 }
 }
}

 The CreateHandler method begins by calling the FilePath property on the ASP.NET Request object
to access the virtual path of the requested file:

 string servicePath = context.Request.FilePath;

 For example, if the request is made for an .asbx file, the FilePath returns the virtual path of this .asbx
file. If the request is made for a Web service (an .asmx file), the FilePath returns the URL of the Web
service.

 Next, the CreateHandler method invokes a static method named GetCompiledType on an ASP.NET
class named BuildManager , passing in the virtual path of the requested file:

 Type serviceType = BuildManager.GetCompiledType(servicePath);

 This static method parses and compiles the file with the specified virtual path into a dynamically
 generated .NET type or class and returns a Type object that represents this class. For example, consider
the request made for the .asbx file shown in the following excerpt from Listing 14-19 :

 <?xml version=”1.0” encoding=”utf-8” ?>
<bridge namespace=”MyNamespace” className=”MyMath”>
 <proxy type=”CustomComponents.Math, App_Code”/>
 <method name=”Divide”>
 <input>
 <parameter name=”x” />
 <parameter name=”y” />
 </input>
 </method>
</bridge>

c14.indd 579c14.indd 579 8/20/07 6:14:00 PM8/20/07 6:14:00 PM

Chapter 14: Consuming Web Services Via JSON Messages

580

 In this case, the GetCompiledType static method will dynamically create a class with the name specified
in the className attribute on the bridge document element. This element also belongs to a namespace
with the name specified in the namespace attribute on this element. That is, the GetCompiledType
method will create a class named MyMath that belongs to a namespace named MyNamespace .
The method will then dynamically compile this class into an assembly, load this assembly into the
 application domain where the current application is running, and return a Type object that represents
the MyMath class.

 Next, the CreateHandler method extracts a substring of the PathInfo property of the ASP.NET
 Request object whose starting index is 1 :

 string methodName = context.Request.PathInfo.Substring(1);

 The PathInfo property contains the data that comes after the virtual path of a file, and the substring
contains the name of the server method being invoked.

 The CreateHandler method then invokes the GetMethods method on the Type object that represents the
dynamically generated class to return an array of MethodInfo objects, where each object represents a
method of this class:

 MethodInfo[] infoArray = serviceType.GetMethods();

 Next, the CreateHandler method searches this array for a MethodInfo object that represents a
 method with the name specified in the first substring of the PathInfo trailer and annotated with the
 WebMethodAttribute metadata attribute:

 MethodInfo minfo = null;
 foreach (MethodInfo info in infoArray)
 {
 object[] objArray = info.GetCustomAttributes(typeof(WebMethodAttribute),
 true);
 if (objArray.Length != 0 && info.Name == methodName)
 {
 minfo = info;
 break;
 }
 }

 The CreateHandler method then instantiates a RestHandler HTTP handler and assigns the
 MethodInfo object to its _methodInfo private field:

 RestHandler handler = new RestHandler();
 handler._methodInfo = minfo;
 return handler;

 As you can see in Listing 14-25 , the RestHandler HTTP handler, like any other HTTP handler,
 implements a method named ProcessRequest . This method is responsible for processing the current
REST request. It begins by loading the request stream into a StreamReader and then invoking the
 ReadToEnd method on this StreamReader to load the content of the StreamReader and, consequently,
the entire client request into a string. Because the current request is a REST (JSON) request, this string
contains a JSON object that consists of name/value pairs:

c14.indd 580c14.indd 580 8/20/07 6:14:00 PM8/20/07 6:14:00 PM

Chapter 14: Consuming Web Services Via JSON Messages

581

 string text = new StreamReader(context.Request.InputStream).ReadToEnd();

 Next, ProcessRequest instantiates a JavaScriptSerializer and invokes its Deserialize method to
deserialize an IDictionary object from the JSON object. IDictionary is a collection of KeyValuePair
objects. In this case, each KeyValuePair object represents a name/value pair of the JSON object:

 IDictionary<string, object> rawParams;
 JavaScriptSerializer serializer = new JavaScriptSerializer();

 rawParams = serializer.Deserialize<IDictionary<string, object>>(text);

 Next, the ProcessRequest method invokes the GetParameters method on the MethodInfo object
that represents the method being invoked to return an array of ParameterInfo objects, where each
 ParameterInfo object represents a parameter of the method being invoked:

 ParameterInfo[] infos = _methodInfo.GetParameters();

 Then, it iterates through the KeyValuePair objects in the IDictionary collection and uses the type
converter associated with each value part of each KeyValuePair object to convert the value into its
 associated .NET type if the value part is not of type IDictionary . Otherwise, it uses the value part as is.

 Keep in mind that the value part of the KeyValuePair contains the value part of the name/value pair of
the original JSON object, and each name/value pair in the original JSON object represents a parameter
of the method being invoked. To keep this discussion focused, the following code uses a simple
 conversion mechanism:

 TypeConverter converter;
 ArrayList parameters = new ArrayList();

 foreach (KeyValuePair<string, object> entry in rawParams)
 {
 IDictionary<string, object> dictionary =
 entry.Value as IDictionary<string, object>;
 if (dictionary != null)
 parameters.Add(dictionary);

 else
 {
 for (int i = 0; i < infos.Length; i++)
 {
 if (entry.Key == infos[i].Name)
 {
 converter = TypeDescriptor.GetConverter(infos[i].ParameterType);
 if (converter.CanConvertFrom(entry.Value.GetType()))
 parameters.Add(converter.ConvertFrom(entry.Value));
 }
 }
 }
 }

 Next, the ProcessRequest method calls the CreateInstance static method on the Activator class to
dynamically instantiate an instance of the class that contains the method being invoked:

c14.indd 581c14.indd 581 8/20/07 6:14:00 PM8/20/07 6:14:00 PM

Chapter 14: Consuming Web Services Via JSON Messages

582

 object[] methodParameters = new object[parameters.Count];
 parameters.CopyTo(methodParameters);
 object target = Activator.CreateInstance(_methodInfo.DeclaringType);

 Then the ProcessRequest method calls the Invoke method on the MethodInfo object that represents
the method being invoked to invoke the method in a generic fashion:

 object obj3 = _methodInfo.Invoke(target, methodParameters);

 Next, the ProcessRequest method calls the Serialize method on the JavaScriptSerializer object
to serialize the return value of the method into its JSON representation:

 string s = serializer.Serialize(obj3);

 Next, it sets the Content-Type response HTTP header to the string “application/json” to inform the
client code that the response contains a JSON string:

 context.Response.ContentType = “application/json”;

 Finally, it invokes the Write method on the ASP.NET Response object to write the JSON string
 representation of the return value of the method into the response output stream, which is then sent
back to the client:

 if (s != null)
 context.Response.Write(s);

 HandlerWrapper
 As previously shown in Listing 14-22 , the GetHandler method of the ScriptHandlerFactory calls
the GetHandler method of the RestHandlerFactory if the current request is a SOAP request, or the
 GetHandler method of the WebServiceHandlerFactory if the current request is a REST (JSON)
request. It then hides the return value of the GetHandler method of RestHandlerFactory or
 WebServiceHandlerFactory in a wrapper HTTP handler named HandlerWrapper , as defined in
 Listing 14-26 .

 Listing 14-26: The HandlerWrapper HTTP Handler

 using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Reflection;
using System.Web.Compilation;
using System.ComponentModel;
using System.Web.Services;
using System.Web.Script.Serialization;
using System.Collections.Generic;
using System.Collections;
using System.Web.Services.Protocols;
using System.IO;

namespace CustomComponents
{

c14.indd 582c14.indd 582 8/20/07 6:14:01 PM8/20/07 6:14:01 PM

Chapter 14: Consuming Web Services Via JSON Messages

583

 internal class HandlerWrapper : IHttpHandler
 {
 private IHttpHandlerFactory _handlerFactory;
 protected IHttpHandler _handler;

 internal HandlerWrapper(IHttpHandler handler,
 IHttpHandlerFactory handlerFactory)
 {
 this._handlerFactory = handlerFactory;
 this._handler = handler;
 }

 public void ProcessRequest(HttpContext context)
 {
 this._handler.ProcessRequest(context);
 }

 internal void ReleaseHandler()
 {
 this._handlerFactory.ReleaseHandler(this._handler);
 }

 public bool IsReusable
 {
 get
 {
 return this._handler.IsReusable;
 }
 }

 }
}

 Page Methods Demystified
 As discussed earlier, the ASP.NET AJAX framework provides you with three different approaches to
enable your client-side code to invoke a server-side method in asynchronous fashion. Again, the options
are as follows:

 ❑ Have your client-side code make a request for an .asbx file that describes the server-side method.

❑ Have your client-side code make a request for an .asmx file that contains the server-side
method as a Web method of a Web service.

❑ Have your client-side code make a request for an .aspx file that contains the server-side
method as a page method annotated with the WebMethod metadata attribute.

 The web.config file of your ASP.NET AJAX application directly registers the ScriptHandlerFactory
as the handler for requests for resources with file extensions .asbx and .asmx . This registration covers
only the first two approaches. How about the third approach, where the server side method is a method
that resides in an .aspx file instead of .asbx or .asmx ? The web.config file does not directly register
the ScriptHandlerFactory as the handler for the requests for resources with the file extension .aspx

c14.indd 583c14.indd 583 8/20/07 6:14:01 PM8/20/07 6:14:01 PM

Chapter 14: Consuming Web Services Via JSON Messages

584

because .aspx files must be handled by PageHandlerFactory . Therefore, you need a way to make a
distinction between the following two types of requests made for a resource with the file extension .aspx :

 ❑ A normal ASP.NET request for an .aspx file

❑ A REST request when the client is trying to invoke a particular server-side method that happens
to reside on the .aspx file

 This is where the ScriptModule comes into play. If you check out the web.config file of your ASP.NET
AJAX application, you’ll see the XML fragment shown in Listing 14-27 . Note that the boldface portion of
this listing will only show up if you’re running IIS7. Both the boldface and non-boldface portions of this
listing register the ScriptModule with the ASP.NET request processing pipeline. Every ASP.NET
request is guaranteed to go through this pipeline, and every module in this pipeline registers one or
more event handlers for one or more events of the HttpApplication object that represents the
current ASP.NET application. The HttpApplication object raises its request level events for every
single ASP.NET request.

 Listing 14-27: The web.config File

 <configuration>
 <system.web>
 <httpModules>
 <add name=”ScriptModule”
 type=”System.Web.Handlers.ScriptModule, System.Web.Extensions,
 Version=1.0.61025.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35”/>
 </httpModules>
 </system.web>

 <system.webServer>
 <modules>
 <add name=”ScriptModule” preCondition=”integratedMode”
 type=”System.Web.Handlers.ScriptModule, System.Web.Extensions,
 Version=1.0.61025.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35”/>
 </modules>
 </system.webServer>
</configuration>

 The modules that make up the ASP.NET request processing pipeline are known as HTTP modules . All
HTTP modules implement an ASP.NET interface named IHttpModule , as defined in Listing 14-28 . This
interface exposes the following two methods:

 ❑ Init : Every HTTP module must implement this method to register one or more event handlers
for one or more events of the HttpApplication object that represents the current ASP.NET
 application. ASP.NET automatically passes a reference to the current HttpApplication object
into this method.

❑ Dispose : Every HTTP module must implement this method to perform its final cleanup before
it is disposed of.

c14.indd 584c14.indd 584 8/20/07 6:14:01 PM8/20/07 6:14:01 PM

Chapter 14: Consuming Web Services Via JSON Messages

585

 Listing 14-28: The IHttpModule Interface

 public interface IHttpModule
 {
 void Dispose();
 void Init(HttpApplication context);
 }

 Listing 14-29 presents the implementation of the replica ScriptModule . Like all HTTP modules,
 ScriptModule implements the IHttpModule interface.

 Listing 14-29: ScriptModule

 using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.UI;
using System.Reflection;
using System.Web.Compilation;
using System.ComponentModel;
using System.Web.Services;
using System.Web.Script.Serialization;
using System.Collections.Generic;
using System.Collections;
using System.Web.Services.Protocols;
using System.IO;

namespace CustomComponents
{
 public class ScriptModule : IHttpModule
 {
 protected virtual void Dispose() { }
 protected virtual void Init(HttpApplication context)
 {
 context.PostAcquireRequestState +=
 new EventHandler(this.OnPostAcquireRequestState);
 }

 private void OnPostAcquireRequestState(object sender, EventArgs eventArgs)
 {
 HttpApplication application = (HttpApplication)sender;
 HttpRequest request = application.Context.Request;
 if ((application.Context.Handler is Page) &&
 RestHandlerFactory.IsRestMethodCall(request))
 {
 IHttpHandler restHandler = RestHandler.CreateHandler(application.Context);
 restHandler.ProcessRequest(application.Context);
 application.CompleteRequest();
 }
 }

(continued)

c14.indd 585c14.indd 585 8/20/07 6:14:02 PM8/20/07 6:14:02 PM

Chapter 14: Consuming Web Services Via JSON Messages

586

 Listing 14-29 (continued)

 void IHttpModule.Dispose()
 {
 this.Dispose();
 }

 void IHttpModule.Init(HttpApplication context)
 {
 this.Init(context);
 }
 }
}

 As the following excerpt from Listing 14-29 shows, the Init method of ScriptModule registers its
 OnPostAcquireRequestState method as an event handler for the PostAcquireRequestState event
of the current HttpApplication object:

 context.PostAcquireRequestState +=
 new EventHandler(this.OnPostAcquireRequestState);

 The HttpApplication object fires PostAcquireRequestState after the current request acquires its
state from the underlying data store. This state includes the session state if the session state is enabled for
the current page.

 Now let’s walk through the implementation of the OnPostAcquireRequestState method. When the
current HttpApplication object finally raises its PostAcquireRequestState event and, consequently,
invokes the OnPostAcquireRequestState method, it passes a reference to itself into this method as its
first argument:

 HttpApplication application = (HttpApplication)sender;
 HttpRequest request = application.Context.Request;

 The OnPostAcquireRequestState method, like the Init method of any other HTTP module, uses this
reference to access the current HTTP context object. This object contains the context in which the current
request is running. As such, it includes the complete information about the current request and response.

 Next, the OnPostAcquireRequestState method checks whether the following two conditions are met:

 ❑ The HTTP handler responsible for handling the current request is of type Page . If so, this indi-
cates that the current request has been made for a resource with the file extension .aspx .

❑ The Init method then invokes the IsRestMethodCall static method on the RestHandler-
Factory to determine whether the current request is a REST method call. As previously dis-
cussed, a REST method call request is a request that the client code makes to the server to invoke
a server method.

 if ((application.Context.Handler is Page) &&
 RestHandlerFactory.IsRestMethodCall(request))
 {

c14.indd 586c14.indd 586 8/20/07 6:14:02 PM8/20/07 6:14:02 PM

Chapter 14: Consuming Web Services Via JSON Messages

587

 If both of the conditions are met, this indicates that the client has made the current request to invoke a
server method that resides on an .aspx file, and consequently, the Init method takes the following steps:

 1. It invokes the CreateHandler static method on the RestHandler to create a RestHandler
HTTP handler:

 IHttpHandler restHandler = RestHandler.CreateHandler(application.Context);

 As previously discussed, the RestHandler HTTP handler knows how to process REST method
call requests.

2. It calls the ProcessRequest method on this RestHandler HTTP handler to process the current
REST method call request:

 restHandler.ProcessRequest(application.Context);

 As discussed earlier, this method invokes the server method.

3. It calls the CompleteRequest method on the current HttpApplication object to complete and
shortcut the request, and return the response to the client:

 application.CompleteRequest();
 }

 As you can see, the current request does not go any further down the ASP.NET request processing
 pipeline. To understand the significance of this shortcut, you need to take a look at a normal ASP.NET
request processing pipeline where a normal ASP.NET request goes all the way down this pipeline, which
consists of the following steps:

 1. BeginRequest : The current HttpApplication object raises the BeginRequest event when it
begins processing the current request. An HTTP module can register an event handler for this
event to perform tasks that must be performed at the beginning of the request. For example, this
is a good place for an HTTP module to perform URL rewriting.

2. AuthenticateRequest : The current HttpApplication object raises the AuthenticateRequest
event to enable interested HTTP modules and application code to authenticate the current request.

3. PostAuthenticateRequest : The current HttpApplication object fires the
 PostAuthenticateRequest event after the request is authenticated. An HTTP module
can register an event handler for this event to perform tasks that must be performed after the
current request is authenticated.

4. AuthorizeRequest : The current HttpApplication object fires the AuthorizeRequest event
to enable interested HTTP modules and application code to authorize the current request.

5. PostAuthorizeRequest : The current HttpApplication object fires the PostAuthorizeRequest
event after the request is authorized. An HTTP module can register an event handler for this event
to perform tasks that must be performed after the current request is authorized.

6. ResolveRequestCache : The current HttpApplication object fires the ResolveRequestCache
event to enable interested HTTP modules and application code to service the current request
from the cache, bypassing the rest of the request processing pipeline to improve the performance
of the application.

c14.indd 587c14.indd 587 8/20/07 6:14:02 PM8/20/07 6:14:02 PM

Chapter 14: Consuming Web Services Via JSON Messages

588

7. PostResolveRequestCache : If the response for the current request has not been cached
 (because the current request is the first request to the specified resource for example), the current
 HttpApplication object fires the PostResolveRequestCache event. An HTTP module can
register an event handler for this event to perform tasks that must be performed after the search
in the cache fails.

8. PostMapRequestHandler : The current HttpApplication object fires the
 PostMapRequestHandler event after it has been detemined what type of HTTP handler must
handle the current request. An HTTP module can register an event handler for this event to per-
form tasks that must be performed after the type of HTTP handler is specified.

9. AcquireRequestState : The current HttpApplication object fires the AcquireRequestState
event to enable interested HTTP modules and application code to acquire the request state from
the underlying data store.

10. PostAcquireRequestState : The current HttpApplication object fires the
 PostAcquireRequestState event after the request state is acquired to enable interested
HTTP modules and application code to perform tasks that must be performed after the request
state is acquired.

11. PreRequestHandlerExecute : The current HttpApplication object fires the
 PreReqeustHandlerExecute event before executing the HTTP handler responsible for
 handling the current request. An HTTP module can register an event handler for this event to
perform tasks that must be performed right before the ProcessRequest method of the HTTP
handler is invoked to execute the handler.

12. PostRequestHandlerExecute : The current HttpApplication object fires the
PostRequestHandlerExecute event after the ProcessRequest method of the HTTP
 handler returns, signifying that the HTTP handler responsible for handling the current request
has been executed.

13. ReleaseRequestState : The current HttpApplication object fires the ReleaseRequestState
event to enable interested HTTP modules to release or store the request state into the underlying
data store.

14. PostReleaseRequestState : The current HttpApplication object fires the
 PostReleaseRequestState event right after the request state is stored into the underlying
data store to enable the interested HTTP modules and application code to run logic that must be
run after the request state is saved.

15. UpdateRequestCache : The current HttpApplication object fires the UpdateRequestCache
event to enable interested HTTP modules to cache the current response in the ASP.NET cache.

16. PostUpdateRequestCache : The current HttpApplication object fires the
 PostUpdateRequestCache event after the current response is cached in the ASP.NET
 Cache object.

17. EndRequest : The current HttpApplication object fires the EndRequest event after the current
response is sent to the client to mark the end of processing the current request.

 As discussed earlier, the ScriptModule kicks in when the current HttpApplication fires its
 PostAcquireRequestState event. As you can see in Listing 14-29 , the ScriptModule ’s event handler
for this event invokes the CompleteRequest method on the current HttpApplication object to force
this object to bypass the rest of the events and directly raise the last event: EndRequest .

c14.indd 588c14.indd 588 8/20/07 6:14:02 PM8/20/07 6:14:02 PM

Chapter 14: Consuming Web Services Via JSON Messages

589

 To see this in action, follow these steps:

 1. Create an AJAX-enabled Web site in Visual Studio.

2. Add a Global.asax file to the root directory of this Web site.

3. Add the code shown in Listing 14-30 to the Global.asax file.

4. Add a breakpoint to each method in the Global.asax file.

5. Add a Web form (.aspx file) to this Web site.

6. Add the code previously shown in Listing 14-17 to the .aspx file created in step 5.

7. Press F5 to run the Web site in debug mode.

 The debugger stops at every breakpoint in the Global.asax file, in top-to-bottom order. This
signifies two things. First, the first request goes through the entire ASP.NET request processing
pipeline. Second, the current HttpApplication raises its events in the order discussed earlier.

8. When the Web page appears, enter two numbers in the specified text boxes and press F5 to run
the Web site in debug mode again.

 The debugger jumps from the breakpoint in the Application_AcquireRequestState method
directly to the breakpoint in the Application_EndRequest method. This clearly shows that the
current request goes through only the first 10 steps of the pipeline, skipping the last eight steps.

 Listing 14-30: The Global.asax File

 <%@ Application Language=”C#” %>

<script RunAt=”server”>
 void Application_BeginRequest(object sender, EventArgs e) { }
 void Application_AuthenticateRequest(object sender, EventArgs e) { }
 void Application_PostAuthenticateRequest(object sender, EventArgs e){ }
 void Application_AuthorizeRequest(object sender, EventArgs e) { }
 void Application_PostAuthorizeRequest(object sender, EventArgs e) { }
 void Application_ResolveRequestCache(object sender, EventArgs e) { }
 void Application_PostResolveRequestCache(object sender, EventArgs e) { }
 void Application_PostMapRequestHandler(object sender, EventArgs e) { }
 void Application_AcquireRequestState(object sender, EventArgs e) { }
 void Application_PostAcquireRequestState(object sender, EventArgs e) { }
 void Application_PreRequestHandlerExecute(object sender, EventArgs e) { }
 void Application_PostRequestHandlerExecute(object sender, EventArgs e) { }
 void Application_ReleaseRequestState(object sender, EventArgs e) { }
 void Application_PostReleaseRequestState(object sender, EventArgs e) { }
 void Application_UpdateRequestCache(object sender, EventArgs e) { }
 void Application_PostUpdateRequestCache(object sender, EventArgs e) { }
 void Application_EndRequest(object sender, EventArgs e) { }
</script>

 If you decide to allow your client-side code to asynchronously invoke a server-side method that belongs
to a Web page in your application, you must keep the following in mind:

c14.indd 589c14.indd 589 8/20/07 6:14:03 PM8/20/07 6:14:03 PM

Chapter 14: Consuming Web Services Via JSON Messages

590

 ❑ None of the event handlers registered for PostAcquireRequestState ,
PreRequestHandlerExecute , ReleaseRequestState , PostReleaseRequestState ,
UpdateRequestCache , and PostUpdateRequestCache will be invoked.

❑ The request state, such as Session data, will not be stored in the underlying data store
because the request skips the ReleaseRequestState step during which the request state is
stored in the data store. This means that none of the changes made to the session data will
be stored in the data store, and therefore, they will be lost at the end of the current request.

❑ The server response will not be cached in the ASP.NET Cache object because the current request
skips the UpdateRequestCache step.

 Due to these fundamental limitations, the ASP.NET AJAX framework requires the server-side method to
be static.

 As previously shown in Listing 14-29 , the ScriptModule hands the request over to the RestHandler
HTTP handler if the current request is a REST request. In other words, after the ScriptModule kicks in,
the Page is no longer the HTTP handler responsible for processing the current request. The ScriptModule
delegates this responsibility from Page to the RestHandler HTTP handler, and consequently, the
 ProcessRequest method of the RestHandler HTTP handler (not Page) is invoked. This has significant
 consequences. The ProcessRequest method of the Page class starts what is known as the Page lifecycle.
This means that the Page does not go through its lifecycle phases when the current request is a REST
method call request. Therefore, you cannot access any of the server controls on the current page. This is yet
another reason why the server-side method must be static.

 Web Services Bridges Demystified
 As the implementation of the RestHandler class’s CreateHandler static method clearly shows, this
method assumes that the method being invoked is annotated with the WebMethodAttribute metadata
attribute. In other words, the RestHandler HTTP handler assumes that the method being invoked is
always a Web method.

 How does the RestHandler HTTP handler process requests for an .asbx file given the fact that this file
has nothing to do with Web services? To find the answer to this question, you need to revisit the imple-
mentation of the CreateHandler static method, which is shown again in Listing 14-31 . As the high-
lighted portion of this listing shows, the CreateHandler method invokes the GetCompiledType static
method on the BuildManager class. This method parses and compiles the file with the specified virtual
path into a dynamically generated class.

 Listing 14-31: The CreateHandler Static Method Revisited

 internal static IHttpHandler CreateHandler(HttpContext context)
 {
 string servicePath = context.Request.FilePath;

 Type serviceType = BuildManager.GetCompiledType(servicePath);

 . . .
 }

 Now the question is: What type of class does the GetCompiledType method generate for an .asbx file?
To find the answer to this question, run Listing 14-20 in debug mode. The client code contained in this

c14.indd 590c14.indd 590 8/20/07 6:14:03 PM8/20/07 6:14:03 PM

Chapter 14: Consuming Web Services Via JSON Messages

591

listing makes a REST request to the server to invoke the Divide method of the Math class. This request is
made for a file with extension .asbx that describes the class and method.

 After running Listing 14-20 , go to the following directory on your machine (or, if you have installed
.NET framework in a different directory than the following standard directory, go to that directory):

 %windir%\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files

 In this directory, search for the directory with the same name as your application. Then go down to a
 different directory, and search for a source file with a name that has the following format :

 App_Web_math.asbx.23fc0e6b.kgwm5mhb.0.cs

 Note that the name of this source file begins with App_Web_ , followed by the name of the .asbx file
(which is math.asbx in this case), followed by some randomly generated hash values to ensure the
uniqueness of the file name .

 If you open this file in your favorite editor, you should see the code shown in Listing 14-32 (which has
been cleaned up for presentation purposes).

 Listing 14-32: The Dynamically Generated Code for the Web Service that Wraps
a Custom Class

 namespace MyNamespace
{
 using System;
 using System.Net;
 using System.Web.Services;
 using System.Collections;
 using System.Xml.Serialization;
 using Microsoft.Web.Preview.Services;
 using System.Web.Script.Services;
 using System.Collections.Generic;

 [ScriptService()]
 [WebService(Name = “http://tempuri.org/”)]
 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
 public partial class MyMath : BridgeHandler
 {
 public MyMath()
 {
 this.VirtualPath = “/AJAXFuturesEnabledWebSite2/NewFolder1/Math.asbx”;

 this.BridgeXml = @”<?xml version=””1.0”” encoding=””utf-8”” ?>
 <bridge namespace=””MyNamespace”” className=””MyMath””>
 <proxy type=””CustomComponents.Math, App_Code””/>
 <method name=””Divide””>
 <input>
 <parameter name=””x”” />
 <parameter name=””y”” />
 </input>
 </method>
 </bridge>”;
 }

(continued)

c14.indd 591c14.indd 591 8/20/07 6:14:04 PM8/20/07 6:14:04 PM

Chapter 14: Consuming Web Services Via JSON Messages

592

 Listing 14-32 (continued)

 [WebMethodAttribute()]
 [ScriptMethodAttribute(UseHttpGet = false,
 ResponseFormat = ResponseFormat.Json)]
 public virtual object Divide(System.Collections.IDictionary args)
 {
 BridgeRequest brequest = new BridgeRequest(“Divide”, args);
 return this.Invoke(brequest);
 }

 public override object CallServiceClassMethod(string method,
 Dictionary<string, object> args,
 ICredentials credentials,
 string url)
 {
 if (“Divide”.Equals(method))
 {
 Math proxy = new Math();
 object obj;
 if (args.TryGetValue(“x”, out obj)) { }

 else
 throw new ArgumentException(“Argument not found: x”);

 double arg0 = ((double)(BridgeHandler.ConvertToType(obj, typeof(double))));

 if (args.TryGetValue(“y”, out obj)) { }

 else
 throw new ArgumentException(“Argument not found: y”);

 double arg1 = ((double)(BridgeHandler.ConvertToType(obj, typeof(double))));
 return proxy.Divide(arg0, arg1);
 }
 throw new ArgumentException(“CallServiceClassMethod: Unknown method”);
 }

 [WebMethodAttribute()]
 [ScriptMethodAttribute(UseHttpGet = false,
 ResponseFormat = ResponseFormat.Json)]
 public virtual object @__invokeBridge(string method, IDictionary args)
 {
 BridgeRequest brequest = new BridgeRequest(method, args);
 return this.Invoke(brequest);
 }
 }
}

 This code defines a class with the name specified in the className attribute on the bridge document
element. The document element also belongs to a namespace with the name specified in the namespace
attribute on this element. Note that this class exposes a string property named BridgeXml that contains
the contents of the .asbx file.

c14.indd 592c14.indd 592 8/20/07 6:14:04 PM8/20/07 6:14:04 PM

Chapter 14: Consuming Web Services Via JSON Messages

593

 As you can see in the code listing, this class is annotated with the WebServiceAttribute metadata
attribute, which means that this class is a Web service. Therefore, the call into the BuildManager class’s
 GetCompiledType static method that was previously highlighted in Listing 14-31 creates a Web service
under the hood with the name specified in the className attribute on the bridge document element.
This exposes a Web method with the name specified in the name attribute on the <method> element of
the .asbx file. The ASP.NET AJAX Web services bridge simply creates a Web service wrapper around
your custom class and exposes its methods as Web methods.

 Considering the fact that the GetCompiledType static method of the BuildManager class takes only the
virtual path of the file being compiled, and has no knowledge of the type of file it is dealing with, how
does this method know what type of class to generate? The answer is it doesn’t. Under the hood, the
 GetCompiledType method delegates the responsibility of parsing the file and generating the code for the
class that represents the file to another component known as a build provider . Each type of build provider is
specifically designed to parse and generate code for a file with specific extension. The following table presents
a few examples of build providers and the file extension for which each build provider generates code.

 As shown in this table, the ASP.NET framework includes a build provider named BridgeBuildProvider ,
which is specifically designed to parse and generate code for files with extension .asbx . This build pro-
vider is the one that generates the code for the Web service wrapper shown in Listing 14-32 . If you check
out the web.config file in your AJAX-enabled Web site, you’ll see the following code, which registers the
 BridgeBuildProvider with the ASP.NET compilation infrastructure:

 <compilation debug=”true”>
 <buildProviders>
 <add extension=”.asbx”
 type=”Microsoft.Web.Preview.Services.BridgeBuildProvider” />
 </buildProviders>
</compilation>

 Using the Replicas
 The previous sections provided you with the complete replica implementations of the following main
components of the ASP.NET AJAX REST method call request processing infrastructure:

 ❑ ScriptHandlerFactory

 ❑ RestHandlerFactory

 Build Provider File Type

 PageBuildProvider .aspx

 UserControlBuildProvider .ascx

 WsdlBuildProvider .wsdl

 XsdBuildProvider .xsd

 MasterPageBuildProvider .master

 WebServiceBuildProvider .asmx

 BridgeBuildProvider .asbx

c14.indd 593c14.indd 593 8/20/07 6:14:04 PM8/20/07 6:14:04 PM

Chapter 14: Consuming Web Services Via JSON Messages

594

❑ RestHandler

❑ HandlerWrapper

❑ ScriptModule

 As mentioned earlier, these replicas are fully functional. Follow these steps to see the replicas in action:

 1. Create an AJAX-enabled Web site in Visual Studio.

2. Add an App_Code directory in this Web site.

3. Add a new source file named ScriptHandlerFactory.cs to the App_Code directory, and then
add the code shown in Listing 14-22 to this source file.

4. Add a new source file named RestHandlerFactory.cs to the App_Code directory, and then
add the code shown in Listing 14-24 to this source file. Comment out the following two lines of
code from this source file to remove the reference to the RestClientProxyHandler (which
hasn’t been covered yet):

 //if (IsClientProxyRequest(context.Request.PathInfo))
 // return new RestClientProxyHandler();

 5. Add a new source file named RestHandler.cs to the App_Code directory, and then add the
code shown in Listing 14-25 to this source file.

6. Add a new source file named HandlerWrapper.cs to the App_Code directory, and then add the
code shown in Listing 14-26 to this source file.

7. Add a new source file named ScriptModule.cs to the App_Code directory, and then add the
code shown in Listing 14-29 to this source file.

8. Add a new Web form (.aspx file) named PageMethods.aspx , and then add the code shown in
Listing 14-17 to this .aspx file.

9. Add a new Web form (.aspx file) named Math.aspx to the root directory of this Web site, and
then add the code shown in Listing 14-18 to this .aspx file.

10. Add a new XML file named Math.asbx to the root directory of this Web site, and then add the
XML document shown in Listing 14-19 .

11. Add a new source file named Math.cs to the App_Code directory, and then add the code shown
in Listing 14-18 to this source file.

12. Add a new Web form (.aspx file) named Math2.aspx to the root directory of this Web site, and
then add the code shown in Listing 14-15 to this .aspx file.

13. Add a new Web service (.asmx) named Math.asmx to the root directory of this Web site, and
then add the code shown in Listing 14-16 to this .asmx file.

14. In the web.config file, comment out the italicized lines shown in the following code, and add
the boldface portion of the code (which is basically replacing the standard ASP.NET Scrip-
tHandlerFactory and ScriptModule with the replica ScriptHandlerFactory and
 ScriptModule):

c14.indd 594c14.indd 594 8/20/07 6:14:04 PM8/20/07 6:14:04 PM

Chapter 14: Consuming Web Services Via JSON Messages

595

 <httpHandlers>
 <remove verb=”*” path=”*.asmx” />
 <!--
 <add verb=”*” path=”*.asmx” validate=”false”
 type=”System.Web.Script.Services.ScriptHandlerFactory,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35” />
 <add verb=”*” path=”*_AppService.axd” validate=”false”
 type=”System.Web.Script.Services.ScriptHandlerFactory,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35” />
 <add verb=”GET,HEAD,POST” path=”*.asbx”
 type=”System.Web.Script.Services.ScriptHandlerFactory,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35” validate=”false” />
 -->

 <add verb=”*” path=”*.asmx” validate=”false”
 type=”CustomComponents.ScriptHandlerFactory” />
 <add verb=”GET,HEAD,POST” path=”*.asbx”
 type=”CustomComponents.ScriptHandlerFactory” />
 . . .
</httpHandlers>

<httpModules>
 <!--
 <add name=”ScriptModule” type=”System.Web.Handlers.ScriptModule,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35” />
 -->

 <add name=”ScriptModule” type=”CustomComponents.ScriptModule” />
 . . .
</httpModules>

 Now if you run the PageMethods.aspx , Math.aspx , and Math2.aspx pages, you should be able to see
the same results you saw when you ran these pages with the standard ASP.NET ScriptHandlerFactory
and ScriptModule . Feel free to play with the code to get a better understanding of the processing infra-
structure of the ASP.NET AJAX REST method call request.

 Summary
 This chapter provided you with in-depth coverage of the ASP.NET AJAX REST method call request’s
processing infrastructure. It introduced Web services bridges, which are covered in more detail in
 Chapter 19 , where you’ll learn how to develop a custom script server control that uses a bridge to
enable the client code to interact with Amazon Web services.

 The next chapter builds on what you learned in this chapter to show you how this infrastructure
 manages to hide its complexity behind proxy classes.

c14.indd 595c14.indd 595 8/20/07 6:14:05 PM8/20/07 6:14:05 PM

c14.indd 596c14.indd 596 8/20/07 6:14:05 PM8/20/07 6:14:05 PM

 Proxy Classes
 The previous chapter provided you with in-depth coverage of the ASP.NET AJAX REST method
call request processing infrastructure. This chapter shows you how this infrastructure hides its
complexity behind proxy classes to enable you to program against a remote object as you would
against a local object.

 What’s a Proxy, Anyway?
 Let’s revisit the add JavaScript function shown in Listing 14-14 of Chapter 14 , and shown again
here in Listing 15-1 . This JavaScript function was registered as the event handler for the Add but-
ton’s click event of in Listing 14-14 .

 Listing 15-1: The add Method

 function add()
 {

 var servicePath = “ http://localhost/AJAXEnabledFuturesWebSite2/Math.asmx”;
 var methodName = “Add”;
 var useGet = false;
 var xValue = $get(“firstNumber”).value;
 var yValue = $get(“secondNumber”).value;
 var params = {x : xValue, y : yValue};

 var userContext = $get(“result”);
 var webServiceProxy = new Sys.Net.WebServiceProxy();
 webServiceProxy.set_timeout(0);

 request = webServiceProxy._invoke(servicePath, methodName, useGet, params,
 onSuccess, onFailure, userContext);

 }

 Now here is a question for you: How would you code this add method if the Math class
(see Listing 14-15) were a local class in your client-side code, such as the local class shown in
 Listing 15-2 ?

c15.indd 597c15.indd 597 8/20/07 9:08:00 PM8/20/07 9:08:00 PM

Chapter 15: Proxy Classes

598

 Listing 15-2: A Local Class with the Same Name and Methods as the Remote
Web Service

 Type.registerNamespace(“MyNamespace”);

MyNamespace.Math = function ()
{
}

MyNamespace.Math.prototype =
{
 Add : function (x, y) { return x + y; }
}

MyNamespace.Math.registerClass(“MyNamespace.Math”);

 Wouldn’t your implementation of the add method be something like the one shown in Listing 15-3 ?

 Listing 15-3: Implementation of add Method if the Web Service Class Were a Local Class

 function add()
 {
 var math = new MyNamespace.Math();
 var xValue = $get(“firstNumber”).value;
 var yValue = $get(“secondNumber”).value;
 var z = math.Add(Number.parseInvariant(xValue),
 Number.parseInvariant(yValue));
 $get(“result”).innerText = z;
 }

 As you can see in this listing, if the Math object were a local object, you would directly invoke the
 Add method on the object and directly pass the x and y values into the Add method itself.

 However, when the Math object becomes a Web service, it is a remote object, so you cannot directly
invoke the Add method on it, nor can you directly pass the x and y values into it. When you’re calling
the Add method on the remote Math object:

❑ You have to worry about the service path where the remote Math object is located:

 var servicePath = “http://localhost/AJAXEnabledFuturesWebSite2/Math.asmx”;

 You don’t have to worry about the location of a local Math object, because it always resides in
the same address space as the rest of your program and, consequently, you have direct access
to the object.

❑ You have to pass the name of the method as a string into the _invoke method of the
 WebServiceProxy object:

 var methodName = “Add”;
request = webServiceProxy._invoke(servicePath, methodName, useGet, params,
 onSuccess, onFailure, userContext);

c15.indd 598c15.indd 598 8/20/07 9:08:01 PM8/20/07 9:08:01 PM

Chapter 15: Proxy Classes

599

 This is obviously very different from a local method invocation where you directly invoke the
method on the object instead of passing a string around.

 ❑ You have to pass the names and values of the parameters of the method as a dictionary into the
 _invoke method of the WebServiceProxy object.

 var params = {x : xValue, y : yValue};
request = webServiceProxy._invoke(servicePath, methodName, useGet, params,
 onSuccess, onFailure, userContext);

 This is obviously very different from a local method invocation where you directly pass these
parameters into the method itself instead of passing a dictionary around.

❑ You’re trying to call a method named Add , which takes two parameters of type double and returns a
value of type double , on an object of type Math , but you have to call a method with a different
name (_invoke), with completely different parameters (servicePath , methodName , useGet ,
 params , onSucess , onFailure , and userContext), and with a completely different return type
(WebRequest), on a completely different object (the WebServiceProxy object):

 request = webServiceProxy._invoke(servicePath, methodName, useGet, params,
 onSuccess, onFailure, userContext);

 This is obviously very different from a local method invocation where you directly invoke the
 Add method on the Math object.

 As you can see, invoking the Add method on the remote Math object doesn’t look anything like invoking
the Add method on a local Math object.

 Proxy Class
 The ASP.NET AJAX framework provides you with a local object that has the following characteristics:

❑ It has the same name as the remote object. For example, in the case of the Math Web service, the
AJAX framework provides you with a local object named Math .

 ❑ It exposes methods with the same names as the methods of the remote object. For example, the local
 Math object associated with the remote Math Web service object exposes a method named Add .

 ❑ Its methods take parameters with the same names as the associated methods of the remote object.
For example, the Add method of the local Math object associated with the remote Math Web service
object also takes two parameters with the same names as the parameters of the Add method of the
remote Math Web service object: x and y .

 ❑ Its methods take parameters of the same types as the associated methods of the remote object.
For example, the Add method of the local Math object associated with the remote Math Web ser-
vice object also takes two parameters of the same types as the parameters of the Add method of
the remote Math Web service object: double .

❑ Its methods return values of the same types as the associated methods of the remote object. For
example, the Add method of the local Math object associated with the remote Math Web service
object returns a value of the same type as the return value of the Add method of the remote Math
Web service object: double .

c15.indd 599c15.indd 599 8/20/07 9:08:01 PM8/20/07 9:08:01 PM

Chapter 15: Proxy Classes

600

 This enables you to program against the local object, instead of the WebServiceProxy object as you did
in the last chapter, and consequently, makes programming against remote objects more like programming
against local objects. Because this local object makes it feel like you’re directly interacting with the remote
object, it is known as a proxy object . In other words, this local object acts as a proxy for the remote object.

 Let’s begin by discussing the implementation of the proxy class and object that the ASP.NET AJAX
framework automatically generates for you. (The mechanism that actually generates this proxy class and
object is discussed later in the chapter.)

 As you learned in the previous chapter, there are three types of remote method invocations:

 ❑ Invoking a Web method that is part of a Web service

 ❑ Invoking a page method that is part of an ASP.NET page

 ❑ Invoking a method that is part of a custom class

 Therefore, there are three types of proxy classes:

 ❑ Proxy classes associated with Web services

 ❑ Proxy classes associated with page methods

 ❑ Proxy classes associated with custom classes

 Proxy Classes Associated with Web Services
 Listing 15-4 presents the implementation of the local Math proxy class associated with the remote Math
Web service class.

 Listing 15-4: The Local Math Proxy Class Associated with the Remote Math
Web Service Class

 Type.registerNamespace(‘MyNamespace’);

MyNamespace.Math = function()
{
 MyNamespace.Math.initializeBase(this);
 this._timeout = 0;
 this._userContext = null;
 this._succeeded = null;
 this._failed = null;
}

MyNamespace.Math.prototype =
{
 Add : function(x, y, succeededCallback, failedCallback, userContext)
 {
 var servicePath = MyNamespace.Math.get_path();
 var methodName = ‘Add’;
 var useGet = false;
 var params = {x : x, y : y};
 var onSuccess = succeededCallback;

c15.indd 600c15.indd 600 8/20/07 9:08:01 PM8/20/07 9:08:01 PM

Chapter 15: Proxy Classes

601

 var onFailure = failedCallback;

 return this._invoke(servicePath, methodName, useGet, params,
 onSuccess,onFailure, userContext);
 }
}

MyNamespace.Math.registerClass(‘MyNamespace.Math’, Sys.Net.WebServiceProxy);

MyNamespace.Math._staticInstance = new MyNamespace.Math();
MyNamespace.Math.set_path = function(value)
{
 MyNamespace.Math._staticInstance._path = value;
}

MyNamespace.Math.get_path = function()
{
 return MyNamespace.Math._staticInstance._path;
}

MyNamespace.Math.set_timeout = function(value)
{
 MyNamespace.Math._staticInstance._timeout = value;
}

MyNamespace.Math.get_timeout = function()
{
 return MyNamespace.Math._staticInstance._timeout;
}

MyNamespace.Math.set_defaultUserContext = function(value)
{
 MyNamespace.Math._staticInstance._userContext = value;
}

MyNamespace.Math.get_defaultUserContext = function()
{
 return MyNamespace.Math._staticInstance._userContext;
}

MyNamespace.Math.set_defaultSucceededCallback = function(value)
{
 MyNamespace.Math._staticInstance._succeeded = value;
}
MyNamespace.Math.get_defaultSucceededCallback = function()
{
 return MyNamespace.Math._staticInstance._succeeded;
}

MyNamespace.Math.set_defaultFailedCallback = function(value)
{
 MyNamespace.Math._staticInstance._failed = value;
}

(continued)

c15.indd 601c15.indd 601 8/20/07 9:08:02 PM8/20/07 9:08:02 PM

Chapter 15: Proxy Classes

602

 Listing 15-4 (continued)

MyNamespace.Math.get_defaultFailedCallback = function()
{
 return MyNamespace.Math._staticInstance._failed;
}

MyNamespace.Math.set_path(“/AJAXFuturesEnabledWebSite2/Math.asmx”);

MyNamespace.Math.Add = function(x, y, onSuccess, onFailed, userContext)
{
 MyNamespace.Math._staticInstance.Add(x, y, onSuccess, onFailed, userContext);
}

 This code listing defines a namespace with the same name as the namespace of the remote Math Web
service class:

 Type.registerNamespace(‘MyNamespace’);

 The local Math proxy class derives from the WebServiceProxy class:

 MyNamespace.Math.registerClass(‘MyNamespace.Math’, Sys.Net.WebServiceProxy);

 All ASP.NET AJAX proxy classes directly or indirectly derive from the Sys.Net.WebServiceProxy class.

 As you can see from in the following excerpt from Listing 15-4 , this local Math proxy class exposes a
method with the same name as the remote Web service class — Add . This method takes parameters with
the same names and types as the remote Web service class’s Add method parameters, and returns a value
of the same type as the remote Web service class’s Add method return value:

 MyNamespace.Math.prototype =
{
 Add : function(x, y, succeededCallback, failedCallback, userContext)
 {
 var servicePath = MyNamespace.Math.get_path();
 var methodName = ‘Add’;
 var useGet = false;
 var params = {x : x, y : y};
 var onSuccess = succeededCallback;
 var onFailure = failedCallback;

 return this._invoke(servicePath, methodName, useGet, params,
 onSuccess,onFailure, userContext);
 }
}

 The Add method of this local Math proxy class encapsulates the code that you would otherwise have
to write to interact with the WebServiceProxy object as you did in the previous chapter. Note that
 Listing 15-4 instantiates an instance of this local Math proxy class and assigns the instance to a private
static field on this class named _staticInstance :

 MyNamespace.Math._staticInstance = new MyNamespace.Math();

c15.indd 602c15.indd 602 8/20/07 9:08:02 PM8/20/07 9:08:02 PM

Chapter 15: Proxy Classes

603

 The code then defines static getters and setters that delegate to the associated getters and setters of this
static Math proxy instance. Also note that the code exposes a static method named Add on this local Math
proxy class, which delegates to the Add method of the static Math proxy instance:

 MyNamespace.Math.Add = function(x, y, onSuccess, onFailed, userContext)
{
 MyNamespace.Math._staticInstance.Add(x, y, onSuccess, onFailed, userContext);
}

 Finally, the code invokes the set_path static method on this local Math proxy class to set the service
path for the static Math proxy instance:

 MyNamespace.Math.set_path(“/AJAXFuturesEnabledWebSite2/Math.asmx”);

 Listing 15-5 presents a page that uses the Math proxy class. As you’ll see later in this chapter, the
ASP.NET AJAX framework automatically generates the code for the proxy class such as the Math
proxy class shown in this listing. For now, assume that you generated this code yourself and treat it
like any other client code. As such, the content of Listing 15-4 is stored in a JavaScript file named
 MathWebServiceProxy.js , and Listing 15-5 adds a reference to this JavaScript file.

 Now let’s walk through the implementation of the add JavaScript function shown in the following
excerpt from Listing 15-5 :

 function add()
 {
 var userContext = $get(“result”);
 var xValue = $get(“firstNumber”).value;
 var yValue = $get(“secondNumber”).value;
 MyNamespace.Math.Add(xValue, yValue, onSuccess, onFailure, userContext);
 }

 Thanks to the Math proxy class, you get to directly invoke the Add method and directly pass the x and y
values into this method. Note that there is no sign of the WebServiceProxy and its weird-looking
_invoke method. The Math proxy class enables you to program against the remote Math Web service
object as if you were programming against a local Math object. In other words, the Math proxy class
gives your client code the illusion that it is making a local method call.

 Listing 15-5: A Page that Uses the Local Static Math Proxy Instance

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>

 <script type=”text/javascript” language=”javascript”>
 var request;

 function onSuccess(result, userContext, methodName)
 {

(continued)

c15.indd 603c15.indd 603 8/20/07 9:08:02 PM8/20/07 9:08:02 PM

Chapter 15: Proxy Classes

604

 Listing 15-5 (continued)

 userContext.innerHTML = “<b<>u>” + result + “</u>”;
 }

 function onFailure(result, userContext, methodName)
 {
 var builder = new Sys.StringBuilder();
 builder.append(“timedOut: “);
 builder.append(result.get_timedOut());
 builder.appendLine();
 builder.appendLine();
 builder.append(“message: “);
 builder.append(result.get_message());
 builder.appendLine();
 builder.appendLine();
 builder.append(“stackTrace: “);
 builder.appendLine();
 builder.append(result.get_stackTrace());
 builder.appendLine();
 builder.appendLine();
 builder.append(“exceptionType: “);
 builder.append(result.get_exceptionType());
 builder.appendLine();
 builder.appendLine();
 builder.append(“statusCode: “);
 builder.append(result.get_statusCode());
 builder.appendLine();
 builder.appendLine();
 builder.append(“methodName: “);
 builder.append(methodName);

 alert(builder.toString());
 }

 function add()
 {
 var userContext = $get(“result”);
 var xValue = $get(“firstNumber”).value;
 var yValue = $get(“secondNumber”).value;
 MyNamespace.Math.Add(xValue, yValue, onSuccess, onFailure, userContext);
 }
 </script>

</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Scripts>
 <asp:ScriptReference Path=”MathWebServiceProxy.js” />
 </Scripts>
 </asp:ScriptManager>
 <table>
 <tr>
 <td style=”font-weight: bold” align=”right”>

c15.indd 604c15.indd 604 8/20/07 9:08:02 PM8/20/07 9:08:02 PM

Chapter 15: Proxy Classes

605

 First Number:
 </td>
 <td align=”left”>
 <input type=”text” id=”firstNumber” /></td>
 </tr>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 Second Number:
 </td>
 <td align=”left”>
 <input type=”text” id=”secondNumber” /></td>
 </tr>
 <tr>
 <td colspan=”2” align=”center”>
 <button onclick=”add()”>
 Add</button></td>
 </tr>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 Result:
 </td>
 <td align=”left”>

 </td>
 </tr>
 </table>
 </form>
</body>
</html>

 Proxy Classes Associated with Page Methods
 The following code presents a proxy class associated with a page method named Add , which belongs to
the PageMethods.aspx page:

 PageMethods = function()
{
 PageMethods.initializeBase(this);
 this._timeout = 0;
 this._userContext = null;
 this._succeeded = null;
 this._failed = null;
}

PageMethods.prototype =
{
 Add : function(x, y, succeededCallback, failedCallback, userContext) {
 return this._invoke(PageMethods.get_path(), ‘Add’, false, {x:x, y:y},
 succeededCallback, failedCallback, userContext);
 }
}

PageMethods.registerClass(‘PageMethods’, Sys.Net.WebServiceProxy);

(continued)

c15.indd 605c15.indd 605 8/20/07 9:08:03 PM8/20/07 9:08:03 PM

Chapter 15: Proxy Classes

606

(continued)

PageMethods._staticInstance = new PageMethods();

PageMethods.set_path = function(value)
{
 PageMethods._staticInstance._path = value;
}

PageMethods.get_path = function()
{
 return PageMethods._staticInstance._path;
}

PageMethods.set_timeout = function(value)
{
 PageMethods._staticInstance._timeout = value;
}

PageMethods.get_timeout = function()
{
 return PageMethods._staticInstance._timeout;
}

PageMethods.set_defaultUserContext = function(value)
{
 PageMethods._staticInstance._userContext = value;
}

PageMethods.get_defaultUserContext = function()
{
 return PageMethods._staticInstance._userContext;
}

PageMethods.set_defaultSucceededCallback = function(value)
{
 PageMethods._staticInstance._succeeded = value;
}

PageMethods.get_defaultSucceededCallback = function()
{
 return PageMethods._staticInstance._succeeded;
}

PageMethods.set_defaultFailedCallback = function(value)
{
 PageMethods._staticInstance._failed = value;
}

PageMethods.get_defaultFailedCallback = function()
{
 return PageMethods._staticInstance._failed;
}

 PageMethods.set_path(“/AJAXFuturesEnabledWebSite2/PageMethods.aspx”);

PageMethods.Add = function(x, y, onSuccess, onFailed, userContext)
{
 PageMethods._staticInstance.Add(x, y, onSuccess, onFailed, userContext);
};

c15.indd 606c15.indd 606 8/20/07 9:08:03 PM8/20/07 9:08:03 PM

Chapter 15: Proxy Classes

607

 Comparing this code with Listing 15-4 clearly shows that a proxy class associated with page methods
has a fixed named — PageMethods — and does not belong to any namespace. All methods annotated
with WebMethod metadata attribute on a given page are associated with the same proxy class named
 PageMethods on the client side. As the boldface portion of the code shows, the set_path method is
invoked on the PageMethods proxy object to specify the URL of the PageMethods.aspx page as the
 target URL for the proxy class.

 The following code presents a page that uses the PageMethods proxy class. As you’ll see later in this
chapter, the ASP.NET AJAX framework automatically generates the code for the PageMethods proxy
class and adds this code to the current page. For now, assume that you generated this code yourself
and treat it like any other client script. As such, this code is stored in a JavaScript file named
 MathPageMethodsProxy.js , and the following code adds a reference to this file. Note that the
 following code is the same as Listing 15-5 , except for the boldface portion where the PageMethods
proxy is used to communicate with the underlying page method.

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>

 <script type=”text/javascript” language=”javascript”>
 var request;

 function onSuccess(result, userContext, methodName)
 {
 userContext.innerHTML = “<u>” + result + “</u>”;
 }

 function onFailure(result, userContext, methodName)
 {
 //Same as Listing 15-5
 }

 function add()
 {
 var userContext = $get(“result”);
 var xValue = $get(“firstNumber”).value;
 var yValue = $get(“secondNumber”).value;
 PageMethods.Add(xValue, yValue, onSuccess, onFailure, userContext);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Scripts>
 <asp:ScriptReference Path=”MathPageMethodsProxy.js” />
 </Scripts>
 </asp:ScriptManager>
 <!-- Same as Listing 15-5 -->
 </form>
</body>
</html>

c15.indd 607c15.indd 607 8/20/07 9:08:03 PM8/20/07 9:08:03 PM

Chapter 15: Proxy Classes

608

 Proxy Classes Associated with Custom Classes
 The proxy classes associated with custom classes are very similar to the proxy classes associated with
Web services. The main difference is that the target URL of the proxy class associated with a custom class
is set to the URL of the .asbx file that describes the custom class.

 Automatic Proxy Class Generation
 This illusion will work only if someone implements the Math proxy class for you. Otherwise, if you
were to implement this class yourself, it would not be much of an illusion. The main challenge with
implementing a proxy class is that one proxy class will not work with all types of remote classes.
 For example, you cannot use the Math proxy class to talk to the Products Web service class because the
 Products Web service class is a completely different Web service class than the Math Web service class.
For one thing, the Products Web service class exposes methods such as GetProducts as opposed to
 Add . This means that you have to use separate proxy classes to talk to different remote classes.

 This is where the ASP.NET AJAX server-side framework comes to the rescue. This framework contains
the logic that automatically generates the code for the proxy class for each remote class that your client
code needs to interact with. All you have to do is add a ServiceReference object to the Services
 collection of the current ScriptManager server control to specify which remote class you need to talk to.
You can do this either imperatively or declaratively.

 Declarative Approach
 Listing 15-6 presents a page that that uses the declarative approach to add a ServiceReference object
to the Services collection of the current ScriptManager server control.

 Listing 15-6: A Page that Uses the Declarative Approach to Add a ScriptReference Object

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>

 <script type=”text/javascript” language=”javascript”>
 var request;

 function onSuccess(result, userContext, methodName)
 {
 userContext.innerHTML = “<u>” + result + “</u>”;
 }

 function onFailure(result, userContext, methodName)
 {
 var builder = new Sys.StringBuilder();
 builder.append(“timedOut: “);
 builder.append(result.get_timedOut());
 builder.appendLine();

c15.indd 608c15.indd 608 8/20/07 9:08:04 PM8/20/07 9:08:04 PM

Chapter 15: Proxy Classes

609

 builder.appendLine();
 builder.append(“message: “);
 builder.append(result.get_message());
 builder.appendLine();
 builder.appendLine();
 builder.append(“stackTrace: “);
 builder.appendLine();
 builder.append(result.get_stackTrace());
 builder.appendLine();
 builder.appendLine();
 builder.append(“exceptionType: “);
 builder.append(result.get_exceptionType());
 builder.appendLine();
 builder.appendLine();
 builder.append(“statusCode: “);
 builder.append(result.get_statusCode());
 builder.appendLine();
 builder.appendLine();
 builder.append(“methodName: “);
 builder.append(methodName);

 alert(builder.toString());
 }

 function add()
 {
 var userContext = $get(“result”);
 var xValue = $get(“firstNumber”).value;
 var yValue = $get(“secondNumber”).value;
 MyNamespace.Math.Add(xValue, yValue, onSuccess, onFailure, userContext);
 }
 </script>

</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Services>
 <asp:ServiceReference Path = ”/AJAXFuturesEnabledWebSite2/Math.asmx”
 InlineScript=”true” />
 </Services>
 </asp:ScriptManager>
 <table>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 First Number:
 </td>
 <td align=”left”>
 <input type=”text” id=”firstNumber” /></td>
 </tr>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 Second Number:
 </td>

(continued)

c15.indd 609c15.indd 609 8/20/07 9:08:04 PM8/20/07 9:08:04 PM

Chapter 15: Proxy Classes

610

 Listing 15-6 (continued)

 <td align=”left”>
 <input type=”text” id=”secondNumber” /></td>
 </tr>
 <tr>
 <td colspan=”2” align=”center”>
 <button onclick=”add()”>
 Add</button></td>
 </tr>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 Result:
 </td>
 <td align=”left”>

 </td>
 </tr>
 </table>
 </form>
</body>
</html>

 As you can see in the boldface portion of this code listing, the page adds an <asp:ServiceReference>
element to the <Services> child element of the <asp:ScriptManager> tag that represents the current
 ScriptManager server control on the .aspx page. Note that this page sets the Path attribute on this
 <asp:ServiceReference> tag to the service path of the Math Web service. Also note that the page
sets the InlineScript attribute on this tag to true to tell the ASP.NET AJAX server-side framework to
add the definition of the Math proxy class to the markup sent to the requesting browser. As a matter of
fact, if you run Listing 15-6 and view the source from your browser, you’ll see Listing 15-7 .

 Listing 15-7: The Source for the Page Shown in Listing 15-6

 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head><title>
 Untitled Page
</title>

 <script type=”text/javascript” language=”javascript”>
 var request;

 function onSuccess(result, userContext, methodName)
 {
 userContext.innerHTML = “<u>” + result + “</u>”;
 }

 function onFailure(result, userContext, methodName)
 {
 var builder = new Sys.StringBuilder();
 builder.append(“timedOut: “);
 builder.append(result.get_timedOut());
 builder.appendLine();

c15.indd 610c15.indd 610 8/20/07 9:08:04 PM8/20/07 9:08:04 PM

Chapter 15: Proxy Classes

611

 builder.appendLine();
 builder.append(“message: “);
 builder.append(result.get_message());
 builder.appendLine();
 builder.appendLine();
 builder.append(“stackTrace: “);
 builder.appendLine();
 builder.append(result.get_stackTrace());
 builder.appendLine();
 builder.appendLine();
 builder.append(“exceptionType: “);
 builder.append(result.get_exceptionType());
 builder.appendLine();
 builder.appendLine();
 builder.append(“statusCode: “);
 builder.append(result.get_statusCode());
 builder.appendLine();
 builder.appendLine();
 builder.append(“methodName: “);
 builder.append(methodName);

 alert(builder.toString());
 }

 function add()
 {
 var userContext = $get(“result”);
 var xValue = $get(“firstNumber”).value;
 var yValue = $get(“secondNumber”).value;
 MyNamespace.Math.Add(xValue, yValue, onSuccess, onFailure, userContext);
 }
 </script>

</head>
<body>
 <form name=”form1” method=”post” action=”WebServiceProxy.aspx” id=”form1”>
<div>
<input type=”hidden” name=”__EVENTTARGET” id=”__EVENTTARGET” value=”” />
<input type=”hidden” name=”__EVENTARGUMENT” id=”__EVENTARGUMENT” value=”” />
<input type=”hidden” name=”__VIEWSTATE” id=”__VIEWSTATE”
value=”/wEPDwULLTEzMTg5MjA5NzVkZDZArSkraR3ukOEGxC944PmDWFHr” />
</div>

<script type=”text/javascript”>
<!--
var theForm = document.forms[‘form1’];
if (!theForm)
{
 theForm = document.form1;
}
function __doPostBack(eventTarget, eventArgument)
{
 if (!theForm.onsubmit || (theForm.onsubmit() != false))
 {
 theForm.__EVENTTARGET.value = eventTarget;

(continued)

c15.indd 611c15.indd 611 8/20/07 9:08:04 PM8/20/07 9:08:04 PM

Chapter 15: Proxy Classes

612

 Listing 15-7 (continued)

 theForm.__EVENTARGUMENT.value = eventArgument;
 theForm.submit();
 }
}
// -->
</script>

<script src=”/AJAXFuturesEnabledWebSite2/WebResource.axd?d=yy2blzBZ_gTxI-
oButV_bA2&t=632968856944906146” type=”text/javascript”></script>

<script
src=”/AJAXFuturesEnabledWebSite2/ScriptResource.axd?d=
 5dGbo4QMlo4oM6SEPbeJDlgdNKMbymeDj
oOb3MgwqVCNw7gUy_Hwpl05Bo9fKC03KULnWFJDf9ku4Xp9SqPBxdVQWdcxJCyPuljKGvPcGts1&t=6
33052351733295148” type=”text/javascript”></script>
<script
src=”/AJAXFuturesEnabledWebSite2/ScriptResource.axd?d=
 5dGbo4QMlo4oM6SEPbeJDlgdNKMbymeDj
oOb3MgwqVCNw7gUy_Hwpl05Bo9fKC03KULnWFJDf9ku4Xp9SqPBxYKjD_ECoU_mRI6NDMsutIxYndjcl69y
5SLyWOqfgiOM0&t=633052351733295148” type=”text/javascript”></script>
 <script type=”text/javascript”>
 <!--
 Type.registerNamespace(‘MyNamespace’);
 MyNamespace.Math=function() {
 MyNamespace.Math.initializeBase(this);
 this._timeout = 0;
 this._userContext = null;
 this._succeeded = null;
 this._failed = null;
 }
 MyNamespace.Math.prototype = {
 Add:function(x,y,succeededCallback, failedCallback, userContext) {
 return this._invoke(MyNamespace.Math.get_path(),
 ‘Add’,false,{x:x,y:y},succeededCallback,failedCallback,userContext); }}
 MyNamespace.Math.registerClass(‘MyNamespace.Math’,Sys.Net.WebServiceProxy);
 MyNamespace.Math._staticInstance = new MyNamespace.Math();
 MyNamespace.Math.set_path = function(value) {
 var e = Function._validateParams(arguments, [{name: ‘path’, type: String}]); if (e)
 throw e; MyNamespace.Math._staticInstance._path = value; }
 MyNamespace.Math.get_path = function() { return
MyNamespace.Math._staticInstance._ path; }
 MyNamespace.Math.set_timeout = function(value) { var e =
 Function._validateParams(arguments, [{name: ‘timeout’, type: Number}]); if (e)
 throw e; if (value < 0) { throw Error.argumentOutOfRange(‘value’, value,
Sys.Res.invalidTimeout); }
 MyNamespace.Math._staticInstance._timeout = value; }
 MyNamespace.Math.get_timeout = function() {
 return MyNamespace.Math._staticInstance._timeout; }
 MyNamespace.Math.set_defaultUserContext = function(value) {
 MyNamespace.Math._staticInstance._userContext = value; }
 MyNamespace.Math.get_defaultUserContext = function() {
 return MyNamespace.Math._staticInstance._userContext; }

c15.indd 612c15.indd 612 8/20/07 9:08:05 PM8/20/07 9:08:05 PM

Chapter 15: Proxy Classes

613

 MyNamespace.Math.set_defaultSucceededCallback = function(value) {
 var e = Function._validateParams(arguments, [{name: ‘defaultSucceededCallback’,
 type: Function}]); if (e) throw e; MyNamespace.Math._staticInstance._succeeded =
 value; }
 MyNamespace.Math.get_defaultSucceededCallback = function() {
 return MyNamespace.Math._staticInstance._succeeded; }
 MyNamespace.Math.set_defaultFailedCallback = function(value) {
 var e = Function._validateParams(arguments, [{name: ‘defaultFailedCallback’, type:
 Function}]); if (e) throw e; MyNamespace.Math._staticInstance._failed = value; }
MyNamespace.Math.get_defaultFailedCallback = function() {
 return MyNamespace.Math._staticInstance._failed; }
 MyNamespace.Math.set_path(“/AJAXFuturesEnabledWebSite2/Math.asmx”);
 MyNamespace.Math.Add= function(x,y,onSuccess,onFailed,userContext)
 {MyNamespace.Math._staticInstance.Add(x,y,onSuccess,onFailed,userContext); }
 // -->
 </script>

 <script type=”text/javascript”>
//<![CDATA[
Sys.WebForms.PageRequestManager._initialize(‘ScriptManager1’,
document.getElementById(‘form1’));
Sys.WebForms.PageRequestManager.getInstance()._updateControls([], [], [], 90);
//]]>
</script>

 <table>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 First Number:
 </td>
 <td align=”left”>
 <input type=”text” id=”firstNumber” /></td>
 </tr>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 Second Number:
 </td>
 <td align=”left”>
 <input type=”text” id=”secondNumber” /></td>
 </tr>
 <tr>
 <td colspan=”2” align=”center”>
 <button onclick=”add()”>
 Add</button></td>
 </tr>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 Result:
 </td>

(continued)

c15.indd 613c15.indd 613 8/20/07 9:08:05 PM8/20/07 9:08:05 PM

Chapter 15: Proxy Classes

614

 Listing 15-7 (continued)

 <td align=”left”>

 </td>
 </tr>
 </table>

<script type=”text/javascript”>
<!--
Sys.Application.initialize();
// -->
</script>
</form>
</body>
</html>

 As you can see, the boldface portion of this listing is just the inline definition of the Math proxy class.

 This inline solution has the following drawbacks:

❑ Like any other inline solution, it does not allow the browser to cache the same script used in dif-
ferent pages to improve performance. For example, if you have multiple pages in your applica-
tion that use the Math proxy class, every single page will include the boldface portion of Listing
 15-7 . However, if the script that defines the Math proxy class were in a separate file (as shown in
the following code snippet), the browser could download and cache this file once.

 ❑ It increases the size of the page because the definition of the Math proxy class is directly added
to the page. As you can see in Listing 15-7 , your pages could get quite large, and the bigger a
page is, the longer it takes to download. However, if the boldface portion of Listing 15-7 were in
a separate file (as shown in the following code snippet), the browser would download this script
once and use it across all pages in your application that use the Math proxy class.

 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Services>
 <asp:ServiceReference Path=”/AJAXFuturesEnabledWebSite2/Math.asmx”
 InlineScript=”true” />
 </Services>
 </asp:ScriptManager>

 If you set the InlineScript attribute on the <asp:ScriptReference> to false , run the same page,
and view the source from your browser, you’ll get Listing 15-8 .

c15.indd 614c15.indd 614 8/20/07 9:08:05 PM8/20/07 9:08:05 PM

Chapter 15: Proxy Classes

615

 Listing 15-8: The Source of the Page Shown in Listing 15-6 with a ScriptMode Value
of Debug

 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head><title>
 Untitled Page
</title>

 <script type=”text/javascript” language=”javascript”>
 var request;

 function onSuccess(result, userContext, methodName)
 {
 userContext.innerHTML = “<u>” + result + “</u>”;
 }

 function onFailure(result, userContext, methodName)
 {
 var builder = new Sys.StringBuilder();
 builder.append(“timedOut: “);
 builder.append(result.get_timedOut());
 builder.appendLine();
 builder.appendLine();
 builder.append(“message: “);
 builder.append(result.get_message());
 builder.appendLine();
 builder.appendLine();
 builder.append(“stackTrace: “);
 builder.appendLine();
 builder.append(result.get_stackTrace());
 builder.appendLine();
 builder.appendLine();
 builder.append(“exceptionType: “);
 builder.append(result.get_exceptionType());
 builder.appendLine();
 builder.appendLine();
 builder.append(“statusCode: “);
 builder.append(result.get_statusCode());
 builder.appendLine();
 builder.appendLine();
 builder.append(“methodName: “);
 builder.append(methodName);

 alert(builder.toString());
 }

 function add()
 {
 var userContext = $get(“result”);
 var xValue = $get(“firstNumber”).value;

(continued)

c15.indd 615c15.indd 615 8/20/07 9:08:06 PM8/20/07 9:08:06 PM

Chapter 15: Proxy Classes

616

 Listing 15-8 (continued)

 var yValue = $get(“secondNumber”).value;
 MyNamespace.Math.Add(xValue, yValue, onSuccess, onFailure, userContext);
 }
 </script>

</head>
<body>
 <form name=”form1” method=”post” action=”WebServiceProxy.aspx” id=”form1”>
<div>
<input type=”hidden” name=”__EVENTTARGET” id=”__EVENTTARGET” value=”” />
<input type=”hidden” name=”__EVENTARGUMENT” id=”__EVENTARGUMENT” value=”” />
<input type=”hidden” name=”__VIEWSTATE” id=”__VIEWSTATE”
value=”/wEPDwULLTEzMTg5MjA5NzVkZDZArSkraR3ukOEGxC944PmDWFHr” />
</div>

<script type=”text/javascript”>
<!--
var theForm = document.forms[‘form1’];
if (!theForm) {
 theForm = document.form1;
}
function __doPostBack(eventTarget, eventArgument)
{
 if (!theForm.onsubmit || (theForm.onsubmit() != false)) {
 theForm.__EVENTTARGET.value = eventTarget;
 theForm.__EVENTARGUMENT.value = eventArgument;
 theForm.submit();
 }
}
// -->
</script>

<script src=”/AJAXFuturesEnabledWebSite2/WebResource.axd?d=yy2blzBZ_gTxI-

oButV_bA2&t=632968856944906146” type=”text/javascript”></script>

<script
src=”/AJAXFuturesEnabledWebSite2/ScriptResource.axd?d=
 5dGbo4QMlo4oM6SEPbeJDlgdNKMbymeDj
oOb3MgwqVCNw7gUy_Hwpl05Bo9fKC03KULnWFJDf9ku4Xp9SqPBxdVQWdcxJCyPuljKGvPcGts1&t=6
33052351733295148” type=”text/javascript”></script>
<script
src=”/AJAXFuturesEnabledWebSite2/ScriptResource.axd?d=
5dGbo4QMlo4oM6SEPbeJDlgdNKMbymeDjoOb3MgwqVCNw7gUy_Hwpl05Bo9fKC03KULnWFJDf9ku4Xp9SqP
BxYKjD_ECoU_mRI6NDMsutIxYndjcl69y5SLyWOqfgiOM0&t=633052351733295148”
type=”text/javascript”></script>

c15.indd 616c15.indd 616 8/20/07 9:08:06 PM8/20/07 9:08:06 PM

Chapter 15: Proxy Classes

617

 <script src=”/AJAXFuturesEnabledWebSite2/Math.asmx/jsdebug”
 type=”text/javascript”></script>

 <script type=”text/javascript”>
//<![CDATA[
Sys.WebForms.PageRequestManager._initialize(‘ScriptManager1’,
document.getElementById(‘form1’));
Sys.WebForms.PageRequestManager.getInstance()._updateControls([], [], [], 90);
//]]>
</script>

 <table>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 First Number:
 </td>
 <td align=”left”>
 <input type=”text” id=”firstNumber” /></td>
 </tr>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 Second Number:
 </td>
 <td align=”left”>
 <input type=”text” id=”secondNumber” /></td>
 </tr>
 <tr>
 <td colspan=”2” align=”center”>
 <button onclick=”add()”>
 Add</button></td>
 </tr>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 Result:
 </td>
 <td align=”left”>

 </td>
 </tr>
 </table>

<script type=”text/javascript”>
<!--
Sys.Application.initialize();
// -->
</script>
</form>
</body>
</html>

 Notice that the boldface portion of Listing 15-7 is replaced by the boldface portion of Listing 15-8 :

 <script src=”/AJAXFuturesEnabledWebSite2/Math.asmx/jsdebug”
 type=”text/javascript”></script>

c15.indd 617c15.indd 617 8/20/07 9:08:06 PM8/20/07 9:08:06 PM

Chapter 15: Proxy Classes

618

 This script block sets the src to the value /AJAXFuturesEnabledWebSite2/Math.asmx/jsdebug .
Note that this value consists of two parts: the first part is the URL of the Math Web service, and the
second part is jsdebug . The path trailer jsdebug tells the ASP.NET AJAX server-side framework that
the client code wants to download the debug version of the script. If you enter this URL in the address
bar of your browser, you’ll get the JavaScript file that contains the definition of the Math proxy class
(the boldfacportion of Listing 15-7).

 The ScriptManager server control exposes an enumerator property of type ScriptMode and named
 ScriptMode . This property determines which version of the script to download. The following code
presents the definition of the ScriptMode enumerator:

 public enum ScriptMode
 {
 Auto = 0,
 Inherit = 1,
 Debug = 2,
 Release = 3,
 }

 For example, if you set the ScriptMode attribute on the <asp:ServiceReference> child element
 previously shown in Listing 15-6 to Release , run the listing page, and view the page source from your
browser, you’ll see that the source contains the following script block. As the boldface portion shows, the
path trailer is now js instead of jsdebug , which means that this time around, the release version of
the script will be downloaded:

 <script src=”/AJAXFuturesEnabledWebSite2/Math.asmx/ js ”
 type=”text/javascript”> </script>

 Imperative Approach
 Listing 15-9 presents a page that uses the imperative approach to add a ServiceReference object to the
 Services collection of the current ScriptManager server control.

 Listing 15-9: A Page that Uses the Imperative Approach to Add a ServiceReference

 <%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<script runat=”server”>
 void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 ServiceReference serviceRef = new ServiceReference();
 serviceRef.InlineScript = false;
 serviceRef.Path = “/AJAXCTPEnabledWebSite2/Math.asmx”;

 ScriptManager1.Services.Add(serviceRef);
 }
 }
</script>

c15.indd 618c15.indd 618 8/20/07 9:08:06 PM8/20/07 9:08:06 PM

Chapter 15: Proxy Classes

619

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>

 <script type=”text/javascript” language=”javascript”>
 var request;

 function onSuccess(result, userContext, methodName)
 {
 userContext.innerHTML = “ <u>” + result + “ </u>”;
 }

 function onFailure(result, userContext, methodName)
 {
 var builder = new Sys.StringBuilder();
 builder.append(“timedOut: “);
 builder.append(result.get_timedOut());
 builder.appendLine();
 builder.appendLine();
 builder.append(“message: “);
 builder.append(result.get_message());
 builder.appendLine();
 builder.appendLine();
 builder.append(“stackTrace: “);
 builder.appendLine();
 builder.append(result.get_stackTrace());
 builder.appendLine();
 builder.appendLine();
 builder.append(“exceptionType: “);
 builder.append(result.get_exceptionType());
 builder.appendLine();
 builder.appendLine();
 builder.append(“statusCode: “);
 builder.append(result.get_statusCode());
 builder.appendLine();
 builder.appendLine();
 builder.append(“methodName: “);
 builder.append(methodName);

 alert(builder.toString());
 }

 function add()
 {
 var userContext = $get(“result”);
 var xValue = $get(“firstNumber”).value;
 var yValue = $get(“secondNumber”).value;
 MyNamespace.Math.Add(xValue, yValue, onSuccess, onFailure, userContext);
 }
 </script>

</head>

(continued)

c15.indd 619c15.indd 619 8/20/07 9:08:07 PM8/20/07 9:08:07 PM

Chapter 15: Proxy Classes

620

 Listing 15-9 (continued)

<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”/>
 <table>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 First Number:
 </td>
 <td align=”left”>
 <input type=”text” id=”firstNumber” />
 </td>
 </tr>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 Second Number:
 </td>
 <td align=”left”>
 <input type=”text” id=”secondNumber” />
 </td>
 </tr>
 <tr>
 <td colspan=”2” align=”center”>
 <button onclick=”add()”>
 Add</button></td>
 </tr>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 Result:
 </td>
 <td align=”left”>

 </td>
 </tr>
 </table>
 </form>
</body>
</html>

 As the boldface portion of this code listing shows, the Page_Load method first instantiates a
 ServiceReference instance:

 ServiceReference serviceRef = new ServiceReference();

 Next, it sets the InlineScript and Path properties of this instance:

 serviceRef.InlineScript = false;
 serviceRef.Path = “/AJAXFuturesEnabledWebSite2/Math.asmx”;

 Finally, it adds the instance to the Services collection of the current ScriptManager server control:

 ScriptManager1.Services.Add(serviceRef);

c15.indd 620c15.indd 620 8/20/07 9:08:07 PM8/20/07 9:08:07 PM

Chapter 15: Proxy Classes

621

 Parent/Child Pages
 As previously discussed, to take advantage of the ASP.NET AJAX server-side framework automatic
proxy-code generation, you must imperatively or declaratively add a ServiceReference object to the
 Services collection of the ScriptManager server control. To do so, you need to have access to this server
control. This causes problems in situations involving parent and child pages. Two common scenarios are
master/content and host/user control scenarios. In the master/content page scenario, the parent page is
the master page and the child page is the content page. In the host/user control scenario, the child page
is the user control and the parent page is the page that hosts the user control.

 The problem in these parent/child page scenarios is that the parent and child are finally merged and
form a single page, which means that you cannot include a separate instance of the ScriptManager
server control on the parent and child pages. As previously discussed, every page can contain only a
 single instance of the ScriptManager server control.

 If you put the ScriptManager server control on the parent page, the child page would not be able to
add its ServiceReference objects to the Services collection of the ScriptManager server control. If
you put the ScriptManager server control on the child page, the parent page would not be able to add
its ServiceReference objects to the Services collection of the ScriptManager server control.

 You would have the same problem with ScriptReferences . If you put the ScriptManager server
 control on the parent page, the child page would not be able to add its ScriptReference objects to the
 Scripts collection of the ScriptManager server control. If you put the ScriptManager server control
on the child page, the parent page would not be able to add its ScriptReference objects to the
 Scripts collection of the ScriptManager server control.

 To tackle these situations, the ASP.NET AJAX framework includes a new server control named
 ScriptManagerProxy . A child page whose parent page contains an instance of the ScriptManager server
control, or a parent page whose child page contains an instance of the ScriptManager server control, can
add its ServiceReference and ScriptReference objects to the Services and Scripts collections
of the ScriptManagerProxy server control and rest assured that the ASP.NET AJAX framework will
 automatically add these ServiceReference and ScriptReference objects to the ScriptManager server
 control. Because the ServiceReference and ScriptReference objects added to the Services and
 Scripts collections of the ScriptManagerProxy server control are added to the Services and Scripts
collections of the current ScriptManager server control, the ScriptManagerProxy server control acts as a
proxy for the current ScriptManager server control.

 Listing 15-10 contains a user control that employs the ScriptManagerProxy server control.

 Listing 15-10: A User Control that Employs the ScriptManagerProxy Server Control

 <%@ Control Language=”C#” ClassName=”MathUserControl” %>

<script type=”text/javascript” language=”javascript”>
 var request;

 function onSuccess(result, userContext, methodName)
 {
 userContext.innerHTML = “<u>” + result + “</u>”;
 }

(continued)

c15.indd 621c15.indd 621 8/20/07 9:08:07 PM8/20/07 9:08:07 PM

Chapter 15: Proxy Classes

622

 Listing 15-10 (continued)

 function onFailure(result, userContext, methodName)
 {
 var builder = new Sys.StringBuilder();
 builder.append(“timedOut: “);
 builder.append(result.get_timedOut());
 builder.appendLine();
 builder.appendLine();
 builder.append(“message: “);
 builder.append(result.get_message());
 builder.appendLine();
 builder.appendLine();
 builder.append(“stackTrace: “);
 builder.appendLine();
 builder.append(result.get_stackTrace());
 builder.appendLine();
 builder.appendLine();
 builder.append(“exceptionType: “);
 builder.append(result.get_exceptionType());
 builder.appendLine();
 builder.appendLine();
 builder.append(“statusCode: “);
 builder.append(result.get_statusCode());
 builder.appendLine();
 builder.appendLine();
 builder.append(“methodName: “);
 builder.append(methodName);

 alert(builder.toString());
 }

 function add()
 {
 var userContext = $get(“result”);
 var xValue = $get(“firstNumber”).value;
 var yValue = $get(“secondNumber”).value;
 MyNamespace.Math.Add(xValue, yValue, onSuccess, onFailure, userContext);
 }
</script>

<asp:ScriptManagerProxy runat=”server” ID=”ScriptManagerProxy1”>
 <Services>
 <asp:ServiceReference Path=”/AJAXFuturesEnabledWebSite2/Math.asmx” />
 </Services>
</asp:ScriptManagerProxy>
<table>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 First Number:
 </td>
 <td align=”left”>
 <input type=”text” id=”firstNumber” /></td>
 </tr>

c15.indd 622c15.indd 622 8/20/07 9:08:08 PM8/20/07 9:08:08 PM

Chapter 15: Proxy Classes

623

 <tr>
 <td style=”font-weight: bold” align=”right”>
 Second Number:
 </td>
 <td align=”left”>
 <input type=”text” id=”secondNumber” /></td>
 </tr>
 <tr>
 <td colspan=”2” align=”center”>
 <button onclick=”add()”>
 Add</button></td>
 </tr>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 Result:
 </td>
 <td align=”left”>

 </td>
 </tr>
</table>

 Listing 15-11 presents a page that hosts the user control shown in Listing 15-10 . As you can see,
the host page contains the ScriptManager server control, and the child user control contains the
 ScriptManagerProxy server control.

 Listing 15-11: A Page that Hosts the User Control shown in Listing 15-10

 <%@ Page Language=”C#” %>
<%@ Register TagPrefix=”custom” TagName=”MyUserControl”
Src=”~/MathUserControl.ascx” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”/>
 <custom:MyUserControl runat=”server” ID=”MyUserControl1” />
 </form>
</body>
</html>

 Under the Hood
 Adding a ServiceReference object to the Services collection of the current ScriptManager server
control is all it takes to instruct the ASP.NET AJAX server-side framework to automatically generate a
 client script that defines, instantiates, and initializes the proxy class. To help you understand how the
ASP.NET AJAX server-side framework manages to do this, this section implements fully functional

c15.indd 623c15.indd 623 8/20/07 9:08:08 PM8/20/07 9:08:08 PM

Chapter 15: Proxy Classes

624

(as far as the discussions in this section are concerned) replicas of the components of the framework that
are responsible for generating a client script that defines, instantiates, and initializes the proxy class.

 ScriptManager
 Listing 15-12 presents the implementation of the replica ScriptManager server control.

 Listing 15-12: The Replica ScriptManager Server Control

 using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;
using System.Text;
using System.Collections;
using System.Collections.Generic;
using System.Reflection;
using System.Web.Compilation;
using System.ComponentModel;
using System.Web.Services;
using System.Web.Script.Services;
using System.Collections.ObjectModel;

namespace CustomComponents
{
 [ParseChildren(true), DefaultProperty(“Scripts”),
 NonVisualControl, PersistChildren(false)]
 public class ScriptManager : Control
 {
 private ServiceReferenceCollection _services;

 [PersistenceMode(PersistenceMode.InnerProperty),
 Editor(“System.Web.UI.Design.CollectionEditorBase,
 System.Web.Extensions.Design, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35”,
 typeof(System.Drawing.Design.UITypeEditor)),
 DefaultValue((string)null), MergableProperty(false),
 Category(“Behavior”)]
 public ServiceReferenceCollection Services
 {
 get
 {
 if (this._services == null)
 this._services = new ServiceReferenceCollection();

 return this._services;
 }
 }

c15.indd 624c15.indd 624 8/20/07 9:08:08 PM8/20/07 9:08:08 PM

Chapter 15: Proxy Classes

625

 protected override void OnInit(EventArgs e)
 {
 base.OnInit(e);
 this.Page.PreRenderComplete += new EventHandler(Page_PreRenderComplete);
 }

 void Page_PreRenderComplete(object sender, EventArgs e)
 {
 if (this._services != null)
 {
 foreach (ServiceReference reference in this._services)
 {
 reference.Register(this);
 }
 }

 if (this.EnablePageMethods)
 {
 ClientProxyGenerator generator2 = new ClientProxyGenerator();
 string script =
 generator2.GetClientProxyScript(this.Page.Request.FilePath, true);
 this.Page.ClientScript.RegisterClientScriptBlock(typeof(Page), script,
 script, true);
 }
 }

 public bool EnablePageMethods
 {
 get
 {
 return ViewState[“EnablePageMethods”] != null ?
 (bool)ViewState[“EnablePageMethods”] : false;
 }
 set
 {
 ViewState[“EnablePageMethods”] = value;
 }
 }
 }
}

 Services
 The replica ScriptManager exposes a collection property of type ServiceReferenceCollection
named Services , as defined in the following excerpt from Listing 15-12 . Note that this property is
 annotated with the PersistenceMode(PersistenceMode.InnerProperty) metadata attribute,
which enables page developers to declare the property as the child element of the tag that represents the
 ScriptManager on the .aspx page.

 private ServiceReferenceCollection _services;

 [PersistenceMode(PersistenceMode.InnerProperty),
 Editor(“System.Web.UI.Design.CollectionEditorBase,

(continued)

c15.indd 625c15.indd 625 8/20/07 9:08:08 PM8/20/07 9:08:08 PM

Chapter 15: Proxy Classes

626

 System.Web.Extensions.Design, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35”,
 typeof(System.Drawing.Design.UITypeEditor)),
 DefaultValue((string)null), MergableProperty(false),
 Category(“Behavior”)]
 public ServiceReferenceCollection Services
 {
 get
 {
 if (this._services == null)
 this._services = new ServiceReferenceCollection();

 return this._services;
 }
 }

 Listing 15-13 presents the implementation of the replica ServiceReferenceCollection class. Thanks
to the .NET 2.0 generics, implementing a new type-safe collection class is just a matter of deriving from a
generic collection class such as Collection<ServiceReference> .

 Listing 15-13: The ServiceReferenceCollection Class

 using System.Collections;
using System.Collections.Generic;
using System.Collections.ObjectModel;

namespace CustomComponents
{
 public class ServiceReferenceCollection : Collection<ServiceReference>
 {
 }
}

 EnablePageMethods
 The replica ScriptManager server control also exposes a Boolean property named EnablePageMethods ,
as shown in the following excerpt from Listing 15-12 . Page developers can set this property to have the
control generate a client script that defines, instantiates, and initializes the PageMethods client class.

 public bool EnablePageMethods
 {
 get
 {
 return ViewState[“EnablePageMethods”] != null ?
 (bool)ViewState[“EnablePageMethods”] : false;
 }
 set
 {
 ViewState[“EnablePageMethods”] = value;
 }
 }

(continued)

c15.indd 626c15.indd 626 8/20/07 9:08:09 PM8/20/07 9:08:09 PM

Chapter 15: Proxy Classes

627

 OnInit
 As you can see in the following excerpt from Listing 15-12 , the replica ScriptManager server control
overrides the OnInit method that it inherits from the Control base class to register a method named
 Page_RenderComplete as the event handler for the Page object’s PreRenderComplete event:

 protected override void OnInit(EventArgs e)
 {
 base.OnInit(e);
 this.Page.PreRenderComplete += new EventHandler(Page_PreRenderComplete);
 }

 Page_PreRenderComplete
 When the page finally enters its PreRenderComplete lifecycle phase, it automatically calls the
 Page_PreRenderComplete method, which in turn performs the following tasks:

1. It iterates through the ServiceReference objects in the Services collections and invokes their
 Register methods:

 reference.Register(this);

 2. It checks whether the EnablePageMethods property is set to true . If so, it instantiates an
 instance of a class named ClientProxyGenerator :

 ClientProxyGenerator generator2 = new ClientProxyGenerator();

 3. It invokes the GetClientProxyScript method on this ClientProxyGenerator object to gen-
erate the client script that defines, instantiates, and initializes the PageMethods client class:

 string script =
 generator2.GetClientProxyScript(this.Page.Request.FilePath, true);

 4. It invokes the RegisterClientScriptBlock method on the ClientScript property of the
containing page to register this script for rendering:

 this.Page.ClientScript.RegisterClientScriptBlock(typeof(Page), script,
 script, true);

 As a result, when the containing page enters its rendering phase, it will automatically render all regis-
tered scripts, including the script that defines, instantiates, and initializes the PageMethods client class:

 ServiceReference
 Listing 15-14 presents the implementation of the replica ServiceReference class.

c15.indd 627c15.indd 627 8/20/07 9:08:09 PM8/20/07 9:08:09 PM

Chapter 15: Proxy Classes

628

 Listing 15-14: The ServiceReference Class

 using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Text;
using System.Collections;
using System.Collections.Generic;
using System.Reflection;
using System.Web.Compilation;
using System.ComponentModel;
using System.Web.Services;
using System.Web.Script.Services;
using System.Collections.ObjectModel;

namespace CustomComponents
{
 public class ServiceReference
 {
 private bool _inlineScript;
 public bool InlineScript
 {
 get
 {
 return this._inlineScript;
 }
 set
 {
 this._inlineScript = value;
 }
 }

 private string _path;
 public string Path
 {
 get
 {
 if (this._path == null)
 return string.Empty;

 return this._path;
 }
 set
 {
 this._path = value;
 }
 }

c15.indd 628c15.indd 628 8/20/07 9:08:09 PM8/20/07 9:08:09 PM

Chapter 15: Proxy Classes

629

 public void Register(Control control)
 {
 if (this._inlineScript)
 {
 ClientProxyGenerator generator = new ClientProxyGenerator();
 string inlineScript;
 inlineScript = generator.GetClientProxyScript(this.Path, false);
 control.Page.ClientScript.RegisterClientScriptBlock(typeof(Page),
 inlineScript, inlineScript, true);
 }

 else
 {
 string url = this.Path + “/js”;
 control.Page.ClientScript.RegisterClientScriptInclude(typeof(Page),
 url, url);
 }
 }
 }
}

 The Register method in this listing takes the following steps if the page developer has set the
 InlineScript Boolean property to true :

1. It instantiates a ClientProxyGenerator object:

 ClientProxyGenerator generator = new ClientProxyGenerator();

2. It invokes the GetClientProxyScript method on this ClientProxyGenerator object to
 generate the client script that defines, instantiates, and initializes the proxy class:

 inlineScript = generator.GetClientProxyScript(this.Path, false);

3. It invokes the RegisterClientScriptBlock method on the Page object’s ClientScript
property of to register the client script for rendering:

 control.Page.ClientScript.RegisterClientScriptBlock(typeof(Page),
 inlineScript, inlineScript, true);

 As a result, when the page enters its rendering phase, it automatically renders all registered client
scripts, including the client script that defines, instantiates, and initializes the proxy class .

 Conversely, if the page developer has not set the InlineScript Boolean property to true , the Register
method simply calls the RegisterClientScriptInclude method on the ClientScript property of the
 Page object to register a script block whose src attribute is set to the service path plus the path trailer /js :

 else
 {
 string url = this.Path + “/js”;
 control.Page.ClientScript.RegisterClientScriptInclude(typeof(Page), url,
 url);
 }

 For the purposes of the current discussion, you can ignore the /jsdebug option.

c15.indd 629c15.indd 629 8/20/07 9:08:09 PM8/20/07 9:08:09 PM

Chapter 15: Proxy Classes

630

 ClientProxyGenerator
 Listing 15-15 presents the implementation of the replica ClientProxyGenerator class. The following
sections discuss the methods and properties of this class.

 Listing 15-15: The ClientProxyGenerator Class

 using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Text;
using System.Collections;
using System.Collections.Generic;
using System.Reflection;
using System.Web.Compilation;
using System.ComponentModel;
using System.Web.Services;
using System.Web.Script.Services;
using System.Collections.ObjectModel;

namespace CustomComponents
{
 public class ClientProxyGenerator
 {
 private StringBuilder _builder = new StringBuilder();
 private Type _serviceType;
 private string _serviceFullName;
 private string _servicePath;
 private bool _isPageMethod;
 private ArrayList _methodInfos;
 private Dictionary<MethodInfo, ArrayList> _parameterInfos;

 private void PopulateMethodInfos()
 {
 _methodInfos = new ArrayList();
 MethodInfo[] infoArray = _serviceType.GetMethods();
 foreach (MethodInfo info in infoArray)
 {
 object[] objArray = info.GetCustomAttributes(typeof(WebMethodAttribute),
 true);
 if (objArray.Length != 0)
 _methodInfos.Add(info);
 }
 }

 private void PopulateParameterInfos()
 {
 _parameterInfos = new Dictionary<MethodInfo, ArrayList>();
 ParameterInfo[] list;
 ArrayList list2;

c15.indd 630c15.indd 630 8/20/07 9:08:10 PM8/20/07 9:08:10 PM

Chapter 15: Proxy Classes

631

 foreach (MethodInfo info in _methodInfos)
 {
 list = info.GetParameters();
 list2 = new ArrayList();
 list2.AddRange(list);
 _parameterInfos.Add(info, list2);
 }
 }

 private void DetermineServiceType()
 {
 _serviceType = BuildManager.GetCompiledType(this._servicePath);
 if (_serviceType == null)
 _serviceType = BuildManager.CreateInstanceFromVirtualPath(_servicePath,
 typeof(Page)).GetType();
 }

 private void DetermineServiceFullName()
 {
 if (this._isPageMethod)
 _serviceFullName = “PageMethods”;
 else
 _serviceFullName = _serviceType.FullName;
 }

 public string GetClientProxyScript(string servicePath, bool isPageMethod)
 {
 this._servicePath = servicePath;
 this._isPageMethod = isPageMethod;

 this.DetermineServiceType();
 this.DetermineServiceFullName();
 this.PopulateMethodInfos();
 this.PopulateParameterInfos();

 if (!this._isPageMethod)
 this.GenerateNamespace();

 this.GenerateConstructor();
 this.GeneratePrototype();
 this.GenerateRegisterClass();
 this.GenerateStaticInstance();
 this.GenerateStaticMethods();
 return this._builder.ToString();
 }

 private void GenerateNamespace()
 {
 this._builder.Append(“\r\nType.registerNamespace(‘”);
 this._builder.Append(_serviceType.Namespace);
 this._builder.Append(“’);\r\n\r\n”);
 }

(continued)

c15.indd 631c15.indd 631 8/20/07 9:08:10 PM8/20/07 9:08:10 PM

Chapter 15: Proxy Classes

632

 Listing 15-15 (continued)

 private void GenerateConstructor()
 {
 _builder.Append(_serviceFullName);
 _builder.Append(“ = “);
 _builder.Append(“function()\r\n{\r\n\t”);
 _builder.Append(_serviceFullName);
 _builder.Append(“.initializeBase(this);\r\n”);
 _builder.Append(“\tthis._timeout = 0;\r\n”);
 _builder.Append(“\tthis._userContext = null;\r\n”);
 _builder.Append(“\tthis._succeeded = null;\r\n”);
 _builder.Append(“\tthis._failed = null;\r\n”);
 _builder.Append(“}\r\n\r\n”);
 }

 private void GenerateWebMethodProxy(MethodInfo methodInfo)
 {
 ArrayList parameterList = _parameterInfos[methodInfo];

 _builder.Append(methodInfo.Name);
 _builder.Append(“ : “);
 _builder.Append(“function(“);
 foreach (ParameterInfo pinfo in parameterList)
 {
 _builder.Append(pinfo.Name);
 _builder.Append(“, “);
 }
 _builder.Append(“succeededCallback, failedCallback, userContext)”);
 _builder.Append(“\r\n{\r\n”);
 _builder.Append(“\treturn this._invoke(“);
 _builder.Append(_serviceFullName);
 _builder.Append(“.get_path(), “);
 _builder.Append(“’”);
 _builder.Append(methodInfo.Name);
 _builder.Append(“’, false, “);

 _builder.Append(‘{‘);
 int i = 0;
 foreach (ParameterInfo pinfo in parameterList)
 {
 _builder.Append(pinfo.Name);
 _builder.Append(“:”);
 _builder.Append(pinfo.Name);
 if (i != (parameterList.Count - 1))
 _builder.Append(“, “);
 i++;
 }

 _builder.Append(“}”);

 _builder.Append(“, succeededCallback, failedCallback, userContext); “ +
 “\r\n}\r\n”);
 }

c15.indd 632c15.indd 632 8/20/07 9:08:10 PM8/20/07 9:08:10 PM

Chapter 15: Proxy Classes

633

 private void GeneratePrototype()
 {
 this._builder.Append(_serviceFullName);
 this._builder.Append(“.prototype”);
 this._builder.Append(“ = “);
 this._builder.Append(“\r\n{“);

 bool flag1 = true;
 foreach (MethodInfo methodInfo in _methodInfos)
 {
 if (!flag1)
 _builder.Append(“,\r\n”);

 flag1 = false;
 this.GenerateWebMethodProxy(methodInfo);
 }

 _builder.Append(“}\r\n\r\n”);
 }

 protected void GenerateRegisterClass()
 {
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.registerClass(‘”);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“’, Sys.Net.WebServiceProxy);\r\n”);
 }

 protected void GenerateStaticInstance()
 {
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“._staticInstance = new “);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“();\r\n”);

 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.set_path = function(value) { “);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“._staticInstance._path = value; }\r\n”);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.get_path = function() { return “);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“._staticInstance._path; }\r\n”);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.set_timeout = function(value) { “);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“._staticInstance._timeout = value; }\r\n”);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.get_timeout = function() { return “);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“._staticInstance._timeout; }\r\n”);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.set_defaultUserContext = function(value) { “);
 this._builder.Append(this._serviceFullName);

(continued)

c15.indd 633c15.indd 633 8/20/07 9:08:11 PM8/20/07 9:08:11 PM

Chapter 15: Proxy Classes

634

Listing 15-15 (continued)

 this._builder.Append(“._staticInstance._userContext = value; }\r\n”);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.get_defaultUserContext = function() { return “);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“._staticInstance._userContext; }\r\n”);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.set_defaultSucceededCallback = function(value) { “);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“._staticInstance._succeeded = value; }\r\n”);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.get_defaultSucceededCallback = function() { return “);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“._staticInstance._succeeded; }\r\n”);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.set_defaultFailedCallback = function(value) { “);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“._staticInstance._failed = value; }\r\n”);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.get_defaultFailedCallback = function() { return “);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“._staticInstance._failed; }\r\n”);

 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.set_path(\””);
 this._builder.Append(this._servicePath);
 this._builder.Append(“\”);\r\n”);
 }

 protected void GenerateStaticMethods()
 {
 ArrayList parameterList;

 foreach (MethodInfo methodInfo in _methodInfos)
 {
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.”);
 this._builder.Append(methodInfo.Name);
 this._builder.Append(“ = function(“);
 parameterList = this._parameterInfos[methodInfo];
 foreach (ParameterInfo pinfo in parameterList)
 {
 _builder.Append(pinfo.Name);
 _builder.Append(‘,’);
 }

 _builder.Append(“onSuccess, onFailed, userContext) \r\n{\r\n\t”);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“._staticInstance.”);
 this._builder.Append(methodInfo.Name);
 this._builder.Append(“(“);
 foreach (ParameterInfo pinfo in parameterList)
 {

c15.indd 634c15.indd 634 8/20/07 9:08:11 PM8/20/07 9:08:11 PM

Chapter 15: Proxy Classes

635

 _builder.Append(pinfo.Name);
 _builder.Append(‘,’);
 }

 _builder.Append(“onSuccess, onFailed, userContext); \r\n}”);
 }
 }
 }
}

 GetClientProxyScript
 Listing 15-16 shows the GetClientProxyScript method of the replica ClientProxyGenerator class.
The main responsibility of this method is to generate the client script that defines, instantiates, and
 initializes the proxy class.

 Listing 15-16: The GetClientProxyScript Method

 public string GetClientProxyScript(string servicePath, bool isPageMethod)
 {
 this._servicePath = servicePath;
 this._isPageMethod = isPageMethod;

 this.DetermineServiceType();
 this.DetermineServiceFullName();
 this.PopulateMethodInfos();
 this.PopulateParameterInfos();

 if (!this._isPageMethod)
 this.GenerateNamespace();

 this.GenerateConstructor();
 this.GeneratePrototype();
 this.GenerateRegisterClass();
 this.GenerateStaticInstance();
 this.GenerateStaticMethods();
 return this._builder.ToString();
 }

 The GetClientProxyScript method takes two arguments. The first argument is a string that contains
the service path, and the second argument is a Boolean that specifies whether the first parameter of the
server method contains the path to an .aspx page, which means it is being invoked as a page method.

 This method performs the following tasks:

1. It invokes the DetermineServiceType method to determine the Type object that represents the
type of the server class that represents the file with the specified service path:

 this.DetermineServiceType();

c15.indd 635c15.indd 635 8/20/07 9:08:11 PM8/20/07 9:08:11 PM

Chapter 15: Proxy Classes

636

 2. It invokes the DetermineServiceFullName method to determine the full name of the
server class:

 this.DetermineServiceFullName();

3. It invokes the PopulateMethodInfos method to populate an internal collection named
 _methodInfos with MethodInfo objects that represent the server class methods:

 this.PopulateMethodInfos();

 4. It invokes the PopulateParameterInfos method to populate an internal collection named
_parameterInfos with ParameterInfo objects that represent the parameters of the server
class methods:

 this.PopulateParameterInfos();

 5. It invokes the GenerateNamespace method to generate the client script that defines the
namespace of the proxy class if the method being invoked is not a page method:

 if (!this._isPageMethod)
 this.GenerateNamespace();

 As previously discussed, the proxy class in this example is named PageMethods and does not
belong to any namespace:

 6. It invokes the GenerateConstructor method to generate the client script that defines the
 constructor of the proxy class:

 this.GenerateConstructor();

7. It invokes the GeneratePrototype method to generate the client script that defines the
 prototype property of the proxy class:

 this.GeneratePrototype();

 8. It invokes the GenerateRegisterClass method to generate the client script that registers the
proxy class with the ASP.NET AJAX client-side framework:

 this.GenerateRegisterClass();

 9. It invokes the GenerateStaticInstance method to generate the client script that defines the
_staticInstance property of the proxy class:

 this.GenerateStaticInstance();

 10. It invokes the GenerateStaticMethods method to generate the client script that defines the
static method of the proxy class:

 this.GenerateStaticMethods();

c15.indd 636c15.indd 636 8/20/07 9:08:12 PM8/20/07 9:08:12 PM

Chapter 15: Proxy Classes

637

 As you can see, the GetClientProxyScript method basically generates a client script such as the one
previously shown in Listing 15-4 . Keep that listing in mind as the following sections walk you through
the implementation of the methods that the GetClientProxyScript method invokes.

 DetermineServiceType
 As you can see in the following excerpt from Listing 15-15 , the DetermineServiceType method invokes
the GetCompiledType static method on the BuildManager class. The GetCompiledType method takes a
string parameter that contains the virtual path of a file, uses this virtual path to locate the file on the server,
parses the file, uses the content of the file to dynamically generate the code for a .NET class that represents
the file, compiles this dynamically generated class into an assembly, loads the assembly into the current
application domain, and returns a reference to the Type object that represents the compiled class. Note
that the DetermineServiceType method stores this reference in a private field named _serviceType .

 private void DetermineServiceType()
 {
 _serviceType = BuildManager.GetCompiledType(this._servicePath);
 if (_serviceType == null)
 _serviceType = BuildManager.CreateInstanceFromVirtualPath(_servicePath,
 typeof(Page)).GetType();
 }

 DetermineServiceFullName
 As you can see in the following excerpt from Listing 15-15 , the DetermineServiceFullName method first
checks whether _isPageMethod field of the ScriptManager server control is set to true . If so, it simply
uses PageMethod as the service’s full name. If not, it uses the FullName property value of the Type object
that represents the service as the service’s full name. The FullName property returns a string that contains
the fully qualified name of the service type, including its complete containment namespace hierarchy.

 private void DetermineServiceFullName()
 {
 if (this._isPageMethod)
 _serviceFullName = “PageMethods”;
 else
 _serviceFullName = _serviceType.FullName;
 }

 PopulateMethodInfos
 The PopulateMethodInfos method takes the following steps to populate an internal collection
named _methodInfos :

1. It invokes the GetMethods method on the Type object that represents the type of the service to
return an array of MethodInfo objects, where each object represents a method of the service:

 MethodInfo[] infoArray = _serviceType.GetMethods();

c15.indd 637c15.indd 637 8/20/07 9:08:12 PM8/20/07 9:08:12 PM

Chapter 15: Proxy Classes

638

2. It searches through the objects in this array for MethodInfo objects annotated with the
 WebMethodAttribute metadata attribute and adds them to the _methodInfos collection:

 foreach (MethodInfo info in infoArray)
 {
 object[] objArray = info.GetCustomAttributes(typeof(WebMethodAttribute),
 true);
 if (objArray.Length != 0)
 _methodInfos.Add(info);
 }
 }

 PopulateParameterInfos
 The PopulateParameterInfos method iterates through the MethodInfo objects in the _methodInfos
collection and takes the following steps for each object:

1. It invokes the GetParameters method on the MethodInfo object to return an array of
 ParameterInfo objects, where each object represents a parameter of the method that the
 MethodInfo object represents:

 list = info.GetParameters();

2. It uses the MethodInfo object as an index into the _parameterInfos collection to add the
 ParameterInfo objects to the collection:

 list2 = new ArrayList();
 list2.AddRange(list);
 _parameterInfos.Add(info, list2);
 }
 }

 The _parameterInfos collection is a collection of collections, where each collection contains
the ParameterInfo objects of a particular MethodInfo object.

 GenerateNamespace
 As you can see in the following excerpt from Listing 15-15 , the GenerateNamespace method generates
the client script that defines the namespace of the proxy class. Note that this method uses the namespace
of the service as the namespace of the proxy class.

 private void GenerateNamespace()
 {
 this._builder.Append(“\r\nType.registerNamespace(‘”);
 this._builder.Append(_serviceType.Namespace);
 this._builder.Append(“’);\r\n\r\n”);
 }

 This method basically generates the following portion of the Listing 15-4 script:

 Type.registerNamespace(‘MyNamespace’);

c15.indd 638c15.indd 638 8/20/07 9:08:12 PM8/20/07 9:08:12 PM

Chapter 15: Proxy Classes

639

 GenerateConstructor
 As you can see in the following excerpt from Listing 15-15 , the GenerateConstructor method
 generates the script that defines the constructor of the proxy class. Note that this method uses the fully
qualified name of the service as the name of the proxy class.

 private void GenerateConstructor()
 {
 _builder.Append(_serviceFullName);
 _builder.Append(“ = “);
 _builder.Append(“function()\r\n{\r\n\t”);
 _builder.Append(_serviceFullName);
 _builder.Append(“.initializeBase(this);\r\n”);
 _builder.Append(“\tthis._timeout = 0;\r\n”);
 _builder.Append(“\tthis._userContext = null;\r\n”);
 _builder.Append(“\tthis._succeeded = null;\r\n”);
 _builder.Append(“\tthis._failed = null;\r\n”);
 _builder.Append(“}\r\n\r\n”);
 }

 This method basically generates the following portion of the Listing 15-4 script:

 MyNamespace.Math = function()
{
 MyNamespace.Math.initializeBase(this);
 this._timeout = 0;
 this._userContext = null;
 this._succeeded = null;
 this._failed = null;
}

 GeneratePrototype
 The GeneratePrototype method generates the portion of the script that defines the prototype property
of the proxy class. As you can see in the following excerpt from Listing 15-15 , this method iterates through
the MethodInfo objects in the _methodInfos collection and invokes the GenerateWebMethodProxy
method to generate the script that defines the associated method of the proxy class:

 private void GeneratePrototype()
 {
 this._builder.Append(_serviceFullName);
 this._builder.Append(“.prototype”);
 this._builder.Append(“ = “);
 this._builder.Append(“\r\n{“);

 bool flag1 = true;
 foreach (MethodInfo methodInfo in _methodInfos)
 {
 if (!flag1)
 _builder.Append(“,\r\n”);

 flag1 = false;
 this.GenerateWebMethodProxy(methodInfo);
 }
 _builder.Append(“}\r\n\r\n”);
 }

c15.indd 639c15.indd 639 8/20/07 9:08:12 PM8/20/07 9:08:12 PM

Chapter 15: Proxy Classes

640

 This method basically generates the following portion of the Listing 15-4 script:

 MyNamespace.Math.prototype =
{
 Add : function(x, y, succeededCallback, failedCallback, userContext)
 {
 return this._invoke(MyNamespace.Math.get_path(),’Add’, false,
 {x : x, y : y}, succeededCallback, failedCallback,
 userContext);
 }
}

 GenerateWebMethodProxy
 The GenerateWebMethodProxy method takes a MethodInfo object as its argument and generates the
script that defines the method of the proxy class associated with this MethodInfo object, as shown in
Listing 15-17 (which is the GenerateWebProxy method portion of Listing 15-15).

 Listing 15-17: The GenerateWebMethodProxy Method

 private void GenerateWebMethodProxy(MethodInfo methodInfo)
 {
 ArrayList parameterList = _parameterInfos[methodInfo];
 _builder.Append(methodInfo.Name);
 _builder.Append(“ : “);
 _builder.Append(“function(“);
 foreach (ParameterInfo pinfo in parameterList)
 {
 _builder.Append(pinfo.Name);
 _builder.Append(“, “);
 }
 _builder.Append(“succeededCallback, failedCallback, userContext)”);
 _builder.Append(“\r\n{\r\n”);
 _builder.Append(“\treturn this._invoke(“);
 _builder.Append(_serviceFullName);
 _builder.Append(“.get_path(), “);
 _builder.Append(“’”);
 _builder.Append(methodInfo.Name);
 _builder.Append(“’, false, “);

 _builder.Append(‘{‘);
 int i = 0;
 foreach (ParameterInfo pinfo in parameterList)
 {
 _builder.Append(pinfo.Name);
 _builder.Append(“:”);
 _builder.Append(pinfo.Name);
 if (i != (parameterList.Count - 1))

 _builder.Append(“, “);

 i++;
 }

c15.indd 640c15.indd 640 8/20/07 9:08:13 PM8/20/07 9:08:13 PM

Chapter 15: Proxy Classes

641

 _builder.Append(“}”);
 _builder.Append(“, succeededCallback, failedCallback, userContext);” +
 “\r\n}\r\n”);
 }

 For example, this listing generates the local Math proxy class associated with the remote Math Web
 service class, as previously shown in Listing 15-4 and again in Listing 15-18 .

 Listing 15-18: An Example of the Script that Listing 15-17 Generates

 Add : function(x, y, succeededCallback, failedCallback, userContext)
 {
 return this._invoke(MyNamespace.Math.get_path(),’Add’, false,
 {x : x, y : y}, succeededCallback, failedCallback,
 userContext);
 }

 Keeping this listing in mind, let’s walk through the implementation of the GenerateWebMethodProxy
method shown in Listing 15-17 .

 The GenerateWebMethodProxy method uses the name of the server method as the name of the
 associated proxy method:

 _builder.Append(methodInfo.Name);

 This code basically generates the following portion of the Listing 15-18 script:

 Add

 The following lines of code from Listing 15-17 :

 _builder.Append(“ : “);
 _builder.Append(“function(“);

 generate the following portion of the Listing 15-18 script:

 Add : function(

 Listing 15-17 uses the names of the parameters of the server method as the names of the parameters of
the associated proxy method:

 foreach (ParameterInfo pinfo in parameterList)
 {
 _builder.Append(pinfo.Name);
 _builder.Append(“, “);
 }

 This code basically generates the following boldface portion of the Listing 15-18 script:

 Add : function(x, y,

c15.indd 641c15.indd 641 8/20/07 9:08:13 PM8/20/07 9:08:13 PM

Chapter 15: Proxy Classes

642

 The next lines of code in Listing 15-17 :

 _builder.Append(“succeededCallback, failedCallback, userContext)”);
 _builder.Append(“\r\n{\r\n”);
 _builder.Append(“\treturn this._invoke(“);

 generate the following boldface portion of the Listing 15-18 script:

 Add : function(x, y, succeededCallback, failedCallback, userContext)
{
 this._invoke(

 The next lines of code in Listing 15-17 :

 _builder.Append(_serviceFullName);
 _builder.Append(“.get_path(), “);

 generate the following boldface portion of the Listing 15-18 script:

 Add : function(x, y, succeededCallback, failedCallback, userContext)
{
 this._invoke(MyNamespace.Math.get_path(),

 The next lines of code in Listing 15-17 :

 _builder.Append(“’”);
 _builder.Append(methodInfo.Name);
 _builder.Append(“’, false, “);

 generate the following boldface portion of the Listing 15-18 script, which specifies the name of the ser-
vice method and the value false to indicate that you want to make the POST HTTP request:

 Add : function(x, y, succeededCallback, failedCallback, userContext)
{
 this._invoke(MyNamespace.Math.get_path(), ’Add’, false,

 Listing 15-17 then iterates through the parameters of the service method as follows:

 _builder.Append(‘{‘);
 int i = 0;
 foreach (ParameterInfo pinfo in parameterList)
 {
 _builder.Append(pinfo.Name);
 _builder.Append(“:”);
 _builder.Append(pinfo.Name);
 if (i != (parameterList.Count - 1))
 _builder.Append(“, “);
 i++;
 }

 _builder.Append(“}”);

c15.indd 642c15.indd 642 8/20/07 9:08:13 PM8/20/07 9:08:13 PM

Chapter 15: Proxy Classes

643

 to generate the following boldface portion of the Listing 15-18 script:

 Add : function(x, y, succeededCallback, failedCallback, userContext)
{
 this._invoke(MyNamespace.Math.get_path(),’Add’, false, {x:x, y:y}

 The last lines of the code in Listing 15-17 :

 _builder.Append(“, succeededCallback, failedCallback, userContext);” +
 “\r\n}\r\n”);

 wrap the rendering of the specified method of the proxy class, as shown in the following boldface por-
tion of the Listing 15-18 script:

 Add : function(x, y, succeededCallback, failedCallback, userContext)
{
 this._invoke(MyNamespace.Math.get_path(),’Add’, false, {x:x, y:y} ,
succeededCallback, failedCallback, userContext);
}

 GenerateRegisterClass
 As you can see in the following excerpt from Listing 15-15 , the GenerateRegisterClass method
 generates the script that registers the proxy class with the ASP.NET AJAX client-side framework.

 protected void GenerateRegisterClass()
 {
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.registerClass(‘”);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“’, Sys.Net.WebServiceProxy);\r\n”);
 }

 This method basically generates the following portion of the Listing 15-4 script:

 MyNamespace.Math.registerClass(‘MyNamespace.Math’, Sys.Net.WebServiceProxy);

 GenerateStaticInstance
 This method generates the script that defines, instantiates, and initializes the _staticInstance
 property of the proxy class, as shown in the following excerpt from Listing 15-15 :

 protected void GenerateStaticInstance()
 {
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“._staticInstance = new “);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“();\r\n”);

 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.set_path = function(value) { “);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“._staticInstance._path = value; }\r\n”);

(continued)

c15.indd 643c15.indd 643 8/20/07 9:08:13 PM8/20/07 9:08:13 PM

Chapter 15: Proxy Classes

644

(continued)

 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.get_path = function() { return “);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“._staticInstance._path; }\r\n”);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.set_timeout = function(value) { “);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“._staticInstance._timeout = value; }\r\n”);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.get_timeout = function() { return “);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“._staticInstance._timeout; }\r\n”);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.set_defaultUserContext = function(value) { “);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“._staticInstance._userContext = value; }\r\n”);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.get_defaultUserContext = function() { return “);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“._staticInstance._userContext; }\r\n”);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.set_defaultSucceededCallback = function(value) { “);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“._staticInstance._succeeded = value; }\r\n”);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.get_defaultSucceededCallback = function() { return “);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“._staticInstance._succeeded; }\r\n”);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.set_defaultFailedCallback = function(value) { “);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“._staticInstance._failed = value; }\r\n”);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.get_defaultFailedCallback = function() { return “);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“._staticInstance._failed; }\r\n”);

 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.set_path(\””);
 this._builder.Append(this._servicePath);
 this._builder.Append(“\”);\r\n”);
 }

 This method basically generates the following portion of the Listing 15-4 script:

 MyNamespace.Math._staticInstance = new MyNamespace.Math();
MyNamespace.Math.set_path = function(value)
{
 MyNamespace.Math._staticInstance._path = value;
}

MyNamespace.Math.get_path = function()
{

c15.indd 644c15.indd 644 8/20/07 9:08:14 PM8/20/07 9:08:14 PM

Chapter 15: Proxy Classes

645

 return MyNamespace.Math._staticInstance._path;
}

MyNamespace.Math.set_timeout = function(value)
{
 MyNamespace.Math._staticInstance._timeout = value;
}

MyNamespace.Math.get_timeout = function()
{
 return MyNamespace.Math._staticInstance._timeout;
}

MyNamespace.Math.set_defaultUserContext = function(value)
{
 MyNamespace.Math._staticInstance._userContext = value;
}

MyNamespace.Math.get_defaultUserContext = function()
{
 return MyNamespace.Math._staticInstance._userContext;
}

MyNamespace.Math.set_defaultSucceededCallback = function(value)
{
 MyNamespace.Math._staticInstance._succeeded = value;
}

MyNamespace.Math.get_defaultSucceededCallback = function()
{
 return MyNamespace.Math._staticInstance._succeeded;
}

MyNamespace.Math.set_defaultFailedCallback = function(value)
{
 MyNamespace.Math._staticInstance._failed = value;
}

MyNamespace.Math.get_defaultFailedCallback = function()
{
 return MyNamespace.Math._staticInstance._failed;
}

MyNamespace.Math.set_path(“/AJAXFuturesEnabledWebSite2/Math.asmx”);

 GenerateStaticMethods
 This method generates the script that defines the static methods of the proxy class as shown in Listing
 15-19 (which is the GenerateStaticMethods portion of Listing 15-15).

c15.indd 645c15.indd 645 8/20/07 9:08:14 PM8/20/07 9:08:14 PM

Chapter 15: Proxy Classes

646

 Listing 15-19: The GenerateStaticMethods Method

 protected void GenerateStaticMethods()
 {
 ArrayList parameterList;

 foreach (MethodInfo methodInfo in _methodInfos)
 {
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.”);
 this._builder.Append(methodInfo.Name);
 this._builder.Append(“ = function(“);
 parameterList = this._parameterInfos[methodInfo];
 foreach (ParameterInfo pinfo in parameterList)
 {
 _builder.Append(pinfo.Name);
 _builder.Append(‘,’);
 }

 _builder.Append(“onSuccess, onFailed, userContext) \r\n{\r\n\t”);
 this._builder.Append(this._serviceFullName);
 this._builder.Append(“._staticInstance.”);
 this._builder.Append(methodInfo.Name);
 this._builder.Append(“(“);
 foreach (ParameterInfo pinfo in parameterList)
 {
 _builder.Append(pinfo.Name);
 _builder.Append(‘,’);
 }

 _builder.Append(“onSuccess, onFailed, userContext); \r\n};\r\n”);
 }
 }

 Listing 15-20 presents an example of the script that Listing 15-19 generates.

 Listing 15-20: An Example of the Script that Listing 15-19 Generates

 MyNamespace.Math.Add = function(x, y, onSuccess, onFailed, userContext)
{
 MyNamespace.Math._staticInstance.Add(x, y, onSuccess, onFailed, userContext);
}

 Using this listing as an example, let’s walk through the GenerateStaticMethods method in
Listing 15-19 . This method iterates through the MethodInfo objects in the _methodInfos collection
and takes the following steps to generate the script that defines the static method associated with each
enumerated MethodInfo object:

 1. It uses the name of the server method that the MethodInfo object represents as the name of the
static method of the proxy class, prefixed by the full name of the service:

c15.indd 646c15.indd 646 8/20/07 9:08:14 PM8/20/07 9:08:14 PM

Chapter 15: Proxy Classes

647

 this._builder.Append(this._serviceFullName);
 this._builder.Append(“.”);
 this._builder.Append(methodInfo.Name);
 this._builder.Append(“ = function(“);

 This generates a script such as the following portion of Listing 15-20 :

 MyNamespace.Math.Add = function(

 2. It uses the names of the parameters of this server method as the names of the parameters of the
associated static method of the proxy class:

 foreach (ParameterInfo pinfo in parameterList)
 {
 _builder.Append(pinfo.Name);
 _builder.Append(‘,’);
 }

 This generates a script such as the following boldface portion of Listing 15-20 :

 MyNamespace.Math.Add = function(x, y,

 3. It uses the following line of code:

 _builder.Append(“onSuccess, onFailed, userContext) \r\n{\r\n\t”);

 to generate the following boldface portion of the Listing 15-20 script:

 MyNamespace.Math.Add = function(x, y, onSuccess, onFailed, userContext)
{

 4. It uses the following lines of code:

 this._builder.Append(this._serviceFullName);
 this._builder.Append(“._staticInstance.”);
 this._builder.Append(methodInfo.Name);
 this._builder.Append(“(“);

 to generate the following boldface portion of the Listing 15-20 script:

 MyNamespace.Math.Add = function(x, y, onSuccess, onFailed, userContext)
{
 MyNamespace.Math._staticInstance.Add(

 5. It then iterates through the parameters of the enumerated method:

 foreach (ParameterInfo pinfo in parameterList)
 {
 _builder.Append(pinfo.Name);
 _builder.Append(‘,’);
 }

c15.indd 647c15.indd 647 8/20/07 9:08:15 PM8/20/07 9:08:15 PM

Chapter 15: Proxy Classes

648

 to generate the following boldface portion of the Listing 15-20 script:

 MyNamespace.Math.Add = function(x, y, onSuccess, onFailed, userContext)
{
 MyNamespace.Math._staticInstance.Add(x, y,

 6. It uses the following line of code:

 _builder.Append(“onSuccess, onFailed, userContext); \r\n};\r\n”);

 to complete the Listing 15-20 script generation:

 MyNamespace.Math.Add = function(x, y, onSuccess, onFailed, userContext)
{
 MyNamespace.Math._staticInstance.Add(x, y, onSuccess, onFailed, userContext);
};

 RestClientProxyHandler
 The previous chapter left out the discussion of the RestClientProxyHandler class used in the
 GetHandler method of the RestHandlerFactory class. As a matter of fact, the boldface portion of the
following code was commented out in all the examples in that chapter:

 namespace CustomComponents
{
 internal class RestHandlerFactory : IHttpHandlerFactory
 {
 public virtual IHttpHandler GetHandler(HttpContext context, string requestType,
 string url, string pathTranslated)
 {
 if (IsClientProxyRequest(context.Request.PathInfo))
 return new RestClientProxyHandler();

 return RestHandler.CreateHandler(context);
 }

 . . .
 }
}

 This boldfaced portion first invokes the IsClientProxyRequest method discussed in the previous
chapter to determine whether the current request is a client proxy request. A client proxy request is a
request that the client code makes to the server to download the release or debug version of the script
that defines, instantiates, and initializes the proxy class.

 When and why would the client code make such a request? The answer depends on the value of the
 InlineScript property of the ServiceReference object that registers a service with the current
 ScriptManager server control. If you set this property to true , the ScriptManager server control will
ask the current ASP.NET Page object to render the script that defines, instantiates, and initializes the proxy
class directly into the page itself. In other words, when the requesting browser is downloading the current
page for the first time, this script gets downloaded with the page because it is part of the page.

c15.indd 648c15.indd 648 8/20/07 9:08:15 PM8/20/07 9:08:15 PM

Chapter 15: Proxy Classes

649

 If you set the InlineScript property to false , the ScriptManager server control will ask the current
ASP.NET Page object to render a script block such as the following into the current page:

 <script src=”/AJAXFuturesEnabledWebSite2/Math.asbx/js”
 type=”text/javascript”></script>

 Note that the src attribute of this script element is set to a URL with path information trailer js or
 jsdebug . This triggers the requesting browser to make another request for the resource with the URL
specified in the src attribute. When this request arrives in RestHandlerFactory and triggers the call
into the GetHandler method as discussed in the previous chapter, the GetHandler method invokes the
 IsClientProxyRequest method, passing in the URL. As discussed in the previous chapter, this method
searches the path information for the js or jsdebug trailer. If IsClientProxyRequest finds the trailer,
it returns true and, consequently, triggers the GetHandler method to instantiate and return an instance
of an ASP.NET class named RestClientProxyHandler . This class is responsible for generating the
script that defines, instantiates, and initializes the proxy class, and returning this script to the requesting
browser.

 Listing 15-21 presents the implementation of this replica RestClientProxyHandler class.

 Listing 15-21: The RestClientProxyHandler Class

 using System;
using System.Web;

namespace CustomComponents
{
 internal class RestClientProxyHandler : IHttpHandler
 {
 public void ProcessRequest(HttpContext context)
 {
 ClientProxyGenerator generator = new ClientProxyGenerator();
 string script = generator.GetClientProxyScript(context.Request.FilePath,
 false);
 context.Response.ContentType = “application/x-javascript”;
 context.Response.Write(script);
 }

 public bool IsReusable
 {
 get { return false; }
 }
 }
}

 Like any other ASP.NET HTTP handler, the RestClientProxyHandler implements the IHttpHandler
interface. RestClientProxyHandler implements this interface’s ProcessRequest method as follows:

 1. It instantiates a ClientProxyGenerator instance:

 ClientProxyGenerator generator = new ClientProxyGenerator();

c15.indd 649c15.indd 649 8/20/07 9:08:15 PM8/20/07 9:08:15 PM

Chapter 15: Proxy Classes

650

2. It invokes the GetClientProxyScript method on this instance to generate the script that
 defines, instantiates, and initializes the proxy class:

 string script = generator.GetClientProxyScript(context.Request.FilePath,
 false);

3. It sets the Content-Type HTTP header to application/x-javascript to tell the requesting
browser that the response contains JavaScript code:

 context.Response.ContentType = “application/x-javascript”;

4. It writes the script that defines, instantiates, and initializes the proxy class into the server
output stream:

 context.Response.Write(script);

 Using the Replicas
 Follow these steps to see the replicas in action:

 1. Create an AJAX-enabled Web site in Visual Studio.

 2. Add an App_Code directory to this Web site.

3. Add a new source file named ScriptHandlerFactory.cs to the App_Code directory, and add
the code shown in Listing 14-24 (located in the previous chapter) to this source file.

4. Add a new source file named RestHandlerFactory.cs to the App_Code directory, and add the
code shown in Listing 14-26 (located in the previous chapter) to this source file.

 5. Add a new source file named RestHandler.cs to the App_Code directory, and add the code
shown in Listing 14-27 (located in the previous chapter) to this source file.

 6. Add a new source file named HandlerWrapper.cs to the App_Code directory, and add the code
shown in Listing 14-28 (located in the previous chapter) to this source file.

 7. Add a new source file named ScriptModule.cs to the App_Code directory, and add the code
shown in Listing 14-31 (located in the previous chapter) to this source file.

 8. Add a new source file named ScriptManager.cs to the App_Code directory, and add the code
shown in Listing 15-12 (earlier in this chapter) to this source file.

 9. Add a new source file named ServiceReferenceCollection.cs to the App_Code directory,
and add the code shown in Listing 15-13 (earlier in this chapter) to this source file.

 10. Add a new source file named ServiceReference.cs to the App_Code directory, and add the
code shown in Listing 15-14 (earlier in this chapter) to this source file.

 11. Add a new source file named ClientProxyGenerator.cs to the App_Code directory, and add
the code shown in Listing 15-15 (earlier in this chapter) to this source file.

 12. Add a new source file named RestClientProxyHandler.cs to the App_Code directory, and
add the code shown in Listing 15-21 (located after this procedure) to this source file .

 13. Add a new Web form (.aspx file) named PageMethods.aspx , and add the code shown in
 Listing 15-22 (located after this procedure) to this .aspx file.

c15.indd 650c15.indd 650 8/20/07 9:08:15 PM8/20/07 9:08:15 PM

Chapter 15: Proxy Classes

651

 14. Add a new Web form (.aspx file) named Math.aspx to the root directory of this Web site, and
add the code shown in Listing 15-23 (located after this procedure) to this .aspx file.

 15. Add a new XML file named Math.asbx to the root directory of this Web site, and add the XML
document shown in Listing 14-21 (located in the previous chapter).

 16. Add a new source file named Math.cs to the App_Code directory, and add the code shown in
Listing 14-21 (located in the previous chapter) to this source file.

 17. Add a new Web form (.aspx file) named Math2.aspx to the root directory of this Web site, and
add the code shown in Listing 15-24 (located after this procedure) to this .aspx file.

 18. Add a new Web service (.asmx) named Math.asmx to the root directory of this Web site, and
add the code shown in Listing 14-19 (located in the previous chapter) to this .asmx file.

 19. In the web.config file, comment out the italicized lines shown in the following code, and add
the boldface portion of the code (which is basically replacing the standard ASP.NET
 ScriptHandlerFactory and ScriptModule with the replica ScriptHandlerFactory and
 ScriptModule):

 <httpHandlers>
 <remove verb=”*” path=”*.asmx” />
 <!--
 <add verb=”*” path=”*.asmx” validate=”false”
 type=”System.Web.Script.Services.ScriptHandlerFactory,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35” />
 <add verb=”*” path=”*_AppService.axd” validate=”false”
 type=”System.Web.Script.Services.ScriptHandlerFactory,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35” />
 <add verb=”GET,HEAD,POST” path=”*.asbx”
 type=”System.Web.Script.Services.ScriptHandlerFactory,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35” validate=”false” />
 -->

 <add verb=”*” path=”*.asmx” validate=”false”
 type=”CustomComponents.ScriptHandlerFactory” />
 <add verb=”GET,HEAD,POST” path=”*.asbx”
 type=”CustomComponents.ScriptHandlerFactory” />
 . . .
</httpHandlers>

<httpModules>
 <!--
 <add name=”ScriptModule” type=”System.Web.Handlers.ScriptModule,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35” />
 -->

 <add name=”ScriptModule” type=”CustomComponents.ScriptModule” />
 . . .
</httpModules>

c15.indd 651c15.indd 651 8/20/07 9:08:16 PM8/20/07 9:08:16 PM

Chapter 15: Proxy Classes

652

20. Run PageMethods.aspx , Math.aspx , and Math2.aspx , and you should see the same results
you saw when you ran these pages with the standard ASP.NET ScriptHandlerFactory and
 ScriptModule . Feel free to play with the code to get a better understanding of the processing
infrastructure of the ASP.NET AJAX REST method call request.

 Listing 15-22: The PageMethods.aspx Page

 <%@ Page Language=”C#” %>
<%@ Register TagPrefix=”custom” Namespace=”CustomComponents” %>
<%@ Import Namespace=”System.Web.Services” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<script runat=”server”>
 [WebMethod]
 public static double Divide(double x, double y)
 {
 if (y == 0)
 throw new DivideByZeroException();

 return x / y;
 }
</script>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>

 <script type=”text/javascript” language=”javascript”>
 var request;

 function onSuccess(result, userContext, methodName)
 {
 userContext.innerHTML = “ <u>” + result + “ </u>”;
 }

 function onFailure(result, userContext, methodName)
 {
 var builder = new Sys.StringBuilder();
 builder.append(“timedOut: “);
 builder.append(result.get_timedOut());
 builder.appendLine();
 builder.appendLine();
 builder.append(“message: “);
 builder.append(result.get_message());
 builder.appendLine();
 builder.appendLine();
 builder.append(“stackTrace: “);
 builder.appendLine();
 builder.append(result.get_stackTrace());
 builder.appendLine();
 builder.appendLine();

c15.indd 652c15.indd 652 8/20/07 9:08:16 PM8/20/07 9:08:16 PM

Chapter 15: Proxy Classes

653

 builder.append(“exceptionType: “);
 builder.append(result.get_exceptionType());
 builder.appendLine();
 builder.appendLine();
 builder.append(“statusCode: “);
 builder.append(result.get_statusCode());
 builder.appendLine();
 builder.appendLine();
 builder.append(“methodName: “);
 builder.append(methodName);

 alert(builder.toString());
 }

 function divide()
 {
 var xValue = $get(“firstNumber”).value;
 var yValue = $get(“secondNumber”).value;
 var userContext = $get(“result”);
 PageMethods.Divide(xValue, yValue, onSuccess, onFailure, userContext);
 }
 </script>

</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />
 <custom:ScriptManager runat=”server” ID=”CustomScriptManager2”
 EnablePageMethods=”true”/>

 <table>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 First Number:
 </td>
 <td align=”left”>
 <input type=”text” id=”firstNumber” /></td>
 </tr>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 Second Number:
 </td>
 <td align=”left”>
 <input type=”text” id=”secondNumber” /></td>
 </tr>
 <tr>
 <td colspan=”2” align=”center”>
 <button onclick=”divide()”>
 Divide</button></td>
 </tr>
 <tr>

(continued)

c15.indd 653c15.indd 653 8/20/07 9:08:16 PM8/20/07 9:08:16 PM

Chapter 15: Proxy Classes

654

 Listing 15-22 (continued)

 <td style=”font-weight: bold” align=”right”>
 Result:
 </td>
 <td align=”left”>

 </td>
 </tr>
 </table>
 </form>
</body>
</html>

 Listing 15-23: The Math.aspx Page

 <%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Web.Services” %>
<%@ Register TagPrefix=”custom” Namespace=”CustomComponents” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>

 <script type=”text/javascript” language=”javascript”>
 var request;

 function onSuccess(result, userContext, methodName)
 {
 userContext.innerHTML = “<u>” + result + “</u>”;
 }

 function onFailure(result, userContext, methodName)
 {
 var builder = new Sys.StringBuilder();
 builder.append(“timedOut: “);
 builder.append(result.get_timedOut());
 builder.appendLine();
 builder.appendLine();
 builder.append(“message: “);
 builder.append(result.get_message());
 builder.appendLine();
 builder.appendLine();
 builder.append(“stackTrace: “);
 builder.appendLine();
 builder.append(result.get_stackTrace());
 builder.appendLine();

c15.indd 654c15.indd 654 8/20/07 9:08:17 PM8/20/07 9:08:17 PM

Chapter 15: Proxy Classes

655

 builder.appendLine();
 builder.append(“exceptionType: “);
 builder.append(result.get_exceptionType());
 builder.appendLine();
 builder.appendLine();
 builder.append(“statusCode: “);
 builder.append(result.get_statusCode());
 builder.appendLine();
 builder.appendLine();
 builder.append(“methodName: “);
 builder.append(methodName);

 alert(builder.toString());
 }

 function divide()
 {
 var xValue = $get(“firstNumber”).value;
 var yValue = $get(“secondNumber”).value;
 var userContext = $get(“result”);
 MyNamespace.MyMath.Divide({ “x” : xValue, “y” : yValue}, onSuccess,
 onFailure, userContext);
 }
 </script>

</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”/>
 <custom:ScriptManager runat=”server” ID=”CustomScriptManager2”>
 <Services>
 <custom:ServiceReference InlineScript=”true”
 Path=”/AJAXFuturesEnabledWebSite2/Math.asbx” />

 </Services>
 </custom:ScriptManager>
 <table>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 First Number:
 </td>
 <td align=”left”>
 <input type=”text” id=”firstNumber” /></td>
 </tr>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 Second Number:
 </td>
 <td align=”left”>
 <input type=”text” id=”secondNumber” /></td>
 </tr>

(continued)

c15.indd 655c15.indd 655 8/20/07 9:08:17 PM8/20/07 9:08:17 PM

Chapter 15: Proxy Classes

656

 Listing 15-23 (continued)

 <tr>
 <td colspan=”2” align=”center”>
 <button onclick=”divide()”>
 Divide</button></td>
 </tr>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 Result:
 </td>
 <td align=”left”>

 </td>
 </tr>
 </table>
 </form>
</body>
</html>

 Listing 15-24: The Math2.aspx Page

 <%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Web.Services” %>
<%@ Register TagPrefix=”custom” Namespace=”CustomComponents” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>

 <script type=”text/javascript” language=”javascript”>
 var request;

 function onSuccess(result, userContext, methodName)
 {
 userContext.innerHTML = “<b<<u>” + result + “</b<</u>”;
 }

 function onFailure(result, userContext, methodName)
 {
 var builder = new Sys.StringBuilder();
 builder.append(“timedOut: “);
 builder.append(result.get_timedOut());
 builder.appendLine();
 builder.appendLine();
 builder.append(“message: “);
 builder.append(result.get_message());
 builder.appendLine();
 builder.appendLine();
 builder.append(“stackTrace: “);

c15.indd 656c15.indd 656 8/20/07 9:08:17 PM8/20/07 9:08:17 PM

Chapter 15: Proxy Classes

657

 builder.appendLine();
 builder.append(result.get_stackTrace());
 builder.appendLine();
 builder.appendLine();
 builder.append(“exceptionType: “);
 builder.append(result.get_exceptionType());
 builder.appendLine();
 builder.appendLine();
 builder.append(“statusCode: “);
 builder.append(result.get_statusCode());
 builder.appendLine();
 builder.appendLine();
 builder.append(“methodName: “);
 builder.append(methodName);

 alert(builder.toString());
 }

 function divide()
 {
 var xValue = $get(“firstNumber”).value;
 var yValue = $get(“secondNumber”).value;
 var userContext = $get(“result”);
 MyNamespace.Math.Divide(xValue, yValue, onSuccess, onFailure, userContext);
 }
 </script>

</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”/>
 <custom:ScriptManager runat=”server” ID=”CustomScriptManager2”>
 <Services>
 <custom:ServiceReference InlineScript=”true”
 Path=”/AJAXFuturesEnabledWebSite2/Math.asmx” />
 </Services>
 </custom:ScriptManager>
 <table>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 First Number:
 </td>
 <td align=”left”>
 <input type=”text” id=”firstNumber” /></td>
 </tr>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 Second Number:
 </td>
 <td align=”left”>
 <input type=”text” id=”secondNumber” /></td>
 </tr>

(continued)

c15.indd 657c15.indd 657 8/20/07 9:08:18 PM8/20/07 9:08:18 PM

Chapter 15: Proxy Classes

658

 Listing 15-24 (continued)

 <tr>
 <td colspan=”2” align=”center”>
 <button onclick=”divide()”>
 Divide</button></td>
 </tr>
 <tr>
 <td style=”font-weight: bold” align=”right”>
 Result:
 </td>
 <td align=”left”>

 </td>
 </tr>
 </table>
 </form>
</body>
</html>

 Summary
 This chapter showed you how to use the ASP.NET AJAX proxy classes to program against remote objects
as you would against local objects. The next chapter covers another important topic in the ASP.NET
AJAX framework: behaviors.

c15.indd 658c15.indd 658 8/20/07 9:08:18 PM8/20/07 9:08:18 PM

 Behaviors
 A behavior is a piece of functionality that can be attached to a DOM element. Therefore a behavior
is a means of extending the functionality of the DOM element to which the behavior is attached.
Not every behavior can be attached to every DOM element. This chapter will provide you with
in-depth coverage of some of the standard ASP.NET AJAX behaviors and help you gain the skills
you need to develop your own custom behaviors.

 What is a Behavior, Anyway?
 I’ll begin our discussions with the simple page shown in Listing 16-1 . As you can see, this page
contains a HTML element that displays the text “Wrox Web Site.” Moving the mouse over
this link toggles the CSS class of this element. As the boldface portion of Listing 16-1
shows, the pageLoad method first invokes the $get global JavaScript function to return a refer-
ence to the HTML element:

 var label1 = $get(“label1”);

 Next, it invokes the $addHandler global JavaScript function to register a JavaScript function
named toggleCssClass as an event handler for the mouseover event of the HTML
element:

 $addHandler(label1, “mouseover”, toggleCssClass);

 Finally, it invokes the $addHandler JavaScript function once more to register the toggleCssClass
function as an event handler for the mouseout event of the HTML element:

 $addHandler(label1, “mouseout”, toggleCssClass);

 As you can see from the boldface portion of Listing 16-1 , the toggleCssClass function simply
invokes the toggleCssClass static method on the DomElement class, passing in the event target,

c16.indd 659c16.indd 659 8/20/07 6:15:52 PM8/20/07 6:15:52 PM

Chapter 16: Behaviors

660

which simply references the HTML element, and the string that contains the CSS class of
interest:

 function toggleCssClass(domEvent)
 {
 Sys.UI.DomElement.toggleCssClass(domEvent.target, “CssClass1”);
 }

 Now imagine a situation in which you need to do the same thing with many other span and label HTML
elements in your application. You can’t reuse the code shown in the boldface portion of Listing 16-1
because it is tied to the specific element on this specific page in your application. Therefore, you
would end up recoding the same logic over and over again in different pages of your application. This
introduces two fundamental problems:

 ❑ You are not able to code this logic once and reuse the same code elsewhere in your application.

 ❑ Since the implementation of this logic is scattered all around your application, every time you
need to enhance this logic or fix a bug you have no choice but to make code changes everywhere
it is used.

 The ASP.NET AJAX client-side framework enables you to capture this logic in a separate component
known as a behavior, which can then be attached to any span or label HTML element in your applica-
tion. This provides the following two important benefits:

 ❑ It promotes code reusability.

❑ Since the entire code is confined in a single component, you get to make code changes in a single
place and rest assured that these changes will be picked up everywhere in your application that
this behavior is used.

 Listing 16-1: A Page Containing a HTML Element

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <style type=”text/css”>
 .CssClass1
 {
 background-color: Blue;
 color: Yellow;
 font-size: 40px;
 }
 </style>
 <script type=”text/javascript” language=”javascript”>
 function toggleCssClass(domEvent)
 {
 Sys.UI.DomElement.toggleCssClass(domEvent.target, “CssClass1”);

 }

c16.indd 660c16.indd 660 8/20/07 6:15:52 PM8/20/07 6:15:52 PM

Chapter 16: Behaviors

661

 function pageLoad()
 {

 var label1 = $get(“label1”);

 $addHandler(label1, “mouseover”, toggleCssClass);

 $addHandler(label1, “mouseout”, toggleCssClass);

 }

 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />
 Wrox Web Site
 </form>
</body>
</html>

 The Behavior Class
 The ASP.NET AJAX client-side framework comes with a base class named Behavior whose members
define the API that all behaviors must implement in order to act as a behavior in the ASP.NET AJAX
applications. Listing 16-2 presents the definition of this base class.

 Listing 16-2: The Create Static Method of the Component Base Class

 var $create = Sys.Component.create =
function Sys$Component$create(type, properties, events, references, element)
{

 var component = (element ? new type(element): new type());

 component.beginUpdate();

 if (properties)

 Sys$Component$_setProperties(component, properties);

 if (events)
 {
 for (var name in events)
 {
 var eventHandlers = events[name];
 var addEventHandlerMethodName = “add_” + name;
 var addEventHandlerMethod = component[addEventHandlerMethodName];
 addEventHandlerMethod(eventHandlers);
 }
 }

(continued)

c16.indd 661c16.indd 661 8/20/07 6:15:53 PM8/20/07 6:15:53 PM

Chapter 16: Behaviors

662

 Listing 16-2 (continued)

 Sys.Application._createdComponents[app._createdComponents.length] = component;
 if (component.get_id())

 Sys.Application.addComponent(component);

 if (Sys.Application.get_isCreatingComponents())
 {
 if (references)

 Sys.Application._addComponentToSecondPass(component, references);

 else

 component.endUpdate();

 }

 else
 {
 if (references)
 Sys$Component$_setReferences(component, references);

 component.endUpdate();
 }
 return component;
}

 Note that the Behavior base class derives from the ASP.NET AJAX Component base class:

 Sys.UI.Behavior.registerClass(‘Sys.UI.Behavior’, Sys.Component);

 This means that a behavior, just like any other ASP.NET AJAX component, goes through the typical com-
ponent life cycle thoroughly discussed in Chapter 7 . Recall that a component’s life cycle begins when the
component springs into life and ends when it is finally disposed of. As you can see from Listing 7-22 ,
the create static method of the Component base class shows different life cycle phases of a component,
which are shown again in Listing 16-2 . The main responsibility of the create method is to create, initial-
ize, and add a new Component object with the specified characteristics to the current ASP.NET AJAX
application. This method takes the following parameters:

❑ type : Contains a reference to the constructor of the component class whose instance is being cre-
ated. This means that the clients of your behavior will pass a reference to the constructor of your
behavior class to this method as its first argument.

❑ properties : References an object literal, each of whose name/value pairs contains the name
and value of a particular property of the Component object being created. Therefore, this object
sets the values of your behavior’s properties.

❑ events : References an object literal, each of whose name/value pairs contains the name and
event handlers of a particular event of the Component object being created. In other words, this
object registers event handlers for the events of your behavior.

c16.indd 662c16.indd 662 8/20/07 6:15:53 PM8/20/07 6:15:53 PM

Chapter 16: Behaviors

663

❑ references : References an object literal, each of whose name/value pairs contains the name
of a specific property of the Component object being created and the value of the id of the
 Component object that the property references. This object basically sets the values of those
properties of your behavior that reference other ASP.NET AJAX components in the current
ASP.NET AJAX application. This means that you can implement custom behaviors containing
properties that reference other components.

❑ element : References the DOM element with which the Component object being created is asso-
ciated. Therefore, this parameter references the DOM element to which your behavior is
attached.

 The highlighted portions of Listing 16-2 show some of the life cycle phases of your behavior:

 ❑ Instantiation : This is the phase in which the new operator is invoked on the constructor of
your behavior, to instantiate it.

❑ beginUpdate : This is the phase in which the beginUpdate method of your behavior is in-
voked. As Listing 16-2 shows, this method is invoked immediately after your behavior is instan-
tiated and before the properties of your behavior are set, before any event handlers are regis-
tered for the events of your behavior, and before your behavior is added to the current ASP.NET
AJAX application. Recall from Listing 7-22 that the Component base class’s implementation of
the beginUpdate method simply sets an internal flag named _updating to true to mark the
beginning of the updating life cycle phase of your behavior, as shown again in the following
code listing:

 function Sys$Component$beginUpdate()
{
 this._updating = true;
}

 ❑ Your behavior can override the beginUpdate method to perform any tasks deemed necessary
before its properties are set, before any event handlers are registered for its events, and before
your behavior is added to the current ASP.NET AJAX application. Your behavior’s implementa-
tion of the beginUpdate method must call the beginUpdate method of its base class to allow
the base class to mark the beginning of the updating life cycle phase of your behavior, as shown
in following code fragment:

 YourBehavior.prototype.beginUpdate = function ()
{
 YourBehavior.callBaseMethod(this, ‘beginUpdate’);
 . . .
}

 ❑ endUpdate : This is the phase in which the endUpdate method of your behavior is invoked. As
Listing 16-2 shows, this method is invoked after the properties of your behavior are set, after the
client’s event handlers are registered for the events of your behavior, and after your behavior is
added to the current ASP.NET AJAX application. Recall from Listing 7-22 that the Component

c16.indd 663c16.indd 663 8/20/07 6:15:53 PM8/20/07 6:15:53 PM

Chapter 16: Behaviors

664

base class’s implementation of the endUpdate method sets the _updating internal flag to
 false to mark the end of updating phase of your behavior, calls the initialize method of
your behavior, and finally invokes the updated method of your behavior:

 function Sys$Component$endUpdate()
{
 this._updating = false;
 if (!this._initialized)
 this.initialize();

 this.updated();
}

 Your behavior can override the endUpdate method to perform those tasks that must be per-
formed before the end of its updating phase is marked and before its initialize method is
 invoked. However, your behavior’s implementation of the initialize method must invoke
the endUpdate method of its base class after performing the previously mentioned tasks:

 YourBehavior.prototype.endUpdate = function()
{
 . . .
 YourBehavior.callBaseMethod(this, ‘endUpdate’);
}

❑ initialize : This is the phase in which the initialize method of your behavior is invoked.
As just discussed, this method is invoked after all properties of your behavior are set, after the
client’s event handlers are registered for the events of your behavior, after your behavior is
added to the current ASP.NET AJAX application, and after the end of updating phase of your
behavior is marked. The Component base class’s implementation of the initialize method
simply sets an internal flag named _initialized to mark your behavior as initialized:

 function Sys$Component$initialize()
 {
 this._initialized = true;
 }

 However, your behavior can override this method to perform its behavior-specific initialization
tasks. Your behavior’s implementation of the initialize method must invoke the initialize
method of its base class to allow the base class to initialize itself and to mark your behavior
as initialized.

 ❑ updated : This is the phase in which the updated method of your behavior is invoked. As just
discussed, this method is invoked after all properties of your behavior are set, after the client’s
event handlers are registered for the events of your behavior, after your behavior is added to the
current ASP.NET AJAX application, after the end of updating phase of your behavior is marked,
and after its initialize method is invoked. Recall from Listing 7-26 that the Component base
class’s implementation of the updated method does not do anything.

 function Sys$Component$updated()
{
}

c16.indd 664c16.indd 664 8/20/07 6:15:54 PM8/20/07 6:15:54 PM

Chapter 16: Behaviors

665

 However, your behavior can override this method to perform post-update tasks — that is, the
tasks that must be performed after all properties of your behavior are set, after the client’s event
handlers are registered for the events of your behavior, after your behavior is added to the cur-
rent ASP.NET AJAX application, after the end of the updating phase of your behavior is marked,
and after its initialize method is invoked.

 Your behavior, like any other ASP.NET AJAX component, inherits the following methods from the
 Component base class:

 ❑ get_events : This getter method returns a reference to the EventHandlerList object that contains
all the event handlers registered for the events of the component. Therefore, if you’re writing a cus-
tom behavior that needs to expose a new type of event, follow these steps to implement the event:

 ❑ Implement a new method named add_eventName (where eventName is a placeholder for
the name of your event, whatever it may be) as follows to allow the clients of your behav-
ior to register event handlers for this event:

 function add_eventName (eventHandler)
{
 var events = this.get_events();
 events.addHandler(“eventName”, eventHandler);
}

 As you can see from the preceding code listing, the add_eventName method first calls
the get_events method that your behavior automatically inherits from the Component base
class to return a reference to the EventHandlerList object. Then it invokes the addHandler
method on this object to register the specified event handler for your event.

❑ Implement a new method named remove_eventName (where eventName is a placeholder
for the name of your event) as follows to allow the clients of your behavior to unregister
event handlers:

 function remove_eventName (eventHandler)
{
 var events = this.get_events();
 events.removeHandler(“eventName”, eventHandler);
}

 Again, as you can see from the preceding code listing, the remove_eventName method first calls
the get_events method that your behavior inherits from the Component base class to return a
reference to the EventHandlerList object. Then it invokes the removeHandler method on
this object to remove the specified event handler from the list of event handlers registered for
your event.

❑ Implement a new ASP.NET AJAX event data class named EventNameEventArgs (where
 EventName is a placeholder for the name of your event) if necessary. As discussed in previ-
ous chapters, every event is associated with a class known as an event data class whose
 instances hold the event data for the event.

c16.indd 665c16.indd 665 8/20/07 6:15:54 PM8/20/07 6:15:54 PM

Chapter 16: Behaviors

666

❑ Implement a new method named _onEventName (where EventName is a placeholder for
the name of your event) that takes a single argument of type EventNameEventArgs , as
follows, to raise your event:

 function _onEventName (eventNameEventArgs)
{
 var events = this.get_events();
 var handler = events.getHandler(“eventName”);
 if (handler)
 handler(this, eventNameEventArgs)
}

❑ Note that this method first calls the get_events method inherited from the Component
base class to return a reference to the EventHandlerList object. Then it invokes the
 getHandler method on this object, passing in the name of your event to return a reference
to a JavaScript function whose invocation automatically invokes all the event handlers
 registered for your event. Next, it invokes this JavaScript function and consequently all the
event handlers registered for your event. Note that the _onEventName method passes two
parameters to each event handler, the first referencing your behavior and the second the
 EventNameEventArgs object that contains the event data for your event.

❑ get_id : This getter method allows the clients of your behavior to return its id property value.
Recall that the id property value is a string that uniquely identifies your behavior in the current
ASP.NET AJAX application.

❑ set_id : This setter method allows the clients of your behavior to set its id property value.

❑ get_isInitialized : This getter method returns a Boolean value that specifies whether your
behavior has been initialized. (Your behavior is considered initialized when its initialize
method has already been invoked.) Note that this method simply returns the value of the
 _initialized flag:

 function Sys$Component$get_isInitialized()
 {
 /// <value type=”Boolean”></value>
 return this._initialized;
 }

 ❑ get_isUpdating : This getter method returns a Boolean value that specifies whether your
 behavior is being updated. (Note that this method simply returns the value of the _updating flag.)

 function Sys$Component$get_isUpdating()
 {
 /// <value type=”Boolean”></value>
 return this._updating;
 }

❑ add_disposing : This method allows the clients of your behavior to register event handlers for
the disposing event of your behavior. As you can see, your behavior automatically inherits this
event from the Component base class. Recall that a component raises this event when it is about

c16.indd 666c16.indd 666 8/20/07 6:15:54 PM8/20/07 6:15:54 PM

Chapter 16: Behaviors

667

to be disposed of, to allow its clients to perform final cleanup and to release the resources they’re
holding.

❑ remove_disposing : This method allows the clients of your behavior to remove event handlers
from the list of event handlers registered for the disposing event of your behavior.

❑ add_propertyChanged : This method allows the clients of your behavior to register event han-
dlers for the propertyChanged event of your behavior. As you can see, your behavior automat-
ically inherits this event from the Component base class. Recall that a component raises this
event when one of its properties changes value.

❑ remove_propertyChanged : This method allows the clients of your behavior to remove items
from the list of event handlers registered for the propertyChanged event of your behavior.

❑ dispose : As the following code listing shows, the Component base class’s implementation of the
 dispose method first raises the disposing event of your behavior and consequently invokes
the event handlers that the clients of your behavior have registered for the disposing event of
your behavior, to allow these clients to perform final cleanup and to release the resources they’re
holding before your behavior is disposed of. Second, the dispose method deletes the
 EventHandlerList object that contains the event handlers registered for the events of your
 behavior before your behavior is disposed of. Third, it calls the unregisterDisposableObject
method on the Application object that represents the current ASP.NET AJAX application, to
unregister all the disposable objects registered with the application. (Recall that disposable
 objects are objects whose types implement the IDisposable interface.) If these objects are not
unregistered, their dispose methods will be automatically invoked when the application is
 disposed of, even though your behavior has already been disposed of. Fourth, it calls the
 removeComponent method on the Application object to remove your behavior from the
 current ASP.NET AJAX application.

 function Sys$Component$dispose()
 {
 if (this._events)
 {
 var handler = this._events.getHandler(“disposing”);
 if (handler)
 handler(this, Sys.EventArgs.Empty);
 }
 delete this._events;
 Sys.Application.unregisterDisposableObject(this);
 Sys.Application.removeComponent(this);
 }

 Your behavior can override the dispose method to perform final cleanup and to release the
 resources it is holding when it is about to be disposed of. It is very important that your
 behavior’s implementation of the dispose method call the dispose method of its base class.
Otherwise, none of the previously-mentioned tasks will be performed.

 ❑ raisePropertyChanged : If your behavior exposes properties of its own that can change value,
and if you believe that the clients of your behavior should be informed when these properties
change value, the setters of these properties must invoke the raisePropertyChanged method.
As you can see from the following code listing, the Component base class’s implementation of
this method invokes the event handlers registered for the propertyChanged event, passing
in the PropertyChangedEventArgs object that contains the name of the changed property.

c16.indd 667c16.indd 667 8/20/07 6:15:54 PM8/20/07 6:15:54 PM

Chapter 16: Behaviors

668

This allows those clients of your behavior that have registered event handlers for the
 propertyChanged event of your behavior to be notified when the properties of your
 behavior change value.

 function Sys$Component$raisePropertyChanged(propertyName)
 {
 /// <param name=”propertyName” type=”String”></param>
 if (!this._events)
 return;
 var handler = this._events.getHandler(“propertyChanged”);
 if (handler)
 handler(this, new Sys.PropertyChangedEventArgs(propertyName));
 }

 As you can see from Listing 16-3 , the constructor of the Behavior base class takes a single parameter
that references the DOM element to which a behavior attaches. This constructor assigns this parameter to
a private field named _element . Note that the constructor adds the behavior to a custom collection
property on this DOM element named _behaviors . As the name suggests, the _behaviors collection of
a DOM element contains references to all behaviors attached to the DOM element. As you can see, you
can attach more than one behavior to the same DOM element.

 Listing 16-3: The ASP.NET AJAX Behavior Base Class

 Sys.UI.Behavior = function SysUIBehavior(element)
{
 /// <param name=”element” domElement=”true”></param>
 Sys.UI.Behavior.initializeBase(this);
 this._element = element;
 var behaviors = element._behaviors;
 if (!behaviors)
 element._behaviors = [this];

 else
 behaviors[behaviors.length] = this;
}
Sys.UI.Behavior.prototype =
{
 _name: null,
 get_element: SysUIBehavior$get_element,
 get_id: SysUIBehavior$get_id,
 get_name: SysUIBehavior$get_name,
 set_name: SysUIBehavior$set_name,
 initialize: SysUIBehavior$initialize,
 dispose: SysUIBehavior$dispose
}
Sys.UI.Behavior.registerClass(‘Sys.UI.Behavior’, Sys.Component);

 Properties
 The ASP.NET AJAX Behavior base class exposes the properties discussed in the following sections.

c16.indd 668c16.indd 668 8/20/07 6:15:55 PM8/20/07 6:15:55 PM

Chapter 16: Behaviors

669

 element
 The ASP.NET AJAX Behavior base class features a getter method named get_element , which returns
the value of the _element field, as shown in Listing 16-4 . Recall that this field references the DOM
 element to which the behavior is attached. Note that the element is a read-only property. That’s why the
 Behavior base class does not expose the set_element setter. In other words, the element property of
a behavior can be set only when the behavior is being instantiated.

 Listing 16-4: The Element Property of the Behavior Base Class

 function SysUIBehavior$get_element()
{
 /// <value domElement=”true”></value>
 return this._element;
}

 name
 The Behavior base class exposes a read/write property named name . Listing 16-5 presents the internal
implementation of the set_name setter method that enables you to set the name property. Note that this
setter method raises an exception if:

 ❑ The DOM element to which the behavior is attached already contains a behavior with the same
name. This ensures that the name of a behavior uniquely identifies it among other behaviors
 attached to the DOM element:

 if (typeof(this._element[value]) !== ‘undefined’)
 throw Error.invalidOperation(
 String.format(Sys.Res.behaviorDuplicateName, value));

 ❑ The behavior has already been initialized — that is, its initialize method has already been
 invoked. In other words, you cannot set the name of a behavior after it has been initialized:

 if (this.get_isInitialized())
 throw Error.invalidOperation(Sys.Res.cantSetNameAfterInit);

 Listing 16-5: The set_name Method of the Behavior Base Class

 function SysUIBehavior$set_name(value)
{
 if ((value === ‘’) || (value.charAt(0) === ‘ ‘) ||
 (value.charAt(value.length - 1) === ‘ ‘))
 throw Error.argument(‘value’, Sys.Res.invalidId);
 if (typeof(this._element[value]) !== ‘undefined’)
 throw Error.invalidOperation(
 String.format(Sys.Res.behaviorDuplicateName, value));
 if (this.get_isInitialized())
 throw Error.invalidOperation(Sys.Res.cantSetNameAfterInit);
 this._name = value;
}

c16.indd 669c16.indd 669 8/20/07 6:15:55 PM8/20/07 6:15:55 PM

Chapter 16: Behaviors

670

 Listing 16-6 presents the internal implementation of the get_name getter method of the Behavior base
class. Call this method to access the name of a behavior. As you can see, if the value of the _name field
has been set through the explicit call into the set_name setter method, the get_name getter method
 simply returns the value of this field:

 if (this._name)
 return this._name;

 If your application logic expects the behavior to have a specific name, you must explicitly call the
set_name method on the behavior to explicitly set the value of the _name field to the desired value
 before the behavior’s initialize method is invoked.

 If the value of the _name field has not been set through the explicit call into the set_name setter method,
the get_name method takes the following steps to set and to return the value of this field. First, it
calls the getTypeName static method on the JavaScript Object class, passing in a reference to the current
behavior to return a string that contains the fully qualified name of the type of the behavior, including
its complete namespace hierarchy. For example, if your custom behavior is an ASP.NET AJAX class
named MyBehavior that belongs to a namespace named MyNamespace1 , which belongs to another
namespace named MyNamespace2 , the call into the getTypeName method will return the string
 “MyNamespace2.MyNamespace1.MyBehavior” .

 var name = Object.getTypeName(this);

 Since the string returned from the getTypeName method contains the complete namespace hierarchy of
the type of behavior, the get_name getter method uses the following logic to extract the name of the
behavior class, excluding its namespace hierarchy:

 var i = name.lastIndexOf(‘.’);
 if (i != -1)
 name = name.substr(i + 1);

 Next, the get_name getter method checks whether the behavior has already been initialized — that is,
whether its initialized method has already been invoked. If not, it assigns the name of the behavior
class — excluding its namespace hierarchy — to the _name field:

 if (!this.get_isInitialized())
 this._name = name;

 As you can see, if you don’t explicitly assign a value to the _name field of a behavior by explicitly calling
the set_name method, the behavior will automatically use the name of the behavior class, excluding its
namespace hierarchy, as the name.

c16.indd 670c16.indd 670 8/20/07 6:15:55 PM8/20/07 6:15:55 PM

Chapter 16: Behaviors

671

 Listing 16-6: The get_name Method of the Behavior Base Class Function

 SysUIBehavior$get_name()
{
 if (this._name)
 return this._name;

 var name = Object.getTypeName(this);
 var i = name.lastIndexOf(‘.’);
 if (i != -1)
 name = name.substr(i + 1);
 if (!this.get_isInitialized())
 this._name = name;
 return name;
}

 id
 The Behavior base class inherits a method named set_id from its base class. You can call this method
to explicitly set the id property value of a behavior. Listing 16-7 presents the Component base class’s
implementation of this method.

 Listing 16-7: The set_id Method

 function Sys$Component$set_id(value)
{
 if (this._idSet)
 throw Error.invalidOperation(Sys.Res.componentCantSetIdTwice);

 this._idSet = true;
 var oldId = this.get_id();

 if (oldId && Sys.Application.findComponent(oldId))
 throw Error.invalidOperation(Sys.Res.componentCantSetIdAfterAddedToApp);
 this._id = value;
}

 As you can see from Listing 16-7 , the set_id method raises an exception if it is invoked twice. In other
words, you cannot set the id property value of a behavior more than once:

 if (this._idSet)
 throw Error.invalidOperation(Sys.Res.componentCantSetIdTwice);

 this._idSet = true;

 Note that Listing 16-7 invokes the findComponent method on the Application object that represents
the current ASP.NET AJAX application, to determine whether the current application already contains a
component with the same name. If so, this indicates that the same behavior has already been added to
the application, and consequently the set_id method raises an exception.

c16.indd 671c16.indd 671 8/20/07 6:15:56 PM8/20/07 6:15:56 PM

Chapter 16: Behaviors

672

 You cannot set the value of the id property of a behavior more than once, or after adding the behavior
to the application. Recall from Listing 16-2 that a behavior is added to an application when the
 addComponent method is invoked on the Application object, passing in a reference to the behavior.
In other words, you cannot change the value of the id property of a behavior after the call into the
 addComponent method.

 As you can see, the Behavior base class does not override the set_id setter method of its base class.
However, it does override the get_id method that it inherits from the Component base class, in which it
takes the steps shown in Listing 16-8 . First, it invokes the get_id method of its base class to check
whether the base class already contains an id for the behavior — that is, whether the set_id method
has already been explicitly invoked to set the id property value. If so, it simply returns the return value
of the get_id method of the base class:

 var baseId = Sys.UI.Behavior.callBaseMethod(this, ‘get_id’);
 if (baseId)
 return baseId;

 If not, it creates a string that contains two substrings separated by the dollar sign ($), the first contain-
ing the id property value of the DOM element to which the behavior is attached and the second
 containing the name of the behavior:

 return this._element.id + ‘$’ + this.get_name();

 If your application logic expects the id property of a behavior to have a specific value, you must
 explicitly call the set_id method to set the value of this property. Otherwise the previously-mentioned
auto-generated id value will be used.

 Listing 16-8: The id Property of the Behavior Base Class

 function SysUIBehavior$get_id()
{
 /// <value type=”String”></value>
 var baseId = Sys.UI.Behavior.callBaseMethod(this, ‘get_id’);
 if (baseId)
 return baseId;
 if (!this._element || !this._element.id)
 return ‘’;

 return this._element.id + ‘$’ + this.get_name();
}

 Instance Methods
 The Behavior base exposes the instance methods discussed in the following sections. Recall that an
instance method is a method that is defined on the prototype property of a JavaScript class. As the
name suggests, an instance method must be invoked on an instance of the class.

c16.indd 672c16.indd 672 8/20/07 6:15:56 PM8/20/07 6:15:56 PM

Chapter 16: Behaviors

673

 initialize
 The Behavior base class overrides the initialize method that it inherits from the Component base
class, as shown in Listing 16-9 . As you can see, this method defines a custom property on the DOM
 element to which the behavior is attached. Note that the name of the behavior is used as the name of
this custom property. Also note that this method assigns a reference to the current behavior as the value
of this custom property.

 Therefore, if you have access to a reference to a given DOM element, and if you know the name of the
behavior you’re looking for, you can access a reference to this behavior using the following line of code:

 var behavior = domElement[behaviorName];

 Listing 16-9: The initialize Method of the Behavior Base Class

 function SysUIBehavior$initialize()
{
 Sys.UI.Behavior.callBaseMethod(this, ‘initialize’);
 var name = this.get_name();
 if (name)
 this._element[name] = this;
}

 dispose
 The Behavior base class overrides the dispose method that it inherits from the Component base class, as
shown in Listing 16-10 . As you can see, this method first invokes the dispose method of the base class:

 Sys.UI.Behavior.callBaseMethod(this, ‘dispose’);

 Your custom behavior class’ implementation of the dispose method must do the same — that is, it
must call the dispose method of its base class to allow the base class to raise the disposing event and to
perform its final cleanup.

 Next, the dispose method sets the value of the custom property that references the current behavior to
 null . This allows the same name to be reused for other behaviors of the same DOM element:

 var name = this.get_name();
 if (name)
 this._element[name] = null;

 Next, it removes the current behavior from the _behaviors collection property of the DOM element to
which the behavior is attached:

 Array.remove(this._element._behaviors, this);

c16.indd 673c16.indd 673 8/20/07 6:15:56 PM8/20/07 6:15:56 PM

Chapter 16: Behaviors

674

 Listing 16-10: The dispose Method of the Behavior Base Class

 function SysUIBehavior$dispose()
{
 Sys.UI.Behavior.callBaseMethod(this, ‘dispose’);
 if (this._element)
 {
 var name = this.get_name();
 if (name)
 this._element[name] = null;

 Array.remove(this._element._behaviors, this);
 delete this._element;
 }
}

 Static Methods
 The Behavior base class exposes the static methods discussed in the following sections. Recall that a
static method of a JavaScript class is a method that is defined on the class itself.

 getBehaviorByName
 The getBehaviorByName static method of the Behavior class takes two parameters and returns a refer-
ence to the behavior whose name is given by the second parameter, and whose associated DOM element
is referenced by the first parameter (see Listing 16-11). Recall that every DOM element contains a custom
property for each behavior attached to it for which the name of the property is the name of the behavior
and the value of the property references the behavior itself.

 Listing 16-11: The getBehaviorByName Method of the Behavior Base Class

 Sys.UI.Behavior.getBehaviorByName =
function SysUIBehavior$getBehaviorByName(element, name)
{
 /// <param name=”element” domElement=”true”></param>
 /// <param name=”name” type=”String”></param>
 /// <returns type=”Sys.UI.Behavior” mayBeNull=”true”></returns>
 var b = element[name];
 return (b && Sys.UI.Behavior.isInstanceOfType(b)) ? b : null;
}

 getBehaviors
 The getBehaviors static method takes a single parameter that references a DOM element and returns a
reference to the _behaviors collection (if any) of the DOM element (see Listing 16-12). Recall that this
collection contains references to all behaviors attached to the DOM element.

c16.indd 674c16.indd 674 8/20/07 6:15:56 PM8/20/07 6:15:56 PM

Chapter 16: Behaviors

675

 Listing 16-12: The getBehaviors Method of the Behavior Base Class

 Sys.UI.Behavior.getBehaviors = function SysUIBehavior$getBehaviors(element)
{
 /// <param name=”element” domElement=”true”></param>
 /// <returns type=”Array” elementType=”Sys.UI.Behavior”></returns>
 if (!element._behaviors)
 return [];
 return Array.clone(element._behaviors);
}

 getBehaviorsByType
 There are times when you need to search the _behaviors collection of a DOM element by the type of
behavior. This is where the getBehaviorsByType static method comes in handy. As Listing 16-13
shows, this method takes two parameters: the first references the DOM element and the second refer-
ences the constructor of the behavior. (Recall that the constructor of a JavaScript class defines its type.)
As you can see, this method iterates through the behaviors in the _behaviors collection of the specified
DOM element and calls the isInstanceOfType method on the second parameter to determine whether
the enumerated behavior is of the desired type.

 Listing 16-13: The getBehaviorsByType Method of the Behavior Base Class

 Sys.UI.Behavior.getBehaviorsByType =
function SysUIBehavior$getBehaviorsByType(element, type)
{
 /// <param name=”element” domElement=”true”></param>
 /// <param name=”type” type=”Type”></param>
 /// <returns type=”Array” elementType=”Sys.UI.Behavior”></returns>
 var behaviors = element._behaviors;
 var results = [];
 if (behaviors)
 {
 for (var i = 0, l = behaviors.length; i < l; i++)
 {
 if (type.isInstanceOfType(behaviors[i]))
 results[results.length] = behaviors[i];
 }
 }
 return results;
}

 ClickBehavior
 As you have seen on several occasions in this and previous chapters, implementing a new event for an
ASP.NET AJAX client control requires you to follow the ASP.NET AJAX event-implementation pattern,
which involves several steps. One of the most common events is the click event. If you were to
 implement this event for several ASP.NET AJAX client controls in your application, you’d end up
re-implementing the steps of the same ASP.NET AJAX event implementation pattern over and over

c16.indd 675c16.indd 675 8/20/07 6:15:57 PM8/20/07 6:15:57 PM

Chapter 16: Behaviors

676

again. The ClickBehavior encapsulates this logic, enabling you to attach the ClickBehavior to any
ASP.NET AJAX client control for which the click event makes sense, thereby enabling that control to
support the click event.

 Listing 16-14 presents the definition of the ClickBehavior class. As you can see, the constructor of this
class, like the constructor of any behavior class, takes a parameter that references the DOM element to
which the behavior is attached. Note that the ClickBehavior class inherits from the Behavior base
class and extends its functionality to add support for the click event:

 Sys.Preview.UI.ClickBehavior.registerClass(‘Sys.Preview.UI.ClickBehavior’,
 Sys.UI.Behavior);

 Listing 16-14: The ClickBehavior Class

 Sys.Preview.UI.ClickBehavior = function Sys$Preview$UI$ClickBehavior(element)
{
 /// <param name=”element” domElement=”true”></param>
 Sys.Preview.UI.ClickBehavior.initializeBase(this, [element]);
}
Sys.Preview.UI.ClickBehavior.prototype =
{
 _clickHandler: null,
 add_click: Sys$Preview$UI$ClickBehavior$add_click,
 remove_click: Sys$Preview$UI$ClickBehavior$remove_click,
 dispose: Sys$Preview$UI$ClickBehavior$dispose,
 initialize: Sys$Preview$UI$ClickBehavior$initialize,
 _onClick: Sys$Preview$UI$ClickBehavior$_onClick
}
Sys.Preview.UI.ClickBehavior.registerClass(‘Sys.Preview.UI.ClickBehavior’,
 Sys.UI.Behavior);

 descriptor
 As you can see from Listing 16-15 , the ClickBehavior class exposes a descriptor property to allow its
clients to use the ASP.NET AJAX type-inspection capabilities to interact with the class in a generic way
without knowing its type — that is, without knowing that the class they are interacting with is the
 ClickBehavior class. As discussed in the previous chapters, the descriptor property of a class is an
object literal, which contains up to four name/value pairs that describe the events, properties, methods,
and attributes of the class. In this case, the object exposes a single name/value pair that describes the
events of the class. As you can see, the name part of this name/value pair is events , and the value part
is an array of object literals in which each object literal describes an event. Since the ClickBehavior
exposes only one event, named click , this array contains a single object, which contains a single name/
value pair: the name part of the pair is name and the value part is the string ‘click’ .

 Your custom behavior classes must do the same: that is, they must expose a descriptor property that
describes those events, methods, properties, and attributes that you believe the clients of your behavior
may want to access in a generic way via the ASP.NET AJAX type-inspection infrastructure.

c16.indd 676c16.indd 676 8/20/07 6:15:57 PM8/20/07 6:15:57 PM

Chapter 16: Behaviors

677

 Listing 16-15: The descriptor Property of the ClickBehavior

 Sys.Preview.UI.ClickBehavior.descriptor =
{
 events: [{name: ‘click’}]
}

 The click Event
 Listing 16-16 encapsulates the typical logic that follows the ASP.NET AJAX event-implementation pat-
tern to implement the click event, saving you from having to write this code over again every time you
need to add support for the click event to an ASP.NET AJAX client control. As the boldface portion of
Listing 16-16 shows, the Cli ckBehavior implements a method named _onClick that raises the click
event and consequently invokes all the event handlers registered for this event.

 Listing 16-16: The click Event

 function Sys$Preview$UI$ClickBehavior$add_click(handler)
{
 this.get_events().addHandler(‘click’, handler);
}
function Sys$Preview$UI$ClickBehavior$remove_click(handler)
{
 this.get_events().removeHandler(‘click’, handler);
}
function Sys$Preview$UI$ClickBehavior$_onClick()

{

 var handler = this.get_events().getHandler(‘click’);

 if(handler)

 handler(this, Sys.EventArgs.Empty);

}

function Sys$Preview$UI$ClickBehavior$dispose()
{
 if (this._clickHandler)
 $removeHandler(this.get_element(), ‘click’, this._clickHandler);

 Sys.Preview.UI.ClickBehavior.callBaseMethod(this, ‘dispose’);
}

 initialize
 The ClickBehavior class overrides the initialize method that it inherits from the Component base
class, taking the steps shown in Listing 16-17 . First, it invokes the initialize method of its base class:

 Sys.Preview.UI.ClickBehavior.callBaseMethod(this, ‘initialize’);

 Your custom behavior’s implementation of the initialize method must do the same — that is, it must
begin by calling the initialize method of its base class to allow the base class to initialize itself first.

c16.indd 677c16.indd 677 8/20/07 6:15:57 PM8/20/07 6:15:57 PM

Chapter 16: Behaviors

678

 Then it invokes the createDelegate static method on the Function JavaScript class to create a
 delegate that represents the _onClick method of the ClickBehavior class, and assigns this delegate
to a private field named _clickHandler :

 this._clickHandler = Function.createDelegate(this, this._onClick);

 Finally, it uses the $addHandler global JavaScript function to register the delegate as an event handler
for the click event of the DOM element to which the behavior is attached. Therefore, when this DOM
element raises its click event, it’ll automatically invoke this delegate and consequently the _onClick
method of the behavior. As the boldface portion of Listing 16-16 shows, the _onClick method in turn
invokes all the event handlers registered for the click event of the behavior.

 $addHandler(this.get_element(), ‘click’, this._clickHandler);

 Note that the ClickBehavior class stores the delegate in a private field. Recall from Listing 16-16
that before the behavior is disposed of, the dispose method of the class uses the $removeHandler
global JavaScript function to remove this delegate from the list of event handlers registered for the
 click event of the DOM element to which the behavior is attached. Your custom behavior must do
the same: it must store its delegates in private fields and override the dispose method, using the
 $removeHandler function to remove these delegates from the list of event handlers registered for the
specified events of the DOM element to which your behavior is attached before your behavior is disposed
of. Otherwise these delegates will be called when the DOM element raises its associated events, even
after your behavior is long disposed of.

 Listing 16-17: The initialize Method of the ClickBehavior

 function Sys$Preview$UI$ClickBehavior$initialize()
{
 Sys.Preview.UI.ClickBehavior.callBaseMethod(this, ‘initialize’);
 this._clickHandler = Function.createDelegate(this, this._onClick);
 $addHandler(this.get_element(), ‘click’, this._clickHandler);
}

 Using the ClickBehavior
 Listing 16-18 presents a page that attaches the ClickBehavior to a <div> HTML element. As you can
see from this code listing, the pageLoad method takes these steps to instantiate the ClickBehavior and
to attach it to the <div> HTML element. First, it defines a dictionary named events and populates it
with the names of the ClickBehavior events and their associated event handlers:

 var events =
 {
 disposing : disposingCallback,
 propertyChanged : propertyChangedCallback,
 click : clickCallback
 };

 In this case, we’re registering three event handlers named disposingCallback ,
propertyChangedCallback , and clickCallback for the disposing , propertyChanged ,
and click events of the ClickBehavior instance being instantiated.

c16.indd 678c16.indd 678 8/20/07 6:15:58 PM8/20/07 6:15:58 PM

Chapter 16: Behaviors

679

 Then the pageLoad method defines a dictionary named properties and populates it with the names of
the ClickBehavior properties and their associated values:

 var properties =
 {
 name : “MyClickBehaviorName”,
 id : “MyClickBehaviorID”
 };

 In this case, we’re setting the name and id properties to the string values “MyClickBehaviorName” and
 “MyClickBehaviorID” , respectively.

 Finally, the pageLoad method invokes the $create global JavaScript function to instantiate the
 ClickBehavior instance. As you can see, this function takes five parameters. The first references the
constructor of the ClickBehavior class, the second is the properties dictionary, the third is the events
dictionary, the fourth is null , and the fifth is the reference to the <div> DOM element to which the
 ClickBehavior will be attached.

 clickBehavior1 = $create(Sys.Preview.UI.ClickBehavior, properties,
 events, null, $get(“mydiv”));

 Listing 16-18: A Page that Uses the ClickBehavior

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 var clickBehavior1;

 function disposingCallback(sender, args)
 {
 alert(“disposing event was raised!”);
 }

 function propertyChangedCallback(sender, args)
 {
 alert(args.get_propertyName() + “ was changed!”);
 }

 function clickCallback()
 {
 alert(“name = “ + clickBehavior1.get_name() + “\n” +
 “id = “ + clickBehavior1.get_id());
 }

(continued)

c16.indd 679c16.indd 679 8/20/07 6:15:58 PM8/20/07 6:15:58 PM

Chapter 16: Behaviors

680

 Listing 16-18 (continued)

 function pageLoad()
 {
 var events =
 {
 disposing : disposingCallback,
 propertyChanged : propertyChangedCallback,
 click : clickCallback
 };

 var properties =
 {
 name : “MyClickBehaviorName”,
 id : “MyClickBehaviorID”
 };
 clickBehavior1 = $create(Sys.Preview.UI.ClickBehavior, properties,
 events, null, $get(“mydiv”));
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 </Scripts>
 </asp:ScriptManager>
 <div id=”mydiv”>Click Me</div>
 </form>
</body>
</html>

 The ASP.NET AJAX Control Toolkit
 The ASP.NET AJAX control toolkit is a shared-source community project that you can download from
the official Microsoft ASP.NET AJAX site at http://ajax.asp.net . This toolkit contains a bunch of
ASP.NET AJAX behaviors that you can use as-is in your own Web applications or enhance to meet your
application requirements. Such enhancements require a solid understanding of the internal implementa-
tion of these behaviors. All the behaviors included in this toolkit directly or indirectly inherit from a base
behavior class named BehaviorBase , which in turn inherits from the Behavior base class. Note that all
the behaviors in this toolkit belong to a namespace called AjaxControlToolkit , defined as follows:

 Type.registerNamespace(‘AjaxControlToolkit’);

The main goal of this section is twofold. First, it provides in-depth coverage of the BehaviorBase class.
Second, it shows you how to derive from the BehaviorBase class to implement your own custom
behaviors. You do not need to install the ASP.NET AJAX Control Toolkit to run the code presented in this
chapter because all the code is self-contained.

c16.indd 680c16.indd 680 8/20/07 6:15:58 PM8/20/07 6:15:58 PM

Chapter 16: Behaviors

681

 BehaviorBase
 The BehaviorBase class is the base class for all ASP.NET AJAX toolkit behaviors. Listing 16-19 presents
the declaration of the members of this class. I’ll discuss the implementation of these members in the
 following sections.

 Listing 16-19: The BehaviorBase Class

 AjaxControlToolkit.BehaviorBase = function(element)
{
 /// <summary>
 /// Base behavior for all extender behaviors
 /// </summary>
 /// <param name=”element” type=”Sys.UI.DomElement” domElement=”true”>
 /// Element the behavior is associated with
 /// </param> AjaxControlToolkit.BehaviorBase.initializeBase(this,[element]);

 this._clientStateFieldID = null;
 this._pageRequestManager = null;
 this._partialUpdateBeginRequestHandler = null;
 this._partialUpdateEndRequestHandler = null;
}
AjaxControlToolkit.BehaviorBase.prototype =
{
 initialize : AjaxControlToolkit$BehaviorBase$initialize,
 dispose : AjaxControlToolkit$BehaviorBase$dispose,

 get_ClientStateFieldID : AjaxControlToolkit$BehaviorBase$get_ClientStateFieldID,
 set_ClientStateFieldID : AjaxControlToolkit$BehaviorBase$set_ClientStateFieldID,
 get_ClientState : AjaxControlToolkit$BehaviorBase$get_ClientState,
 set_ClientState : AjaxControlToolkit$BehaviorBase$set_ClientState,
 registerPartialUpdateEvents :
 AjaxControlToolkit$BehaviorBase$registerPartialUpdateEvents,
 _partialUpdateBeginRequest :
 AjaxControlToolkit$BehaviorBase$_partialUpdateBeginRequest,
 _partialUpdateEndRequest :
 AjaxControlToolkit$BehaviorBase$_partialUpdateBeginRequest
}
AjaxControlToolkit.BehaviorBase.registerClass(‘AjaxControlToolkit.BehaviorBase’,
 Sys.UI.Behavior);

 initialize
 The BehaviorBase class, like any other ASP.NET AJAX component, inherits the initialize method
from the Component base class. As Listing 16-20 shows, the initialize method of the BehaviorBase
class simply calls the initialize method of its base class. However, you can implement a custom behav-
ior that derives from the BehaviorBase class and overrides its initialize method to initialize itself.

c16.indd 681c16.indd 681 8/20/07 6:15:58 PM8/20/07 6:15:58 PM

Chapter 16: Behaviors

682

 Listing 16-20: The initialize Method

 function AjaxControlToolkit$BehaviorBase$initialize ()
{
 /// <summary>
 /// Initialize the behavior
 /// </summary>
 AjaxControlToolkit.BehaviorBase.callBaseMethod(this, ‘initialize’);
}

 ClientStateFieldID
 The BehaviorBase class exposes a property named ClientStateFieldID that specifies the id prop-
erty value of the hidden field that contains the client state of the behavior. The client state means differ-
ent things in different types of behaviors. It is the responsibility of each subclass of the BehaviorBase
class to decide for itself what type of information it needs to store in this hidden field.

 As you can see from Listing 16-21 , the BehaviorBase exposes a getter method named
get_ClientStateFieldID and a setter method named set_ClientStateFieldID that you
can call from within your client script to get and set the ClientStateFieldID property of the
behavior.

 Listing 16-21: The ClientStateFieldID Property

 function AjaxControlToolkit$BehaviorBase$get_ClientStateFieldID ()
{
 /// <value type=”String”>
 /// ID of the hidden field used to store client state
 /// </value>
 return this._clientStateFieldID;
}
function AjaxControlToolkit$BehaviorBase$set_ClientStateFieldID (value)
{
 if (this._clientStateFieldID != value)
 {
 this._clientStateFieldID = value;
 this.raisePropertyChanged(‘ClientStateFieldID’);
 }
}

 ClientState
 The BehaviorBase class exposes a string property named ClientState , which contains the informa-
tion that the behavior stores in the hidden field whose name is given by the ClientStateFieldID
property. As Listing 16-22 shows, these two methods first call the getElementById method to return a
reference to the hidden field, and then get or set the value of the value property of this field.

c16.indd 682c16.indd 682 8/20/07 6:15:59 PM8/20/07 6:15:59 PM

Chapter 16: Behaviors

683

 Listing 16-22: The ClientState Property

 function AjaxControlToolkit$BehaviorBase$get_ClientState ()
{
 /// <value type=”String”>
 /// Client state
 /// </value>
 if (this._clientStateFieldID)
 {
 var input = document.getElementById(this._clientStateFieldID);
 if (input)
 return input.value;
 }
 return null;
}
function AjaxControlToolkit$BehaviorBase$set_ClientState (value)
{
 if (this._clientStateFieldID)
 {
 var input = document.getElementById(this._clientStateFieldID);
 if (input)
 input.value = value;
 }
}

 registerPartialUpdateEvents
 The BehaviorBase class exposes a method named registerPartialUpdateEvents that does
exactly what its name says it does: it registers event handlers for the partial update events, such as the
 beginRequest and endRequest events of the current client-side PageRequestManager instance.
The current client-side PageRequestManager instance raises the beginRequest event when it is about
to make an asynchronous partial page request to the server, and the endRequest event when the request
finally completes. I’ll discuss the current client-side PageRequestManager instance and its events later
in this book.

 Those subclasses of the BehaviorBase class that want to respond to the beginRequest and endRequest
events of the current client-side PageRequestManager instance must override the initialize method
to invoke the registerPartialUpdateEvents method.

 As Listing 16-23 shows, the registerPartialUpdateEvents method first invokes the getInstance
static method on the client-side PageRequestManager class to return a reference to the current client-
side PageRequestManager instance and stores this reference in an internal field named
 _pageRequestManager :

 this._pageRequestManager = Sys.WebForms.PageRequestManager.getInstance();

 Each page can contain only one instance of the PageRequestManager class. You must never use
the new operator in your client code to create a new instance of this class. You must always call the
 getInstance method to return a reference to the existing instance.

c16.indd 683c16.indd 683 8/20/07 6:15:59 PM8/20/07 6:15:59 PM

Chapter 16: Behaviors

684

 Next, it creates a delegate that represents the _partialUpdateBeginRequest method of the BehaviorBase
class and store this delegate in an internal field named _partialUpdateBeginRequestHandler :

 this._partialUpdateBeginRequestHandler =
 Function.createDelegate(this, this._partialUpdateBeginRequest);

 Then the registerPartialUpdateEvents method invokes the add_beginRequest method on the
current client-side PageRequestManager instance to register the delegate as event handler for the
 beginRequest event of the current PageRequestManager instance:

 this._pageRequestManager.add_beginRequest(
 this._partialUpdateBeginRequestHandler);

 Next, it creates a delegate that represents the _partialUpdateEndRequest method of the BehaviorBase
class and store this delegate in an internal field named _partialUpdateEndRequestHandler :

 this._partialUpdateEndRequestHandler =
 Function.createDelegate(this, this._partialUpdateEndRequest);

 Then it invokes the add_endRequest method on the current client-side PageRequestManager instance
to register the delegate as event handler for the endRequest event of the current PageRequestManager
instance:

 this._pageRequestManager.add_endRequest(
 this._partialUpdateEndRequestHandler);

 Listing 16-23: The registerPartialUpdateEvents Method

 function AjaxControlToolkit$BehaviorBase$registerPartialUpdateEvents ()
{
 /// <summary>
 /// Register for beginRequest and endRequest events on the PageRequestManager,
 /// (which cause _partialUpdateBeginRequest and _partialUpdateEndRequest to be
 /// called when an UpdatePanel refreshes)
 /// </summary>
 if (Sys && Sys.WebForms && Sys.WebForms.PageRequestManager)
 {
 this._pageRequestManager = Sys.WebForms.PageRequestManager.getInstance();
 if (this._pageRequestManager)
 {
 this._partialUpdateBeginRequestHandler =
 Function.createDelegate(this, this._partialUpdateBeginRequest);
 this._pageRequestManager.add_beginRequest(
 this._partialUpdateBeginRequestHandler);

 this._partialUpdateEndRequestHandler =
 Function.createDelegate(this, this._partialUpdateEndRequest);
 this._pageRequestManager.add_endRequest(
 this._partialUpdateEndRequestHandler);
 }
 }
}

c16.indd 684c16.indd 684 8/20/07 6:15:59 PM8/20/07 6:15:59 PM

Chapter 16: Behaviors

685

 _partialUpdateBeginRequest
 As you saw in Listing 16-23 , the registerPartialUpdateEvents method registers the
_partialUpdateBeginRequest method (the delegate that represents this method to be exact) as event
handler for the beginRequest event of the PageRequestManager instance. As you can see from
Listing 16-24 , the BehaviorBase class’ implementation of this method doesn’t do anything.

 However, the subclasses of this base class can override this method to run custom logic in response to
the beginRequest event of the current PageRequestManager instance.

 Listing 16-24: The _partialUpdateBeginRequest Method

 function AjaxControlToolkit$BehaviorBase$_partialUpdateBeginRequest(sender,
 beginRequestEventArgs)
{
 /// <summary>
 /// Method that will be called when a partial update (via an UpdatePanel) begins,
 /// if registerPartialUpdateEvents() has been called.
 /// </summary>
 /// <param name=”sender” type=”Object”>
 /// Sender
 /// </param>
 /// <param name=”beginRequestEventArgs”
 /// type=”Sys.WebForms.BeginRequestEventArgs”>
 /// Event arguments
 /// </param>
 // Nothing done here; override this method in a child class
}

 _partialUpdateEndRequest
 Recall from Listing 16-23 that the registerPartialUpdateEvents method registers the
_partialUpdateEndRequest method (the delegate that represents this method to be exact) as
event handler for the endRequest event of the PageRequestManager instance. As you can see from
Listing 16-25 , the BehaviorBase class’ implementation of this method doesn’t do anything.

 However, the subclasses of this base class can override this method to run custom logic in response to
the endRequest event of the current PageRequestManager instance.

 Listing 16-25: The _partialUpdateEndRequest Method

 function AjaxControlToolkit$BehaviorBase$_partialUpdateEndRequest(sender,
 endRequestEventArgs)
{
 /// <summary>
 /// Method that will be called when a partial update (via an UpdatePanel)
 /// finishes,
 /// if registerPartialUpdateEvents() has been called.
 /// </summary>

(continued)

c16.indd 685c16.indd 685 8/20/07 6:16:00 PM8/20/07 6:16:00 PM

Chapter 16: Behaviors

686

 Listing 16-25 (continued)

 /// <param name=”sender” type=”Object”>
 /// Sender
 /// </param>
 /// <param name=”endRequestEventArgs” type=”Sys.WebForms.EndRequestEventArgs”>
 /// Event arguments
 /// </param>
 // Nothing done here; override this method in a child class
}

 dispose
 The BehaviorBase class, like any other ASP.NET AJAX component, inherits the dispose method
from the Component base class. As Listing 16-26 shows, this class’ implementation of this method
 simply removes the delegates registered for the beginRequest and endRequest events of the current
 PageRequestManager instance from the list of event handlers registered for these events.

 The dispose method of your custom behaviors must do the same — that is, they must unregister the
delegates that they register for the beginRequest and endRequest events. Otherwise, every time
the PageRequestManager instance raises these two events, it will call these delegates even though
your custom behaviors are long disposed of.

 Listing 16-26: The dispose Method

 function AjaxControlToolkit$BehaviorBase$dispose ()
{
 /// <summary>
 /// Dispose the behavior
 /// </summary>
 AjaxControlToolkit.BehaviorBase.callBaseMethod(this, ‘dispose’);
 if (this._pageRequestManager)
 {
 if (this._partialUpdateBeginRequestHandler)
 {
 this._pageRequestManager.remove_beginRequest(
 this._partialUpdateBeginRequestHandler);
 this._partialUpdateBeginRequestHandler = null;
 }

 if (this._partialUpdateEndRequestHandler)
 {
 this._pageRequestManager.remove_endRequest(
 this._partialUpdateEndRequestHandler);
 this._partialUpdateEndRequestHandler = null;
 }

 this._pageRequestManager = null;
 }
}

c16.indd 686c16.indd 686 8/20/07 6:16:00 PM8/20/07 6:16:00 PM

Chapter 16: Behaviors

687

 The next section will walk through the implementation of one of the behaviors in the toolkit known as
 TextBoxWatermarkBehavior to help you gain the skills, knowledge, and experience that you need to
develop behaviors in the ASP.NET AJAX control toolkit.

 The TextBoxWatermarkBehavior
 The ASP.NET AJAX control toolkit comes with a behavior named TextBoxWatermarkBehavior that
derives from the BehaviorBase class and extends its functionality to apply a watermark to its associ-
ated text box DOM element. Listing 16-27 presents the definition of the TextBoxWatermarkBehavior .

 Listing 16-27: The Definition of TextBoxWatermarkBehavior

 AjaxControlToolkit.TextBoxWatermarkBehavior = function(element)
{
 /// <summary>
 /// The TextBoxWatermarkBehavior applies a watermark to a textbox
 /// </summary>
 /// <param name=”element” type=”Sys.UI.DomElement” domElement=”true”>
 /// Textbox associated with the behavior
 /// </param>
 AjaxControlToolkit.TextBoxWatermarkBehavior.initializeBase(this, [element]);

 // Properties
 this._watermarkText = null;
 this._watermarkCssClass = null;
 // Member variables
 this._watermarked = null;
 this._focusHandler = null;
 this._blurHandler = null;
 this._keyPressHandler = null;
 this._propertyChangedHandler = null;
 this._oldClassName = null;
 this._clearedForSubmit = null;
 this._maxLength = null;
}
AjaxControlToolkit.TextBoxWatermarkBehavior.prototype =
{
 initialize : AjaxControlToolkit$TextBoxWatermarkBehavior$initialize,
 dispose : AjaxControlToolkit$TextBoxWatermarkBehavior$dispose,
 clearText : AjaxControlToolkit$TextBoxWatermarkBehavior$clearText,
 _onFocus : AjaxControlToolkit$TextBoxWatermarkBehavior$_onFocus,
 _onBlur : AjaxControlToolkit$TextBoxWatermarkBehavior$_onBlur,
 _applyWatermark : AjaxControlToolkit$TextBoxWatermarkBehavior$_applyWatermark,
 _onKeyPress : AjaxControlToolkit$TextBoxWatermarkBehavior$_onKeyPress,
 registerPropertyChanged :
 AjaxControlToolkit$TextBoxWatermarkBehavior$registerPropertyChanged,
 _onPropertyChanged :
 AjaxControlToolkit$TextBoxWatermarkBehavior$_onPropertyChanged,
 _onSubmit : AjaxControlToolkit$TextBoxWatermarkBehavior$_onSubmit,
 _partialUpdateEndRequest :
 AjaxControlToolkit$TextBoxWatermarkBehavior$_partialUpdateEndRequest,

(continued)

c16.indd 687c16.indd 687 8/20/07 6:16:00 PM8/20/07 6:16:00 PM

Chapter 16: Behaviors

688

 Listing 16-27 (continued)

 get_WatermarkText :
 AjaxControlToolkit$TextBoxWatermarkBehavior$get_WatermarkText,
 set_WatermarkText :
 AjaxControlToolkit$TextBoxWatermarkBehavior$set_WatermarkText,
 get_WatermarkCssClass :
 AjaxControlToolkit$TextBoxWatermarkBehavior$get_WatermarkCssClass,
 set_WatermarkCssClass :
 AjaxControlToolkit$TextBoxWatermarkBehavior$set_WatermarkCssClass,
 get_Text : AjaxControlToolkit$TextBoxWatermarkBehavior$get_Text,
 set_Text : AjaxControlToolkit$TextBoxWatermarkBehavior$set_Text
}
AjaxControlToolkit.TextBoxWatermarkBehavior.registerClass(
 ‘AjaxControlToolkit.TextBoxWatermarkBehavior’,
 AjaxControlToolkit.BehaviorBase);

 initialize
 The TextBoxWatermarkBehavior overrides the initialize method that it inherits from its base
class to initialize itself, as shown in Listing 16-28 . As you can see, the initialize method of
TextBoxWatermarkBehavior , like the initialize method of any ASP.NET AJAX component, begins
by invoking the initialize method of its base class to allow the base class to initialize itself:

 AjaxControlToolkit.TextBoxWatermarkBehavior.callBaseMethod(this, ‘initialize’);

 The initialize method of your own custom behavior classes must do the same: it must begin by
 invoking the initialize method of its base class.

 Next, the initialize method invokes the get_element method to return a reference to its associated
text box DOM element — that is, the text box DOM element to which the TextBoxWatermarkBehavior
is attached. TextBoxWatermarkBehavior , like any other ASP.NET AJAX behavior, inherits the
get_element method from the ASP.NET AJAX Behavior base class:

 var e = this.get_element();

 Next, the initialize method invokes the get_ClientState method of its base class to return a
string that contains the client state of the TextBoxWatermarkBehavior . Recall from the previous
 section that all ASP.NET AJAX control toolkit behaviors store their client states in a hidden field; the
 get_ClientState method simply returns the string value stored in this hidden field. What information
an ASP.NET AJAX control toolkit behavior stores in the hidden field is completely up to the behavior
and its internal logic. TextBoxWatermarkBehavior stores the string “Focused” in the hidden field to
specify that its associated text box DOM element has the mouse focus, and removes this string from the
hidden field to specify that this element no longer has the focus.

 As you can see from Listing 16-28 , the initialize method calls the get_ClientState method to
determine whether its associated text box DOM element currently has the mouse focus. It then invokes
the set_ClientState method of its base class to set the value stored in the hidden field to null .

 hasInitialFocus = (clientState == “Focused”);
 AjaxControlToolkit.TextBoxWatermarkBehavior.callBaseMethod(this,
 ‘set_ClientState’, null);

c16.indd 688c16.indd 688 8/20/07 6:16:00 PM8/20/07 6:16:00 PM

Chapter 16: Behaviors

689

 Next, initialize stores the current value of the className property of the associated text box DOM
element as a private file named _oldClassName . This will allow the TextBoxWatermarkBehavior to
switch between the current style and the watermarked style:

 this._oldClassName = e.className;

 Then initialize creates three delegates that represent the _onFocus , _onBlur , and _onKeyPress
methods of TextBoxWatermarkBehavior , stores these delegates in private fields named
_focusHandler , _blurHandler , and _keyPressHandler , respectively, and uses the $addHandler
global JavaScript function to register these delegates for the focus , blur , and keypress events,
 respectively, of the text box DOM element to which the TextBoxWatermarkBehavior is attached. As
you’ll see later, the dispose method will access the delegates stored in the _focusHandler ,
_blurHandler , and _keyPressHandler fields to remove them from the list of event handlers regis-
tered for the focus , blur , and keypress events of the associated text box DOM element before the
TextBoxWatermarkBehavior is disposed of:

 this._focusHandler = Function.createDelegate(this, this._onFocus);
 this._blurHandler = Function.createDelegate(this, this._onBlur);
 this._keyPressHandler = Function.createDelegate(this, this._onKeyPress);
 $addHandler(e, ‘focus’, this._focusHandler);
 $addHandler(e, ‘blur’, this._blurHandler);
 $addHandler(e, ‘keypress’, this._keyPressHandler);

 The initialize method of your own custom behavior class must do the same — that is, it must store
in private fields the delegates that it registers for the events of its associated DOM element. The
 dispose method of your custom behavior must then access the delegates stored in these private fields
and remove them from the list of event handlers registered for the associated events of the associated
DOM element.

 Next, initialize invokes the registerPropertyChanged method to register event handlers for the
 propertyChanged event. (This method will be discussed shortly.)

 this.registerPropertyChanged();

 Then initialize checks whether the value property of the associated text box DOM element of the
 TextBoxWatermarkBehavior is set, and sets an internal flag named _watermarked . This flag specifies
whether the text box should be watermarked:

 this._watermarked = (e.value == “”);

 Next, initialize calls the _onFocus method on the TextBoxWatermarkBehavior if the associated
text box DOM element must initially have the focus:

 if (hasInitialFocus)
 this._onFocus();

c16.indd 689c16.indd 689 8/20/07 6:16:01 PM8/20/07 6:16:01 PM

Chapter 16: Behaviors

690

 Otherwise, it first invokes the blur method on the associated text box DOM element and then invokes
the _onBlur method on the TextBoxWatermarkBehavior :

 else
 {
 e.blur();
 this._onBlur();
 }

 Next, it initializes an internal flag named _clearedForSubmit to false and invokes the
registerPartialUpdateEvents method on the TextBoxWatermarkBehavior to register event
 handlers for the partial-update-related events:

 this._clearedForSubmit = false;
 this.registerPartialUpdateEvents();

 Listing 16-28: The initialize Method of the TextBoxWatermarkBehavior

 function AjaxControlToolkit$TextBoxWatermarkBehavior$initialize()
{
 /// <summary>
 /// Initialize the behavior
 /// </summary>
 AjaxControlToolkit.TextBoxWatermarkBehavior.callBaseMethod(this, ‘initialize’);
 var e = this.get_element();

 // Determine if this textbox is focused initially
 var hasInitialFocus = false;

 var clientState = AjaxControlToolkit.TextBoxWatermarkBehavior.callBaseMethod(
 this, ‘get_ClientState’);
 if (clientState != null && clientState != “”)
 {
 hasInitialFocus = (clientState == “Focused”);
 AjaxControlToolkit.TextBoxWatermarkBehavior.callBaseMethod(this,
 ‘set_ClientState’, null);
 }
 // Capture the initial style so we can toggle back and forth
 // between this and the watermarked style
 this._oldClassName = e.className;
 // Create delegates
 this._focusHandler = Function.createDelegate(this, this._onFocus);
 this._blurHandler = Function.createDelegate(this, this._onBlur);
 this._keyPressHandler = Function.createDelegate(this, this._onKeyPress);
 // Attach events
 $addHandler(e, ‘focus’, this._focusHandler);
 $addHandler(e, ‘blur’, this._blurHandler);
 $addHandler(e, ‘keypress’, this._keyPressHandler);
 this.registerPropertyChanged();
 // Initialize state and simulate a blur to apply the watermark if appropriate
 // Note: The comparison against _watermarkText is undesirable, but seemingly
 // necessary to support the load->Home->Back scenario in IE

c16.indd 690c16.indd 690 8/20/07 6:16:01 PM8/20/07 6:16:01 PM

Chapter 16: Behaviors

691

 var currentValue = e.value;
 this._watermarked = ((“” == currentValue) ||
 (this._watermarkText == currentValue));
 if (hasInitialFocus)
 this._onFocus();

 else
 {
 e.blur();
 this._onBlur();
 }
 this._clearedForSubmit = false;
 this.registerPartialUpdateEvents();
}

 _onFocus
 As you can see from Listing 16-28 , the initialize method registers the _onFocus method as callback
for the focus event of the associated text box DOM element of the TextBoxWatermarkBehavior .
When the associated DOM element grabs the focus, fires its focus event, and consequently invokes
the _onFocus method, an object of type DomEvent is passed into this method. Recall that this object
 represents the current event object and because of this contains the complete information about the
 current event.

 As you can see from Listing 16-29 , the _onFocus method first invokes the get_element method to
return a reference to the associated text box DOM element of the TextBoxWatermarkBehavior :

 var e = this.get_element();

 If the TextBoxWatermarkBehavior is marked as watermarked, _onFocus invokes the clearText
method on the TextBoxWatermarkBehavior to clear the watermark, because the associated text box
DOM element is about to put the focus where the end user will enter text into the text box:

 if(this._watermarked)
 {
 // Clear watermark
 this.clearText(evt ? true : false);
 }

 Next, _onFocus assigns the old CSS class name to the className property of the associated text box
DOM element to change the style of the text box back to its original unwatermarked style:

 e.className = this._oldClassName;

 Then it sets the _watermarked internal flag to false to mark that the associated text box DOM element
is no longer watermarked:

 this._watermarked = false;

c16.indd 691c16.indd 691 8/20/07 6:16:01 PM8/20/07 6:16:01 PM

Chapter 16: Behaviors

692

 Finally, it restores the maxLength property of the associated text box DOM element back to its original value:

 if (this._maxLength > 0)
 {
 this.get_element().maxLength = this._maxLength;
 this._maxLength = null;
 }

 Listing 16-29: The _onFocus Method of the TextBoxWatermarkBehavior

 function AjaxControlToolkit$TextBoxWatermarkBehavior$_onFocus(evt)
{
 /// <summary>
 /// Handler for the textbox’s focus event
 /// </summary>
 /// <param name=”evt” type=”Sys.UI.DomEvent”>
 /// Event info
 /// </param>

 var e = this.get_element();
 if(this._watermarked)
 {
 // Clear watermark
 this.clearText(evt ? true : false);
 }
 e.className = this._oldClassName;
 this._watermarked = false;

 // Restore the MaxLength on the TextBox when we edit
 // the non-watermarked text
 if (this._maxLength > 0)
 {
 this.get_element().maxLength = this._maxLength;
 this._maxLength = null;
 }
}

 clearText
 As the name suggests, the clearText method clears the text from the associated text box DOM element
of the TextBoxWatermarkBehavior . As you can see from Listing 16-30 , this method takes a single
 Boolean argument that specifies whether the associated text box DOM element is grabbing the focus. As
this code listing shows, the clearText method first invokes the get_element method to return a refer-
ence to the associated text box DOM element, and then sets its value property to an empty string to clear
the text box:

 this.get_element().value = “”;

 Next, the clearText method checks whether the associated text box DOM element is grabbing the
focus. If so, it first calls the setAttribute method on the associated text box DOM element to turn off
its autocomplete feature, to avoid a Firefox-specific NS_ERROR_XPC_JS_THREW_STRING error, and then

c16.indd 692c16.indd 692 8/20/07 6:16:02 PM8/20/07 6:16:02 PM

Chapter 16: Behaviors

693

calls the select method on the associated text box DOM element to ensure that the blinking cursor is
displayed inside the text box on IE browsers:

 if(focusing)
 {
 // Avoid NS_ERROR_XPC_JS_THREW_STRING error in Firefox
 this.get_element().setAttribute(“autocomplete”,”off”);
 // This fix displays the blinking cursor in a focused, empty text box in IE
 this.get_element().select();
 }

 Listing 16-30: The clearText Method

 function AjaxControlToolkit$TextBoxWatermarkBehavior$clearText(focusing)
{
 /// <summary>
 /// Clear the text from the target
 /// </summary>
 /// <param name=”focusing” type=”Boolean”>
 /// Whether or not we are focusing on the textbox
 /// </param>
 this.get_element().value = “”;
 if(focusing)
 {
 // Avoid NS_ERROR_XPC_JS_THREW_STRING error in Firefox
 this.get_element().setAttribute(“autocomplete”,”off”);
 // This fix displays the blinking cursor in a focused, empty text box in IE
 this.get_element().select();
 }
}

 _onBlur
 Recall from Listing 16-28 that the initialize method registers the _onBlur method as an event handler
for the blur event of the associated text box DOM element of the TextBoxWatermarkBehavior . This
DOM element fires this event and consequently invokes the _onBlur method when it loses focus. As
you can see from Listing 16-31 , this method first checks whether at least one of the following conditions
is met:

 ❑ The value property of the associated text box DOM element is set to an empty string, which
means that the text box is empty.

❑ The _watermarked flag of the TextBoxWatermarkBehavior is set to true to specify that the
associated text box DOM element must be watermarked.

 If either of these conditions is met, the _onBlur method takes the following actions. First, it checks
whether the watermark text is longer than the maximum number of characters the associated text box
DOM element can display. If so, it first stores the value of the maxLength property of the text box DOM

c16.indd 693c16.indd 693 8/20/07 6:16:02 PM8/20/07 6:16:02 PM

Chapter 16: Behaviors

694

element in a private field named _maxLength , and then assigns the length of the watermark text as the
new value of this property. This ensures that the text box will display the entire watermark text:

 if (this.get_element().maxLength > 0 &&
 this._watermarkText.length > this.get_element().maxLength)
 {
 this._maxLength = this.get_element().maxLength;
 this.get_element().maxLength = this._watermarkText.length;
 }

 Finally, the _onBlur method invokes the _applyWatermark method on the TextBoxWatermarkBehavior
to apply the watermark to the text box:

 this._applyWatermark();

 Listing 16-31: the _onBlur Method

 function AjaxControlToolkit$TextBoxWatermarkBehavior$_onBlur()
{
 /// <summary>
 /// Handle the textbox’s blur event
 /// </summary>
 if((“” == this.get_element().value) || this._watermarked)
 {
 // Enlarge the TextBox’s MaxLength if it’s not big enough
 // to accomodate the watermark
 if (this.get_element().maxLength > 0 &&
 this._watermarkText.length > this.get_element().maxLength)
 {
 this._maxLength = this.get_element().maxLength;
 this.get_element().maxLength = this._watermarkText.length;
 }

 this._applyWatermark();
 }
}

 _applyWatermark
 The main responsibility of the _applyWatermark method is to display the watermark. As Listing 16-32
shows, this method first assigns the watermark text to the value property of the associated text box
DOM element to display the watermark text in the text box:

 this.get_element().value = this._watermarkText;

 Next, it assigns the watermark CSS class name to the className property of the associated text box
DOM element to apply the watermarked style to the text box:

 if(this._watermarkCssClass)
 this.get_element().className = this._watermarkCssClass;

c16.indd 694c16.indd 694 8/20/07 6:16:02 PM8/20/07 6:16:02 PM

Chapter 16: Behaviors

695

 Finally, it sets the _watermarked flag to true to specify that the associated text box DOM element is
watermarked:

 this._watermarked = true;

 Listing 16-32: The _applyWatermark Method

 function AjaxControlToolkit$TextBoxWatermarkBehavior$_applyWatermark()
{
 /// <summary>
 /// Apply the watermark to the textbox
 /// </summary>
 this.get_element().value = this._watermarkText;
 if(this._watermarkCssClass)
 this.get_element().className = this._watermarkCssClass;

 this._watermarked = true;
}

 _onKeyPress
 Recall from Listing 16-28 that the initialize method registers the _onKeyPress method as
an event handler for the keypress event of the associated text box DOM element of the
TextBoxWatermarkBehavior . This DOM element fires the keypress event when the user presses
the key inside the text box. As you can see from Listing 16-33 , this method simply sets the
_watermarked flag to false to signal that the text box is no longer watermarked. Note that the text
box automatically raises the focus event right after the keypress, consequently invoking the _onFocus
method, which undisplays the watermark text and reverts the text box back to its unwatermarked style.

 Listing 16-33 The _onKeyPress Method

 function AjaxControlToolkit$TextBoxWatermarkBehavior$_onKeyPress()
{
 /// <summary>
 /// Handle the textbox’s keypress event
 /// </summary>
 this._watermarked = false;
}

 registerPropertyChanged
 Recall from Listing 16-28 that the initialize method invokes the registerPropertyChanged method.
As you can see from Listing 16-34 , this method first invokes the get_element method to return a refer-
ence to the associated text box DOM element of the TextBoxWatermarkBehavior :

 var e = this.get_element();

 Next, it checks whether both of the following two conditions are met:

 ❑ The associated text box DOM element supports a property named control . This happens when
the text box is associated with a Sys.Preview.UI.TextBox client control.

❑ The _propertyChangedHandler field is null .

c16.indd 695c16.indd 695 8/20/07 6:16:02 PM8/20/07 6:16:02 PM

Chapter 16: Behaviors

696

 If both of these conditions are met, the registerPropertyChanged method first creates a delegate that
represents the _onPropertyChanged method of the TextBoxWatermarkBehavior :

 this._propertyChangedHandler =
 Function.createDelegate(this, this._onPropertyChanged);

 Next, it invokes the add_propertyChanged method on the Sys.Preview.UI.TextBox client control
associated with the text box DOM element, to register the delegate as event handler for the
 propertyChanged event of the client control:

 e.control.add_propertyChanged(this._propertyChangedHandler);

 Listing 16-34: The registerPropertyChanged Method

 function AjaxControlToolkit$TextBoxWatermarkBehavior$registerPropertyChanged()
{
 /// <summary>
 /// Method called to hook up to Sys.Preview.UI.TextBox if present
 /// Note: This method must be called manually if the Sys.Preview.UI.TextBox
 /// is added after the TextBoxWatermarkBehavior is initialized.
 /// </summary>
 var e = this.get_element();
 if(e.control && !this._propertyChangedHandler)
 {
 this._propertyChangedHandler =
 Function.createDelegate(this, this._onPropertyChanged);
 e.control.add_propertyChanged(this._propertyChangedHandler);
 }
}

 _onPropertyChanged
 When the Sys.Preview.UI.TextBox client control associated with the associated text box DOM element
of the TextBoxWatermarkBehavior raises its propertyChanged event, it automatically invokes
the _onPropertyChanged method on the TextBoxWatermarkBehavior , passing in two parameters. The
first parameter references the Sys.Preview.UI.TextBox client control that raises the propertyChanged
event, and the second parameter references the propertyChangedEventArgs object that contains the
event data for the propertyChanged event. As you can see from Listing 16-35 , the _onPropertyChanged
method invokes the get_propertyName method of the propertyChangedEventArgs object to return the
name of the property of the Sys.Preview.UI.TextBox client control whose value has changed, and then
determines whether this property is the Text property. If so, it invokes the set_Text method on the
TextBoxWatermarkBehavior to set the value of its Text property to the value of the value property of its
associated text box DOM element. As you can see, the Text property of the TextBoxWatermarkBehavior
maps to the value property of its associated text box DOM element:

 if(“text” == propertyChangedEventArgs.get_propertyName())
 this.set_Text(this.get_element().value);

c16.indd 696c16.indd 696 8/20/07 6:16:03 PM8/20/07 6:16:03 PM

Chapter 16: Behaviors

697

 Listing 16-35: The _onPropertyChanged Method

 function AjaxControlToolkit$TextBoxWatermarkBehavior$_onPropertyChanged(sender,
 propertyChangedEventArgs)
{
 /// <summary>
 /// Handler called automatically when a property change event is fired
 /// </summary>
 /// <param name=”sender” type=”Object”>
 /// Sender
 /// </param>
 /// <param name=”propertyChangedEventArgs” type=”Sys.PropertyChangedEventArgs”>
 /// Event arguments
 /// </param>
 if(“text” == propertyChangedEventArgs.get_propertyName())
 this.set_Text(this.get_element().value);
}

 set_Text
 As mentioned earlier, the TextBoxWatermarkBehavior class features a property named Text that
maps into the value property of its associated text box DOM element. Because of this, the class also
exposes a setter named set_Text (see Listing 16-36) and a getter named get_Text (see Listing 16-37)
that you can use in your client code to set and get the value of the Text property.

 As you can see from Listing 16-36 , the set_Text method first checks whether the new value of the Text
property is an empty string. If so, it performs the following tasks:

 ❑ Assigns the empty string as the value of the value property of the associated text box DOM ele-
ment, which means that the text box now displays nothing:

 this.get_element().value = “”;

 ❑ Invokes the blur method on the associated text box DOM element to cause the text box to
lose focus:

 this.get_element().blur();

 ❑ Invokes the _onBlur method on the TextBoxWatermarkBehavior . This is necessary because
calling the blur method on the associated text box DOM element does not cause the text box to
fire its blur event, and therefore does not cause the _onBlur method to be automatically
invoked:

 this._onBlur();

 If the new value of the Text property is not an empty string, the set_Text method performs the
 following tasks:

 ❑ Invokes the _onFocus method on the TextBoxWatermarkBehavior :

 this._onFocus(); // onFocus sets “”

c16.indd 697c16.indd 697 8/20/07 6:16:03 PM8/20/07 6:16:03 PM

Chapter 16: Behaviors

698

 ❑ Assigns the new value to the value property of the associated text box DOM element:

 this.get_element().value = value;

 Listing 16-36: The set_Text Method

 function AjaxControlToolkit$TextBoxWatermarkBehavior$set_Text(value)
{
 if (“” == value)
 {
 this.get_element().value = “”;
 this.get_element().blur();
 this._onBlur(); // onBlur needs to see “”
 }

 else
 {
 this._onFocus(); // onFocus sets “”
 this.get_element().value = value;
 }
}

 Here is the reason the TextBoxWatermarkBehavior wraps the value property of its associated text box
DOM element in its Text property. As Listing 16-37 shows, the get_Text getter method returns an
empty string if the text box element, rather than the actual value of the element, is watermarked. Recall
that when the text box is watermarked, its value property contains the watermark text. This ensures that
the clients of the TextBoxWatermarkBehavior always receive the value that the end user enters into the
text box, rather than the watermark text.

 Listing 16-37: The get_Text Method

 function AjaxControlToolkit$TextBoxWatermarkBehavior$get_Text()
{
 /// <value type=”String”>
 /// Wrapper for the textbox’s text that will ignore or create the
 /// watermark as appropriate
 /// </value>
 return (this._watermarked ? “” : this.get_element().value);
}

 _partialUpdateEndRequest
 Recall from Listing 16-28 that the initialize method of the TextBoxWatermarkBehavior invokes the
 registerPartialUpdateEvents method that it inherits from the BehaviorBase base class. Also recall
that the registerPartialUpdateEvents method registers the _partialUpdateEndRequest method
as an event handler for the endRequest event of the current client-side PageRequestManager instance.

 As you can see, if a subclass of the BehaviorBase base class needs to run custom code when the
 current PageRequestManager instance raises its beginRequest and endRequest events, the sub-
class must takes two actions. First, it must invoke the registerPartialUpdateEvents method
from its initialize method. Second, it must override the _partialUpdateBeginRequest and/or
 _partialUpdateEndRequest methods to encapsulate the custom code.

c16.indd 698c16.indd 698 8/20/07 6:16:03 PM8/20/07 6:16:03 PM

Chapter 16: Behaviors

699

 Since the TextBoxWatermarkBehavior is interested only in the endRequest event of the current
client-side PageRequestManager instance, it overrides only the _partialUpdateEndRequest method
that it inherits from the BehaviorBase base class, leaving the _partialUpdateBeginRequest
 method intact. Listing 16-38 contains the TextBoxWatermarkBehavior class’s implementation of the
_ partialUpdateEndRequest method.

 When the current client-side PageRequestManager instance finally fires its endRequest event and con-
sequently invokes the _partialUpdateEndRequest method, it passes two parameters into this method.
The first references the current client-side PageRequestManager instance, and the second references the
 EndRequestEventArgs object that contains the event data for the current endRequest event.

 As you can see from Listing 16-38 , the _partialUpdateEndRequest method first invokes the
 partialUpdateEndRequest method of its base class, passing the aforementioned two parameters:

 AjaxControlToolkit.TextBoxWatermarkBehavior.callBaseMethod(this,
 ‘_partialUpdateEndRequest’, [sender, endRequestEventArgs]);

 In general, every time your ASP.NET AJAX class overrides the methods it inherits from its base class,
its implementation of these methods must invoke the respective methods of the base class unless you
have a good reason to stop the base method from running.

 Next, the _partialUpdateEndRequest method checks whether an internal flag named
_clearedForSubmit has been set. As you’ll see in next section, the _onSubmit method of the
 TextBoxWatermarkBehavior sets this flag to signal the occurrence of a form submission. Since
the _partialUpdateEndRequest method is invoked in response to the endRequest event of the
 current client-side PageRequestManager instance, and since this event is raised after an asynchronous
form submission occurs and the server response arrives, it makes lot of sense to apply the watermark to
the text box. To do this, the _partialUpdateEndRequest method first invokes the blur method on text
box element, to cause the element to lose focus:

 this.get_element().blur();

 Then it invokes the _onBlur method on the TextBoxWatermarkBehavior . This is necessary because
the blur method does not raise the blur event and consequently does not automatically invoke the
 _onBlur method:

 this._onBlur();

 Listing 16-38: The _partialUpdateEndRequest Method

 function AjaxControlToolkit$TextBoxWatermarkBehavior$_partialUpdateEndRequest(
 sender, endRequestEventArgs)
{
 /// <summary>
 /// Handler Called automatically when a partial postback ends
 /// </summary>
 /// <param name=”sender” type=”Object”>
 /// Sender
 /// </param>

(continued)

c16.indd 699c16.indd 699 8/20/07 6:16:04 PM8/20/07 6:16:04 PM

Chapter 16: Behaviors

700

 Listing 16-38 (continued)

 /// <param name=”endRequestEventArgs” type=”Sys.WebForms.EndRequestEventArgs”>
 /// Event arguments
 /// </param>
 AjaxControlToolkit.TextBoxWatermarkBehavior.callBaseMethod(this,
 ‘_partialUpdateEndRequest’, [sender, endRequestEventArgs]);
 if (this.get_element() && this._clearedForSubmit)
 {
 // Restore the cleared watermark (useful when the submit was
 // wrapped in an UpdatePanel)
 this.get_element().blur();
 this._onBlur();
 this._clearedForSubmit = false;
 }
}

 _onSubmit
 The TextBoxWatermarkBehavior does not invoke its _onSubmit method. It is the responsibility of the
client code that uses the TextBoxWatermarkBehavior to ensure that the _onSubmit method is invoked
before the form is submitted. As you can see from Listing 16-39 , this method checks whether the associ-
ated text box DOM element of the TextBoxWatermarkBehavior is watermarked. If so, it invokes the
 clearText method to clear the text box before the form is submitted. This ensures that the watermark
text is not submitted to the server.

 Listing 16-39: The _onSubmit Method

 function AjaxControlToolkit$TextBoxWatermarkBehavior$_onSubmit()
{
 /// <summary>
 /// Handler Called automatically when a submit happens to clear the
 /// watermark before posting back
 /// </summary>
 if(this._watermarked)
 {
 // Clear watermark text before page is submitted
 this.clearText(false);
 this._clearedForSubmit = true;
 }
}

 dispose
 The TextBoxWatermarkBehavior , like any other ASP.NET AJAX component, inherits the dispose
method from the Component base class and overrides it to perform its final cleanup before the
 Application object representing the current ASP.NET AJAX application disposes of it. As you can see
from Listing 16-40 , the dispose method first invokes the get_element method to return a reference to
the DOM element to which the TextBoxWatermarkBehavior is attached. As discussed earlier, this
DOM element is a text box. The TextBoxWatermarkBehavior , like any other behavior, inherits the
 get_element method from the Behavior base class:

 var e = this.get_element();

c16.indd 700c16.indd 700 8/20/07 6:16:04 PM8/20/07 6:16:04 PM

Chapter 16: Behaviors

701

 Next, the dispose method checks whether the following two conditions hold:

 ❑ The associated text box DOM element exposes a property named control . This is true
if the associated text box DOM element is itself associated with an instance of a
Sys.Preview.UI.TextBox control. Recall that the Control base class under the hood
creates a custom property named control on the DOM element associated with a client
control, and assigns a reference to the client control (in this case the Sys.Preview.UI.TextBox
control) to this custom control property.

❑ The _propertyChangedHandler delegate has been defined.

 If both of these conditions are met, the dispose method invokes the remove_propertyChangedHandler
method on the custom control property of the associated text box DOM element, to remove the
_propertyChangedHandler delegate from the list of event handlers registered for the propertyChanged
event of the Sys.Preview.UI.TextBox client control associated with the text box DOM element.

 if(e.control && this._propertyChangedHandler)
 {
 e.control.remove_propertyChanged(this._propertyChangedHandler);
 this._propertyChangedHandler = null;
 }

 Next, it uses the $removeHandler global JavaScript function to remove the _focusHandler ,
_blurHandler , and _keyPressHandler delegates from the list of event handlers registered for focus ,
 blur , and keypress events of the associated text box DOM element.

 Then it invokes the clearText method on the TextBoxWatermarkBehavior to clear the watermark:

 if(this._watermarked)
 this.clearText(false);

 Listing 16-40: The dispose Method of the TextBoxWatermarkBehavior

 function AjaxControlToolkit$TextBoxWatermarkBehavior$dispose()
{
 /// <summary>
 /// Dispose the behavior
 /// </summary>
 var e = this.get_element();
 // Unhook from Sys.Preview.UI.TextBox if present
 if(e.control && this._propertyChangedHandler)
 {
 e.control.remove_propertyChanged(this._propertyChangedHandler);
 this._propertyChangedHandler = null;
 }
 // Detach events
 if (this._focusHandler)
 {
 $removeHandler(e, ‘focus’, this._focusHandler);
 this._focusHandler = null;
 }

(continued)

c16.indd 701c16.indd 701 8/20/07 6:16:04 PM8/20/07 6:16:04 PM

Chapter 16: Behaviors

702

 Listing 16-40 (continued)

 if (this._blurHandler)
 {
 $removeHandler(e, ‘blur’, this._blurHandler);
 this._blurHandler = null;
 }
 if (this._keyPressHandler)
 {
 $removeHandler(e, ‘keypress’, this._keyPressHandler);
 this._keyPressHandler = null;
 }
 // Clear watermark text to avoid confusion during Refresh/Back/Forward
 if(this._watermarked)
 this.clearText(false);
 AjaxControlToolkit.TextBoxWatermarkBehavior.callBaseMethod(this, ‘dispose’);
}

 WatermarkText
 The TextBoxWatermarkBehavior exposes a getter named get_WatermarkText and a setter named
 set_WatermarkText that you can use in your client code to get and set the watermark text, as shown in
Listing 16-41 .

 Listing 16-41: The WatermarkText Property

 function AjaxControlToolkit$TextBoxWatermarkBehavior$get_WatermarkText()
{
 /// <value type=”String”>
 /// The text to show when the control has no value
 /// </value>
 return this._watermarkText;
}
function AjaxControlToolkit$TextBoxWatermarkBehavior$set_WatermarkText(value)
{
 if (this._watermarkText != value)
 {
 this._watermarkText = value;
 if (this._watermarked)
 this._applyWatermark();

 this.raisePropertyChanged(‘WatermarkText’);
 }
}

 WatermarkCssClass
 The TextBoxWatermarkBehavior exposes a getter named get_WatermarkCssClass and a setter
named set_WatermarkCssClass that you can use in your client code to get and set the watermark
style, as shown in Listing 16-42 .

c16.indd 702c16.indd 702 8/20/07 6:16:05 PM8/20/07 6:16:05 PM

Chapter 16: Behaviors

703

 Listing 16-42: The WatermarkCssClass Property

 function AjaxControlToolkit$TextBoxWatermarkBehavior$get_WatermarkCssClass()
{
 /// <value type=”String”>
 /// The CSS class to apply to the TextBox when it has no value (e.g. the
 /// watermark text is shown).
 /// </value>
 return this._watermarkCssClass;
}
function AjaxControlToolkit$TextBoxWatermarkBehavior$set_WatermarkCssClass(value)
{
 if (this._watermarkCssClass != value)
 {
 this._watermarkCssClass = value;
 if (this._watermarked)
 this._applyWatermark();

 this.raisePropertyChanged(‘WatermarkCssClass’);
 }
}

 Using the TextBoxWatermarkBehavior
Listing 16-43 contains a page that uses the TextBoxWatermarkBehavior. Takes these steps to
run this page:

1. Create an Ajax-enable website in Visual Studio

2. Add a JavaScript file named BehaviorBase.js to this website and add the code shown in
Listings 16-19 through 16-26 to this JavaScript file.

3. Add a JavaScript file named TextBoxWatermarkBehavior.js to this website and add the code
shown in Listings 16-27 through 16-43 to this JavaScript file

4. Add the following line at the beginning of both JavaScript files:
Type.registerNamespace(‘AjaxControlToolkit’);

5. Add the following line at the end of both JavaScript files: if (typeof(Sys) !== ‘undefined’)
Sys.Application.notifyScriptLoaded();

6. Add a Web Form named Default.aspx to this website and add the code shown in Listing 16-44 to
the Default.aspx file

If you access the Default.aspx page for your browser, you should see that the associated text box DOM
element of the TextBoxWatermarkBehavior is watermarked — that is, that it displays the watermark
text and is styled with the watermarked style. If you click this text box, it will revert to its unwater-
marked style when it grabs the focus, enabling you to enter new text. If you click the Submit button to
submit the form, the watermark text disappears from the text box. This ensures that the watermark text
is not submitted to the server.

c16.indd 703c16.indd 703 8/20/07 6:16:05 PM8/20/07 6:16:05 PM

Chapter 16: Behaviors

704

 Listing 16-43: A Page that Uses the TextBoxWatermarkBehavior

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<script runat=”server”>
 void ClickCallback(object sender, EventArgs e)
 {
 Info.Text = TextBox1.Text;
 }
</script>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <style type=”text/css”>
 .WatermarkCssClass
 {
 background-color: #dddddd
 }
 </style>
 <script type=”text/javascript” language=”javascript”>
 var textBoxWatermarkBehavior;

 function submitCallback()
 {
 textBoxWatermarkBehavior._onSubmit();
 }

 function pageLoad()
 {
 var properties = {name : “MyTextBoxWatermarkBehaviorName”,
 id : “MyTextBoxWatermarkBehaviorID”,
 WatermarkText : “Enter text here”,
 WatermarkCssClass : “WatermarkCssClass”};

 var textBox1 = $get(“TextBox1”);
 textBoxWatermarkBehavior =
 $create(AjaxControlToolkit.TextBoxWatermarkBehavior, properties,
 null, null, textBox1);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server” onsubmit=”submitCallback();return true;”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Scripts>
 <asp:ScriptReference Path=”BehaviorBase.js” />
 <asp:ScriptReference Path=”TextBoxWatermarkBehavior.js” />
 </Scripts>
 </asp:ScriptManager>
 <asp:TextBox ID=”TextBox1” runat=”server” />
 <asp:Button ID=”Button1” runat=”server” OnClick=”ClickCallback” Text=”Submit”
 />

c16.indd 704c16.indd 704 8/20/07 6:16:05 PM8/20/07 6:16:05 PM

Chapter 16: Behaviors

705

 <asp:Label ID=”Info” runat=”server” />
 </form>
</body>
</html>

 I’ll walk you through the code shown in Listing 16-43 . First, notice that this page contains a CSS class
named WatermarkCssClass , which defines the watermarked style:

 <style type=”text/css”>
 .WatermarkCssClass
 {
 background-color: #dddddd
 }
 </style>

 Also note that this page registers references to two JavaScript files named BehaviorBase.js and
 TextBoxWatermarkBehavior.js :

 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Scripts>
 <asp:ScriptReference Path=”BehaviorBase.js” />
 <asp:ScriptReference Path=”TextBoxWatermarkBehavior.js” />
 </Scripts>
 </asp:ScriptManager>

 These two JavaScript files contain the implementation of the BehaviorBase and
TextBoxWatermarkBehavior client classes, respectively. (You can find the complete code for
these two classes in the sections of this chapter where we discussed their implementation.) Don’t
forget to include the following definition at the beginning these two files:

 Type.registerNamespace(“AjaxControlToolkit”);

 Also don’t forget to include the following script at the event of these two files:

 if(typeof(Sys)!==’undefined’)
 Sys.Application.notifyScriptLoaded();

 As Listing 16-43 shows, the pageLoad method performs the following tasks. First, it instantiates a
 dictionary named properties and populates it with the names and values of the properties of the
 TextBoxWatermarkBehavior :

 var properties = [];
 properties[“name”] = “MyTextBoxWatermarkBehaviorName”;
 properties[“id”] = “MyTextBoxWatermarkBehaviorID”;
 properties[“WatermarkText”] = “Enter text here”;
 properties[“WatermarkCssClass”] = “WatermarkCssClass”;

 Next, it uses the $get global JavaScript function to return a reference to the text box DOM element to
which we want to attach the TextBoxWatermarkBehavior we’re about to create:

 var textBox1 = $get(“TextBox1”);

c16.indd 705c16.indd 705 8/20/07 6:16:05 PM8/20/07 6:16:05 PM

Chapter 16: Behaviors

706

 Finally, it invokes the $create global JavaScript function, passing in five parameters. The first
 parameter references the constructor of the TextBoxWatermarkBehavior , the second references the
 dictionary that contains the names and values of the properties of the TextBoxWatermarkBehavior
object being instantiated, the third and forth are null , and the last references the text box DOM element
to which the TextBoxWatermarkBehavior being instantiated attaches. The $create method instanti-
ates the TextBoxWatermarkBehavior , initializes its properties with the values specified in the
 properties dictionary, invokes its initialize method, and finally adds it to the current ASP.NET
AJAX application.

 textBoxWatermarkBehavior =
 $create(AjaxControlToolkit.TextBoxWatermarkBehavior, properties,
 null, null, textBox1);

 As Listing 16-43 shows, the page also registers an event handler named submitCallback for the
 submit event of the form. As you can see, this event handler invokes the _onSubmit method on
the TextBoxWatermarkBehavior to remove the watermark text from the text box before the form is
 submitted to the server:

 function submitCallback()
 {
 textBoxWatermarkBehavior._onSubmit();
 }

 Summary
 This chapter provided you with in-depth coverage of the ASP.NET AJAX behaviors and helped you
gain the experience you need to develop your own custom behaviors.

 The next chapter will show you how to develop ASP.NET server controls that take full advantage of
the ASP.NET AJAX behaviors.

c16.indd 706c16.indd 706 8/20/07 6:16:05 PM8/20/07 6:16:05 PM

 Script and Extender Server
Controls

 In this chapter, I’ll implement fully functional replicas of those components of the ASP.NET AJAX
server-side Framework that are deeply involved in the internal functioning of two important types
of server controls, known as script controls and extender controls , to help you gain a solid under-
standing of these server controls, how they interact with their associated client-side components,
how they differ from one another, and how to implement your own custom script controls and
extender controls. These components of the ASP.NET AJAX server side Framework include:

 ❑ IExtenderControl

❑ ExtenderControl

❑ IScriptControl

❑ ScriptControl

❑ ScriptDescriptor

❑ ScriptComponentDescriptor

❑ ScriptBehaviorDescriptor

❑ ScriptControlDescriptor

❑ ScriptReference

❑ ScriptReferenceCollection

❑ ScriptManager

 Why You Need Script and Extender
Server Controls

 Let us revisit Listing 16-64 . Recall that this code listing contains a page that uses the
TextBoxWatermarkBehavior . As this code listing demonstrates, page developers must write
quite a bit of JavaScript code to use the TextBoxWatermarkBehavior in their applications.

c17.indd 707c17.indd 707 8/20/07 6:29:52 PM8/20/07 6:29:52 PM

Chapter 17: Script and Extender Server Controls

708

 If you could encapsulate the TextBoxWatermarkBehavior and the JavaScript code that instantiates and
initializes this behavior, attaches this behavior to its associated DOM element, and adds this behavior to
the current ASP.NET AJAX application in a server control, you would provide the clients of your server
control with the following important benefits:

 ❑ This server control could be used declaratively without writing a single line of imperative code
such as C#, VB.NET, or JavaScript.

❑ It could be added to the Toolbox of the Visual Studio to allow page developers to drag and drop
it on the designer surface.

❑ It could be programmed against by means of the ASP.NET Framework. This would allow page
developers to take full advantage of the well-known benefits of programming in the .NET
environment.

❑ The C#/VB.NET/JavaScript code encapsulated in this server control could be changed to fix a
bug, to optimize the code, or to add a new enhancement without breaking the applications that
use this server control — as long as these changes do not affect the API through which these
 applications interact with this server control.

❑ Since the entire logic that defines, instantiates, and initializes the TextBoxWatermarkBehavior ,
attaches it to its associated DOM element, and adds it to the current ASP.NET AJAX application
is encapsulated in a single component (that is, the server control), you could perform any
 required bug fixes, code optimizations, and enhancements in a single component and rest
 assured that these changes will be automatically picked up by all applications that use this
server control.

 The ASP.NET AJAX Framework provides you with two different approaches to encapsulating the logic
that performs the following tasks in a server control:

 ❑ Defines an ASP.NET AJAX component such as TextBoxWatermarkBehavior .

❑ Instantiates this component.

❑ Initializes this component. (This initialization involves initializing the properties of the
 component and registering event handlers for its events.)

❑ Attaches this component to a DOM element.

❑ Adds this component to the current ASP.NET AJAX application.

 These two approaches are as follows:

 ❑ Script Controls : This approach encapsulates the logic I just mentioned in a server control that
represents the associated DOM element of the ASP.NET AJAX component. For example, in the
case of Listing 16-64 , the associated DOM element of the TextBoxWatermarkBehavior is a text
box. As you’ll see later in this chapter, you’ll develop a custom TextBox server control named
 TextBoxWatermarkScriptControl that derives from the ASP.NET TextBox server control to
encapsulate the preceding logic. As you can see, this script server control represents the
 associated DOM text box element of the TextBoxWatermarkBehavior .

❑ Extender Controls : This approach encapsulates the logic I just mentioned in a server control that
attaches to the server control that represents the associated DOM element of the ASP.NET AJAX
component. For example, in the case of Listing 16-64 , the associated DOM element of the

c17.indd 708c17.indd 708 8/20/07 6:29:53 PM8/20/07 6:29:53 PM

Chapter 17: Script and Extender Server Controls

709

 TextBoxWatermarkBehavior is a text box. Later in this chapter we’ll develop an extender
server control named TextBoxWatermarkExtenderControl to encapsulate this logic. As you
can see, this extender server control does not represent the associated DOM text box element of
the TextBoxWatermarkBehavior . Instead it attaches to the server control that represents this
associated element — that is, the ASP.NET TextBox server control.

 In other words, while the TextBoxWatermarkScriptControl derives from the ASP.NET TextBox
server control, the TextBoxWatermarkExtenderControl attaches to the ASP.NET TextBox server
 control instead of deriving from it. This will all be made clear later in this chapter.

 Extender Server Controls
 An extender server control is an ASP.NET server control that allows you to extend the client-side
 functionality of an existing ASP.NET server control without touching its code! The ASP.NET server
 control whose client-side functionality is being extended is completely oblivious to the presence of the
extender control. This is a great way to enhance the client-side behavior of an existing ASP.NET server
control.

 IExtenderControl
 Every ASP.NET extender server control implements an interface named IExtenderControl , defined in
Listing 17-1 .

 Listing 17-1: The IExtenderControl Interface

 using System;
using System.Web.UI;
using System.Collections.Generic;

namespace CustomComponents3
{
 public interface IExtenderControl
 {
 IEnumerable<ScriptDescriptor> GetScriptDescriptors(Control targetControl);
 IEnumerable<ScriptReference> GetScriptReferences();
 }
}

 As you can see, the IExtenderControl interface exposes the following two methods:

 ❑ GetScriptDescriptors : This method takes a parameter of type Control that references the
ASP.NET server control whose client-side functionality the current extender server control
 extends. The main responsibility of this method is to instantiate, initialize, and return an
 IEnumerable collection of the ScriptDescriptor objects, where each ScriptDescriptor
 object generates the client script that instantiates and initializes an ASP.NET AJAX component
such as the TextBoxWatermarkBehavior , attaches it to its associated DOM element, and adds
it to the current ASP.NET AJAX application.

c17.indd 709c17.indd 709 8/20/07 6:29:53 PM8/20/07 6:29:53 PM

Chapter 17: Script and Extender Server Controls

710

❑ GetScriptReferences : The main responsibility of this method is to instantiate, initialize,
and return an IEnumerable collection of the ScriptReference objects where each
 ScriptReference object references a JavaScript file that normally defines an ASP.NET AJAX
component such as the TextBoxWatermarkBehavior or any other required JavaScript code.

 ExtenderControl
 The ASP.NET AJAX Framework comes with an implementation of the IExtenderControl interface
named ExtenderControl . Listing 17-2 presents the implementation of the replica ExtenderControl .
This base class contains the base functionality that every extender server control must support. Deriving
your extender server controls from the ExtenderControl base class will save you from having to
 implement this base functionality every time you develop a custom extender server control.

 Listing 17-2: The ExtenderControl Base Class

 namespace CustomComponents3
{
 using System;
 using System.Web.UI;
 using System.ComponentModel;
 using System.Collections.Generic;

 [DefaultProperty(“TargetControlID”), ParseChildren(true),
 NonVisualControl,
 PersistChildren(false)]
 public abstract class ExtenderControl : Control, IExtenderControl
 {
 private ScriptManager _scriptManager;
 private string _targetControlID;

 protected abstract IEnumerable<ScriptDescriptor> GetScriptDescriptors(
 Control targetControl);
 protected abstract IEnumerable<ScriptReference> GetScriptReferences();

 protected override void OnPreRender(EventArgs e)
 {
 base.OnPreRender(e);
 Control control = this.FindControl(this.TargetControlID);
 ScriptManager scriptManager = ScriptManager.GetCurrent(Page);
 scriptManager.RegisterExtenderControl<ExtenderControl>(this, control);
 }

 protected override void Render(HtmlTextWriter writer)
 {
 base.Render(writer);
 if (!base.DesignMode)
 {
 ScriptManager mgr = ScriptManager.GetCurrent(Page);
 mgr.RegisterScriptDescriptors(this);
 }
 }

c17.indd 710c17.indd 710 8/20/07 6:29:53 PM8/20/07 6:29:53 PM

Chapter 17: Script and Extender Server Controls

711

 IEnumerable<ScriptDescriptor> IExtenderControl.GetScriptDescriptors(
 Control targetControl)
 {
 return this.GetScriptDescriptors(targetControl);
 }

 IEnumerable<ScriptReference> IExtenderControl.GetScriptReferences()

 {
 return this.GetScriptReferences();
 }

 [DefaultValue(“”),
 IDReferenceProperty, Category(“Behavior”)]
 public string TargetControlID
 {
 get
 {
 if (this._targetControlID != null)
 return this._targetControlID;

 return string.Empty;
 }
 set { this._targetControlID = value; }
 }

 [Browsable(false),
 DesignerSerializationVisibility(DesignerSerializationVisibility.Hidden),
 EditorBrowsable(EditorBrowsableState.Never)]
 public override bool Visible
 {
 get { return base.Visible; }
 set { throw new NotImplementedException(); }
 }
 }
}

 As Listing 17-2 shows, the ExtenderControl implements the GetScriptDescriptors and
 GetScriptReferences methods of the IExtenderControl interface. The implementations of these
two methods simply delegate to two virtual methods with the same names.

 This is a typical C# interface implementation pattern, where a class’s explicit implementation of the
methods, properties, and events of an interface simply delegates to protected virtual methods, properties,
and events with the same names as the methods, properties, and events of the interface. This provides
two important benefits. First, it saves the subclasses of the class from explicitly implementing the inter-
face. Second, it allows these subclasses to override these protected virtual methods, properties, and
events to provide their own implementations. This is a great interface implementation pattern that you
should use in your own custom classes.

 Note that the protected virtual GetScriptDescriptors and GetScriptReferences methods of the
 ExtenderControl base class are marked as abstract. This means that all subclasses of this base class
must implement these two methods.

c17.indd 711c17.indd 711 8/20/07 6:29:54 PM8/20/07 6:29:54 PM

Chapter 17: Script and Extender Server Controls

712

 As Listing 17-2 shows, the ExtenderControl base class exposes a read/write string property named
 TargetControlID that specifies the ID property value of the server control whose client-side
 functionality the extender control extends. This server control is known as the target control of the
extender control. For example, in the case of the TextBoxWatermarkExtenderControl extender
 control, which will be implemented later in this chapter, the target server control is the ASP.NET
 TextBox server control whose functionality this extender control extends.

 [DefaultValue(“”),
 IDReferenceProperty, Category(“Behavior”)]
 public string TargetControlID
 {
 get
 {
 if (this._targetControlID != null)
 return this._targetControlID;

 return string.Empty;
 }
 set { this._targetControlID = value; }
 }

 As you can see from Listing 17-2 , the ExtenderControl base class derives from the ASP.NET Control
base class and overrides the OnPreRender and Render methods that it inherits from the Control class.
Next, I’ll walk you through the ExtenderControl base class’s implementation of these two methods.

 The OnPreRender method begins by invoking the OnPreRender method of its base class — that is, the
 Control base class. The OnPreRender method of the Control base class raises the PreRender event
and consequently invokes all the event handlers registered for this event.

 base.OnPreRender(e);

 If you need to run some code when an extender server control such as
TextBoxWatermarkExtenderControl enters its PreRender lifecycle phase, you must
 encapsulate this code in a method and register the method as an event handler for the PreRender
event of the extender server control.

 Next, the OnPreRender method of the ExtenderControl base class invokes the FindControl method,
passing in the ID property value of the target server control (recall that the target server control of an
extender control is the server control whose client-side functionality the extender control is extending) to
return a reference to this server control.

 Control control = this.FindControl(this.TargetControlID);

 Then, the OnPreRender method of the ExtenderControl base class invokes the GetCurrent static
method on the replica ScriptManager to return a reference to the current replica ScriptManager
server control:

 ScriptManager scriptManager = ScriptManager.GetCurrent(Page);

 Next, the method invokes the RegisterExtenderControl method on the current ScriptManager
server control to register the current extender control as the extender control for the specified target

c17.indd 712c17.indd 712 8/20/07 6:29:54 PM8/20/07 6:29:54 PM

Chapter 17: Script and Extender Server Controls

713

 control. As you’ll see later, the RegisterExtenderControl method adds the specified extender
 server control to an internal collection.

 scriptManager.RegisterExtenderControl<ExtenderControl>(this, control);

 Next, I’ll walk you through the ExtenderControl base class’s implementation of the Render method
that it inherits from the Control base class. This method begins by calling the Render method of the
base class. The Render method of the Control base class iterates through the child controls of the
extender control and invokes their RenderControl method to allow them to render themselves.

 base.Render(writer);

 The Render method of the ExtenderControl base class then calls the GetCurrent static method on the
replica ScriptManager class to return a reference to the current replica ScriptManager server control:

 ScriptManager mgr = ScriptManager.GetCurrent(Page);

 Next, the method calls the RegisterScriptDescriptors method on the current replica ScriptManager
server control to allow the extender control to register all the required client scripts for rendering.

 mgr.RegisterScriptDescriptors(this);

 Script Server Controls
 As the name suggests, an extender server control such as TextBoxWatermarkExtenderControl
extends the client-side functionality of an existing ASP.NET server control such as TextBox . A script
server control, such as TextBoxWatermarkScriptControl , on the other hand, extends the client-side
functionality of an exiting ASP.NET server control such as TextBox if it derives from that server control.
Otherwise a script server control can be a brand-new server control on its own.

 IScriptControl
 All ASP.NET AJAX script server controls implement an interface named IScriptControl , defined in
Listing 17-3 . As you can see, the IScriptControl interface exposes two methods:

 ❑ GetScriptDescriptors : The GetScriptDescriptors method of the IScriptControl
 interface plays the same role in a script server control that the GetScriptDescriptors
 method of the IExtenderControl plays in an extender server control. Recall that the
 GetScriptDescriptors method of the IExtenderControl interface takes a parameter of type
 Control that references the target server control of the extender server control. The target
 server control is the server control whose client-side functionality the specified extender server
 control extends. However, as Listing 17-3 shows, the GetScriptDescriptors method of the
 IScriptControl interface does not take this parameter. This is because the script server control
that extends the client-side functionality of an existing ASP.NET server control directly derives
from that server control; consequently there is no need for this parameter because it references
the script server control itself. To put it differently, a script server control is its own target
server control.

c17.indd 713c17.indd 713 8/20/07 6:29:54 PM8/20/07 6:29:54 PM

Chapter 17: Script and Extender Server Controls

714

❑ GetScriptReferences : The GetScriptReferences method of the IScriptControl
 interface plays the same role in a script server control that the GetScriptReferences method
of the IExtenderControl plays in an extender server control. In other words, the
 GetScriptReferences method returns an IEnumerable collection of ScriptReference
 objects in which each ScriptReference object references a JavaScript file that contains the
 JavaScript code that supports the client-side functionality of the script server control, such as
the definition of an ASP.NET AJAX component associated with the script server control.

 Listing 17-3: The IScriptControl

 using System.Collections.Generic;

namespace CustomComponents3
{
 public interface IScriptControl
 {
 IEnumerable<ScriptDescriptor> GetScriptDescriptors();
 IEnumerable<ScriptReference> GetScriptReferences();
 }
}

 ScriptControl
 As you saw in the previous section, the ASP.NET AJAX Framework comes with an implementation of
the IExtenderControl interface named ExtenderControl . As I mentioned, the ExtenderControl
base class contains the base functionality that every extender server control must implement. Because of
this, you should derive your custom extender server controls from the ExtenderControl base class to
save yourself from having to implement this base functionality every time you develop an extender
server control.

 Similarly, the ASP.NET AJAX Framework comes with an implementation of the IScriptControl
 interface, named ScriptControl , which contains the base functionality that every script server control
must implement. Therefore, deriving your custom script server controls from the ScriptControl base
class saves you from having to implement this base functionality every time you develop a script
server control. That said, there are times when you cannot derive your script server control from the
 ScriptControl base class, and consequently you have to re-implement this base functionality. This
 happens when you’re implementing a custom script server control that is required to derive from an
existing ASP.NET server control. For example, as you’ll see later, the TextBoxWatermarkScriptControl
script server control derives from the ASP.NET TextBox server control and extends its client-side func-
tionality. In these situations, you cannot derive from the ScriptControl server control because the
object-oriented programming languages such as C# and VB.NET do not allow multiple inheritances.
Therefore, your custom script control has no choice but to explicitly implement the IScriptControl
interface, where it must basically do the same thing that the ScriptControl base class does.

 Listing 17-4 presents the implementation of our replica ScriptControl base class. Note that this base
class follows the typical C# interface implementation pattern to implement the GetScriptDescriptors
and GetScriptReferences methods of the IScriptControl base class, where it exposes two protected
virtual methods with the same names as the methods of the interface. Note also that the ScriptControl
base class marks these two protected virtual methods as abstract, to require its subclasses to implement
these two methods.

c17.indd 714c17.indd 714 8/20/07 6:29:54 PM8/20/07 6:29:54 PM

Chapter 17: Script and Extender Server Controls

715

 Listing 17-4: The ScriptControl Base Class

 namespace CustomComponents3
{
 using System;
 using System.Web.UI;
 using System.Collections.Generic;
 using System.Web.UI.WebControls;

 public abstract class ScriptControl : WebControl, IScriptControl
 {
 protected abstract IEnumerable<ScriptDescriptor> GetScriptDescriptors();
 protected abstract IEnumerable<ScriptReference> GetScriptReferences();

 protected override void OnPreRender(EventArgs e)
 {
 base.OnPreRender(e);
 ScriptManager scriptManager = ScriptManager.GetCurrent(Page);
 scriptManager.RegisterScriptControl<ScriptControl>(this);
 }

 protected override void Render(HtmlTextWriter writer)
 {
 base.Render(writer);
 if (!base.DesignMode)
 {
 ScriptManager scriptManager = ScriptManager.GetCurrent(Page);
 scriptManager.RegisterScriptDescriptors(this);
 }
 }

 IEnumerable<ScriptDescriptor> IScriptControl.GetScriptDescriptors()
 {
 return this.GetScriptDescriptors();
 }

 IEnumerable<ScriptReference> IScriptControl.GetScriptReferences()
 {
 return this.GetScriptReferences();
 }
 }
}

 As Listing 17-4 shows, the ScriptControl base class derives from the WebControl base class and
 overrides its OnPreRender and Render methods. Next, I’ll walk you through the ScriptControl base
class’s implementation of the OnPreRender method. As you can see, this method begins by invoking
the OnPreRender method of its base class to raise the PreRender event and consequently to invoke the
event handlers registered for this event:

 base.OnPreRender(e);

c17.indd 715c17.indd 715 8/20/07 6:29:55 PM8/20/07 6:29:55 PM

Chapter 17: Script and Extender Server Controls

716

 If you need to run some custom code when a script server control such as
TextBoxWatermarkScriptControl enters its PreRender life-cycle phase, you must
 encapsulate this code in a method and register the method as event handler for the PreRender
event of the script server control.

 Next, it calls the GetCurrent static method on our replica ScriptManager class to return a reference to
the current replica ScriptManager server control:

 ScriptManager scriptManager = ScriptManager.GetCurrent(Page);

 Finally, it calls the RegisterScriptControl method on the current replica ScriptManager server
 control to register the script server control.

 scriptManager.RegisterScriptControl<ScriptControl>(this);

 Next, I’ll walk you through the implementation of the Render method. As you can see from Listing 17-4 ,
this method first invokes the Render method of its base class, which in turn invokes the RenderControl
method of the child controls of the script server control.

 base.Render(writer);

 Next, it calls the GetCurrent static method on our replica ScriptManager class to return a reference to
the current replica ScriptManager server control:

 ScriptManager scriptManager = ScriptManager.GetCurrent(Page);

 Finally, it calls the RegisterScriptDescriptors method on the current replica ScriptManager server
control to allow the script server control to register its scripts:

 scriptManager.RegisterScriptDescriptors(this);

 As you can see from Listing 17-4 , the ScriptControl base class derives from the WebControl base class
instead of the Control base class. Therefore, if you decide to derive your custom script server control
from the ScriptControl base class instead of explicitly implementing the IScriptControl interface,
you must make sure that you override the WebControl base class’s overridable methods as opposed to
the Control base class. You’ll see an example of this later in this chapter.

 ScriptDescriptor
 Recall from Listings 17-1 and 17-3 that the GetScriptDescriptors method of the IExtenderControl
and IScriptControl interfaces return an IEnumerable collection of the ScriptDescriptor objects.
Listing 17-5 presents the implementation of the replica ScriptDescriptor abstract base class. As you
can see, this class exposes two methods:

 ❑ GetScript : The subclasses of the ScriptDescriptor abstract base class must implement
the GetScript abstract method to return a string that contains the client script that supports the
 client functionality of a script server control or extender server control. This client script normally
performs these tasks:

 ❑ Instantiates the ASP.NET AJAX component associated with the script server control or
 extender server control

c17.indd 716c17.indd 716 8/20/07 6:29:55 PM8/20/07 6:29:55 PM

Chapter 17: Script and Extender Server Controls

717

❑ Initializes the properties of this ASP.NET AJAX component and registers event handlers
for the events of this ASP.NET AJAX component

❑ Adds this ASP.NET AJAX component to the current ASP.NET AJAX application

 ❑ RegisterDisposeForDescriptor : The subclasses of the ScriptDescriptor base class can
override the RegisterDisposeForDescriptor method to generate the client script that
 registers the dispose script for the ASP.NET AJAX component associated with the script server
control or extender server control. Such a dispose script normally performs final cleanup
 before the ASP.NET AJAX component is disposed of. As you can see, the ScriptDescriptor
base class does not mark the RegisterDisposeForDescriptor method as abstract. Therefore
the implementation of this method is optional.

 Listing 17-5: The ScriptDescriptor Base Class

 namespace CustomComponents3
{
 using System.Web.UI;

 public abstract class ScriptDescriptor
 {
 protected internal abstract string GetScript();
 internal virtual void RegisterDisposeForDescriptor(ScriptManager scriptManager,
 Control owner)
 {
 }
 }
}

 The ASP.NET AJAX Framework comes with a class named ScriptComponentDescriptor that derives
from the ScriptDescriptor abstract base class, implements its GetScript method, and extends its
functionality to add support for new methods and properties. We’ll discuss all this in the next section.

 ScriptComponentDescriptor
 Listing 17-6 presents the implementation of the replica ScriptComponentDescriptor class. I’ll discuss
the implementation of the methods and properties of this class in the following sections.

 Listing 17-6: The ScriptComponentDescriptor

 namespace CustomComponents3
{
 using System.Collections.Generic;
 using System.Web.Script.Serialization;
 using System.Web.UI;
 using System.Text;
 using System;

 public class ScriptComponentDescriptor : ScriptDescriptor
 {
 // Fields
 private string _elementIDInternal;

(continued)

c17.indd 717c17.indd 717 8/20/07 6:29:55 PM8/20/07 6:29:55 PM

Chapter 17: Script and Extender Server Controls

718

 Listing 17-6 (continued)

 private SortedList<string, string> _events;
 private string _id;
 private SortedList<string, string> _properties;
 private SortedList<string, string> _references;
 private bool _registerDispose;
 private JavaScriptSerializer _serializer;
 private string _type;

 // Methods
 public ScriptComponentDescriptor(string type)
 {
 this._registerDispose = true;
 this._type = type;
 }

 internal ScriptComponentDescriptor(string type, string elementID) : this(type)
 {
 this._elementIDInternal = elementID;
 }

 public void AddComponentProperty(string name, string componentID)
 {
 string value = “\””;
 value += HelperMethods.QuoteString(componentID);
 value += “\””;
 References[name] = value;
 }

 public void AddElementProperty(string name, string elementID)
 {
 string value = “$get(\””;
 value += HelperMethods.QuoteString(elementID);
 value += “\”)”;
 Properties[name] = value;
 }

 public void AddEvent(string name, string handler)
 {
 this.Events[name] = handler;
 }

 public void AddProperty(string name, object val)
 {
 string value = this.Serializer.Serialize(val);
 Properties[name] = value;
 }

 public void AddScriptProperty(string name, string script)
 {
 Properties[name] = script;
 }

c17.indd 718c17.indd 718 8/20/07 6:29:56 PM8/20/07 6:29:56 PM

Chapter 17: Script and Extender Server Controls

719

 private void AppendScript(SortedList<string, string> list,
 StringBuilder builder)
 {
 bool flag = true;
 if ((list != null) && (list.Count > 0))
 {
 foreach (KeyValuePair<string, string> pair in list)
 {
 if (flag)
 {
 builder.Append(“{“);
 flag = false;
 }

 else
 builder.Append(“,”);

 builder.Append(‘”’);
 builder.Append(HelperMethods.QuoteString(pair.Key));
 builder.Append(‘”’);
 builder.Append(‘:’);
 builder.Append(pair.Value);
 }
 }

 if (flag)
 builder.Append(“null”);
 else
 builder.Append(“}”);
 }

 protected internal override string GetScript()
 {
 if (!string.IsNullOrEmpty(this.ID))
 this.AddProperty(“id”, this.ID);

 StringBuilder builder = new StringBuilder();
 builder.Append(“$create(“);
 builder.Append(this.Type);
 builder.Append(“, “);
 this.AppendScript(this._properties, builder);
 builder.Append(“, “);
 this.AppendScript(this._events, builder);
 builder.Append(“, “);
 this.AppendScript(this._references, builder);
 if (this.ElementIDInternal != null)
 {
 builder.Append(“, “);
 builder.Append(“$get(\””);
 builder.Append(HelperMethods.QuoteString(this.ElementIDInternal));
 builder.Append(“\”)”);
 }

(continued)

c17.indd 719c17.indd 719 8/20/07 6:29:56 PM8/20/07 6:29:56 PM

Chapter 17: Script and Extender Server Controls

720

 Listing 17-6 (continued)

 builder.Append(“);”);
 return builder.ToString();
 }

 public virtual string ClientID
 {
 get { return this.ID; }
 }

 internal string ElementIDInternal
 {
 get { return this._elementIDInternal; }
 }

 private SortedList<string, string> Events
 {
 get
 {
 if (this._events == null)
 this._events = new SortedList<string, string>(StringComparer.Ordinal);
 return this._events;
 }
 }

 public virtual string ID
 {
 get { return (this._id ?? string.Empty); }
 set { this._id = value; }
 }

 private SortedList<string, string> Properties
 {
 get
 {
 if (this._properties == null)
 this._properties =
 new SortedList<string, string>(StringComparer.Ordinal);
 return this._properties;
 }
 }

 private SortedList<string, string> References
 {
 get
 {
 if (this._references == null)
 this._references =
 new SortedList<string, string>(StringComparer.Ordinal);
 return this._references;
 }
 }

c17.indd 720c17.indd 720 8/20/07 6:29:56 PM8/20/07 6:29:56 PM

Chapter 17: Script and Extender Server Controls

721

 internal bool RegisterDispose
 {
 get { return this._registerDispose; }
 set { this._registerDispose = value; }
 }

 private JavaScriptSerializer Serializer
 {
 get
 {
 if (this._serializer == null)
 this._serializer = new JavaScriptSerializer();
 return this._serializer;
 }
 }

 public string Type
 {
 get { return this._type; }
 set { this._type = value; }
 }
 }
}

 GetScript
 The ScriptComponentDescriptor overrides the GetScript abstract method that it inherits from the
 ScriptDescriptor abstract base class, as shown in Listing 17-6 .

 The main responsibility of the GetScript method of the ScriptComponentDescriptor class is to
 generate the client script that performs the following tasks:

 ❑ Instantiates the ASP.NET AJAX component associated with the script or extender server control

❑ Initializes the properties of this ASP.NET AJAX component

❑ Registers event handlers for the events of this ASP.NET AJAX component

❑ Attaches this ASP.NET AJAX component to its associated script or extender server control

❑ Adds this ASP.NET AJAX component to the current ASP.NET AJAX application

 As the following excerpt from Listing 16-64 shows, all of this is achieved through a call into the $create
global JavaScript function:

 var properties = {name : “MyTextBoxWatermarkBehaviorName”,
 id : “MyTextBoxWatermarkBehaviorID”,
 WatermarkText : “Enter text here”,
 WatermarkCssClass : “WatermarkCssClass”};

var textBox1 = $get(“TextBox1”);
textBoxWatermarkBehavior =
 $create(AjaxControlToolkit.TextBoxWatermarkBehavior, properties,
 null, null, textBox1);

c17.indd 721c17.indd 721 8/20/07 6:29:57 PM8/20/07 6:29:57 PM

Chapter 17: Script and Extender Server Controls

722

 This example does not register any event handlers. However, in general, the $create function takes five
parameters:

 ❑ The first parameter references the constructor of the ASP.NET AJAX component being created. The
current example passes the reference to the constructor of the TextBoxWatermarkBehavior
 because this behavior is the ASP.NET AJAX component being created in this case:

 $create(AjaxControlToolkit.TextBoxWatermarkBehavior , properties,
 null, null, textBox1);

 ❑ The second parameter references the dictionary that contains the names and initial values of the
properties of the ASP.NET AJAX component being created:

 $create(AjaxControlToolkit.TextBoxWatermarkBehavior, properties ,
 null, null, textBox1);

 ❑ The third parameter references the dictionary that contains the names of the events of the
ASP.NET AJAX component being created, and the event handlers being registered for these
events. This example passes null for this parameter because the page shown in Listing 16-64
does not register any event handlers:

 $create(AjaxControlToolkit.TextBoxWatermarkBehavior, properties,
 null , null, textBox1);

❑ The fourth parameter is a dictionary that contains the names and values of those properties
of the ASP.NET AJAX component that reference other ASP.NET AJAX components in the
 current ASP.NET AJAX application:

 $create(AjaxControlToolkit.TextBoxWatermarkBehavior, properties,
 null, null , textBox1);

 ❑ The fifth parameter references the associated DOM element of the ASP.NET AJAX component
being instantiated (if any):

 $create(AjaxControlToolkit.TextBoxWatermarkBehavior, properties,
 null, null, textBox1);

 As you can see from Listing 17-6 , the GetScript method takes these steps to generate the client script
that calls into the $create global JavaScript function, passing in the preceding five parameters. As you’ll
see later, the ScriptComponentDescriptor exposes a method named AddProperty that takes two
parameters, the first parameter containing the name of the property being added and the second
 containing the value of this property. The AddProperty method under the hood adds the specified
property name and value to an internal dictionary. As Listing 17-6 shows, the GetScript method calls
the AddProperty method to add the id property and its value to this internal dictionary:

 if (!string.IsNullOrEmpty(this.ID))
 this.AddProperty(“id”, this.ID);

c17.indd 722c17.indd 722 8/20/07 6:29:57 PM8/20/07 6:29:57 PM

Chapter 17: Script and Extender Server Controls

723

 As the following code fragment shows, the ScriptComponentDescriptor exposes a read-only
 property named ClientID , which returns the value of another property named ID . The ID property is a
read/write property that specifies the id of the ASP.NET AJAX component being created. Recall that the
 id of an ASP.NET AJAX component uniquely identifies that component among other components in
the current ASP.NET AJAX application:

 public virtual string ClientID
 {
 get { return this.ID; }
 }

 public virtual string ID
 {
 get { return (this._id ?? string.Empty); }
 set { this._id = value; }
 }

 Now back to the implementation of the GetScript method. Next, GetScript instantiates a
 StringBuilder and populates it with the script that invokes the $create function:

 StringBuilder builder = new StringBuilder();

 Then, GetScript appends the string “$create(“ to the StringBuilder :

 builder.Append(“$create(“);

 Next, it passes the value of the Type property of the ScriptComponentDescriptor as the first parameter
of the $create function. Recall that the first parameter references the constructor of the ASP.NET AJAX
component being created:

 builder.Append(this.Type);

 As you can see from the following code fragment, the constructor of the ScriptComponentDescriptor
takes a string parameter that contains the fully qualified name of the type of the ASP.NET AJAX
 component being initialized. Note that this constructor assigns this string parameter to a private field
named _type , which can be then accessed via the read/write Type property of the
 ScriptComponentDescriptor :

 public ScriptComponentDescriptor(string type)
 {
 this._registerDispose = true;
 this._type = type;
 }

 public string Type
 {
 get { return this._type; }
 set { this._type = value; }
 }

c17.indd 723c17.indd 723 8/20/07 6:29:57 PM8/20/07 6:29:57 PM

Chapter 17: Script and Extender Server Controls

724

 Now back to the implementation of the GetScript method. Next, this method invokes another method,
 AppendScript , and passes two parameters into it. The first parameter references an internal collection
named _properties , and the second parameter references the StringBuilder . As you’ll see later, the
 _ properties collection is a SortedList of KeyValuePair<string, string> objects for which each
object represents a property of the ASP.NET AJAX component being created. The Key and Value proper-
ties of each object contain the name and value of the associated property, respectively.

 As you’ll see later, the AppendScript method serializes the _ properties collection into an object
 literal whose name/value pairs are the object literal representations of the KeyValuePair<string,
string> objects in the collection. The AppendScript method then passes this object literal into the
 $create method as its second argument. Recall that the second argument of the $create method is
a dictionary that contains one name/value pair for each property being initialized, the name part of the
pair containing the name of the property and the value part containing the value:

 this.AppendScript(this._properties, builder);

 Next, the GetScript method invokes the AppendScript method once again and passes two parameters
into it. The first parameter references an internal collection named _events and the second parameter
references the StringBuilder . As you’ll see later, the _events collection is another SortedList of
 KeyValuePair<string, string> objects. The Key and Value properties contain an event name of the
ASP.NET AJAX component being initialized and the event handler being registered for this event,
respectively.

 As you’ll see later, the AppendScript method serializes the _events collection into an object literal
whose name/value pairs are the object literal representations of KeyValuePair<string, string>
objects in the collection. The AppendScript method then passes this object literal into the $create
method as its third argument. Recall that the third argument of the $create method is an object literal
whose name/value pairs represent event names and the event handlers being registered for these events.

 this.AppendScript(this._events, builder);

 Next, the GetScript method invokes the AppendScript method once more and passes two parameters
into it. The first parameter references an internal collection named _references and the second
 parameter references the StringBuilder . As you’ll see later, the _references collection is another
 SortedList of KeyValuePair<string, string> objects for which the Key and Value properties
 contain the name of a property of the ASP.NET AJAX component being initialized and the id of another
ASP.NET AJAX component that the property references, respectively.

 As you’ll see later, the AppendScript method serializes the _references collection into an object literal
whose name/value pairs are the object literal representation of KeyValuePair<string, string>
objects in the collection. The AppendScript method then passes this object literal into the $create
method as its fourth argument.

 this.AppendScript(this._references, builder);

 Next, GetScript generates the script that invokes the $get global JavaScript function to return a reference
to the associated DOM element of the ASP.NET AJAX component being created. Note that GetScript
passes the value of the ElementIDInternal property of the ScriptComponentDescriptor into the

c17.indd 724c17.indd 724 8/20/07 6:29:57 PM8/20/07 6:29:57 PM

Chapter 17: Script and Extender Server Controls

725

 $get function. The value returned from the $get function is then passed into the $create global
 JavaScript function as its last parameter. Recall that the last parameter of this function references the
 associated DOM element of the ASP.NET AJAX component being created.

 builder.Append(“$get(\””);
 builder.Append(HelperMethods.QuoteString(this.ElementIDInternal));

 The ScriptComponentDescriptor comes with an internal constructor that takes two parameters. The
first parameter is a string that contains the fully qualified name of the type of the ASP.NET AJAX
 component being instantiated, including its complete namespace containment hierarchy (for example,
this parameter is the string AjaxControlToolkit.TextBoxWatermarkBehavior in the case of the
 TextBoxWatermarkBehavior). The second parameter is a string that contains the id HTML attribute
value of the associated DOM element of the component. As you can see, this constructor stores its second
parameter in a private field named _elementIDInternal , whose value is returned by an internal prop-
erty named ElementIDInternal :

 internal ScriptComponentDescriptor(string type, string elementID) : this(type)
 {
 this._elementIDInternal = elementID;
 }

 internal string ElementIDInternal
 {
 get { return this._elementIDInternal; }
 }

 HelperMethods
 As Listing 17-6 shows, the GetScript method calls the QuoteString static method on a class
named HelperMethods and passes the value of the ElementIDInternal property of the
ScriptComponentDescriptor into it:

 builder.Append(HelperMethods.QuoteString(this.ElementIDInternal));

 To understand what the QuoteString static method does, you need to understand the definition of a
string in the JSON jargon. According to the JSON specification, a string is a collection of zero or more
Unicode characters wrapped in double quotes and using backlash escapes. As you can see from
 Listing 17-7 , the QuoteString method ensures that the string passed into it as its argument meets these
JSON requirements. Note that the QuoteString static method makes use of another static method of the
 HelperMethods class, AppendCharAsUnicode , to ensure that all the characters in the specified string
are Unicode characters.

 Listing 17-7: The HelperMethods Class

 using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;

(continued)

c17.indd 725c17.indd 725 8/20/07 6:29:58 PM8/20/07 6:29:58 PM

Chapter 17: Script and Extender Server Controls

726

 Listing 17-7 (continued)

using System.Web.UI.HtmlControls;
using System.Text;

namespace CustomComponents3
{
 public class HelperMethods
 {
 public static string QuoteString(string value)
 {
 if (string.IsNullOrEmpty(value))
 return string.Empty;

 StringBuilder builder = null;
 int startIndex = 0;
 int count = 0;
 for (int i = 0; i < value.Length; i++)
 {
 char c = value[i];
 if ((((c == ‘\r’) || (c == ‘\t’)) || ((c == ‘”’) ||
 (c == ‘\’’))) || ((((c == ‘<’) || (c == ‘>’)) ||
 ((c == ‘\\’) || (c == ‘\n’))) || (((c == ‘\b’) ||
 (c == ‘\f’)) || (c < ‘ ‘))))
 {
 if (builder == null)
 builder = new StringBuilder(value.Length + 5);

 if (count > 0)
 builder.Append(value, startIndex, count);

 startIndex = i + 1;
 count = 0;
 }

 switch (c)
 {
 case ‘<’:
 case ‘>’:
 case ‘\’’:
 HelperMethods.AppendCharAsUnicode(builder, c);
 continue;
 case ‘\\’:
 builder.Append(@”\\”);
 continue;
 case ‘\b’:
 builder.Append(@”\b”);
 continue;
 case ‘\t’:
 builder.Append(@”\t”);
 continue;
 case ‘\n’:
 builder.Append(@”\n”);
 continue;

c17.indd 726c17.indd 726 8/20/07 6:29:58 PM8/20/07 6:29:58 PM

Chapter 17: Script and Extender Server Controls

727

 case ‘\f’:
 builder.Append(@”\f”);
 continue;
 case ‘\r’:
 builder.Append(@”\r”);
 continue;
 case ‘”’:
 builder.Append(“\\\””);
 continue;
 }

 if (c < ‘ ‘)
 HelperMethods.AppendCharAsUnicode(builder, c);

 else
 count++;
 }

 if (builder == null)
 return value;

 if (count > 0)
 builder.Append(value, startIndex, count);

 return builder.ToString();
 }

 public static void AppendCharAsUnicode(StringBuilder builder, char c)
 {
 builder.Append(@”\u”);
 builder.AppendFormat(“{0:x4}”, new object[] { (int)c });
 }
 }
}

 Public Methods
 The ScriptComponentDescriptor class exposes five important public methods that you can call
from your managed code. I’ll present and discuss the implementation of these public methods in the
 following sections.

 AddComponentProperty
 Use the AddComponentProperty method to initialize those properties of an ASP.NET AJAX component
that reference other ASP.NET AJAX components in the current ASP.NET AJAX application. These
 properties are known as component properties .

 The AddComponentProperty method takes two parameters, the first being a string that contains the
name of the property being initialized and the second being a string that contains the id property value
of the ASP.NET AJAX component that this property references. Recall that the id property value of
an ASP.NET AJAX component uniquely identifies the component among other components in the
 current ASP.NET AJAX application.

c17.indd 727c17.indd 727 8/20/07 6:29:58 PM8/20/07 6:29:58 PM

Chapter 17: Script and Extender Server Controls

728

 Keep in mind that an ASP.NET AJAX component is any ASP.NET AJAX class that directly or indirectly
inherits from the ASP.NET AJAX Component base class. Since all ASP.NET AJAX controls and
 behaviors inherit from this base class, they are all ASP.NET AJAX components.

 Listing 17-6 presents the implementation of the AddComponentProperty method. As you can see, this
method takes the following two steps to ensure that the id property value passed into the method as its
second argument is a valid JSON string. (Keep in mind that this id property is the id property value of
the component referenced by the property being initialized.) Recall that a valid JSON string is a collec-
tion of zero or more Unicode characters wrapped in double quotes and using backslash escapes:

 ❑ First, the AddComponentProperty method calls the QuoteString static method, passing in the
component id . Recall from Listing 17-7 that the QuoteString method ensures that the specified
string, which is the component id in this case, is a collection of Unicode characters using
 backslash escapes.

❑ Second, it wraps the component id in double quotes.

 The AddComponentProperty method then stores the property name and its associated value, which is
the id property value of the component that the property references, in an internal collection named
 References .

 As you can see from Listing 17-6 , the References collection is a SortedList of
 KeyValuePair<string, string> objects for which each object represents a component property. The
 Key and Value properties of each object in the References collection respectively contain the name of
the associated property and its value, which is nothing but the id property value of the component
that the property references.

 AddElementProperty
 Use the AddElementProperty method to initialize those properties of an ASP.NET AJAX component
that reference DOM elements on the current page. These properties are known as element properties . As
you can see from Listing 17-6 , the AddElementProperty method takes two arguments: a string that
 contains the name of the property whose value is being initialized, and a string that contains the
 id HTML attribute value of a DOM element on the current page.

 As Listing 17-6 shows, the AddElementProperty method begins by evaluating the value of the prop-
erty, which is a reference to the DOM element with the specified id HTML attribute value. As such, this
method generates the script that contains a call into the $get global JavaScript function. The method
takes the following steps to ensure that this script is a valid JSON string:

 ❑ Calls the QuoteString static method, passing in the element id . Recall from Listing 17-7 that
the QuoteString method ensures that the specified string, which is the element id in this case,
is a collection of Unicode characters using backslash escapes.

❑ Wraps the element id in double quotes.

 Finally, the AddElementProperty method adds the name of the property and its value, which is the
above script, to an internal collection named Properties . Notice that the Properties collection is
again a SortedList of KeyValuePair<string, string> objects where each object represents an
 element property. The Key and Value properties of each in the Properties collection respectively
 contain the name of the associated property and its value, which is nothing but the script that returns a
reference to the DOM element with the specified element id .

c17.indd 728c17.indd 728 8/20/07 6:29:59 PM8/20/07 6:29:59 PM

Chapter 17: Script and Extender Server Controls

729

 AddEvent
 The AddEvent method takes two parameters: a string that contains an event name, and a string that
 contains an event handler. In other words, this method enables you to register an event handler for the
specified event of an ASP.NET AJAX component. As Listing 17-6 shows, this method adds the specified
event name and its associated event handler to an internal dictionary named Events . Notice that the
 Events collection is a SortedList of KeyValuePair<string, string> objects. The Key and Value
properties of each object in the Events collection contain an event name and its associated event
 handler, respectively.

 AddProperty
 The AddProperty public method takes the name of the property being initialized as its first argument
and the value of the property as its second argument. The value could be any .NET object that the
 JavaScriptSerializer can serialize into a valid JSON string. As you can see from Listing 17-6 , this
method first invokes the Serialize method on the JavaScriptSerializer , passing in the property
value, which is a .NET object. The Serialize method serializes the specified .NET object into its JSON
representation and returns a string that contains this JSON representation. The AddProperty method
then adds the name of this property and its value, which is the string that contains the JSON representa-
tion of the original .NET object, to the Properties collection.

 As you can see from Listing 17-6 , our replica ScriptComponentDescriptor exposes a property
of type JavaScriptSerializer named Serializer that instantiates and returns a
 JavaScriptSerializer object.

 AddScriptProperty
 The AddScriptProperty method enables you to initialize those properties of an ASP.NET AJAX
 component whose values are client scripts. As you can see from Listing 17-6 , this method takes the name
of the property being initialized as its first argument and the script that constitutes the value of the
 property as its second argument. This method stores the name of the property and its associated value in
the Properties collection.

 AppendScript
 Recall from Listing 17-6 that the GetScript method of the ScriptComponentDescriptor instantiates a
 StringBuilder and populates it with the script that invokes the $create global JavaScript function to
create a new ASP.NET AJAX component. As you saw, this method invokes the AppendScript method
three times, as follows:

 ❑ The first time, it passes the Properties collection into the method to have the method to
 serialize this collection into its object literal representation and to append a string to the
 specified StringBuilder that contains this representation. Recall that this representation
 contains one name/value pair for each item in the Properties collection.

❑ The second time, it passes the Events collection into the method to have the method to serialize
this collection into its object literal representation and to append a string to the specified
 StringBuilder that contains this representation. Recall that this representation contains one
name/value pair for each item in the Events collection.

c17.indd 729c17.indd 729 8/20/07 6:29:59 PM8/20/07 6:29:59 PM

Chapter 17: Script and Extender Server Controls

730

❑ The third time, it passes the References collection into the method to have the method to
 serialize this collection into its object literal representation and to append a string to the speci-
fied StringBuilder that contains this representation. Recall that this representation contains
one name/value pair for each item in the References collection.

 Next, I’ll walk you through the implementation of the AppendScript method, as shown in Listing 17-6 .
This method takes two arguments: a SortedList of KeyValuePair<string, string> objects, and a
 StringBuilder . The main responsibility of this method is to serialize the specified SortedList into its
JSON representation, which is a JSON object. This JSON object, like any other JSON object, starts with an
open curly brace ({):

 builder.Append(“{“);

 This JSON object also contains a comma-separated list of name/value pairs, for which each name/value
pair is the JSON serialization of a KeyValuePair<string, string> object in the SortedList . Here is
how the AppendScript method serializes each KeyValuePair<string, string> object in the
 SortedList : since the AddComponentProperty , AddElementProperty , AddEvent , AddProperty , and
 AddScriptProperty methods have already ensured that the value contained in the Value property of
each KeyValuePair<string, string> object in the References , Properties , and Events collec-
tions is a valid JSON representation, the AppendScript method must only serialize the value contained
in the Key property of each KeyValuePair<string, string> object. To do so, the method performs
these tasks:

 ❑ Invokes the QuoteString static method on the HelperMethods class once for each
 KeyValuePair<string, string> object in the SortedList , passing in the value of the
 Key property of the KeyValuePair object to ensure that this value is a collection of Unicode
characters using backslash escapes:

 builder.Append(HelperMethods.QuoteString(pair.Key));

 ❑ Wraps the return value of the QuoteString static method in double quotes:

 builder.Append(‘”’);
 builder.Append(HelperMethods.QuoteString(pair.Key));
 builder.Append(‘”’);

 Finally, the AppendScript method appends a colon character followed by the value of the Value
 property of the KeyValuePair object as is:

 builder.Append(‘:’);
 builder.Append(pair.Value);

 ScriptControlDescriptor
 Listing 17-8 presents the implementation of the replica ScriptControlDescriptor . As you can see,
this class derives from the ScriptComponentDescriptor base class discussed in the previous sections.
Note that the constructor of the ScriptControlDescriptor class makes use of the internal constructor
of the ScriptComponentDescriptor base class. As discussed earlier, this internal constructor takes two
parameters, the first containing the fully qualified name of the type of the ASP.NET AJAX control being

c17.indd 730c17.indd 730 8/20/07 6:29:59 PM8/20/07 6:29:59 PM

Chapter 17: Script and Extender Server Controls

731

instantiated and initialized, and the second containing the id HTML attribute of the associated DOM
element of this ASP.NET AJAX control.

 Listing 17-8: The ScriptControlDescriptor

 namespace CustomComponents3
{
 using System;

 public class ScriptControlDescriptor : ScriptComponentDescriptor
 {
 public ScriptControlDescriptor(string type, string elementID) : base(type,
 elementID)
 {
 base.RegisterDispose = false;
 }

 public override string ClientID
 {
 get { return this.ElementID; }
 }

 public string ElementID
 {
 get { return base.ElementIDInternal; }
 }

 public override string ID
 {
 get { return base.ID; }
 set { throw new InvalidOperationException(“ID Not Settable”); }
 }
 }
}

 ScriptBehaviorDescriptor
 Listing 17-9 presents the implementation of the replica ScriptBehaviorDescriptor . As you can see,
this class, just like the ScriptControlBehavior class, derives from the ScriptComponentDescriptor
base class. Note that the constructor of the ScriptBehaviorDescriptor class, just like the
 constructor of the ScriptControlBehavior class, makes use of the internal constructor of the
ScriptComponentDescriptor base class. In this case, the first parameter passed into this internal
 constructor contains the fully qualified name of the type of the ASP.NET AJAX behavior being
 instantiated and initialized, and the second parameter contains the id HTML attribute of the
 associated DOM element of this ASP.NET AJAX behavior.

c17.indd 731c17.indd 731 8/20/07 6:30:00 PM8/20/07 6:30:00 PM

Chapter 17: Script and Extender Server Controls

732

 As discussed in Chapter 16 , every ASP.NET AJAX behavior exposes a property named name that contains
the name of the behavior. As a result, the ScriptBehaviorDescriptor overrides the GetScript method
of its base class — that is, the ScriptComponentDescriptor — to make a call to the AddProperty
method to add the value of its _name field as the value of the name property of the behavior being
 instantiated and initialized:

 if (!string.IsNullOrEmpty(this._name))
 base.AddProperty(“name”, this._name);

return base.GetScript();

 As you can see from Listing 17-9 , the ScriptBehaviorDescriptor class exposes a read/write property
named Name that enables you to get and to set the value of the _name field of the class. Note that the
 getter of this property first checks whether the value of the _name field is set — that is, whether the setter
method has been called to set this value. If so, it simply returns the value of the _name field. If not, it
invokes another method named GetTypeName , passing in the fully qualified name of the type of the
behavior being instantiated and initialized to generate and return an appropriate value for the Name
property.

 As Listing 17-9 shows, the GetTypeName method simply extracts the name of the type of the behavior
being instantiated and initialized from its fully qualified name. Recall that the fully qualified name of the
type of an ASP.NET AJAX component such as a behavior contains both the name and the complete
namespace containment hierarchy of the component.

 Listing 17-9: The ScriptBehaviorDescriptor

 namespace CustomComponents3
{
 public class ScriptBehaviorDescriptor : ScriptComponentDescriptor
 {
 private string _name;

 public ScriptBehaviorDescriptor(string type, string elementID)
 : base(type, elementID)
 {
 base.RegisterDispose = false;
 }

 protected internal override string GetScript()
 {
 if (!string.IsNullOrEmpty(this._name))
 base.AddProperty(“name”, this._name);

 return base.GetScript();
 }

 private static string GetTypeName(string type)
 {
 int num = type.LastIndexOf(‘.’);
 if (num == -1)
 return type;

c17.indd 732c17.indd 732 8/20/07 6:30:00 PM8/20/07 6:30:00 PM

Chapter 17: Script and Extender Server Controls

733

 return type.Substring(num + 1);
 }

 public override string ClientID
 {
 get
 {
 if (string.IsNullOrEmpty(this.ID))
 return (this.ElementID + “$” + this.Name);
 return this.ID;
 }
 }

 public string ElementID
 {
 get { return base.ElementIDInternal; }
 }

 public string Name
 {
 get
 {
 if (string.IsNullOrEmpty(this._name))
 return GetTypeName(base.Type);
 return this._name;
 }
 set { this._name = value; }
 }
 }
}

 ScriptReference
 Listing 17-10 presents the implementation of the replica ScriptReference class. The main responsibility
of a ScriptReference object is to specify and represent a reference to a JavaScript file. The
ASP.NET AJAX ScriptReference class provides you with two approaches to specify the location
of the JavaScript file. The first approach requires you to set the value of the Path property of the
 ScriptReference object to the URL of the JavaScript file. The second approach, which only applies to
JavaScript files embedded in an assembly, requires you to assign a string that contains the assembly
information to the Assembly property of the ScriptReference object and to assign a string that speci-
fies the name of the JavaScript file to the Name property of the ScriptReference object. To keep our
 discussions focused, the replica ScriptReference class only supports the first approach. However, you
can easily extend the replica to add support for the second approach as well.

c17.indd 733c17.indd 733 8/20/07 6:30:00 PM8/20/07 6:30:00 PM

Chapter 17: Script and Extender Server Controls

734

 Listing 17-10: The ScriptReference Class

 using System;
using System.Web.UI;
using System.ComponentModel;

namespace CustomComponents3
{
 public class ScriptReference
 {
 private Control _containingControl;
 private bool _isStaticReference;
 private string _path;

 public ScriptReference() {}

 public ScriptReference(string path) : this()
 {
 this.Path = path;
 }

 [DefaultValue(“”), Category(“Behavior”)]
 public string Path
 {
 get
 {
 if (this._path != null)
 return this._path;

 return string.Empty;
 }
 set { this._path = value; }
 }

 internal bool IsStaticReference
 {
 get { return this._isStaticReference; }
 set { this._isStaticReference = value; }
 }

 internal Control ContainingControl
 {
 get { return this._containingControl; }
 set { this._containingControl = value; }
 }
 }
}

c17.indd 734c17.indd 734 8/20/07 6:30:01 PM8/20/07 6:30:01 PM

Chapter 17: Script and Extender Server Controls

735

 ScriptReferenceCollection
 Listing 17-11 presents the implementation of the replica ScriptReferenceCollection class. As the
name suggests, this collection contains objects of type ScriptReference . As you’ll see in the next section,
the ScriptManager exposes a property of type ScriptReferenceCollection named Scripts . Thanks
to the .NET 2.0 generics, implementing a new collection class such as ScriptReferenceCollection is as
easy as declaring a class that derives from one of the standard .NET generic collections.

 Listing 17-11: The ScriptReferenceCollection Class

 using System.Collections.ObjectModel;

namespace CustomComponents3
{
 public class ScriptReferenceCollection : Collection<ScriptReference> { }
}

 ScriptManager
 Listing 17-12 contains the implementation of the replica ScriptManager class. As you can see, this class
drives from the Control base class. This derivation turns the ScriptManager into a server control and
consequently allows it to participate in the typical ASP.NET page/control life-cycle phases. I’ll discuss
the implementation of the methods and properties of the replica ScriptManager server control in the
following sections.

 Listing 17-12: The ScriptManager Class

 using System;
using System.Web;
using System.Text;
using System.Web.UI;
using System.ComponentModel;
using System.Collections.Generic;

namespace CustomComponents3
{
 [ParseChildren(true), DefaultProperty(“Scripts”),
 NonVisualControl, PersistChildren(false)]
 public class ScriptManager : Control
 {
 public event EventHandler<ScriptReferenceEventArgs> ResolveScriptReference
 {
 add
 {
 base.Events.AddHandler(ResolveScriptReferenceEvent, value);
 }
 remove

(continued)

c17.indd 735c17.indd 735 8/20/07 6:30:01 PM8/20/07 6:30:01 PM

Chapter 17: Script and Extender Server Controls

736

 Listing 17-12 (continued)

 {
 base.Events.RemoveHandler(ResolveScriptReferenceEvent, value);
 }
 }

 private ScriptReferenceCollection _scripts;

 [PersistenceMode(PersistenceMode.InnerProperty),
 Editor(“System.Web.UI.Design.CollectionEditorBase,
 System.Web.Extensions.Design, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35”, typeof(System.Drawing.Design.UITypeEditor)),
 DefaultValue((string)null), MergableProperty(false),
 Category(“Behavior”)]
 public ScriptReferenceCollection Scripts
 {
 get
 {
 if (this._scripts == null)
 this._scripts = new ScriptReferenceCollection();

 return this._scripts;
 }
 }

 protected override void OnInit(EventArgs e)
 {
 base.OnInit(e);
 Page.Items[typeof(ScriptManager)] = this;
 this.Page.PreRenderComplete += new EventHandler(Page_PreRenderComplete);
 }

 public static ScriptManager GetCurrent(Page page)
 {
 return (page.Items[typeof(ScriptManager)] as ScriptManager);
 }

 private static readonly object ResolveScriptReferenceEvent = new object();

 protected virtual void OnResolveScriptReference(ScriptReferenceEventArgs e)
 {
 EventHandler<ScriptReferenceEventArgs> handler =
 (EventHandler<ScriptReferenceEventArgs>)
 base.Events[ResolveScriptReferenceEvent];
 if (handler != null)
 handler(this, e);
 }

 void Page_PreRenderComplete(object sender, EventArgs e)
 {
 List<ScriptReference> list1 = new List<ScriptReference>();
 this.CollectScripts(list1);

 ScriptReferenceEventArgs args;

c17.indd 736c17.indd 736 8/20/07 6:30:01 PM8/20/07 6:30:01 PM

Chapter 17: Script and Extender Server Controls

737

 foreach (ScriptReference reference3 in list1)
 {
 args = new ScriptReferenceEventArgs(reference3);
 this.OnResolveScriptReference(args);
 }

 foreach (ScriptReference reference4 in list1)
 {
 string url = reference4.Path;
 if (this.LoadScriptsBeforeUI)
 this.Page.ClientScript.RegisterClientScriptInclude(typeof(ScriptManager),
 url, url);
 else
 {
 string script = “\r\n<script src=\”” +
 HttpUtility.HtmlAttributeEncode(url) +
 “\” type=\”text/javascript\”></script>”;
 this.Page.ClientScript.RegisterStartupScript(typeof(ScriptManager),
 url, script, false);
 }
 }
 }

 private void CollectScripts(List<ScriptReference> scripts)
 {
 if (this._scripts != null)
 {
 foreach (ScriptReference reference1 in this._scripts)
 {
 reference1.ContainingControl = this;
 reference1.IsStaticReference = true;
 scripts.Add(reference1);
 }
 }
 this.AddScriptReferencesForScriptControls(scripts);
 this.AddScriptReferencesForExtenderControls(scripts);
 }

 private void AddScriptReferencesForScriptControls(
 List<ScriptReference> scriptReferences)
 {
 if (this._scriptControls != null)
 {
 foreach (IScriptControl scriptControl in this._scriptControls.Keys)
 {
 IEnumerable<ScriptReference> enumerable1 =
 scriptControl.GetScriptReferences();
 if (enumerable1 != null)
 {
 using (IEnumerator<ScriptReference> enumerator1 =
 enumerable1.GetEnumerator())
 {
 while (enumerator1.MoveNext())
 {

(continued)

c17.indd 737c17.indd 737 8/20/07 6:30:01 PM8/20/07 6:30:01 PM

Chapter 17: Script and Extender Server Controls

738

 Listing 17-12 (continued)

 ScriptReference reference1 = enumerator1.Current;
 if (reference1 != null)
 {
 reference1.ContainingControl = (Control)scriptControl;
 reference1.IsStaticReference = false;
 scriptReferences.Add(reference1);
 }
 }
 }
 }
 }
 }
 }
 private void AddScriptReferencesForExtenderControls(List<ScriptReference>
 scriptReferences)
 {
 if (this._extenderControls != null)
 {
 foreach (IExtenderControl extenderControl in this._extenderControls.Keys)
 {
 IEnumerable<ScriptReference> enumerable1 =
 extenderControl.GetScriptReferences();
 if (enumerable1 != null)
 {
 using (IEnumerator<ScriptReference> enumerator1 =
 enumerable1.GetEnumerator())
 {
 while (enumerator1.MoveNext())
 {
 ScriptReference reference1 = enumerator1.Current;
 if (reference1 != null)
 {
 reference1.IsStaticReference = false;
 reference1.ContainingControl = (Control)extenderControl;
 scriptReferences.Add(reference1);
 }
 }
 }
 }
 }
 }
 }

 public void RegisterScriptControl<TScriptControl>(TScriptControl scriptControl)
 where TScriptControl : Control, IScriptControl
 {
 int num;
 this.ScriptControls.TryGetValue(scriptControl, out num);
 num++;
 this.ScriptControls[scriptControl] = num;
 }

c17.indd 738c17.indd 738 8/20/07 6:30:02 PM8/20/07 6:30:02 PM

Chapter 17: Script and Extender Server Controls

739

 private Dictionary<IScriptControl, int> _scriptControls;
 private Dictionary<IScriptControl, int> ScriptControls
 {
 get
 {
 if (this._scriptControls == null)
 this._scriptControls = new Dictionary<IScriptControl, int>();

 return this._scriptControls;
 }
 }

 public void RegisterExtenderControl<TExtenderControl>(TExtenderControl
 extenderControl, Control targetControl) where TExtenderControl :
 Control, IExtenderControl
 {
 List<Control> list;
 if (!this.ExtenderControls.TryGetValue(extenderControl, out list))
 {
 list = new List<Control>();
 this.ExtenderControls[extenderControl] = list;
 }
 list.Add(targetControl);
 }

 private Dictionary<IExtenderControl, List<Control>> _extenderControls;
 private Dictionary<IExtenderControl, List<Control>> ExtenderControls
 {
 get
 {
 if (this._extenderControls == null)
 this._extenderControls = new Dictionary<IExtenderControl,
 List<Control>>();

 return this._extenderControls;
 }
 }

 private bool _loadScriptsBeforeUI;

 [Category(“Behavior”), DefaultValue(true)]
 public bool LoadScriptsBeforeUI
 {
 get { return this._loadScriptsBeforeUI; }
 set { this._loadScriptsBeforeUI = value; }
 }

 public void RegisterScriptDescriptors(IExtenderControl extenderControl)
 {
 List<Control> list;
 Control control = extenderControl as Control;
 if (!this.ExtenderControls.TryGetValue(extenderControl, out list))
 throw new ArgumentException(“Extender Control Not Registered”);

(continued)

c17.indd 739c17.indd 739 8/20/07 6:30:02 PM8/20/07 6:30:02 PM

Chapter 17: Script and Extender Server Controls

740

 Listing 17-12 (continued)

 foreach (Control control2 in list)
 {
 if (control2.Visible)
 {
 IEnumerable<ScriptDescriptor> scriptDescriptors =
 extenderControl.GetScriptDescriptors(control2);
 if (scriptDescriptors != null)
 {
 StringBuilder builder = null;
 foreach (ScriptDescriptor descriptor in scriptDescriptors)
 {
 if (builder == null)
 {
 builder = new StringBuilder();
 builder.AppendLine(“Sys.Application.add_init(function() {“);
 }

 builder.Append(“ “);
 builder.AppendLine(descriptor.GetScript());
 descriptor.RegisterDisposeForDescriptor(this, control);
 }

 if (builder != null)
 {
 builder.AppendLine(“});”);
 string key = builder.ToString();
 Page.ClientScript.RegisterStartupScript(typeof(ScriptManager),
 key, key, true);
 }
 }
 }
 }
 }

 public void RegisterScriptDescriptors(IScriptControl scriptControl)
 {
 int num;
 Control control = scriptControl as Control;
 if (!this.ScriptControls.TryGetValue(scriptControl, out num))
 throw new ArgumentException(“Script Control Not Registered”);

 for (int i = 0; i < num; i++)
 {
 IEnumerable<ScriptDescriptor> scriptDescriptors =
 scriptControl.GetScriptDescriptors();
 if (scriptDescriptors != null)
 {
 StringBuilder builder = null;
 foreach (ScriptDescriptor descriptor in scriptDescriptors)
 {
 if (builder == null)
 {

c17.indd 740c17.indd 740 8/20/07 6:30:02 PM8/20/07 6:30:02 PM

Chapter 17: Script and Extender Server Controls

741

 builder = new StringBuilder();
 builder.AppendLine(“Sys.Application.add_init(function() {“);
 }

 builder.Append(“ “);
 builder.AppendLine(descriptor.GetScript());
 descriptor.RegisterDisposeForDescriptor(this, control);
 }

 if (builder != null)
 {
 builder.AppendLine(“});”);
 string key = builder.ToString();
 Page.ClientScript.RegisterStartupScript(typeof(ScriptManager),
 key, key, true);
 }
 }
 }
 }
 }
}

 Scripts
 As you can see from Listing 17-12 , the ScriptManager server control exposes a collection property
of the type ScriptReferenceCollection named Scripts that contains the ScriptReference
objects that reference JavaScript files. Note that this property is marked with the
PersistenceMode(PersistenceMode.InnerProperty) metadata attribute to enable you to
add ScriptReference objects to this collection in a purely declarative fashion, without writing a
 single line of imperative code.

 LoadScriptsBeforeUI
 As Listing 17-12 shows, the ScriptManager server control exposes a Boolean property named
 LoadScriptsBeforeUI that specifies whether the script files referenced by the ScriptReference
objects in the Scripts collection must be loaded before the HTML markup text. The default is true .
The decision as to whether to load the scripts before or after UI depends on whether the scripts contain
any references to the UI elements. If they do, they must be loaded after UI to ensure that the UI elements
that the scripts reference are already loaded. You’ll see an example of this property later in this chapter.

 ScriptControls
 The replica ScriptManager server control maintains the list of all script server controls on the current
page in an internal collection named ScriptControls (see Listing 17-12).

 RegisterScriptControl
 The RegisterScriptControl method of the ScriptManager server control adds the specified script
server control to the ScriptControls collection discussed in the previous section (see Listing 17-12).

c17.indd 741c17.indd 741 8/20/07 6:30:03 PM8/20/07 6:30:03 PM

Chapter 17: Script and Extender Server Controls

742

 ExtenderControls
 The replica ScriptManager server control also maintains the list of all extender server controls on the
current page in an internal collection named ExtenderControls (see Listing 17-12).

 RegisterExtenderControl
 As you saw in the previous section, the ExtenderControls collection is a dictionary of items, each of
which contains a list of server controls associated with a particular extender server control. The
 RegisterExtenderControl method takes two parameters, the first referencing the extender server
control being registered and the second the server control whose client-side functionality the specified
extender server control extends. Recall that this server control is known as the target server control of
the extender server control. The RegisterExtenderControl simply accesses the item associated
with the specified extender server control and adds the specified target server control to the associated
server control list of this item. Recall also that each item in the ExtenderControls dictionary contains
a list of server controls associated with a particular extender server control.

 GetCurrent
 As Listing 17-12 shows, the GetCurrent static method of the ScriptManager server control returns a
reference to the current ScriptManager server control. Recall that the ScriptManager server control
maintains this reference in the Items collection of the current Page object. This ensures that the same
 ScriptManager server control is used throughout the current request.

 OnInit
 As Listing 17-12 shows, the ScriptManager server control overrides the OnInit method that inherits
from the Control base class. This method performs three tasks. First, it invokes the OnInit method of
its base class to raise the Init event and consequently to invoke all the event handlers registered for the
 Init event of the current ScriptManager server control:

 base.OnInit(e);

 Next, it stores the reference to the current ScriptManager server control in the Items collection of the
current Page object. As discussed earlier, the GetCurrent static method returns this reference to its
caller to ensure that the same instance of the ScriptManager server control is used during processing of
the current request.

 Page.Items[typeof(ScriptManager)] = this;

 Finally, the OnInit method registers a method named Page_PreRenderComplete as an event handler
for the PreRenderComplete event of the current Page object:

 this.Page.PreRenderComplete += new EventHandler(Page_PreRenderComplete);

c17.indd 742c17.indd 742 8/20/07 6:30:03 PM8/20/07 6:30:03 PM

Chapter 17: Script and Extender Server Controls

743

 Page_PreRenderComplete
 When the current Page enters its PreRenderComplete phase, it automatically invokes the
Page_PreRenderComplete method of the current ScriptManager server control shown in
Listing 17-12 . As you can see, this method first instantiates a List<ScriptReference> collection:

 List<ScriptReference> list1 = new List<ScriptReference>();

 Next, it invokes another method named CollectScripts , passing in the List<ScriptReference>
collection to have this method to populate this collection with the list of ScriptReference objects that
reference JavaScript files:

 this.CollectScripts(list1);

 Then it iterates through the ScriptReference objects in the List<ScriptReference> collection and per-
forms these two tasks for each enumerated ScriptReference object. First, it instantiates a
 ScriptReferenceEventArgs instance, passing in a reference to the enumerated ScriptReference
object. As you’ll see later, the ScriptReferenceEventArgs is the event data class associated with an event
named ResolveScriptReference . Next, it invokes a method named OnResolveScriptReference ,
passing in the ScriptReferenceEventArgs object to raise the ResolveScriptReference event.
As you’ll see later, this enables the page developer to register an event handler for this event whereby
he or she can use custom code to resolve the reference to the JavaScript file specified by the enumerated
 ScriptReference object.

 foreach (ScriptReference reference3 in list1)
 {
 args = new ScriptReferenceEventArgs(reference3);
 this.OnResolveScriptReference(args);
 }

 Next, the Page_PreRenderComplete method iterates through the ScriptReference objects in
the List<ScriptReference> collection once more and takes these steps for each enumerated
ScriptReference object. It checks whether the LoadScriptsBeforeUI property is set to true .
If so, this indicates that the page developer has requested the referenced JavaScript files to be loaded
before the UI is loaded. As a result, the Page_PreRenderComplete method invokes the
RegisterClientScriptInclude method on the ClientScript property of the current Page
object to have the current page render the script block associated with the enumerated
ScriptReference at the beginning of the current page. Note that the src attribute of this script
block is set to the value of the Path property of the enumerated ScriptReference object because
this property contains the URL of the JavaScript file that the object references.

 foreach (ScriptReference reference4 in list1)
 {
 string url = reference4.Path;
 if (this.LoadScriptsBeforeUI)
 this.Page.ClientScript.RegisterClientScriptInclude(typeof(ScriptManager),
 url, url);

c17.indd 743c17.indd 743 8/20/07 6:30:03 PM8/20/07 6:30:03 PM

Chapter 17: Script and Extender Server Controls

744

 If the LoadScriptBeforeUI property is set to false , this indicates that the page developer wants the
JavaScript file referenced by the enumerated ScriptReference object to be loaded after the UI. As a
result, the Page_PreRenderComplete method first generates a string that contains a script include
block whose src attribute is set to the value of the Path property of the enumerated ScriptReference
object. Then it invokes the RegisterStartupScript method to have the current page render this string
right before the closing tag of the form HTML element:

 else
 {
 string script = “\r\n<script src=\”” +
 HttpUtility.HtmlAttributeEncode(url) +
 “\” type=\”text/javascript\”></script>”;
 this.Page.ClientScript.RegisterStartupScript(typeof(ScriptManager),
 url, script, false);
 }
 }

 CollectScripts
 As you saw in the previous section, the Page_PreRenderComplete method invokes the CollectScripts
method of the current ScriptManager server control, passing in a List<ScriptReference> collection to
that method to populate this collection with the list of all ScriptReference objects. In general, there are
three groups of ScriptReference objects that the CollectScripts method needs to collect. The first
group contains the ScriptReference objects that the page developers declaratively or imperatively add
to the Scripts collection of the current ScriptManager server control. As a result, the CollectScripts
method iterates through the ScriptReference objects in the Scripts collection and performs these tasks
for each ScriptReference object. First it assigns the reference to the current ScriptManager server
 control as the ContainingControl property of the ScriptReference object:

 reference1.ContainingControl = this;

 Next, it sets the IsStaticReference property of the ScriptReference object to true to signal that
this ScriptReference object was defined statically by the page developer:

 reference1.IsStaticReference = true;

 Finally, it adds the ScriptReference object to the List<ScriptReference> collection passed into the
 CollectScripts method:

 scripts.Add(reference1);

 The second group of ScriptReference objects includes the ScriptReference objects of the script
server controls on the current page. Next, the CollectScripts method invokes another method named
 AddScriptReferencesForScriptControls , passing in the List<ScriptReference> collection to
have this method add the ScriptReference objects in the second group to this collection:

 this.AddScriptReferencesForScriptControls(scripts);

c17.indd 744c17.indd 744 8/20/07 6:30:04 PM8/20/07 6:30:04 PM

Chapter 17: Script and Extender Server Controls

745

 The third group of ScriptReference objects includes the ScriptReference objects of the extender
server controls on the current page. Next, the CollectScripts method invokes another method named
 AddScriptReferencesForExtenderControls , passing in the List<ScriptReference> collection to
have this method add the ScriptReference objects in the third group to this collection:

 this.AddScriptReferencesForExtenderControls(scripts);

 As you can see, when the CollectScripts method finally returns, the List<ScriptReference>
 collection passed into it is populated with ScriptReference objects defined for the current page.

 AddScriptReferencesForScriptControls
 As you saw earlier, the CollectScripts method invokes the AddScriptReferencesForScriptControls
method, passing in a List<ScriptReference> collection to have this method to add the
ScriptReference objects of all the script server controls on the current page to this collection. Recall
that the current ScriptManager server control maintains references of all script server controls on the
 current page in an internal collection of type Dictionary<IScriptControl, int> named
ScriptControls . This dictionary exposes a collection property named Keys that contains the actual
 references to all the script server controls on the current page. Keep in mind that all script server controls
implement the IScriptControl interface.

 As you can see from Listing 17-12 , this method iterates through the script server controls in the
Keys collection of this collection and takes these steps for each script server control to collect its
 ScriptReference objects. First, it invokes the GetScriptReferences method on the script server
 control to return an IEnumerable<ScriptReference> collection that contains all the
 ScriptReference objects associated with the script server control.

 IEnumerable<ScriptReference> enumerable1 = scriptControl.GetScriptReferences();

 Next, it calls the GetEnumerator method on this IEnumerable<ScriptReference> collection to return
a reference to the IEnumerator<ScriptReference> object that knows how to iterate through the items
of this collection in a generic fashion:

 IEnumerator<ScriptReference> enumerator1 = enumerable1.GetEnumerator()

 Next, it uses this IEnumerator<ScriptReference> object to iterate through the ScriptReference
objects in this collection and performs these steps for each enumerated ScriptReference object. First, it
assigns a reference to the script server control to the ContainingControl property of the enumerated
 ScriptReference object:

 reference1.ContainingControl = (Control)scriptControl;

 Next, it sets the IsStaticReference property of the ScriptReference object to false to indicate that
the enumerated ScriptReference object is not one of those ScriptReference objects that the page
developer has statically added to the Scripts collection of the ScriptManager server control:

 reference1.IsStaticReference = false;

c17.indd 745c17.indd 745 8/20/07 6:30:04 PM8/20/07 6:30:04 PM

Chapter 17: Script and Extender Server Controls

746

 Finally, it adds the enumerated ScriptReference object to the List<ScriptReference> collection
passed into the method:

 scriptReferences.Add(reference1);

 As you can see, by the time the AddScriptReferencesForScriptControls method returns, all the
 ScriptReference objects of all the script server controls on the current page have been added to
the List<ScriptReference> collection passed into the method.

 RegisterScriptDescriptors For Extender Controls
 The ScriptManager exposes a public method named RegisterScriptDescriptors that you can use
from your server-side code to add ScriptDescriptor objects for your extender server control. As
 Listing 17-12 shows, this method begins by checking whether the ExtenderControls collection of the
current ScriptManager server control contains the specified extender server control. Recall from
 previous sections that you must invoke the RegisterExtenderControl method on the current
 ScriptManager server control to add your extender server control to the ExtenderControls
 collection. Note that if the ExtenderControls collection does not contain the specified extender
 server control, the RegisterScriptDescriptors method raises an exception and does not allow you
to add ScriptDescriptors for your extender server control:

 if (!this.ExtenderControls.TryGetValue(extenderControl, out list))
 throw new ArgumentException(“Extender Control Not Registered”);

 You must invoke the RegisterExtenderControl method on the current ScriptManager server
 control to register your extender server control with the current ScriptManager server control before
you can register any ScriptDescriptor objects for your extender server control. You do not have to
worry about this issue if you’re deriving your extender server control from the ExtenderControl base
class. As Listing 17-2 shows, the ExtenderControl base class invokes the RegisterExtenderControl
method when it enters its PreRender life-cycle phase and the RegisterScriptDescriptors method
when it enters its Render life-cycle phase.

 Since the PreRender life-cycle phase always occurs before the Render life-cycle phase,
the RegisterExtenderControl method is always invoked before the
 RegisterScriptDescriptors method.

 The RegisterScriptDescriptors method then calls the GetScriptDescriptors method on the
specified extender server control, passing in the reference to the target server control to return an
IEnumerable<ScriptDescriptor> collection that contains all the ScriptDescriptor objects
 associated with this extender server control:

 IEnumerable<ScriptDescriptor> scriptDescriptors =
 extenderControl.GetScriptDescriptors(control2);

 Next, it instantiates a StringBuilder and adds the following string to it. As you can see, this string
 contains a client script that invokes the add_init method on the Application object that represents the
current ASP.NET AJAX application, in order to register the JavaScript function being defined as an
event handler for the init event of the Application object. As you’ll see shortly, the rest of the
RegisterScriptDescriptors method will define the rest of this JavaScript function. In other words,

c17.indd 746c17.indd 746 8/20/07 6:30:04 PM8/20/07 6:30:04 PM

Chapter 17: Script and Extender Server Controls

747

this method is generating the script code that both defines this JavaScript function and registers it as an
event handler for the init event.

 “Sys.Application.add_init(function() {“

 Next, the RegisterScriptDescriptors method iterates through the ScriptDescriptor objects in the
previously mentioned IEnumerable<ScriptDescriptor> collection and takes these two steps for each
enumerated ScriptDescriptor object. First, it calls the GetScript method on the enumerated
 ScriptDescriptor object to return a string that contains the client script being registered and adds this
string to the StringBuilder :

 builder.AppendLine(descriptor.GetScript());

 When the RegisterScriptDescriptors method gets out of the loop, it invokes the
RegisterStartupScript method to have the current page to render the content of the StringBuilder
right before the closing tag of the form element. Recall that the content of the StringBuilder is a string
that defines and registers a JavaScript function as event handler for the init event of the
client-side Application object.

 if (builder != null)
 {
 builder.AppendLine(“});”);
 string key = builder.ToString();
 Page.ClientScript.RegisterStartupScript(typeof(ScriptManager),
 key, key, true);
 }

 As you can see, by the time the RegisterScriptDescriptors method returns, all the ScriptDescriptor
objects associated with the specified extender server control are registered.

 ResolveScriptReference Event
 Recall from Listing 17-12 that the current ScriptManager server control registers its
Page_PreRenderComplete method as an event handler for the PreRenderComplete event of the current
page. When the current page enters its PreRenderComplete phase, it automatically invokes the
Page_PreRenderComplete method. As you saw earlier (and will also see in the following code fragment),
this method first invokes the CollectScripts method to collect all ScriptReference objects in a
 List<ScriptReference> collection. Next, it iterates through the ScriptReference objects in this collec-
tion and takes the following two steps for each enumerated ScriptReference object. First, it instantiates a
 ScriptReferenceEventArgs object, passing in the enumerated ScriptReference object. Then it invokes
the OnResolveScriptReference method, passing in this ScriptReferenceEventArgs object to raise the
 ResolveScriptReference event for the enumerated ScriptReference object. As you can see, the current
 ScriptManager server control raises its ResolveScriptReference event once for each ScriptReference
object. The page developer can register an event handler for this event in order to be notified when this
event is raised. As you can see from the highlighted portions of the following code listing, the current
 ScriptManager server control raises its ResolveScriptReference event before it invokes the
RegisterClientScriptInclude or RegisterStartupScript method to have the current page render the
associated script block. This allows the event handlers registered for this event to make any required updates
to each ScriptReference object before their associated script blocks are rendered to the current page.

c17.indd 747c17.indd 747 8/20/07 6:30:05 PM8/20/07 6:30:05 PM

Chapter 17: Script and Extender Server Controls

748

 void Page_PreRenderComplete(object sender, EventArgs e)
 {
 List<ScriptReference> list1 = new List<ScriptReference>();
 this.CollectScripts(list1);

 ScriptReferenceEventArgs args;
 foreach (ScriptReference reference3 in list1)
 {
 args = new ScriptReferenceEventArgs(reference3);
 this.OnResolveScriptReference(args);
 }

 foreach (ScriptReference reference4 in list1)
 {
 string url = reference4.Path;
 if (this.LoadScriptsBeforeUI)

 this.Page.ClientScript.RegisterClientScriptInclude(typeof(ScriptManager),
 url, url);

 else
 {
 string script = “\r\n<script src=\”” +
 HttpUtility.HtmlAttributeEncode(url) +
 “\” type=\”text/javascript\”></script>”;

 this.Page.ClientScript.RegisterStartupScript(typeof(ScriptManager),
 url, script, false);

 }
 }
 }

 The ScriptManager server control follows the typical .NET event implementation pattern to implement
its ResolveScriptReference event:

 ❑ It defines an event data class named ScriptReferenceEventArgs to hold the event data for
this event. Listing 17-13 presents the implementation of this event data class. As you can see
from this code listing, the constructor of this event data class takes a single argument of type
 ScriptReference and stores it in a private field named _script . Note that the class exposes a
single read-only property named Script that returns the value of this private field.

❑ It defines an event property as follows:

 public event EventHandler<ScriptReferenceEventArgs> ResolveScriptReference
 {
 add
 {
 base.Events.AddHandler(ResolveScriptReferenceEvent, value);
 }
 remove
 {
 base.Events.RemoveHandler(ResolveScriptReferenceEvent, value);
 }
 }

c17.indd 748c17.indd 748 8/20/07 6:30:05 PM8/20/07 6:30:05 PM

Chapter 17: Script and Extender Server Controls

749

❑ It defines a private static read-only object that will be used as a key to the Events collection that
the ScriptManager server control inherits from the Control base class in order to add an event
handler to and remove an event handler from this collection:

 private static readonly object ResolveScriptReferenceEvent = new object();

❑ It defines a protected virtual method named OnResolveReference that raises the
following event:

 protected virtual void OnResolveScriptReference(ScriptReferenceEventArgs e)
{
 EventHandler<ScriptReferenceEventArgs> handler =
 (EventHandler<ScriptReferenceEventArgs>)
 base.Events[ResolveScriptReferenceEvent];
 if (handler != null)
 handler(this, e);
}

 ❑ Note that the OnResolveScriptReference method passes the ScriptReferenceEventArgs
object into the event handlers registered for this event. Recall that this object exposes a read-only
property named Script that returns a reference to the ScriptReference object for which the
event was raised in the first place. This means that the event handler registered for this event
can use this property to access the ScriptReference object to change the properties of this
 object. For example, this enables you to dynamically specify the value of the Path or Assembly
property of the ScriptReference object instead of statically setting them in the .aspx page.

 Listing 17-13: The ScriptReferenceEventArgs Event Data Class

 using System;

namespace CustomComponents3
{
 public class ScriptReferenceEventArgs : EventArgs
 {
 private readonly ScriptReference _script;

 public ScriptReferenceEventArgs(ScriptReference script)
 {
 if (script == null)
 throw new ArgumentNullException(“script”);

 this._script = script;
 }

 public ScriptReference Script
 {
 get { return this._script; }
 }
 }
}

c17.indd 749c17.indd 749 8/20/07 6:30:05 PM8/20/07 6:30:05 PM

Chapter 17: Script and Extender Server Controls

750

 Putting it All Together
 The next chapter will show you how to implement custom extender and script server controls and will
implement pages that use these custom controls. Since we would like to put the replica components that
we developed in the previous sections to the test and run our custom server controls in the context of
these replicas, you need to set up a Web application that uses these replicas. Follow these steps to
 accomplish this task:

 1. Create an AJAX-enabled Web site in Visual Studio.

2. Add an App_Code directory to this Web site.

3. Add a new source file named IExtenderControl.cs to the App_Code directory and add the
code shown in Listing 17-1 to this source file.

4. Add a new source file named ExtenderControl.cs to the App_Code directory and add the
code shown in Listing 17-2 to this source file.

5. Add a new source file named IScriptControl.cs to the App_Code directory and add the code
shown in Listing 17-3 to this source file.

6. Add a new source file named ScriptControl.cs to the App_Code directory and add the code
shown in Listing 17-4 to this source file.

7. Add a new source file named ScriptDescriptor.cs to the App_Code directory and add the
code shown in Listing 17-5 to this source file.

8. Add a new source file named ScriptComponentDescriptor.cs to the App_Code directory
and add the code shown in Listing 17-6 to this source file.

9. Add a new source file named HelperMethods.cs to the App_Code directory and add the code
shown in Listing 17-7 to this source file.

10. Add a new source file named ScriptControlDescriptor.cs to the App_Code directory and
add the code shown in Listing 17-8 to this source file.

11. Add a new source file named ScriptBehaviorDescriptor.cs to the App_Code directory and
add the code shown in Listing 17-9 to this source file.

12. Add a new source file named ScriptReference.cs to the App_Code directory and add the
code shown in Listing 17-10 to this source file.

13. Add a new source file named ScriptReferenceCollection.cs to the App_Code directory
and add the code shown in Listing 17-11 to this source file.

14. Add a new source file named ScriptManager.cs to the App_Code directory and add the code
shown in Listing 17-12 to this source file.

15. Add a new source file named ScriptReferenceEventArgs.cs to the App_Code directory and
add the code shown in Listing 17-13 to this source file.

c17.indd 750c17.indd 750 8/20/07 6:30:06 PM8/20/07 6:30:06 PM

Chapter 17: Script and Extender Server Controls

751

 Developing a Custom Extender
Server Control

 In this section, I’ll implement a custom extender server control named TextBoxWatermarkExtenderControl
to help you gain the skills that you need to develop your own custom extender server controls. Listing 17-15
presents the implementation of the TextBoxWatermarkExtenderControl server control.

 Recall that Chapter 16 developed an ASP.NET AJAX behavior named TextBoxWatermarkBehavior .
When this behavior is attached to a textbox DOM element, it extends the functionality of the DOM
 element to add support for watermark capability. As discussed earlier in this chaper, the page that uses
the TextBoxWatermarkBehavior must take the steps shown in boldfaced portions of the following
code listing:

 Listing 17-14: A Page that Uses the TextBoxWatermarkBehavior

 <%@ Page Language=”C#” %>
. . .
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 . . .
 <script type=”text/javascript” language=”javascript”>
 var textBoxWatermarkBehavior;

 function submitCallback()
 {
 textBoxWatermarkBehavior._onSubmit();
 }

 function pageLoad()
 {
 var properties = [];
 properties[“name”] = “MyTextBoxWatermarkBehaviorName”;
 properties[“id”] = “MyTextBoxWatermarkBehaviorID”;
 properties[“WatermarkText”] = “Enter text here”;
 properties[“WatermarkCssClass”] = “WatermarkCssClass”;

 var textBox1 = $get(“TextBox1”);
 textBoxWatermarkBehavior =
 $create(AjaxControlToolkit.TextBoxWatermarkBehavior, properties,
 null, null, textBox1);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server” onsubmit=”submitCallback()” >
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Scripts>
 <asp:ScriptReference Path=”BehaviorBase.js” />
 <asp:ScriptReference Path=”TextBoxWatermarkBehavior.js” />
 </Scripts>

(continued)

c17.indd 751c17.indd 751 8/20/07 6:30:06 PM8/20/07 6:30:06 PM

Chapter 17: Script and Extender Server Controls

752

 Listing 17-14 (continued)

 </asp:ScriptManager>
 . . .
 </form>
</body>
</html>

 The TextBoxWatermarkExtenderControl server control encapsulates the logic that the boldfaced
 portions of Listing 17-14 implement and presents page developers with an object-oriented ASP.NET
based API that allows them to use the same imperative and declarative ASP.NET techniques to program
against the underlying TextBoxwatermark behavior. I’ll discuss the implementation of the methods and
properties of the TextBoxWatermarkExtenderControl server control, shown in Listing 17-15 , in the
following sections.

 Listing 17-15: The TextBoxWatermarkExtenderControl

 using System;
using System.ComponentModel;
using System.Collections.Generic;
using System.Globalization;
using System.Text;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace CustomComponents3
{
 [TargetControlType(typeof(IEditableTextControl))]
 public class TextBoxWatermarkExtenderControl : ExtenderControl
 {
 protected override IEnumerable<ScriptReference> GetScriptReferences()
 {
 ScriptReference reference1 = new ScriptReference();
 reference1.Path = ResolveClientUrl(“BehaviorBase.js”);

 ScriptReference reference2 = new ScriptReference();
 reference2.Path = ResolveClientUrl(“TextBoxWatermarkBehavior.js”);

 return new ScriptReference[] { reference1, reference2 };
 }

 protected override IEnumerable<ScriptDescriptor> GetScriptDescriptors(
 Control targetControl)
 {
 ScriptBehaviorDescriptor descriptor =
 new ScriptBehaviorDescriptor(“AjaxControlToolkit.TextBoxWatermarkBehavior”,
 targetControl.ClientID);
 descriptor.AddProperty(“WatermarkText”, this.WatermarkText);
 descriptor.AddProperty(“WatermarkCssClass”, this.WatermarkCssClass);
 descriptor.AddProperty(“id”, this.BehaviorID);

c17.indd 752c17.indd 752 8/20/07 6:30:06 PM8/20/07 6:30:06 PM

Chapter 17: Script and Extender Server Controls

753

 return new ScriptDescriptor[] { descriptor };
 }

 private string _clientState;
 [Browsable(false)]

 [DesignerSerializationVisibility(DesignerSerializationVisibility.Hidden)]
 public string ClientState
 {
 get { return _clientState; }
 set { _clientState = value; }
 }

 public string BehaviorID
 {
 get
 {
 return ViewState[“BehaviorID”] != null ?
 (string)ViewState[“BehaviorID”] : ClientID;
 }
 set
 {
 ViewState[“BehaviorID”] = value;
 }
 }

 protected override void OnPreRender(EventArgs e)
 {
 base.OnPreRender(e);
 Control targetControl = base.FindControl(TargetControlID);
 Control nc = NamingContainer;
 while ((targetControl == null) && (nc != null))
 {
 targetControl = nc.FindControl(TargetControlID);
 nc = nc.NamingContainer;
 }

 if (targetControl.Visible)
 {
 HiddenField hiddenField = null;

 if (string.IsNullOrEmpty(ClientStateFieldID))
 hiddenField = CreateClientStateField();

 else
 hiddenField =
 (HiddenField)NamingContainer.FindControl(ClientStateFieldID);

 if (hiddenField != null)
 hiddenField.Value = ClientState;
 }
 }

(continued)

c17.indd 753c17.indd 753 8/20/07 6:30:06 PM8/20/07 6:30:06 PM

Chapter 17: Script and Extender Server Controls

754

 Listing 17-15 (continued)

 private HiddenField CreateClientStateField()
 {
 HiddenField field = new HiddenField();
 field.ID = string.Format(CultureInfo.InvariantCulture,
 “{0}_ClientState”, ID);
 Controls.Add(field);
 ClientStateFieldID = field.ID;
 return field;
 }

 protected override void Render(HtmlTextWriter writer)
 {
 if (Page != null)
 Page.VerifyRenderingInServerForm(this);
 base.Render(writer);
 }

 protected override void OnInit(EventArgs e)
 {
 CreateClientStateField();
 Page.PreLoad += new EventHandler(Page_PreLoad);
 base.OnInit(e);
 }

 void Page_PreLoad(object sender, EventArgs e)
 {
 if (!string.IsNullOrEmpty(ClientStateFieldID))
 {
 HiddenField hiddenField =
 (HiddenField)NamingContainer.FindControl(ClientStateFieldID);

 if ((hiddenField != null) && !string.IsNullOrEmpty(hiddenField.Value))
 ClientState = hiddenField.Value;
 }
 }

 [Browsable(false)]
 [EditorBrowsable(EditorBrowsableState.Never)]
 [IDReferenceProperty(typeof(HiddenField))]
 [DefaultValue(“”)]
 [DesignerSerializationVisibility(DesignerSerializationVisibility.Hidden)]
 public string ClientStateFieldID
 {
 get { return ViewState[“ClientStateFieldID”] != null ?
 (string)ViewState[“ClientStateFieldID”] : string.Empty; }
 set { ViewState[“ClientStateFieldID”] = value; }
 }

 protected override void OnLoad(EventArgs e)
 {
 base.OnLoad(e);

c17.indd 754c17.indd 754 8/20/07 6:30:07 PM8/20/07 6:30:07 PM

Chapter 17: Script and Extender Server Controls

755

 string key;
 string script;

 key = string.Format(CultureInfo.InvariantCulture, “{0}_onSubmit”, ID);
 script = string.Format(CultureInfo.InvariantCulture, “var o = $find(‘{0}’);
 if(o) {{ o._onSubmit(); }}”, BehaviorID);
 System.Web.UI.ScriptManager.RegisterOnSubmitStatement(this,
 typeof(TextBoxWatermarkExtenderControl), key, script);

 ClientState = (string.Compare(Page.Form.DefaultFocus, TargetControlID,
 StringComparison.InvariantCultureIgnoreCase) == 0) ? “Focused” : null;
 }

 private string watermarkText;
 [DefaultValue(“”)]
 public string WatermarkText
 {
 get { return this.watermarkText; }
 set { this.watermarkText = value; }
 }

 private string watermarkCssClass;
 [DefaultValue(“”)]
 public string WatermarkCssClass
 {
 get { return this.watermarkCssClass; }
 set { this.watermarkCssClass = value; }
 }
 }
}

 WatermarkText
 The TextBoxWatermarkExtenderControl server control exposes a string property named
 WatermarkText that you can use to get and set the watermark text. This is the text that will be
shown to the end user when the associated text box is empty and does not have the mouse focus.

 WatermarkCssClass
 As the name suggests, you can use the WatermarkCssClass to get and to set the watermark style. This
is the style that will be automatically applied to the associated text box when the text box is empty and
does not have the focus.

 ClientState
 The ClientState property of the TextBoxWatermarkExtenderControl server control gets and sets
the client state of the underlying TextBoxWatermarkBehavior . Recall that the the client state of this
behavior is a string that specifies whether the associated textbox DOM element has the focus.

c17.indd 755c17.indd 755 8/20/07 6:30:07 PM8/20/07 6:30:07 PM

Chapter 17: Script and Extender Server Controls

756

 ClientStateFieldID
 The ClientStateFieldID property gets and sets the ID attribute HTML value of the hidden field that
stores the client state of the underlying TextBoxWatermarkBehavior . As you’ll see shortly, the server
and client side code use this hidden field to communicate the client state.

 CreateClientStateField
 The CreateClientStateField method of the TextBoxWatermarkExtenderControl creates the
 hidden field where the client state of the underlying TextBoxWatermarkBehavior is stored.

 BehaviorID
 The BehaviorID property gets and sets the id of the underlying TextBoxWatermarkBehavior . Recall
that the id of an ASP.NET AJAX component such as a behavior uniquely identifies the component
among other components in the current ASP.NET AJAX application.

 GetScriptReferences
 The TextBoxWatermarkExtenderServer control overrides the GetScriptReferences method that it
inherits from its base class, that is, the ExtenderControl base class. First, it creates a ScriptReference
object. Then, it sets the Path property of this object to the URL of the JavaScript file that contains the
 definition of the BehaviorBase class. Next, it creates another ScriptReference object and sets
its Path property to the URL of the JavaScript file that contains the definition of the
 TextBoxWatermarkBehavior class. You need to copy over the BehaviorBase.js and
 TextBoxWatermarkBehavior.js files from Chapter 16 to include them in this Website. Finally,
the GetScriptReferences method instantiates and returns an array that contains these two
 ScriptReference objects.

 GetScriptDescriptors
 The TextBoxWatermarkExtenderControl overrides the GetScriptDescriptors method that it
inherits from the ExtenderControl base class to instantiate and return the ScriptDescriptor object
that instantiates and initializes the TextBoxWatermarkBehavior . As you can see from Listing 17-15 ,
this method begins by creating a ScriptBehaviorDescriptor object, passing in two parameters. The
first parameter is a string that contains the fully qualified name of the TextBoxWatermarkBehavior ,
including its namespace. The second parameter is the ClientID property value of the target server
 control. Recall that the target server control of an extender server control is the server control whose
 client side functionality the extender server control is extending, which is an ASP.NET TextBox server
control in this case.

 ScriptBehaviorDescriptor descriptor =
 new ScriptBehaviorDescriptor(“AjaxControlToolkit.TextBoxWatermarkBehavior”,
 targetControl.ClientID);

c17.indd 756c17.indd 756 8/20/07 6:30:07 PM8/20/07 6:30:07 PM

Chapter 17: Script and Extender Server Controls

757

 Next, I digress from our discussion of the implementation of the GetScriptDescriptors method to
use the discussions of the previous sections to show you what happens to the AjaxControlToolkit
.TextBoxWatermarkBehavior and targetControl.ClientID parameters passed into the
 ScriptBehaviorDescriptor constructor.

 Every server control renders its ClientID property value as the value of the id HTML attribute of its
containing DOM element. In this case, the ASP.NET TextBox server control renders its ClientID
 property value as the value of the id HTML attribute of its containing <input type=”text”/> DOM
element. Recall from Listing 17-8 that the constructor of the ScriptBehaviorDescriptor passes its
parameters to the internal constructor of its base class, that is, that ScriptComponentDescriptor , which
means that the AjaxControlToolkit.TextBoxWatermarkBehavior and targetControl.ClientID
parameters are passed into the constructor of the ScriptComponentDescriptor :

 public ScriptBehaviorDescriptor(string type, string elementID)
 : base(type, elementID)
 {
 base.RegisterDispose = false;
 }

 Now, recall from Listing 17-6 that the constructor of the ScriptComponentDescriptor stores the
 AjaxControlToolkit.TextBoxWatermarkBehavior and targetControl.ClientID parameters
in _type and _elementIDInternal private fields:

 public ScriptComponentDescriptor(string type)
 {
 this._registerDispose = true;
 this._type = type;
 }

 internal ScriptComponentDescriptor(string type, string elementID) : this(type)
 {
 this._elementIDInternal = elementID;
 }

 Now, recall from Listing 17-6 (shown again in the following code listing) that the GetScript method of
the ScriptComponentDescriptor generates the script that makes the call into the $create global
 JavaScript function to create an instance of the TextBoxWatermarkBehavior behavior. As you can see
from the bold faced portions of the following code listing, the GetScript method passes the value of
the Type property of the ScriptComponentDescriptor as the first parameter of the $create global
function. This property simply returns the value of the _type private field, that is, the string
 AjaxControlToolkit.TextBoxWatermarkBehavior . As the boldfaced portion of the following code
fragment shows, the GetScript method passes the value of the ElementIDInternal property into the
 $get JavaScript function, which is then passed into the $create function as its last argument. This
 property simply returns the value of the _elementIDInternal private field, that is, the value of the
 targetControl.ClientID property.

c17.indd 757c17.indd 757 8/20/07 6:30:08 PM8/20/07 6:30:08 PM

Chapter 17: Script and Extender Server Controls

758

 protected internal override string GetScript()
 {
 . . .
 builder.Append(“$create(“);
 builder.Append(this.Type);
 . . .
 if (this.ElementIDInternal != null)
 {
 builder.Append(“, “);
 builder.Append(“$get(\””);
 builder.Append(HelperMethods.QuoteString(
 this.ElementIDInternal));
 builder.Append(“\”)”);
 }
 . . .
 }

 Now back to the implementation of the GetScriptDescriptors method. Next, this method invokes the
 AddProperty method on the newly-instantiated ScriptBehaviorDescriptor object to specify the
value of the WatermarkText property of the TextBoxWatermarkExtenderControl as the value of the
 WatermarkText property of the underlying TextBoxWatermarkBehavior :

 descriptor.AddProperty(“WatermarkText”, this.WatermarkText);

 Next, the GetScriptDescriptors method invokes the AddProperty method once again to specify the
value of the WatermarkCssClass property of the TextBoxWatermarkExtenderControl as the value
of the WatermarkCssClass property of the underlying TextBoxWatermarkBehavior :

 descriptor.AddProperty(“WatermarkCssClass”, this.WatermarkCssClass);

 Then, it invokes the AddProperty method once more to specify the value of the BehaviorID property
of the TextBoxWatermarkExtenderControl as the value of the id property of the underlying
 TextBoxWatermarkBehavior :

 descriptor.AddProperty(“id”, this.BehaviorID);

 Finally, it instantiates and returns an array that contains the above ScriptBehaviorDescriptor object:

 return new ScriptDescriptor[] { descriptor };

 OnInit
 The TextBoxWatermarkExtenderControl server control overrides the OnInit method that it inherits
from the Control base class where it performs these tasks (see Listing 17-15). First, it invokes the
 CreateClientStateField method to create the hidden field where the client state will be stored as
 discussed earlier:

 CreateClientStateField();

c17.indd 758c17.indd 758 8/20/07 6:30:08 PM8/20/07 6:30:08 PM

Chapter 17: Script and Extender Server Controls

759

 Next, it registers a method named Page_PreLoad as an event handler for the PreLoad event of the
 current page:

 Page.PreLoad += new EventHandler(Page_PreLoad);

 Finally it invokes the OnInit method of its base class:

 base.OnInit(e);

 Your extender server control’s implementation of the methods of any of its base classes such as
 ExtenderControl and Control must always invoke the associated method of its base classes
 unless you have a very good reason to skip the calls into these base methods.

 Page_PreLoad
 As you saw in Listing 17-15 , the OnInit method registers the Page_PreLoad method as an event
 handler for the PreLoad event of the containing page. When the current page enters its PreLoad lifecycle
phase, it automatically invokes the Page_PreLoad method. The main responsibility of this method is to
set the value of the ClientState property. As you can see from Listing 17-15 , this method first invokes
the FindControl method on the naming container of the TextBoxWatermarkExtenderControl server
control passing in the value of the ClientStateFieldID property to return a reference to the hidden
field that contains the client state. Finally, the Page_PreLoad method extracts the client state from this
hidden field and assigns it to the ClientState property.

 Every server control including the TextBoxWatermarkExtenderControl , inherits the
NamingContainer property from the Control base class. The NamingContainer property of a
server control such as TextBoxWatermarkExtenderControl references the first ancestor of
the server control that implements the INamingContainer interface. This interface is a marker
 interface and does not contain any methods, properties, and events. Implementing this interface allows a
server control to act as a naming scope or container for its descendant server controls.

 OnLoad
 As you can see from Listing 17-15 , the TextBoxWatermarkExtenderControl server control overrides
the OnLoad method of its base class to perform the following tasks. First, it invokes the OnLoad method
of its base class to raise the Load event and consequently to invoke all the event handlers registered for
the Load event of the TextBoxWatermarkExtenderControl :

 base.OnLoad(e);

 To understand what the rest of the code in the OnLoad method does, you need to revisit Listing 17-14
 as repeated in Listing 17-16 . Recall that this code listing contains a page that directly uses the
TextBoxWatermarkBehavior . As the boldfaced portion of this code listing shows, this page registers a
JavaScript function named submitCallback as event handler for the submit event of the form DOM
element. When the end user clicks the Submit button to submit this form, the form automatically invokes
the submitCallback function before the actual form submission takes place. As you can see from the
boldfaced portion of Listing 17-16 , the submitCallback method in turn invokes the _onSubmit method
on the TextBoxWatermarkBehavior .

c17.indd 759c17.indd 759 8/20/07 6:30:08 PM8/20/07 6:30:08 PM

Chapter 17: Script and Extender Server Controls

760

 Recall from Listing 16-40 (repeated in the following code listing) that the _onSubmit method of the
 TextBoxWatermarkBehavior calls the clearText method to remove the watermark text from
the text box before the form is submitted. This ensures that the form submission does not contain the
 watermark text.

 function AjaxControlToolkit$TextBoxWatermarkBehavior$_onSubmit()
{
 if(this._watermarked)
 {
 this.clearText(false);
 this._clearedForSubmit = true;
 }
}

 Now back to the implementation of the OnLoad method of the TextBoxWatermarkExtenderControl .
The main objective of this method is to render the script that registers the _onSubmit method of the
underlying TextBoxWatermarkBehavior as event handler for the submit event of the form DOM
 element. The OnLoad method takes these steps to achieve this objective. First, it generates the script
that makes a call into the $find global JavaScript function to return a reference to the underlying
 TextBoxWatermarkBehavior . Note that this script passes the value of the BehaviorID property
of the TextBoxWatermarkExtenderControl server control as the argument of the $find
function. Next, the OnLoad method generates the script that invokes the _onSubmit method on the
 TextBoxWatermarkBehavior . For example, if the BehaviorID property of the
TextBoxWatermarkExtenderControl is set to the string value of MyTextBoxWatermarkBehavior ,
the OnLoad method will generate the following script:

 var o = $find (‘MyTextBoxWatermarkBehavior’);
if (o)
 o._onSubmit();

 Next, the OnLoad method invokes the RegisterOnSubmitStatement static method on the
 ScriptManager class to have the current page to render the script into the page being sent to the client:

 System.Web.UI.ScriptManager.RegisterOnSubmitStatement(this,
 typeof(TextBoxWatermarkExtenderControl), key, script);

 Finally, the OnLoad method determines whether the target server control of the
TextBoxWatermarkExtenderControl server control has the focus. If so, it assigns the string
 value Focused to the ClientState property:

 ClientState = (string.Compare(Page.Form.DefaultFocus, TargetControlID,
 StringComparison.InvariantCultureIgnoreCase) == 0) ? “Focused” : null;

 As you’ll see later, the TextBoxWatermarkExtenderControl server control will store this value of the
 ClientState property into the client state hidden field before the response is sent back to the client.
This will allow the TextBoxWatermarkBehavior to retrieve the client state from this hidden field to
determine whether the target server control has the focus. If the target server control does not have the
focus, the TextBoxWatermarkBehavior displays the watermark text to the end user and applies the
watermark CSS class to the text box.

c17.indd 760c17.indd 760 8/20/07 6:30:09 PM8/20/07 6:30:09 PM

Chapter 17: Script and Extender Server Controls

761

 Listing 17-16: A Page that Directly Uses the TextBoxWatermarkBehavior

 <%@ Page Language=”C#” %>
. . .
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 . . .
 <script type=”text/javascript” language=”javascript”>
 . . .
 function submitCallback()
 {
 textBoxWatermarkBehavior._onSubmit();
 }
 . . .
 </script>
</head>
<body>
 <form id=”form1” runat=”server” onsubmit=”submitCallback()” >
 . . .
 </form>
</body>
</html>

 OnPreRender
 The TextBoxWatermarkExtenderControl server control overrides the OnPreRender method as
shown in Listing 17-15 . This method begins by invoking the OnPreRender method of its base class
to raise the PreRender event and consequently to invoke all the event handlers registered for the
 PreRender event of the TextBoxWatermarkExtenderControl server control:

 base.OnPreRender(e);

 Next, it invokes the FindControl method, passing in the value of the TargetControlID property to
return a reference to the target server control of the TextBoxWatermarkExtenderControl . Recall
that the target server control of an extender server control is a server control whose client-side function-
ality the extender server control extends, which is the ASP.NET TextBox server control in this case:

 Control targetControl = base.FindControl(TargetControlID);

 If the FindControl method returns null, the OnPreRender method invokes the FindControl method
on the naming container of the TextBoxWatermarkExtenderControl , passing in the value of the
 TargetControlID property to return a reference to the target server control. The OnPreRender
method keeps repeating this process until it reaches the first naming container in the naming container
hierarchy of the TextBoxWatermarkExtenderControl whose FindControl method returns a

c17.indd 761c17.indd 761 8/20/07 6:30:09 PM8/20/07 6:30:09 PM

Chapter 17: Script and Extender Server Controls

762

non-null value, that is, until it finally accesses the reference to the target server control. Repeating this
 process is necessary because the FindControl method only searches the server controls in the current
naming container.

 Control targetControl = base.FindControl(TargetControlID);
 Control nc = NamingContainer;
 while ((targetControl == null) && (nc != null))
 {
 targetControl = nc.FindControl(TargetControlID);
 nc = nc.NamingContainer;
 }

 You may be wondering how the target server control of the TextBoxWatermarkExtenderControl
server control (the TextBox server control) is not in the same naming container as the
TextBoxWatermarkExtenderControl server control. The answer lies in the fact that the TextBox
server control could be a child control of a composite server control that implements the
INamingContainer interface. Since the logic discussed in the code listing repeats the call into the
 FindControl method until it locates the naming container that contains the target server control, you
can rest assured that the target server control will eventually be located.

 Next, the OnPreRender method invokes the FindControl method on the naming container of the
 TextBoxWatermarkExtenderControl server control, passing in the value of the ClientStateFieldID
property to return a reference to the hidden field where the client state must be stored:

 hiddenField = (HiddenField)NamingContainer.FindControl(ClientStateFieldID);

 You may be wondering why this time around we’re not searching through all the ancestor naming
 containers of the TextBoxWatermarkExtenderControl server control. This is because the
 CreateClientStateField method creates and adds the hidden field in the naming container of the
 TextBoxWatermarkExtenderControl server control. In other words, we’re one hundred percent
sure that this hidden field is in the naming container of the TextBoxWatermarkExtenderControl
server control. If it is not in this naming container, it simply has not been created yet. That is why the
OnPreRender method invokes the CreateClientStateField method when the current naming
container does not include the specified hidden field to create the hidden field.

 This is one of the features of the FindControl method that you must take into account when you’re
using this method in your own code to locate a server control. The FindControl method is designed to
search only through the server controls in the current naming container. It does not search through the
server controls in other naming containers. The FindControl method is designed this way on purpose
to allow you to limit the search to the current naming container and consequently improve the perfor-
mance of your application. If you know for a fact that the control that you’re looking for belongs to a
specific naming container, you must invoke the FindControl method on that naming container to
limit the search to that naming container.

 Finally, the OnPreRender method stores the value of the ClientState property in this hidden field
before the response is sent back to the client:

 if (hiddenField != null)
 hiddenField.Value = ClientState;

c17.indd 762c17.indd 762 8/20/07 6:30:09 PM8/20/07 6:30:09 PM

Chapter 17: Script and Extender Server Controls

763

 Render
 As Listing 17-15 shows, the TextBoxWatermarkExtenderControl server control overrides the Render
method to make a call to the VerfyRenderingInServerForm method of the current page to ensure that
the TextBoxWatermarkExtenderControl server control has been declared within a form DOM element
whose runat attribute is set to the string value server . A form DOM element with the runat=”server”
attribute is known as server form.

 One of the fundamental artichitectural aspects of the ASP.NET Framework is that every page can
 contain only one server form, that is, only one form DOM element on the page can have the
 runat=”server” attribute.

 Using the Extender Server Control
 Add a new source file named TextBoxWatermarkExtenderControl.cs to the App_Code directory
of the same Web application that contains the replica components developed earlier in this chapter
and add the code shown in Listing 17-15 to this source file. Next, add a new Web page named
TextBoxWatermarkExtenderControl.aspx to this application and add the code shown in
Listing 17-17 to this page. As you can see, this page uses the TextBoxWatermarkExtenderControl
server control developed in the previous sections.

 Note that this page contains both the standard ASP.NET AJAX ScriptManager server control and the
replica ScriptManager server control. This is because the replica does not implement every single
 feature of the standard ASP.NET ScriptManager server control. It just implements those features that
relate to extender and script server controls. As such, this page uses the standard ASP.NET AJAX
 ScriptManager server control for other features such as downloading the main JavaScript files, such as
 MicrosoftAjax.js and so on.

 Listing 17-17: A Page that Uses the TextBoxWatermarkExtenderControl Server Control

 <%@ Page Language=”C#” %>

<%@ Register Namespace=”CustomComponents3” TagPrefix=”custom” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<script runat=”server”>
 void ClickCallback(object sender, EventArgs e)
 {
 Info.Text = TextBox1.Text;
 }
</script>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <style type=”text/css”>
 .WatermarkCssClass
 {
 background-color: #dddddd
 }

(continued)

c17.indd 763c17.indd 763 8/20/07 6:30:10 PM8/20/07 6:30:10 PM

Chapter 17: Script and Extender Server Controls

764

 Listing 17-17 (continued)

 </style>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />

 <custom:ScriptManager runat=”server” ID=”CustomScriptManager1” />

 <custom:TextBoxWatermarkExtenderControl BehaviorID=”Behavior1”
 ID=”TextBoxWatermarkExtender1”
 runat=”server” TargetControlID=”TextBox1”
 WatermarkCssClass=”WatermarkCssClass”
 WatermarkText=”Enter value” />

 <asp:TextBox ID=”TextBox1” runat=”server” />
 <asp:Button ID=”Button1” runat=”server” OnClick=”ClickCallback”
 Text=”Submit” />

 <asp:Label ID=”Info” runat=”server” />
 </form>
</body>
</html>

 Developing a Script Control
 As you saw in the previous section, the TextBoxWatermarkExtenderControl server control
 encapsulates the logic that the boldfaced portions of Listing 17-14 implement and presents developers
with an object-oriented ASP.NET based API that allows them to use the same imperative and declarative
ASP.NET techniques to program against the underlying TextBoxWatermark behavior.

 Another approach to encapsulating the logic that the boldfaced portions of Listing 17-14 implement
is to develop a script server control. In this section, I’ll implement a script server control named
TextBoxWatermarkScriptControl that does what the TextBoxWatermarkExtenderControl does,
that is, it encapsulates the logic that the boldfaced portions of Listing 17-14 implement and presents
developers with an object-oriented ASP.NET based API that allows them to use the same imperative and
declarative ASP.NET techniques to program against the underlying TextBoxwatermark behavior.

 Listing 17-18 presents the implementation of the TextBoxWatermarkScriptControl server control.
As you can see, this control derives from the ASP.NET TextBox server control and implements the
 IScriptControl interface.

 You may be wondering why we don’t derive the TextBoxWatermarkScriptControl server control
from the ScriptControl base class to save ourselves from having to implement the base functionality
that the ScriptControl base class already supports. The answer lies in the fact that object-oriented
 languages such as C# and VB.NET do not support multiple class inheritances. In other words, the
TextBoxWatermarkScriptControl server control cannot derive from both the TextBox and
ScriptControl classes. We have two options here. One option is to derive the

c17.indd 764c17.indd 764 8/20/07 6:30:10 PM8/20/07 6:30:10 PM

Chapter 17: Script and Extender Server Controls

765

TextBoxWatermarkScriptControl server control from the ScriptControl base class and implement
the functionality that the TextBox server control already supports. Another option is to derive the
TextBoxWatermarkScriptControl server control from the TextBox server control and implement the
functionality that the ScriptControl server control already supports. As you can see, both options
require you to implement functionality that an existing ASP.NET server control already supports. Which
option you choose is completely up to you and very much depends on which option requires less
 coding. In this case it is somewhat easier to implement the functionality that the ScriptControl server
control supports than the functionality that the TextBox server control supports.

 There are two ways to implement the functionality that an existing server control provides. One approach
is to have the TextBoxWatermarkScriptControl server control compose the ScriptControl server
control and delegate to this control. This is known as object composition in object-oriented jargon and
 composite controls in ASP.NET jargon. Another approach is to implement the functionality from scratch.
The object composition approach is not possible in this case because the ScriptControl server control is
an abstract class and cannot be instantiated.

 Comparision of Listings 17-18 and 17-15 shows that the TextBoxWatermarkScriptControl exposes
some of the same properties and methods that the TextBoxWatermarkExtenderControl exposes.
In the following sections, I’ll discuss the implementation of only those methods and properties of
the TextBoxWatermarkScriptControl server control that are different from the
 TextBoxWatermarkExtenderControl .

 Listing 17-18: The TextBoxWatermarkScriptControl

 using System;
using System.ComponentModel;
using System.Collections.Generic;
using System.Globalization;
using System.Text;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace CustomComponents3
{
 [TargetControlType(typeof(IEditableTextControl))]
 public class TextBoxWatermarkScriptControl : TextBox, IScriptControl
 {
 protected virtual IEnumerable<ScriptReference> GetScriptReferences()
 {
 ScriptReference reference1 = new ScriptReference();
 reference1.Path = ResolveClientUrl(“BehaviorBase.js”);

 ScriptReference reference2 = new ScriptReference();
 reference2.Path = ResolveClientUrl(“TextBoxWatermarkBehavior.js”);

 return new ScriptReference[] { reference1, reference2 };
 }

 protected virtual IEnumerable<ScriptDescriptor> GetScriptDescriptors()
 {
 ScriptBehaviorDescriptor descriptor =

(continued)

c17.indd 765c17.indd 765 8/20/07 6:30:10 PM8/20/07 6:30:10 PM

Chapter 17: Script and Extender Server Controls

766

 Listing 17-18 (continued)

 new ScriptBehaviorDescriptor(“AjaxControlToolkit.TextBoxWatermarkBehavior”,
 this.ClientID);
 descriptor.AddProperty(“WatermarkText”, this.WatermarkText);
 descriptor.AddProperty(“WatermarkCssClass”, this.WatermarkCssClass);
 descriptor.AddProperty(“id”, this.BehaviorID);

 return new ScriptDescriptor[] { descriptor };
 }

 private string _clientState;
 [Browsable(false)]
 [DesignerSerializationVisibility(DesignerSerializationVisibility.Hidden)]
 public string ClientState
 {
 get { return _clientState; }
 set { _clientState = value; }
 }

 public string BehaviorID
 {
 get
 {
 return ViewState[“BehaviorID”] != null ?
 (string)ViewState[“BehaviorID”] : ClientID;
 }
 set { ViewState[“BehaviorID”] = value; }
 }

 protected override void OnPreRender(EventArgs e)
 {
 if (!this.DesignMode)
 {
 ScriptManager sm = ScriptManager.GetCurrent(Page);
 sm.RegisterScriptControl(this);
 }

 base.OnPreRender(e);
 HiddenField hiddenField = null;

 if (string.IsNullOrEmpty(ClientStateFieldID))
 hiddenField = CreateClientStateField();

 else
 hiddenField = (HiddenField)NamingContainer.FindControl(ClientStateFieldID);

 if (hiddenField != null)
 hiddenField.Value = ClientState;
 }

 private HiddenField CreateClientStateField()
 {

c17.indd 766c17.indd 766 8/20/07 6:30:11 PM8/20/07 6:30:11 PM

Chapter 17: Script and Extender Server Controls

767

 HiddenField field = new HiddenField();
 field.ID = string.Format(CultureInfo.InvariantCulture,
 “{0}_ClientState”, ID);
 Controls.Add(field);
 ClientStateFieldID = field.ID;
 return field;
 }

 protected override void Render(HtmlTextWriter writer)
 {
 if (!this.DesignMode)
 {
 ScriptManager sm = ScriptManager.GetCurrent(Page);
 sm.RegisterScriptDescriptors(this);
 }

 if (Page != null)
 Page.VerifyRenderingInServerForm(this);
 base.Render(writer);
 }

 protected override void OnInit(EventArgs e)
 {
 CreateClientStateField();
 Page.PreLoad += new EventHandler(Page_PreLoad);
 base.OnInit(e);
 }

 void Page_PreLoad(object sender, EventArgs e)
 {
 if (!string.IsNullOrEmpty(ClientStateFieldID))
 {
 HiddenField hiddenField =
 (HiddenField)NamingContainer.FindControl(ClientStateFieldID);

 if ((hiddenField != null) && !string.IsNullOrEmpty(hiddenField.Value))
 ClientState = hiddenField.Value;
 }
 }

 [Browsable(false)]
 [EditorBrowsable(EditorBrowsableState.Never)]
 [IDReferenceProperty(typeof(HiddenField))]
 [DefaultValue(“”)]
 [DesignerSerializationVisibility(DesignerSerializationVisibility.Hidden)]
 public string ClientStateFieldID
 {
 get { return ViewState[“ClientStateFieldID”] != null ?
 (string)ViewState[“ClientStateFieldID”] : string.Empty; }
 set { ViewState[“ClientStateFieldID”] = value; }
 }

(continued)

c17.indd 767c17.indd 767 8/20/07 6:30:11 PM8/20/07 6:30:11 PM

Chapter 17: Script and Extender Server Controls

768

 Listing 17-18 (continued)

 protected override void OnLoad(EventArgs e)
 {
 base.OnLoad(e);

 string key;
 string script;

 key = string.Format(CultureInfo.InvariantCulture, “{0}_onSubmit”, ID);
 script = string.Format(CultureInfo.InvariantCulture,
 “var o = $find(‘{0}’); if(o) {{ o._onSubmit(); }}”,
 BehaviorID);
 System.Web.UI.ScriptManager.RegisterOnSubmitStatement(this,
 typeof(TextBoxWatermarkScriptControl), key, script);

 ClientState = (string.Compare(Page.Form.DefaultFocus, this.ID,
 StringComparison.InvariantCultureIgnoreCase) == 0)
 ? “Focused” : null;
 }

 private string watermarkText;
 [DefaultValue(“”)]
 public string WatermarkText
 {
 get { return this.watermarkText; }
 set { this.watermarkText = value; }
 }

 private string watermarkCssClass;
 [DefaultValue(“”)]
 public string WatermarkCssClass
 {
 get { return this.watermarkCssClass; }
 set { this.watermarkCssClass = value; }
 }

 IEnumerable<ScriptDescriptor> IScriptControl.GetScriptDescriptors()
 {
 return this.GetScriptDescriptors();
 }

 IEnumerable<ScriptReference> IScriptControl.GetScriptReferences()
 {
 return this.GetScriptReferences();
 }
 }
}

 PreRender
 As you can see from Listing 17-18 , the TextBoxWatermarkScriptControl server control overrides the
 OnPreRender method of its base class to perform these tasks. First, it invokes the GetCurrent static

c17.indd 768c17.indd 768 8/20/07 6:30:11 PM8/20/07 6:30:11 PM

Chapter 17: Script and Extender Server Controls

769

method on the ScriptManager class to return a reference to the current ScriptManager server control
on the current page:

 ScriptManager sm = ScriptManager.GetCurrent(Page);

 Next, it invokes the RegisterScriptControl method on the current ScriptManager server control to
register the TextBoxWatermarkScriptControl server control with the current ScriptManager server
control. As discussed earlier, this method simply adds the specified TextBoxWatermarkScriptControl
server control to an internal collection named ScriptControls :

 sm.RegisterScriptControl(this);

 Next, the OnPreRender method invokes the OnPreRender method of its base class to raise the PreRender
event and consequently invokes all the event handlers registered for this event:

 base.OnPreRender(e);

 Next, it invokes the FindControl method on the naming container of the
TextBoxWatermarkScriptControl server control, passing in the value of the ClientStateFieldID
property to return a reference to the hidden field that contains the client state:

 hiddenField = (HiddenField)NamingContainer.FindControl(ClientStateFieldID);

 Finally, it stores the value of the ClientState property in this hidden field:

 if (hiddenField != null)
 hiddenField.Value = ClientState;

 Render
 As Listing 17-18 shows, the TextBoxWatermarkScriptControl overrides the Render method of its
base class, where it accesses the current ScriptManager server control:

 ScriptManager sm = ScriptManager.GetCurrent(Page);

 Next, it invokes the RegisterScriptDescriptors method on the current ScriptManager server control
to register the ScriptDescriptor object associated with the TextBoxWatermarkScriptControl server
control:

 sm.RegisterScriptDescriptors(this);

 Using the Script Server Control
 Add a new source file named TextBoxWatermarkScriptControl.cs to the App_Code directory
of the same Web application that contains the replica components developed earlier in this chapter
and add the code shown in Listing 17-18 to this source file. Next, add a new Web page named
TextBoxWatermarkScriptControl.aspx to this application and add the code shown in Listing 17-19
to this page. As you can see, this page uses the TextBoxWatermarkScriptControl server control
 developed in the previous sections.

c17.indd 769c17.indd 769 8/20/07 6:30:11 PM8/20/07 6:30:11 PM

Chapter 17: Script and Extender Server Controls

770

 Listing 17-19: A Page that Uses the TextBoxWatermarkScriptControl

 <%@ Page Language=”C#” %>

<%@ Register Namespace=”CustomComponents3” TagPrefix=”custom” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<script runat=”server”>
 void ClickCallback(object sender, EventArgs e)
 {
 Info.Text = TextBoxWatermarkScriptControl1.Text;
 }
</script>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <style type=”text/css”>
 .WatermarkCssClass
 {
 background-color: #dddddd
 }
 </style>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />
 <custom:ScriptManager runat=”server” ID=”CustomScriptManager1” />
 <custom:TextBoxWatermarkScriptControl BehaviorID=”Behavior1”
 ID=”TextBoxWatermarkScriptControl1”
 runat=”server” WatermarkCssClass=”WatermarkCssClass”WatermarkText=”Hi there”/>
 <asp:Button ID=”Button1” runat=”server” OnClick=”ClickCallback” Text=”Submit”
 />

 <asp:Label ID=”Info” runat=”server” />
 </form>
</body>
</html>

 Script Server Controls versus
Extender Server Controls

 You may be wondering what the differences are between script and extender server controls considering
the fact that both types of controls serve the same purpose, that is, they both encapsulate the logic such
as the one that the boldfaced portions of Listing 17-14 implement and present the page developers with
an object-oriented ASP.NET based API that allows them to use the same imperative and declarative
ASP.NET techniques to program against the underlying ASP.NET AJAX component.

c17.indd 770c17.indd 770 8/20/07 6:30:12 PM8/20/07 6:30:12 PM

Chapter 17: Script and Extender Server Controls

771

 The main difference between a script server control and an extender server control is that while the
extender server control extends the client-side functionality of an existing ASP.NET server control,
the script server control defines a new server control that directly includes this client-side functionality.
This means that you can attach the same extender server control to different server controls to
enhance their client-side functionality. However, the functionality contained in a script server control
only applies to the script server control itself and cannot be attached to other server controls.

 Therefore, if you’re implementing a functionality that can be used by lot of other server controls, you
may want to encapsulate this functionality in an extender server control that can be attached to other
server controls. However, if you’re implementing a functionality that does not make sense to apply to
other server controls, you may want to encapsulate this functionality in a script server control.

 Summary
 This chapter first implemented fully functional replicas of those components of the ASP.NET AJAX
server side Framework that play important roles in the internal working of script and extender server
controls. Then, it used practical examples to teach you how to implement your own custom script and
extender server controls. The next chapter will implement a custom script server control that uses a Web
services bridge to communicate with Amazon Web services.

c17.indd 771c17.indd 771 8/20/07 6:30:12 PM8/20/07 6:30:12 PM

c17.indd 772c17.indd 772 8/20/07 6:30:12 PM8/20/07 6:30:12 PM

 Web Services Bridges
and Transformers

 This chapter will first provide an overview of the Amazon E-Commerce Web service. It will then
implement a script server control that uses a Web services bridge to invoke a specified Web
method of this Web service and display the results to end users. Finally, I will provide an in-depth
coverage of ASP.NET AJAX transformers.

 Amazon Web Services
 At the end of Chapter 14, I promised that I’d present a more complete example of Web services
bridges. In this chapter you’ll learn how to develop a custom script server control that uses a
bridge to enable the client code to interact with the Amazon Web services. Before diving into the
implementation of this custom script server control you need to do the following things:

 ❑ Visit the Amazon Web service site at www.amazon.com/gp/aws/landing.html and
 follow the instructions on this site to create an Amazon Web service account and get an
 access key. As you’ll see later, you have to include this access key with every single call
that you make to the Amazon Web services. This site comes with the complete documen-
tation and sample code for using the Amazon Web services.

❑ Acquire a good understanding of the Amazon Web services. In particular, we’re interested
in the Amazon E-Commerce Web service (AWSE CommerceService), a particular Web
method of this Web service named ItemSearch , and a particular set of parameters of this
Web method. Therefore, in this chapter we’ll focus on these items. Complete coverage of
the Amazon Web services is beyond the scope of this book.

 The following code listing presents the declaration of the Amazon E-Commerce Web service:

 public class AWSECommerceService
{
 public ItemSearchResponse ItemSearch(ItemSearch ItemSearch1);
}

c18.indd 773c18.indd 773 8/20/07 7:56:06 PM8/20/07 7:56:06 PM

Chapter 18: Web Services Bridges and Transformers

774

 As you can see, the ItemSearch method takes an argument of type ItemSearch and returns an object
of type ItemSearchResponse . I’ll discuss the ItemSearch and ItemSearchResponse types in the
 following sections.

 ItemSearch
 The ItemSearch type or class is defined in Listing 18-1 . As you can see, this class exposes two important
properties, SubscriptionId and Request . As the name suggests, the SubscriptionId property is a
string that contains your Amazon access key or subscription ID. The Request property references the
 ItemSearchRequest object that represents a request to the Amazon service.

 Listing 18-1: The ItemSearch Class

 public class ItemSearch
{
 public string SubscriptionId {get; set;}
 public ItemSearchRequest Request {get; set;}
}

 Listing 18-2 defines the ItemSearchRequest type or class. As you can see, this class contains four
properties:

 ❑ ItemPage , a positive integer number. This is basically the index of the page that we want to
download from the Web service. Since there could be thousands of records for our query
 keyword, we need to specify which page of records we’re interested in. If you don’t specify the
page index, the first page of records is returned by default.

❑ Keywords , a string that contains our query.

❑ ResponseGroup , a string that contains certain of our search criteria, as you’ll see in the
 following example.

❑ SearchIndex , a string that contains the type of the query. For example, if you pass Books as
the SearchIndex parameter into the ItemSearch Web method, you’re telling this method that
you’re searching for books.

 Listing 18-2: The ItemSearchRequest Class

 public class ItemSearchRequest
{
 public int ItemPage {get; set;}
 public string Keywords {get; set;}
 public string ResponseGroup {get; set;}
 public string SearchIndex {get; set;}
}

 Listing 18-3 defines the ItemSearchResponse class, which exposes an array property of type Items
named Items .

c18.indd 774c18.indd 774 8/20/07 7:56:07 PM8/20/07 7:56:07 PM

Chapter 18: Web Services Bridges and Transformers

775

 Listing 18-3: The ItemSearchResponse Class

 public class ItemSearchResponse
{
 public Items[] Items { get; set;}
}

 Listing 18-4 defines the Items type, which exposes an array property of type Item named Item .

 Listing 18-4: The Items Class

 public class Items
{
 public Item[] Item { get; set; }
}

 As you can see from Listing 18-5 , the Item type or class exposes four properties:

 ❑ DetailPageURL , a string that contains the URL of the page with more detailed information
about the item. For example, if the item represents a book, this URL takes the end user to the
page that provides more detailed information about the book.

❑ MediumImage , which is of type Image .

❑ ItemsAttributes and Offers , which you’ll learn about later in the chapter.

 Listing 18-5: The Item Class

 public partial class Item
{
 public string DetailPageURL {get; set; }
 public Image MediumImage {get; set;}
 public ItemAttributes ItemAttributes {get; set;}
 public Offers Offers {get; set;}
}

 As Listing 18-6 shows, the Image type or class exposes a string property named URL, which contains
the URL of the image associated with the item. For example, if the item is a book, this is the URL of the
image of the book.

 Listing 18-6: The Image Class

 public partial class Image
{
 public string URL {get; set;}
}

 As Listing 18-7 shows, the Offers type exposes an array property named Offer that contains objects of
type Offer .

c18.indd 775c18.indd 775 8/20/07 7:56:07 PM8/20/07 7:56:07 PM

Chapter 18: Web Services Bridges and Transformers

776

 Listing 18-7: The Offers Class

 public partial class Offers
{
 public Offer[] Offer {get; set;}
}

 As you can see from Listing 18-8 , the Offer type exposes an array property named OfferListing that
contains an object of type OfferListing .

 Listing 18-8: The Offer Class

 public partial class Offer
{
 public OfferListing[] OfferListing {get; set;}
}

 As Listing 18-9 shows, the OfferListing type or class exposes a property of type Price named Price .

 Listing 18-9: The OfferListing Class

 public partial class OfferListing
{
 public Price Price {get; set;}
}

 As you can see from Listing 18-10 , the Price type exposes a property of type string named
 FormattedPrice .

 Listing 18-10: The Price Class

 public class Price
{
 public string FormattedPrice { get; set; }
}

 As Listing 18-11 shows, the ItemAttributes type exposes a string property named Author , a property
of type Price named ListPrice , and a string property named Title .

 Listing 18-11: The ItemAttributes Class

 public class ItemAttributes
{
 public string[] Author { get;set;}
 public Price ListPrice { get; set;}
 public string ProductGroup { get; set;}
 public string Title { get; set;}
}

c18.indd 776c18.indd 776 8/20/07 7:56:08 PM8/20/07 7:56:08 PM

Chapter 18: Web Services Bridges and Transformers

777

 Now that you have a good understanding of the AWSE CommerceService Web service, its ItemSearch
Web method, the names and types of parameters you need to pass into this Web method, and the type of
return value you should expect to receive from it, we’re ready to use this Web service.

 As you learned from the WSDL document, you need to make a HTTP SOAP request to the
http://soap.amazon.com/onca/soap?Service=AWSECommerceService URL to invoke the
 ItemSearch Web method. You could go ahead and write the SOAP message yourself, but then you
would have to get involved in the dirty little details of SOAP messaging. A better approach is to generate
the code for a class known as proxy that hides the underlying SOAP messaging and enables you to
 program against the remote Web service object as if you were programming against a local object.

 There are different ways to create the proxy class. If you’re working in the Visual Studio environment,
you have the following options:

 ❑ Launch the Add Web References dialog, navigate to http://webservices.amazon.com/
AWSECommerceService/AWSECommerceService.wsdl and click the Add Reference button
to add a reference to the AWSE CommerceService Web service. This will automatically download
the AWSECommerceService.wsdl WSDL document from the amazon.com site, create the code
for the proxy class, compile the proxy class into an assembly, and add a reference to the
assembly.

❑ Download the AWSECommerceService.wsdl WSDL document from http://webservices
.amazon.com/AWSECommerceService/AWSECommerceService.wsdl and store the WSDL file
in your favorite directory on your machine. If you’re using the built-in Web server, launch the
Add Web Reference dialog and follow the same steps as in the previous item, but this time navi-
gate to the directory where the WSDL file is located. The URL should look something like the
following:

 file:///d:/download/AWSECommerceService.wsdl

 ❑ If you’re using IIS, you have to copy the AWSE CommerceService.wsdl document to the
root directory of your application. The path to this directory should look something like
 C:\Inetpub\wwwroot\ApplicationRoot . Then launch the Add Web References dialog and
follow the steps discussed in the previous item to navigate to the application root where the
WSDL document is located. The URL for the WSDL document should look something like this:

 http://localhost/(ApplicationRoot)/ AWSECommerceService.wsdl

 ❑ If you’re using App_Code directory, copy the AWSE CommerceService.wsdl document to this
directory. That’s it. The Visual Studio automatically generates the code for the proxy, compiles
the proxy code into an assembly, and adds a reference to the assembly.

 If you’re not working in the Visual Studio environment, and you like to do things from the command
line, first download the AWSE CommerceService.wsdl document from http://webservices
.amazon.com/AWSECommerceService/AWSECommerceService.wsdl and store the document in a file
in your favorite directory. Go to this directory and use the following command to generate the code for
the proxy class and to save the code to the AWSE CommerceService.cs file (give it any name you wish):

 wsdl /out:AWSECommerceService.cs AWSECommerceService.wsdl

c18.indd 777c18.indd 777 8/20/07 7:56:08 PM8/20/07 7:56:08 PM

Chapter 18: Web Services Bridges and Transformers

778

 The wsdl.exe tool comes with different options. For example, you can use /namespace:
AWSECommerceService to specify your desired namespace for the proxy class. Then use the following
command to compile the AWSE CommerceService.cs into the AWSE CommerceService.dll assembly
and use the assembly as you would use any other:

 csc /t:library /out: AWSECommerceService.dll AWSECommerceService.cs

 Since we want to use the ASP.NET AJAX Web services bridges to enable our client-side code to invoke the
 ItemSearch Web method of the AWSE CommerceService Web service, first we need to create and add an
 .asbx file to our application. (These files were thoroughly discussed earlier in this book.) Listing 18-12
presents the content of an .asbx file named AmazonSearch.asbx that we will use in our example. This
file instructs the ASP.NET AJAX framework to generate a client-side proxy class named AmazonService
that belongs to a namespace named MyServices and contains a method named Search that takes two
parameters, pageIndex and searchQuery . The pageIndex parameter specifies the page of records
being retrieved and the searchQuery parameter specifies the search keywords.

 Listing 18-12: The AmazonSearch.asbx File

 <?xml version=”1.0” encoding=”utf-8” ?>
<bridge namespace=”MyServices” className=”AmazonService”>
 <proxy type=”CustomComponents3.AmazonService, App_Code”/>
 <method name=”Search”>
 <input>
 <parameter name=”pageIndex” />
 <parameter name=”searchQuery” />
 </input>
 </method>
</bridge>

 As Listing 18-12 shows, this bridge is a wrapper around a .NET class named AmazonService that
belongs to a namespace called CustomComponents3 and is located in the App_Code directory of the
 current application. Listing 18-13 presents the implementation of this class. Store this code listing in a
file named AmazonService.cs and add the file to the App_Code directory.

 Listing 18-13: The AmazonService Class

 using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.IO;
using System.Xml;
using System.Collections;
using com.amazon.webservices;

namespace CustomComponents3
{
 public class AmazonService

c18.indd 778c18.indd 778 8/20/07 7:56:08 PM8/20/07 7:56:08 PM

Chapter 18: Web Services Bridges and Transformers

779

 {
 public Items Search(int pageIndex, string searchQuery)
 {
 ItemSearchRequest itemSearchRequest = new ItemSearchRequest();
 itemSearchRequest.Keywords = searchQuery;
 itemSearchRequest.SearchIndex = “Books”;
 itemSearchRequest.ResponseGroup =
 new string[] { “Small”, “Images”, “ItemAttributes”, “OfferFull” };
 itemSearchRequest.ItemPage = pageIndex.ToString();

 ItemSearch itemSearch = new ItemSearch();
 itemSearch.SubscriptionId =
 ConfigurationManager.AppSettings[“SubscriptionID”];
 itemSearch.AssociateTag = “”;
 itemSearch.Request = new ItemSearchRequest[1] { itemSearchRequest };

 ItemSearchResponse itemSearchResponse;
 try
 {
 AWSECommerceService amazonService = new AWSECommerceService();
 itemSearchResponse = amazonService.ItemSearch(itemSearch);
 }

 catch (Exception e)
 {
 throw e;
 }

 Items[] itemsResponse = itemSearchResponse.Items;

 // Check for errors in the reponse
 if (itemsResponse == null)
 throw new Exception(“Response from amazon.com contains not items!”);

 if (itemsResponse[0].Request.Errors != null)
 throw new Exception(
 “Response from amazon.com contains this error message: “ +
 itemsResponse[0].Request.Errors[0].Message);

 Items items = itemsResponse[0];
 return items;
 }
 }
}

 As you can see from Listing 18-13 , the AmazonService class exposes a single method named Search
that performs these tasks. First, it instantiates an ItemSearchRequest object:

 ItemSearchRequest itemSearchRequest = new ItemSearchRequest();

 Next, it assigns the search query to the Keywords property of this object. For example, the search query
could be the string asp.net .

 itemSearchRequest.Keywords = searchQuery;

c18.indd 779c18.indd 779 8/20/07 7:56:09 PM8/20/07 7:56:09 PM

Chapter 18: Web Services Bridges and Transformers

780

 Then, it assigns the string Books to the SearchIndex property of the ItemSearchRequest object to
instruct the Amazon Web service that the end user is searching for books. For example, if the search
query is the string asp.net and the search index is the string Books , the Amazon Web service will
return the list of books on ASP.NET:

 itemSearchRequest.SearchIndex = “Books”;

 Next, it assigns the specified array of strings to the ResponseGroup property of the
ItemSearchRequest object:

 itemSearchRequest.ResponseGroup =
 new string[] { “Small”, “Images”, “ItemAttributes”, “OfferFull” };

 Then it specifies the page of records that the Amazon Web service should return. For example, if the
search query is the string asp.net , the search index is the string Books , and the page index is 4 ,
the Amazon Web service will return the fourth page of records, where each record describes an
ASP.NET book:

 itemSearchRequest.ItemPage = pageIndex.ToString();

 Next, the Search method instantiates an ItemSearch object:

 ItemSearch itemSearch = new ItemSearch();

 Then it assigns the access key to the SubscriptionId property of this ItemSearchObject . As discussed
earlier, you need to create an Amazon Web services account and get an access key. For security reasons,
you may want to store your access key in the appSettings section of the web.config file. The great
thing about doing this is that the ASP.NET framework enables you to encrypt selected sections of the
 web.config file to protect your data. You can then use your access key through the AppSettings static
collection property of the ConfigurationManager class:

 itemSearch.SubscriptionId =
 ConfigurationManager.AppSettings[“SubscriptionID”];

 Next, the Search method assigns an array that contains the previously instantiated and initialized
 ItemSearchRequest object to the Request property of the ItemSearch object:

 itemSearch.Request = new ItemSearchRequest[1] { itemSearchRequest };

 Then it instantiates an instance of the AWSE CommerceService proxy class:

 AWSECommerceService amazonService = new AWSECommerceService();

 Next, it invokes the ItemSearch method of the proxy class, passing in the ItemSearch object:

 ItemSearchResponse itemSearchResponse = amazonService.ItemSearch(itemSearch);

 The ItemSearch method returns an ItemSearchResponse object that contains the server response
data. As discussed earlier, this object exposes an array property named Items that contains an object of
type Items :

 Items[] itemsResponse = itemSearchResponse.Items;

c18.indd 780c18.indd 780 8/20/07 7:56:09 PM8/20/07 7:56:09 PM

Chapter 18: Web Services Bridges and Transformers

781

 Finally, the Search method returns the first Items object in the Items collection property:

 Items items = itemsResponse[0];
 return items;

 Developing Web Services Bridge-Enabled
Script Server Controls

 Next, I’ll present and discuss the implementation of a custom ASP.NET AJAX script server control
that uses the AWSE CommerceService Web service to search the amazon.com site for books that meet
particular search criteria. This involves implementing the following four components:

 ❑ AspNetAjaxAmazonSearch : An ASP.NET AJAX client control that uses the ASP.NET AJAX
Web services bridges to invoke the ItemSearch Web method of the AWSE CommerceService Web
service

❑ AmazonSearchScriptControl : An ASP.NET script server control that encapsulates the logic,
enabling page developers to use the same imperative and declarative ASP.NET techniques to
program against the underlying AspNetAjaxAmazonSearch ASP.NET AJAX client-side control

❑ HtmlGenerator : An ASP.NET AJAX client-side component that displays the results returned
from the call into the ItemSearch Web method of the AWSE CommerceService Web service

❑ HtmlGeneratorScriptControl : An ASP.NET script server control that encapsulates the logic,
enabling page developers to use the same imperative and declarative ASP.NET techniques to
program against the underlying HtmlGenerator ASP.NET AJAX client-side component

 AspNetAjaxAmazonSearch
 Listing 18-14 presents the implementation of the AspNetAjaxAmazonSearch client control. I’ll discuss
the methods and properties of this control in the following sections.

 Listing 18-14: The AspNetAjaxAmazonSearch Client-side Control

 Type.registerNamespace(“CustomComponents3”);

CustomComponents3.AspNetAjaxAmazonSearch =
function CustomComponents3$AspNetAjaxAmazonSearch(associatedElement)
{
 CustomComponents3.AspNetAjaxAmazonSearch.initializeBase(this,
 [associatedElement]);
}

function CustomComponents3$AspNetAjaxAmazonSearch$get_searchTextBox()
{
 return this._searchTextBox;
}

function CustomComponents3$AspNetAjaxAmazonSearch$set_searchTextBox(value)
{

(continued)

c18.indd 781c18.indd 781 8/20/07 7:56:09 PM8/20/07 7:56:09 PM

Chapter 18: Web Services Bridges and Transformers

782

 Listing 18-14 (continued)

 this._searchTextBox = value;
}

function CustomComponents3$AspNetAjaxAmazonSearch$get_searchButton()
{
 return this._searchButton;
}

function CustomComponents3$AspNetAjaxAmazonSearch$set_searchButton(value)
{
 this._searchButton = value;
}

function CustomComponents3$AspNetAjaxAmazonSearch$get_htmlGenerator()
{
 return this._htmlGenerator;
}

function CustomComponents3$AspNetAjaxAmazonSearch$set_htmlGenerator(value)
{
 this._htmlGenerator = value;
}

function CustomComponents3$AspNetAjaxAmazonSearch$get_searchResultAreaDiv()
{
 return this._searchResultAreaDiv;
}

function CustomComponents3$AspNetAjaxAmazonSearch$set_searchResultAreaDiv(value)
{
 this._searchResultAreaDiv = value;
}

function CustomComponents3$AspNetAjaxAmazonSearch$get_commandBarAreaDiv()
{
 return this._commandBarAreaDiv;
}

function CustomComponents3$AspNetAjaxAmazonSearch$set_commandBarAreaDiv(value)
{
 this._commandBarAreaDiv = value;
}

function CustomComponents3$AspNetAjaxAmazonSearch$get_nextButton()
{
 return this._nextButton;
}

function CustomComponents3$AspNetAjaxAmazonSearch$set_nextButton(value)
{
 this._nextButton = value;
}

c18.indd 782c18.indd 782 8/20/07 7:56:09 PM8/20/07 7:56:09 PM

Chapter 18: Web Services Bridges and Transformers

783

function CustomComponents3$AspNetAjaxAmazonSearch$get_previousButton()
{
 return this._previousButton;
}

function CustomComponents3$AspNetAjaxAmazonSearch$set_previousButton(value)
{
 this._previousButton = value;
}

function CustomComponents3$AspNetAjaxAmazonSearch$get_pageIndex()
{
 return this._pageIndex;
}

function CustomComponents3$AspNetAjaxAmazonSearch$set_pageIndex(value)
{
 this._pageIndex = value;
}

function CustomComponents3$AspNetAjaxAmazonSearch$get_searchMethod()
{
 return this._searchMethod;
}

function CustomComponents3$AspNetAjaxAmazonSearch$set_searchMethod(value)
{
 this._searchMethod = value;
}

function CustomComponents3$AspNetAjaxAmazonSearch$initialize()
{
 CustomComponents3.AspNetAjaxAmazonSearch.callBaseMethod(this, “initialize”);

 this._searchButtonClickHandler =
 Function.createDelegate(this, this._onSearchButtonClick);

 this._nextButtonClickHandler =
 Function.createDelegate(this, this._onNextButtonClick);

 this._previousButtonClickHandler =
 Function.createDelegate(this, this._onPreviousButtonClick);

 $addHandler(this._searchButton, “click”, this._searchButtonClickHandler);
 $addHandler(this._nextButton, “click”, this._nextButtonClickHandler);
 $addHandler(this._previousButton, “click”, this._previousButtonClickHandler);

 this._onSuccessHandler = Function.createDelegate(this, this._onSuccess);
 this._onFailureHandler = Function.createDelegate(this, this._onFailure);
}

function CustomComponents3$AspNetAjaxAmazonSearch$_onSearchButtonClick(evt)
{

(continued)

c18.indd 783c18.indd 783 8/20/07 7:56:10 PM8/20/07 7:56:10 PM

Chapter 18: Web Services Bridges and Transformers

784

 Listing 18-14 (continued)

 this._pageIndex = 1;
 this._searchQuery = this._searchTextBox.value;
 this._searchMethod(
 {“pageIndex”: this._pageIndex, “searchQuery”: this._searchQuery},
 this._onSuccessHandler, this._onFailureHandler, null);
}

function CustomComponents3$AspNetAjaxAmazonSearch$_onPreviousButtonClick(evt)
{
 this._pageIndex--;
 if (this._pageIndex < 0)
 this._pageIndex = 1;

 this._searchQuery = this._searchTextBox.value;
 this._searchMethod(
 {“pageIndex”: this._pageIndex, “searchQuery”: this._searchQuery},
 this._onSuccessHandler, this._onFailureHandler, null);
}

function CustomComponents3$AspNetAjaxAmazonSearch$_onNextButtonClick(evt)
{
 this._pageIndex++;
 this._searchQuery = this._searchTextBox.value;

 this._searchMethod(
 {“pageIndex”: this._pageIndex, “searchQuery”: this._searchQuery},
 this._onSuccessHandler, this._onFailureHandler, null);
}

function CustomComponents3$AspNetAjaxAmazonSearch$_onSuccess(items,
 userContext, methodName)
{
 var html = this._htmlGenerator.generateHtml(items);

 this._searchResultAreaDiv.innerHTML = html;
 this._commandBarAreaDiv.style.display = “block”;
 this._searchResultAreaDiv.style.display = “block”;
}

function CustomComponents3$AspNetAjaxAmazonSearch$_onFailure(result,
 userContext, methodName)
{
 var builder = new Sys.StringBuilder();
 builder.append(“timedOut: “);
 builder.append(result.get_timedOut());
 builder.appendLine();
 builder.appendLine();
 builder.append(“message: “);
 builder.append(result.get_message());
 builder.appendLine();

c18.indd 784c18.indd 784 8/20/07 7:56:10 PM8/20/07 7:56:10 PM

Chapter 18: Web Services Bridges and Transformers

785

 builder.appendLine();
 builder.append(“stackTrace: “);
 builder.appendLine();
 builder.append(result.get_stackTrace());
 builder.appendLine();
 builder.appendLine();
 builder.append(“exceptionType: “);
 builder.append(result.get_exceptionType());
 builder.appendLine();
 builder.appendLine();
 builder.append(“statusCode: “);
 builder.append(result.get_statusCode());
 builder.appendLine();
 builder.appendLine();
 builder.append(“methodName: “);
 builder.append(methodName);

 alert(builder.toString());
}

CustomComponents3.AspNetAjaxAmazonSearch.prototype =
{
 get_searchTextBox: CustomComponents3$AspNetAjaxAmazonSearch$get_searchTextBox,
 set_searchTextBox: CustomComponents3$AspNetAjaxAmazonSearch$set_searchTextBox,
 get_searchButton: CustomComponents3$AspNetAjaxAmazonSearch$get_searchButton,

 set_searchButton:
 CustomComponents3$AspNetAjaxAmazonSearch$set_searchButton,

 get_searchResultAreaDiv:
 CustomComponents3$AspNetAjaxAmazonSearch$get_searchResultAreaDiv,

 set_searchResultAreaDiv:
 CustomComponents3$AspNetAjaxAmazonSearch$set_searchResultAreaDiv,

 get_commandBarAreaDiv:
 CustomComponents3$AspNetAjaxAmazonSearch$get_commandBarAreaDiv,

 set_commandBarAreaDiv:
 CustomComponents3$AspNetAjaxAmazonSearch$set_commandBarAreaDiv,

 get_nextButton: CustomComponents3$AspNetAjaxAmazonSearch$get_nextButton,
 set_nextButton: CustomComponents3$AspNetAjaxAmazonSearch$set_nextButton,
 get_previousButton: CustomComponents3$AspNetAjaxAmazonSearch$get_previousButton,
 set_previousButton: CustomComponents3$AspNetAjaxAmazonSearch$set_previousButton,
 get_pageIndex: CustomComponents3$AspNetAjaxAmazonSearch$get_pageIndex,
 set_pageIndex: CustomComponents3$AspNetAjaxAmazonSearch$set_pageIndex,
 get_htmlGenerator: CustomComponents3$AspNetAjaxAmazonSearch$get_htmlGenerator,
 set_htmlGenerator: CustomComponents3$AspNetAjaxAmazonSearch$set_htmlGenerator,
 get_searchMethod: CustomComponents3$AspNetAjaxAmazonSearch$get_searchMethod,
 set_searchMethod: CustomComponents3$AspNetAjaxAmazonSearch$set_searchMethod,
 initialize: CustomComponents3$AspNetAjaxAmazonSearch$initialize,

(continued)

c18.indd 785c18.indd 785 8/20/07 7:56:10 PM8/20/07 7:56:10 PM

Chapter 18: Web Services Bridges and Transformers

786

 Listing 18-14 (continued)

 _onSearchButtonClick:
 CustomComponents3$AspNetAjaxAmazonSearch$_onSearchButtonClick,
 _onPreviousButtonClick:
 CustomComponents3$AspNetAjaxAmazonSearch$_onPreviousButtonClick,
 _onNextButtonClick: CustomComponents3$AspNetAjaxAmazonSearch$_onNextButtonClick,
 _onSuccess: CustomComponents3$AspNetAjaxAmazonSearch$_onSuccess,
 _onFailure: CustomComponents3$AspNetAjaxAmazonSearch$_onFailure
}

CustomComponents3.AspNetAjaxAmazonSearch.registerClass(
 “CustomComponents3.AspNetAjaxAmazonSearch”, Sys.UI.Control);

if (typeof(Sys) !== ‘undefined’)
 Sys.Application.notifyScriptLoaded();

 Properties
 The following table describes the getters and setters associated with the properties of the
 AspNetAjaxAmazonSearch client control:

 Getter or Setter Method Description

 get_searchTextBox Gets a reference to the search text box DOM element

 set_searchTextBox Sets a reference to the search text box DOM element

 get_searchButton Gets a reference to the search button DOM element

 set_searchButton Sets a reference to the search button DOM element

 get_htmlGenerator Gets a reference to the HtmlGenerator client control
that displays the results returned from the call into the
 ItemSearch Web method of the AWSE CommerceService
Web service

 set_htmlGenerator Sets a reference to the HtmlGenerator client control
that displays the results returned from the call into the
 ItemSearch Web method of the AWSE CommerceService
Web service

 get_searchResultAreaDiv Gets a reference to the div DOM element that displays the
search result

 set_searchResultAreaDiv Sets a reference to the div DOM element that displays the
search result

 get_commandBarAreaDiv Gets a reference to the div DOM element that displays the
command bar

 set_commandBarAreaDiv Sets a reference to the div DOM element that displays the
command bar

c18.indd 786c18.indd 786 8/20/07 7:56:11 PM8/20/07 7:56:11 PM

Chapter 18: Web Services Bridges and Transformers

787

 Getter or Setter Method Description

 get_nextButton Gets a reference to the next button DOM element

 set_nextButton Sets a reference to the next button DOM element

 get_previousButton Gets a reference to the previous button DOM element

 set_previousButton Sets a reference to the previous button DOM element

 get_pageIndex Gets the current page index

 set_pageIndex Sets the current page index

 get_searchMethod Gets a reference to the search method

 set_searchMethod Sets the reference to the search method

 initialize
 As you can see from Listing 18-14 , the AspNetAjaxAmazonSearch client control overrides the
 initialize method that it inherits from its base class, where it performs the following tasks. First, it
uses the callBaseMethod method to invoke the initialize method of the base class to allow the
base class to initialize itself:

 CustomComponents3.AspNetAjaxAmazonSearch.callBaseMethod(this, “initialize”);

 Next, it creates three delegates to represents the _onSearchButtonClick , _onNextButtonClick ,
and _onPreviousButtonClick methods and stores these delegates in private fields named
_searchButtonClickHandler , _nextButtonClickHandler , and _previousButtonClickHandler ,
respectively:

 this._searchButtonClickHandler =
 Function.createDelegate(this, this._onSearchButtonClick);
 this._nextButtonClickHandler =
 Function.createDelegate(this, this._onNextButtonClick);
 this._previousButtonClickHandler =
 Function.createDelegate(this, this._onPreviousButtonClick);

 Then it registers the above delegates as event handlers for the click events of the search, next, and previ-
ous button DOM elements, respectively. Therefore, when the end user clicks one of these buttons, the
associated delegate and consequently the method that the delegate represents is automatically invoked:

 $addHandler(this._searchButton, “click”, this._searchButtonClickHandler);
 $addHandler(this._nextButton, “click”, this._nextButtonClickHandler);
 $addHandler(this._previousButton, “click”, this._previousButtonClickHandler);

 Finally, the AspNetAjaxAmazonSearch client control creates two more delegates to represent
the _onSuccess and _onFailure methods and stores them in _onSuccessHandler and
_onFailureHandler private fields, respectively:

 this._onSuccessHandler = Function.createDelegate(this, this._onSuccess);
 this._onFailureHandler = Function.createDelegate(this, this._onFailure);

c18.indd 787c18.indd 787 8/20/07 7:56:11 PM8/20/07 7:56:11 PM

Chapter 18: Web Services Bridges and Transformers

788

 _ on SearchButtonClick
 As Listing 18-14 shows, this method first reset the current page index to 1 because we’re about to make a
new search query for which we need to download the first page of the search results:

 this._pageIndex = 1;

 Next, it retrieves the search query from the search text box DOM element and stores it in a private field
named _searchQuery :

 this._searchQuery = this._searchTextBox.value;

 Finally, it invokes the search method, passing in four parameters. The first parameter is an object literal
that describes the names and values of the parameters of the Web method being invoked. In our case, the
Web method expects two parameters, pageIndex and searchQuery . The second and third parameters
reference the _onSuccessHandler and _onFailureHandler delegates. Recall that these delegates
respectively represent the _onSuccess and _onFailure methods.

 this._searchMethod(
 {“pageIndex”: this._pageIndex, “searchQuery”: this._searchQuery},
 this._onSuccessHandler, this._onFailureHandler, null);

 _ on PreviousButtonClick
 As you can see from Listing 18-14 , this method begins by decrementing the current page index because
we’re moving back to the previous page:

 this._pageIndex--;

 Next, it checks whether the new current page index is negative. If so, it resets the current page index to 1 :

 if (this._pageIndex < 0)
 this._pageIndex = 1;

 Then, it retrieves the search query from the search text box DOM element and stores it in the
_searchQuery field:

 this._searchQuery = this._searchTextBox.value;

 Finally, it invokes the search method, passing in the same parameters we discussed earlier:

 this._searchMethod(
 {“pageIndex”: this._pageIndex, “searchQuery”: this._searchQuery},
 this._onSuccessHandler, this._onFailureHandler, null);

c18.indd 788c18.indd 788 8/20/07 7:56:11 PM8/20/07 7:56:11 PM

Chapter 18: Web Services Bridges and Transformers

789

 _ on NextButtonClick
 This method (see Listing 18-14) first increments the current page index because we need to download the
next page of search results from the Web service:

 this._pageIndex++;

 The next two steps are the same as in the previous example:

 this._searchQuery = this._searchTextBox.value;

 this._searchMethod(
 {“pageIndex”: this._pageIndex, “searchQuery”: this._searchQuery},
 this._onSuccessHandler, this._onFailureHandler, null);

 _ on Success
 As discussed earlier, the _onSearchButtonClick , _onPreviousButtonClick , and
_onNextButtonClick methods internally pass the _onSuccessHandler delegate into
the _searchMethod as its second argument. This delegate represents the _onSucccess method,
which means that when the search results finally arrive, the _onSuccessHandler delegate and
 consequently the _onSuccess method are automatically invoked. This method takes three parameters.
The first parameter contains the search results, the second references the context object, and the third
contains the name of the invoked method.

 As you can see from Listing 18-14 , the _onSuccess method invokes the generateHtml instance method
on the HtmlGenenrator component, passing in the search results. As you’ll see later, this method is
responsible for generating and returning the HTML markup that displays the search results:

 var html = this._htmlGenerator.generateHtml(items);

 Next, _onSuccess assigns this HTML markup to the inner HTML property of the search result area div
DOM element to display the search results in this div element:

 this._searchResultAreaDiv.innerHTML = html;

 Finally, it sets the values of the display properties of the style properties of the div elements that
 display the search results and command bar to “block” :

 this._commandBarAreaDiv.style.display = “block”;
 this._searchResultAreaDiv.style.display = “block”;

 AmazonSearchScriptControl
 Listing 18-15 presents the implementation of the AmazonSearchScriptControl script server control.
As I mentioned earlier, this script server control enables page developers to use familiar imperative and
declarative ASP.NET techniques to program against the underlying AspNetAjaxAmazonSearch
ASP.NET AJAX client-side control. I’ll discuss the methods and properties of this server control in the
 following sections.

c18.indd 789c18.indd 789 8/20/07 7:56:11 PM8/20/07 7:56:11 PM

Chapter 18: Web Services Bridges and Transformers

790

 Listing 18-15: The AmazonSearchScriptControl Script Server Control

 using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Collections.Specialized;
using System.Xml;
using System.IO;
using System.Collections.Generic;
using com.amazon.webservices;

namespace CustomComponents3
{
 public class AmazonSearchScriptControl : ScriptControl
 {
 public string HtmlGeneratorID
 {
 get
 {
 return ViewState[“HtmlGeneratorID”] != null ?
 (string)ViewState[“HtmlGeneratorID”] : string.Empty;
 }
 set
 {
 ViewState[“HtmlGeneratorID”] = value;
 }
 }

 public string SearchMethod
 {
 get
 {
 return ViewState[“SearchMethod”] != null ?
 (string)ViewState[“SearchMethod”] : string.Empty;
 }
 set
 {
 ViewState[“SearchMethod”] = value;
 }
 }

 public string Path
 {
 get
 {
 return ViewState[“Path”] != null ?
 (string)ViewState[“Path”] : string.Empty;
 }

c18.indd 790c18.indd 790 8/20/07 7:56:12 PM8/20/07 7:56:12 PM

Chapter 18: Web Services Bridges and Transformers

791

 set
 {
 ViewState[“Path”] = value;
 }
 }

 public string ClientControlType
 {
 get
 {
 return ViewState[“ClientControlType”] != null ?
 (string)ViewState[“ClientControlType”] : string.Empty;
 }
 set
 {
 ViewState[“ClientControlType”] = value;
 }
 }

 protected override IEnumerable<ScriptDescriptor> GetScriptDescriptors()
 {
 ScriptControlDescriptor descriptor =
 new ScriptControlDescriptor(this.ClientControlType, this.ClientID);

 descriptor.AddProperty(“pageIndex”, 1);
 descriptor.AddScriptProperty(“searchMethod”, this.SearchMethod);

 descriptor.AddElementProperty(“searchTextBox”,
 this.ClientID + “_SearchTextBox”);

 descriptor.AddElementProperty(“searchButton”,
 this.ClientID + “_SearchButton”);

 descriptor.AddElementProperty(“searchResultAreaDiv”,
 this.ClientID + “_SearchResultArea”);

 descriptor.AddElementProperty(“commandBarAreaDiv”,
 this.ClientID + “_CommandBarArea”);

 descriptor.AddElementProperty(“previousButton”,
 this.ClientID + “_PreviousButton”);

 descriptor.AddElementProperty(“nextButton”, this.ClientID + “_NextButton”);
 descriptor.AddComponentProperty(“htmlGenerator”, this.HtmlGeneratorID);
 return new ScriptDescriptor[] { descriptor };
 }

 protected override IEnumerable<ScriptReference> GetScriptReferences()
 {
 ScriptReference reference = new ScriptReference();
 reference.Path = Path;
 return new ScriptReference[] { reference };
 }

(continued)

c18.indd 791c18.indd 791 8/20/07 7:56:12 PM8/20/07 7:56:12 PM

Chapter 18: Web Services Bridges and Transformers

792

 Listing 18-15 (continued)

 protected override void RenderContents(HtmlTextWriter writer)
 {
 writer.RenderBeginTag(HtmlTextWriterTag.Tr);

 writer.RenderBeginTag(HtmlTextWriterTag.Td);
 writer.AddStyleAttribute(HtmlTextWriterStyle.BorderWidth, “0”);
 writer.AddStyleAttribute(“cellpadding”, “0”);
 writer.AddStyleAttribute(“cellspacing”, “0”);

 writer.RenderBeginTag(HtmlTextWriterTag.Table);
 writer.RenderBeginTag(HtmlTextWriterTag.Tr);

 writer.RenderBeginTag(HtmlTextWriterTag.Td);
 writer.AddAttribute(HtmlTextWriterAttribute.Type, “text”);
 writer.AddAttribute(HtmlTextWriterAttribute.Id, ClientID + “_SearchTextBox”);
 writer.AddAttribute(HtmlTextWriterAttribute.Size, “41”);
 writer.RenderBeginTag(HtmlTextWriterTag.Input);
 writer.RenderEndTag();
 writer.Write(“ ”);
 writer.AddAttribute(HtmlTextWriterAttribute.Type, “button”);
 writer.AddAttribute(HtmlTextWriterAttribute.Id,
 this.ClientID + “_SearchButton”);

 writer.RenderBeginTag(HtmlTextWriterTag.Button);
 writer.Write(“Search”);
 writer.RenderEndTag();
 writer.RenderEndTag();
 writer.RenderEndTag();
 writer.RenderEndTag();
 writer.RenderEndTag();

 writer.RenderEndTag();

 writer.RenderBeginTag(HtmlTextWriterTag.Tr);
 writer.AddAttribute(HtmlTextWriterAttribute.Colspan, “3”);
 writer.RenderBeginTag(HtmlTextWriterTag.Td);
 writer.AddStyleAttribute(HtmlTextWriterStyle.Display, “none”);

 writer.AddAttribute(HtmlTextWriterAttribute.Id,
 this.ClientID + “_SearchResultArea”);

 writer.RenderBeginTag(HtmlTextWriterTag.Div);
 writer.RenderEndTag();

 writer.RenderEndTag();
 writer.RenderEndTag();

 writer.RenderBeginTag(HtmlTextWriterTag.Tr);
 writer.AddAttribute(HtmlTextWriterAttribute.Align, “center”);
 writer.AddAttribute(HtmlTextWriterAttribute.Colspan, “3”);
 writer.RenderBeginTag(HtmlTextWriterTag.Td);
 writer.AddStyleAttribute(HtmlTextWriterStyle.Display, “none”);

c18.indd 792c18.indd 792 8/20/07 7:56:12 PM8/20/07 7:56:12 PM

Chapter 18: Web Services Bridges and Transformers

793

 writer.AddAttribute(HtmlTextWriterAttribute.Id,
 this.ClientID + “_CommandBarArea”);

 writer.RenderBeginTag(HtmlTextWriterTag.Div);
 writer.AddAttribute(HtmlTextWriterAttribute.Type, “button”);
 writer.AddAttribute(HtmlTextWriterAttribute.Id,
 this.ClientID + “_PreviousButton”);

 writer.RenderBeginTag(HtmlTextWriterTag.Button);
 writer.Write(“<< Prev”);
 writer.RenderEndTag();
 writer.Write(“ ”);
 writer.AddAttribute(HtmlTextWriterAttribute.Type, “button”);
 writer.AddAttribute(HtmlTextWriterAttribute.Id, ClientID + “_NextButton”);
 writer.RenderBeginTag(HtmlTextWriterTag.Button);
 writer.Write(“Next >>”);
 writer.RenderEndTag();

 writer.RenderEndTag();
 writer.RenderEndTag();
 writer.RenderEndTag();
 }

 protected override HtmlTextWriterTag TagKey
 {
 get { return HtmlTextWriterTag.Table; }
 }

 protected override Style CreateControlStyle()
 {
 return new TableStyle(ViewState);
 }

 public virtual int CellPadding
 {
 get { return ((TableStyle)ControlStyle).CellPadding; }
 set { ((TableStyle)ControlStyle).CellPadding = value; }
 }

 public virtual int CellSpacing
 {
 get { return ((TableStyle)ControlStyle).CellSpacing; }
 set { ((TableStyle)ControlStyle).CellSpacing = value; }
 }

 public virtual HorizontalAlign HorizontalAlign
 {
 get { return ((TableStyle)ControlStyle).HorizontalAlign; }
 set { ((TableStyle)ControlStyle).HorizontalAlign = value; }
 }

 public virtual string BackImageUrl
 {

(continued)

c18.indd 793c18.indd 793 8/20/07 7:56:13 PM8/20/07 7:56:13 PM

Chapter 18: Web Services Bridges and Transformers

794

 Listing 18-15 (continued)

 get { return ((TableStyle)ControlStyle).BackImageUrl; }
 set { ((TableStyle)ControlStyle).BackImageUrl = value; }
 }

 public virtual GridLines GridLines
 {
 get { return ((TableStyle)ControlStyle).GridLines; }
 set { ((TableStyle)ControlStyle).GridLines = value; }
 }
 }
}

 Properties
 The following table describes four of the non-style properties of the AmazonSearchScriptContro l
script server control.

 Property Description

 HtmlGenerator ID Gets or sets the id property value of the HTML generator component,
which is responsible for generating the HTML markup that displays
the search results.

 SearchMethod Gets or sets the fully qualified name of the proxy method to invoke,
including the name of the proxy class to which the method belongs
and the complete namespace containment hierarchy to which the
proxy class belongs.

 Path Gets or sets the virtual path of the JavaScript file that contains
the implementation of the client control that the
AmazonSearchScriptControl script server control represents.

 ClientControlType Gets or sets the fully qualified name of the client control that the
 AmazonSearchScriptControl script server control represents. This
name must contain the complete namespace containment hierarchy
of the client control.

 AmazonSearchScriptControl overrides the TagKey property that it inherits from the WebControl
base class to specify a table HTML element as its containing or outermost HTML element. As the name
suggests, the containing HTML element of a server control is an element that contains the rest of the
HTML markup that makes up the user interface of the control:

 protected override HtmlTextWriterTag TagKey
 {
 get { return HtmlTextWriterTag.Table; }
 }

 Since AmazonSearchScriptControl uses a table HTML element as its containing HTML element, it
also overrides the CreateControlStyle method of its base class to specify a TableStyle as a Style

c18.indd 794c18.indd 794 8/20/07 7:56:13 PM8/20/07 7:56:13 PM

Chapter 18: Web Services Bridges and Transformers

795

object for styling its containing HTML element. This TableStyle object enables page developers to
style the containing HTML element in a strongly-typed fashion:

 protected override Style CreateControlStyle()
 {
 return new TableStyle(ViewState);
 }

 Every server control that overrides the CreateControlStyle method must also expose the properties of
the associated Style object as its own top-level properties. As a result, the AmazonSearchScriptControl
exposes five style properties, CellPadding , CellSpacing , HorizonalAlign , BackImageUrl , and
 GridLines , that respectively get or set the values of the CellPadding , CellSpacing , HorizonalAlign ,
 BackImageUrl , and GridLines properties of the underlying TableStyle object that styles the containing
 table HTML element of the AmazonSearchScriptControl script server control.

 GetScriptDescriptors
 AmazonSearchScriptControl , like any other script server control, overrides the GetScriptDescrip-
tors method of its base class, where it takes the following steps (see Listing 18-14). First, it instantiates a
 ScriptControlDescriptor object, passing the values of its ClientControlType and Client ID prop-
erties. Recall that the ClientControlType property contains the fully qualified name of the client con-
trol that AmazonSearchScriptControl represents:

 ScriptControlDescriptor descriptor =
 new ScriptControlDescriptor(this.ClientControlType, this.ClientID);

 Next, it invokes the AddProperty method on this ScriptControlDescriptor object to specify the
value of the pageIndex property of the client control that AmazonSearchScriptControl represents:

 descriptor.AddProperty(“pageIndex”, 1);

 Then it calls the AddScriptProperty method on the ScriptControlDescriptor object to specify
the value of the searchMethod property of the client control that AmazonSearchScriptControl
 represents. Recall that the searchMethod property references the proxy method to be invoked:

 descriptor.AddScriptProperty(“searchMethod”, this.SearchMethod);

 Next, it calls the AddElementProperty method six times to specify the values of the searchTextBox ,
 searchButton , searchResultAreaDiv , commandBarAreaDiv , previousButton , and nextButton
properties of the client control that AmazonSearchScriptControl represents:

 descriptor.AddElementProperty(“searchTextBox”,
 this.ClientID + “_SearchTextBox”);
 descriptor.AddElementProperty(“searchButton”,
 this.ClientID + “_SearchButton”);
 descriptor.AddElementProperty(“searchResultAreaDiv”,
 this.ClientID + “_SearchResultArea”);
 descriptor.AddElementProperty(“commandBarAreaDiv”,
 this.ClientID + “_CommandBarArea”);
 descriptor.AddElementProperty(“previousButton”,
 this.ClientID + “_PreviousButton”);
 descriptor.AddElementProperty(“nextButton”, this.ClientID + “_NextButton”);

c18.indd 795c18.indd 795 8/20/07 7:56:13 PM8/20/07 7:56:13 PM

Chapter 18: Web Services Bridges and Transformers

796

 Next, it calls the AddComponentProperty method on the ScriptControlDescriptor object to specify
the value of the htmlGenerator property that the AmazonSearchScriptControl represents. Recall
that the htmlGenerator property references the client component responsible for generating and
returning the HTML markup that renders the search results:

 descriptor.AddComponentProperty(“htmlGenerator”, this.HtmlGeneratorID);

 Finally, it instantiates and populates an array with the ScriptControlDescriptor object and returns
the array to its caller:

 return new ScriptDescriptor[] { descriptor };

 GetScriptReferences
 AmazonSearchScriptControl , like any other script server control, overrides the GetScriptReferences
method of its base class, where it instantiates a ScriptReference object:

 ScriptReference reference = new ScriptReference();

 Next, it assigns to the Path property of this ScriptReference object the virtual path of the JavaScript
file that contains the implementation of the client control that AmazonSearchScriptControl
represents:

 reference.Path = Path;

 Finally, it instantiates and populates an array with this ScriptReference object and returns the array to
its caller:

 return new ScriptReference[] { reference };

 RenderContents
 AmazonSearchScriptControl , like any other WebControl subclass, overrides the RenderContents
method of the WebControl base class to render its content HTML markup. The content HTML markup
of a server control is the portion of its HTML markup that goes within the opening and closing tags of its
containing HTML element, which is the table HTML element in the case of
 AmazonSearchScriptControl .

 As you can see from Listing 18-14 , RenderContents renders three tr HTML elements. The first tr HTML
element contains the search text box and the search button:

 writer.RenderBeginTag(HtmlTextWriterTag.Tr);
 writer.RenderBeginTag(HtmlTextWriterTag.Td);
 writer.RenderBeginTag(HtmlTextWriterTag.Table);
 writer.RenderBeginTag(HtmlTextWriterTag.Tr);
 writer.RenderBeginTag(HtmlTextWriterTag.Td);
 writer.AddAttribute(HtmlTextWriterAttribute.Type, “text”);
 writer.AddAttribute(HtmlTextWriterAttribute.Id, ClientID + “_SearchTextBox”);

c18.indd 796c18.indd 796 8/20/07 7:56:14 PM8/20/07 7:56:14 PM

Chapter 18: Web Services Bridges and Transformers

797

 writer.AddAttribute(HtmlTextWriterAttribute.Size, “41”);
 writer.RenderBeginTag(HtmlTextWriterTag.Input);
 writer.RenderEndTag();
 writer.Write(“ ”);
 writer.AddAttribute(HtmlTextWriterAttribute.Type, “button”);
 writer.AddAttribute(HtmlTextWriterAttribute.Id,
 this.ClientID + “_SearchButton”);
 writer.RenderBeginTag(HtmlTextWriterTag.Button);
 writer.Write(“Search”);
 writer.RenderEndTag();
 writer.RenderEndTag();
 writer.RenderEndTag();
 writer.RenderEndTag();
 writer.RenderEndTag();
 writer.RenderEndTag();

 Notice that RenderContents uses the following as the value of the id HTML attributes of the text box
and search button elements:

 ClientID + “_SearchTextBox”
ClientID + “_SearchButton”

 Notice also that these are the same two values that GetScriptDescriptors passes into the
 AddElementProperty methods that specify the values of the searchTextBox and searchButton
properties of the client script that AmazonSearchScriptControl represents.

 Next, RenderContents renders the tr HTML element that contains the div HTML element that dis-
plays the search results:

 writer.RenderBeginTag(HtmlTextWriterTag.Tr);
 writer.AddAttribute(HtmlTextWriterAttribute.Colspan, “3”);
 writer.RenderBeginTag(HtmlTextWriterTag.Td);
 writer.AddStyleAttribute(HtmlTextWriterStyle.Display, “none”);
 writer.AddAttribute(HtmlTextWriterAttribute.Id,
 this.ClientID + “_SearchResultArea”);
 writer.RenderBeginTag(HtmlTextWriterTag.Div);
 writer.RenderEndTag();
 writer.RenderEndTag();
 writer.RenderEndTag();

 Notice that RenderContents uses ClientID plus “_SearchResultArea” as the value of the id
HTML attribute of the div HTML element that displays the search result. This value is the same one that
the GetScriptDescriptors method passes into the AddElementProperty method that specifies the
value of the searchResultArea property of the client control that AmazonSearchScriptControl
represents.

 Finally, RenderContents renders the tr HTML element that contains the div HTML element that
 displays the command bar, which consists of the Previous and Next buttons. Again notice that the
id HTML attributes of these two buttons are set to the same values that GetScriptDescriptors
 passes into the AddElementProperty methods that specify the values of the previousButton and
 nextButton properties of the client control that AmazonSearchScriptControl represents.

c18.indd 797c18.indd 797 8/20/07 7:56:14 PM8/20/07 7:56:14 PM

Chapter 18: Web Services Bridges and Transformers

798

 writer.RenderBeginTag(HtmlTextWriterTag.Tr);
 writer.AddAttribute(HtmlTextWriterAttribute.Align, “center”);
 writer.AddAttribute(HtmlTextWriterAttribute.Colspan, “3”);
 writer.RenderBeginTag(HtmlTextWriterTag.Td);
 writer.AddStyleAttribute(HtmlTextWriterStyle.Display, “none”);
 writer.AddAttribute(HtmlTextWriterAttribute.Id,
 this.ClientID + “_CommandBarArea”);
 writer.RenderBeginTag(HtmlTextWriterTag.Div);
 writer.AddAttribute(HtmlTextWriterAttribute.Type, “button”);
 writer.AddAttribute(HtmlTextWriterAttribute.Id,
 this.ClientID + “_PreviousButton”);
 writer.RenderBeginTag(HtmlTextWriterTag.Button);
 writer.Write(“<< Prev”);
 writer.RenderEndTag();
 writer.Write(“ ”);
 writer.AddAttribute(HtmlTextWriterAttribute.Type, “button”);
 writer.AddAttribute(HtmlTextWriterAttribute.Id, ClientID + “_NextButton”);
 writer.RenderBeginTag(HtmlTextWriterTag.Button);
 writer.Write(“Next >>”);
 writer.RenderEndTag();
 writer.RenderEndTag();
 writer.RenderEndTag();
 writer.RenderEndTag();

 HtmlGenerator
 Listing 18-16 presents the implementation of the HtmlGenerator client component. I’ll discuss the
methods and properties of this component in the following sections.

 Listing 18-16: The HtmlGenerator Client Component

 Type.registerNamespace(“CustomComponents3”);

CustomComponents3.HtmlGenerator =
function CustomComponents3$HtmlGenerator()
{
 CustomComponents3.HtmlGenerator.initializeBase(this);
}

function CustomComponents3$HtmlGenerator$get_tableStyle()
{
 return this._tableStyle;
}

function CustomComponents3$HtmlGenerator$set_tableStyle(value)
{
 this._tableStyle = value;
}

function CustomComponents3$HtmlGenerator$get_rowStyle()
{
 return this._rowStyle;
}

c18.indd 798c18.indd 798 8/20/07 7:56:14 PM8/20/07 7:56:14 PM

Chapter 18: Web Services Bridges and Transformers

799

function CustomComponents3$HtmlGenerator$set_rowStyle(value)
{
 this._rowStyle = value;
}

function CustomComponents3$HtmlGenerator$get_alternatingRowStyle()
{
 return this._alternatingRowStyle;
}

function CustomComponents3$HtmlGenerator$set_alternatingRowStyle(value)
{
 this._alternatingRowStyle = value;
}

function CustomComponents3$HtmlGenerator$generateHtml(items)
{
 var title;
 var author;
 var amazonUrl;
 var imageUrl;
 var listPrice;
 var price;
 var item;

 var results = items.Item;
 if (!results)
 return;

 var builder = new Sys.StringBuilder();
 builder.append(“<table cellspacing=’10’ style=’”);
 builder.append(this._tableStyle);
 builder.append(“’>”);

 for (var i=0; i<results.length-1; i++)
 {
 item = results[i];
 if (!item)
 continue;

 if (item.ItemAttributes.Title)
 title = item.ItemAttributes.Title;

 if (item.ItemAttributes.Author)
 author = item.ItemAttributes.Author[0];

 if (item.DetailPageURL)
 amazonUrl = item.DetailPageURL;

 if (item.MediumImage)
 imageUrl = item.MediumImage.URL;

 if (item.ItemAttributes.ListPrice)
 listPrice = item.ItemAttributes.ListPrice.FormattedPrice;

(continued)

c18.indd 799c18.indd 799 8/20/07 7:56:14 PM8/20/07 7:56:14 PM

Chapter 18: Web Services Bridges and Transformers

800

 Listing 18-16 (continued)

 if (item.Offers)
 {
 var offerArray = item.Offers.Offer;
 if (offerArray)
 {
 if (offerArray[0].OfferListing)
 {
 if (offerArray[0].OfferListing[0].Price)
 price = item.Offers.Offer[0].OfferListing[0].Price.FormattedPrice;
 }
 }
 }

 builder.append(“<tr>”);
 builder.append(“<td valign=’top’ width=’100%’>”);
 builder.append(“<table cellspacing=’10’ style=’”);
 if (i % 2 == 0)
 builder.append(this._rowStyle);
 else
 builder.append(this._alternatingRowStyle);
 builder.append(“’>”);
 builder.append(“<tr>”);
 builder.append(“<td align=’center’ valign=’top’ width=’20%’>”);
 builder.append(“<img alt=’’ src=’”);
 builder.append(imageUrl);
 builder.append(“’/>”);
 builder.append(“</td>”);
 builder.append(“<td align=’left’ valign=’top’>”);
 builder.append(“<p>”);
 builder.append(“<a href=’”);
 builder.append(amazonUrl);
 builder.append(“’>”);
 builder.append(title);
 builder.append(“”);
 builder.append(“
”);
 builder.append(“by “);
 builder.append(author);
 builder.append(“ (Author)”);
 builder.append(“</p>”);
 builder.append(“<p>”);
 builder.append(“ List Price: <s>”);
 builder.append(listPrice);
 builder.append(“</s></br>”);
 builder.append(“ Price: “);
 builder.append(price);
 builder.append(“</br>”);
 builder.append(“</td>”);
 builder.append(“</tr>”);
 builder.append(“<tr>”);
 builder.append(“<td colspan=’2’>”);
 builder.append(“</td>”);

c18.indd 800c18.indd 800 8/20/07 7:56:15 PM8/20/07 7:56:15 PM

Chapter 18: Web Services Bridges and Transformers

801

 builder.append(“</tr>”);
 builder.append(“</table>”);
 builder.append(“</td>”);
 builder.append(“</tr>”);
 }

 builder.append(“</table>”);
 return builder.toString();
}

function CustomComponents3$HtmlGenerator$initialize()
{
 CustomComponents3.HtmlGenerator.callBaseMethod(this, “initialize”);
}

CustomComponents3.HtmlGenerator.prototype =
{
 get_tableStyle: CustomComponents3$HtmlGenerator$get_tableStyle,
 set_tableStyle: CustomComponents3$HtmlGenerator$set_tableStyle,
 get_rowStyle: CustomComponents3$HtmlGenerator$get_rowStyle,
 set_rowStyle: CustomComponents3$HtmlGenerator$set_rowStyle,
 get_alternatingRowStyle: CustomComponents3$HtmlGenerator$get_alternatingRowStyle,
 set_alternatingRowStyle: CustomComponents3$HtmlGenerator$set_alternatingRowStyle,
 generateHtml: CustomComponents3$HtmlGenerator$generateHtml,
 initialize: CustomComponents3$HtmlGenerator$initialize
}

CustomComponents3.HtmlGenerator.registerClass(“CustomComponents3.HtmlGenerator”,
 Sys.Component);
if (typeof(Sys) !== ‘undefined’)
 Sys.Application.notifyScriptLoaded();

 Properties
 The following table describes the properties of the HtmlGenerator client component.

 Getter or Setter Description

 get_tableStyle Gets a string that contains the value that can be directly
 assigned to the style property of the table HTML element
that the generateHtml method renders as the containing
HTML element

 set_tableStyle Specifies a string that contains the value that can be directly
assigned to the style property of the table HTML element
that the generateHtml method renders as the containing
HTML element

 get_rowStyle Gets a string that contains the value that can be directly
 assigned to the style property of the even tr HTML
 elements that the generateHtml method renders

(continued)

c18.indd 801c18.indd 801 8/20/07 7:56:15 PM8/20/07 7:56:15 PM

Chapter 18: Web Services Bridges and Transformers

802

 Getter or Setter Description

 set_rowStyle Specifies a string that contains the value that can be directly
assigned to the style property of the even tr HTML
 elements that the generateHtml method renders

 get_alternatingRowStyle Gets a string that contains the value that can be directly
 assigned to the style property of the odd tr HTML
 elements that the generateHtml method renders

 set_alternatingRowStyle Specifies a string that contains the value that can be directly
assigned to the style property of the odd tr HTML
 elements that the generateHtml method renders

 generate Html
 This method takes the search results as its argument and generates and returns the HTML markup that
displays them. This method first invokes the Item property on the object passed into it to return the
actual search results:

 var results = items.Item;
 if (!results)
 return;

 Next, it instantiates a StringBuilder , which will accumulate the HTML markup that displays the
search results:

 var builder = new Sys.StringBuilder();

 Then it adds the string that contains the containing table HTML element. Notice that it directly assigns
the value of the _tableStyle field to the style property of the table element:

 builder.append(“<table cellspacing=’10’ style=’”);
 builder.append(this._tableStyle);
 builder.append(“’>”);

 Next, it iterates through the search results and takes the following steps for each enumerated search
result. (Keep in mind that each enumerated search result contains data about a particular book.) First it
retrieves the book data that the enumerated search result contains and stores the data in the associated
private fields:

 title = item.ItemAttributes.Title;
 author = item.ItemAttributes.Author[0];
 amazonUrl = item.DetailPageURL;
 imageUrl = item.MediumImage.URL;
 listPrice = item.ItemAttributes.ListPrice.FormattedPrice;
 var offerArray = item.Offers.Offer;
 price = item.Offers.Offer[0].OfferListing[0].Price.FormattedPrice;

c18.indd 802c18.indd 802 8/20/07 7:56:15 PM8/20/07 7:56:15 PM

Chapter 18: Web Services Bridges and Transformers

803

 Next, it generates a string that contains a tr HTML element with a single td HTML element, which in
turn contains a table HTML element:

 builder.append(“<tr>”);
 builder.append(“<td valign=’top’ width=’100%’>”);
 builder.append(“<table cellspacing=’10’ style=’”);

 Then it generates a string that contains a tr HTML element that displays a particular piece of informa-
tion about the book, such as its title. Note that generateHTML assigns the value of the _rowStyle field
to the style property of the tr HTML element if the element represents an even row. Otherwise it
assigns the value of the _alternatingRowStyle field to this style property.

 if (i % 2 == 0)
 builder.append(this._rowStyle);
 else
 builder.append(this._alternatingRowStyle);

 HtmlGeneratorScriptControl
 Listing 18-17 contains the implementation of the HtmlGeneratorScriptControl script server control.
I’ll discuss the methods and properties of this server control in the following sections.

 Listing 18-17: The HtmlGeneratorScriptControl Script Server Control

 using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Collections.Specialized;
using System.Xml;
using System.IO;
using System.Collections.Generic;
using com.amazon.webservices;
using System.ComponentModel;

namespace CustomComponents3
{
 public class HtmlGeneratorScriptControl : ScriptControl
 {
 protected override Style CreateControlStyle()
 {
 return new TableStyle(ViewState);
 }

(continued)

c18.indd 803c18.indd 803 8/20/07 7:56:16 PM8/20/07 7:56:16 PM

Chapter 18: Web Services Bridges and Transformers

804

 Listing 18-17 (continued)

 private TableItemStyle rowStyle;
 [PersistenceMode(PersistenceMode.InnerProperty)]
 [NotifyParentProperty(true)]
 [DesignerSerializationVisibility(DesignerSerializationVisibility.Content)]
 public virtual TableItemStyle RowStyle
 {
 get
 {
 if (rowStyle == null)
 {
 rowStyle = new TableItemStyle();
 if (IsTrackingViewState)
 ((IStateManager)rowStyle).TrackViewState();
 }
 return rowStyle;
 }
 }

 private TableItemStyle alternatingRowStyle;
 [PersistenceMode(PersistenceMode.InnerProperty)]
 [NotifyParentProperty(true)]
 [DesignerSerializationVisibility(DesignerSerializationVisibility.Content)]
 public virtual TableItemStyle AlternatingRowStyle
 {
 get
 {
 if (alternatingRowStyle == null)
 {
 alternatingRowStyle = new TableItemStyle();
 if (IsTrackingViewState)
 ((IStateManager)alternatingRowStyle).TrackViewState();
 }
 return alternatingRowStyle;
 }
 }

 protected override object SaveViewState()
 {
 object[] state = new object[3];
 state[0] = base.SaveViewState();
 if (this.rowStyle != null)
 state[1] = ((IStateManager)rowStyle).SaveViewState();
 if (this.alternatingRowStyle != null)
 state[2] = ((IStateManager)alternatingRowStyle).SaveViewState();

 foreach (object obj in state)
 {
 if (obj != null)
 return state;
 }

c18.indd 804c18.indd 804 8/20/07 7:56:16 PM8/20/07 7:56:16 PM

Chapter 18: Web Services Bridges and Transformers

805

 return null;
 }

 protected override void LoadViewState(object savedState)
 {
 if (savedState == null)
 {
 base.LoadViewState(savedState);
 return;
 }

 object[] state = savedState as object[];
 if (state == null || state.Length != 3)
 return;

 base.LoadViewState(state[0]);
 if (state[1] != null)
 ((IStateManager)RowStyle).LoadViewState(state[1]);
 if (state[2] != null)
 ((IStateManager)AlternatingRowStyle).LoadViewState(state[2]);
 }

 protected override void TrackViewState()
 {
 base.TrackViewState();
 if (rowStyle != null)
 ((IStateManager)RowStyle).TrackViewState();
 if (alternatingRowStyle != null)
 ((IStateManager)AlternatingRowStyle).TrackViewState();
 }

 protected override IEnumerable<ScriptDescriptor> GetScriptDescriptors()
 {
 ScriptComponentDescriptor descriptor =
 new ScriptComponentDescriptor(this.ClientControlType);
 descriptor.AddProperty(“id”, this.ClientID);
 CssStyleCollection col;
 if (ControlStyleCreated)
 {
 col = ControlStyle.GetStyleAttributes(this);
 descriptor.AddProperty(“tableStyle”, col.Value);
 }

 if (this.rowStyle != null)
 {
 col = rowStyle.GetStyleAttributes(this);
 descriptor.AddProperty(“rowStyle”, col.Value);
 }

(continued)

c18.indd 805c18.indd 805 8/20/07 7:56:16 PM8/20/07 7:56:16 PM

Chapter 18: Web Services Bridges and Transformers

806

 Listing 18-17 (continued)

 if (this.alternatingRowStyle != null)
 {
 col = alternatingRowStyle.GetStyleAttributes(this);
 descriptor.AddProperty(“alternatingRowStyle”, col.Value);
 }

 return new ScriptDescriptor[] { descriptor };
 }

 protected override IEnumerable<ScriptReference> GetScriptReferences()
 {
 ScriptReference reference = new ScriptReference();
 reference.Path = this.Path;
 return new ScriptReference[] { reference };
 }

 public string Path
 {
 get
 {
 return ViewState[“Path”] != null ?
 (string)ViewState[“Path”] : string.Empty;
 }
 set
 {
 ViewState[“Path”] = value;
 }
 }

 public string ClientControlType
 {
 get
 {
 return ViewState[“ClientControlType”] != null ?
 (string)ViewState[“ClientControlType”] : string.Empty;
 }
 set
 {
 ViewState[“ClientControlType”] = value;
 }
 }

 public virtual int CellPadding
 {
 get { return ((TableStyle)ControlStyle).CellPadding; }
 set { ((TableStyle)ControlStyle).CellPadding = value; }
 }

c18.indd 806c18.indd 806 8/20/07 7:56:16 PM8/20/07 7:56:16 PM

Chapter 18: Web Services Bridges and Transformers

807

 public virtual int CellSpacing
 {
 get { return ((TableStyle)ControlStyle).CellSpacing; }
 set { ((TableStyle)ControlStyle).CellSpacing = value; }
 }

 public virtual HorizontalAlign HorizontalAlign
 {
 get { return ((TableStyle)ControlStyle).HorizontalAlign; }
 set { ((TableStyle)ControlStyle).HorizontalAlign = value; }
 }

 public virtual string BackImageUrl
 {
 get { return ((TableStyle)ControlStyle).BackImageUrl; }
 set { ((TableStyle)ControlStyle).BackImageUrl = value; }
 }

 public virtual GridLines GridLines
 {
 get { return ((TableStyle)ControlStyle).GridLines; }
 set { ((TableStyle)ControlStyle).GridLines = value; }
 }
 }
}

 Properties
 The following table describes the properties of the HtmlGeneratorScriptControl script server
control:

 Property Description

 RowStyle Gets the TableItemStyle object that styles the even rows of the
table that the underlying HTML generator client component
generates

 AlternatingRowStyle Gets the TableItemStyle object that styles the odd rows of the
table that the underlying HTML generator client component
generates

 ClientControlType Gets or sets the string that contains the fully qualified name of
the type of the underlying HTML generator client component,
 including its complete namespace containment hierarchy

 Path Gets or sets the string that contains the virtual path of the
 JavaScript file that contains the implementation of the underlying
HTML generator client component

c18.indd 807c18.indd 807 8/20/07 7:56:17 PM8/20/07 7:56:17 PM

Chapter 18: Web Services Bridges and Transformers

808

 CreateControlStyle
 As Listing 18-17 shows, HtmlGeneratorScriptControl overrides the CreateControlStyle method
that it inherits from the WebControl base class to instantiate and to return a TableStyle object. This
object will enable page developers to style the containing table HTML element of the HTML markup text
that the underlying HTML generator client component generates:

 protected override Style CreateControlStyle()
 {
 return new TableStyle(ViewState);
 }

 As I mentioned earlier, every server control that overrides the CreateControlStyle method must also
expose the properties of the associated Style object as its own top-level properties. As a result, the
HtmlGeneratorScriptControl exposes five style properties — CellPadding , CellSpacing ,
 HorizontalAlign , BackImageUrl , and GridLines — that get or set the values of the CellPadding ,
 CellSpacing , HorizontalAlign , BackImageUrl , and GridLines properties, respectively, of
the underlying TableStyle object that styles the containing table HTML element of the
HtmlGeneratorScriptControl script server control. As you’ll see later, HtmlGeneratorScriptControl
will apply the TableStyle settings to the containing table HTML element of the HTML markup text
that the underlying HTML generator client component generates.

 GetScriptDescriptors
 As Listing 18-17 shows, HtmlGeneratorScriptControl , like any other script server control, overrides
the GetScriptDescriptors method, where it takes the following steps. First, it instantiates a
 ScriptComponentDescriptor object, passing in the value of the ClientControlType property.
Recall that this property contains the fully qualified name of the type of the underlying HTML generator
client component:

 ScriptComponentDescriptor descriptor =
 new ScriptComponentDescriptor(this.ClientControlType);

 Next, it invokes the AddProperty method on this ScriptComponentDescriptor object to specify
the value of the Client ID property of the HtmlGeneratorScriptControl server control as the id
 property value of the underlying HTML generator client component:

 descriptor.AddProperty(“id”, this.ClientID);

 Then it calls the ControlStyleCreated property to check whether the ControlStyle property
of the HtmlGeneratorScriptControl server control has been specified. If so, it invokes the
GetStyleAttributes method on the ControlStyle property to return a CssStyleCollection
that contains the CSS styles of the containing table HTML element of the server control:

 col = ControlStyle.GetStyleAttributes(this);

 Next, it invokes the AddProperty method on the ScriptComponentDescriptor object to specify the
value of the Value property of the CssStyleCollection as the value of the tableStyle property of
the underlying HTML generator client components. Keep in mind that the value of the Value property
is a string that contains a semicolon-separated list of items in which each item consists of two parts

c18.indd 808c18.indd 808 8/20/07 7:56:17 PM8/20/07 7:56:17 PM

Chapter 18: Web Services Bridges and Transformers

809

 separated by a colon. In other words, the value of this property is a string that can be directly assigned
to the style property of the containing table HTML element:

 descriptor.AddProperty(“tableStyle”, col.Value);

 Then HtmlGeneratorScriptControl repeats the preceding process to specify the value of the
 rowStyle and alternatingRowStyle properties of the underlying HTML generator client component:

 if (this.rowStyle != null)
 {
 col = rowStyle.GetStyleAttributes(this);
 descriptor.AddProperty(“rowStyle”, col.Value);
 }

 if (this.alternatingRowStyle != null)
 {
 col = alternatingRowStyle.GetStyleAttributes(this);
 descriptor.AddProperty(“alternatingRowStyle”, col.Value);
 }

 Finally, it instantiates and populates an array with the preceding ScriptComponentDescriptor object,
and returns the array to its caller:

 return new ScriptDescriptor[] { descriptor };

 GetScriptReferences
 HtmlGeneratorScriptControl , like any other script server control, overrides the
 GetScriptReferences method. As you can see from Listing 18-17 , this method first instantiates
a ScriptReference object:

 ScriptReference reference = new ScriptReference();

 Next, it assigns the value of the Path property of the HtmlGeneratorScriptControl to the Path
 property of the ScriptReference object. Recall that the Path property specifies the virtual path of the
JavaScript file that contains the implementation of the underlying HTML generator client component:

 reference.Path = this.Path;

 Finally, it instantiates and populates an array with the ScriptReference object, and returns the array
to its caller:

 return new ScriptReference[] { reference };

 State Management
 As Listing 18-17 shows, HtmlGeneratorScriptControl overrides the SaveViewState , LoadViewState ,
and TrackViewState methods to manage the state of its RowStyle and AlternatingRowStyle
 properties across page postbacks, as discussed in the following sections.

c18.indd 809c18.indd 809 8/20/07 7:56:17 PM8/20/07 7:56:17 PM

Chapter 18: Web Services Bridges and Transformers

810

 SaveViewState
 HtmlGeneratorScriptControl , like any other server control, overrides the SaveViewState method
to save the state of its complex properties into view state before the current server response is sent to the
client. As you can see from Listing 18-17 , this method begins by instantiating an array of length 3 :

 object[] state = new object[3];

 Next, it invokes the base SaveViewState method to return an object that contains the base state of
 HtmlGeneratorScriptControl :

 state[0] = base.SaveViewState();

 If the rowStyle field has been set, it invokes the SaveViewState on this field to return an object that
contains the state of the field:

 if (this.rowStyle != null)
 state[1] = ((IStateManager)rowStyle).SaveViewState();

 If the alternatingRowStyle field has been set, it invokes the SaveViewState on this field to return an
object that contains the state of this field as well:

 if (this.alternatingRowStyle != null)
 state[2] = ((IStateManager)alternatingRowStyle).SaveViewState();

 Finally, it returns the array that contains these three objects.

 LoadViewState
 This method takes an array of three objects. This array is the same one that the SaveViewState returns.
As you can see, LoadViewState does the opposite of SaveViewState . First, it invokes the base
 LoadViewState , passing in the first object in the array to load the base state:

 base.LoadViewState(state[0]);

 Next, it calls the LoadViewState method on the RowStyle property, passing in the second object in the
array to have this property load its state:

 if (state[1] != null)
 ((IStateManager)RowStyle).LoadViewState(state[1]);

 Finally, it calls the LoadViewState method on the AlternatingRowStyle property, passing in the third
object in the array to have this property load its state as well:

 if (state[2] != null)
 ((IStateManager)AlternatingRowStyle).LoadViewState(state[2]);

 TrackViewState
 As you can see from Listing 18-17 , this method first invokes the base TrackViewState method to start
tracking the base state:

 base.TrackViewState();

c18.indd 810c18.indd 810 8/20/07 7:56:18 PM8/20/07 7:56:18 PM

Chapter 18: Web Services Bridges and Transformers

811

 If the rowStyle field is set, it invokes the TrackViewState on this field to have this field start tracking
its state:

 if (rowStyle != null)
 ((IStateManager)RowStyle).TrackViewState();

 If the alternatingRowStyle field is set, it invokes the TrackViewState on this field to have this field
start tracking its state as well:

 if (alternatingRowStyle != null)
 ((IStateManager)AlternatingRowStyle).TrackViewState();

 Using the Components
 Follow these steps to use the components we’ve developed in the last few sections:

 1. Follow the steps discussed in the previous chapter to create a new AJAX-enabled Web
 application in Visual Studio that contains all the replicas developed in the previous chapter.

2. Make sure that the web.config file contains the following section:

 <configuration>
 <system.web>
 <compilation debug=”true”>
 <assemblies>
 <add assembly=”System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35” />
 </assemblies>
 <buildProviders>
 <add extension=”.asbx”
 type=”Microsoft.Web.Preview.Services.BridgeBuildProvider” />
 </buildProviders>
 </compilation>
 </system.web>
</configuration>

 3. Make sure that IIS is configured to hand the incoming requests for resources with the .asbx file
extension over to the appropriate handler, as discussed in Chapter 14 . For example, if you’re
using IIS 5.1 (running on the XP operating system), IIS 6.0 (running on Windows 2000 Server),
or IIS 7.0 in ISAPI mode (running on the Vista operating system), you need to register the
 aspnet_isapi.dll ISAPI extension module with IIS to have IIS hand requests for resources
with the .asbx file extension to this ISAPI extension module.

 As you can see from Listing 18-14 , the AspNetAjaxAmazonSearch ASP.NET AJAX control catches
 request failures in a method named _onFailure . This method displays a pop-up box that contains the
complete information about the failure, including stack trace and the HTTP status code. If you run the page
shown in Listing 18-18 and get this pop-up with the HTTP status code of 404, you know that the code
could not find the specified file with the .asbx file extension. This normally happens when IIS has not been
configured to hand the request for resources with the .asbx file extension to the appropriate handler. When
IIS does not find a handler that can process the request, it returns a response with the status code of 404.

4. Add a new file named AmazonSearch.asbx to the root directory of the application and add the
code shown in Listing 18-12 to this file.

c18.indd 811c18.indd 811 8/20/07 7:56:18 PM8/20/07 7:56:18 PM

Chapter 18: Web Services Bridges and Transformers

812

5. Add a new Web page, AmazonSearch.aspx , to the root directory of the application, and add
the code shown in Listing 18-18 to this file. As you can see, this page uses our components.

6. Add a new source file named AspNetAjaxAmazonSearch.js to the root directory of the appli-
cation and add the code shown in Listing 18-14 to this file.

7. Add a new source file named HtmlGenerator.js to the root directory of the application and
add the code shown in Listing 18-16 to this file.

8. Add a new source file named AmazonSearchScriptControl.cs to the App_Code directory
and add the code shown in Listing 18-15 to this source file.

9. Add a new source file named HtmlGeneratorScriptControl.cs to the App_Code directory
and add the code shown in Listing 18-17 to this source file.

10. Add a new source file named AmazonService.cs to the App_Code directory and add the code
shown in Listing 18-13 to this source file.

 Listing 18-18: A Page that Uses Our Components

 <%@ Page Language=”C#” %>

<%@ Register Namespace=”CustomComponents3” TagPrefix=”custom” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Services>
 <asp:ServiceReference InlineScript=”true”
 Path=”AmazonSearch.asbx” />
 </Services>
 </asp:ScriptManager>

 <custom:ScriptManager runat=”server” ID=”CustomScriptManager1” />

 <custom:AmazonSearchScriptControl runat=”server” ID=”MyControl”
 SearchMethod=”MyServices.AmazonService.Search”
 HtmlGeneratorID=”MyHtmlGenerator”
 Path=”AspNetAjaxAmazonSearch.js”
 ClientControlType=”CustomComponents3.AspNetAjaxAmazonSearch”/>

 <custom:HtmlGeneratorScriptControl runat=”server” ID=”MyHtmlGenerator”
 Path=”HtmlGenerator.js”
 ClientControlType=”CustomComponents3.HtmlGenerator”>
 <RowStyle BackColor=”#eeeeee” Width=”100%” />
 <AlternatingRowStyle BackColor=”#cccccc” Width=”100%” />
 </custom:HtmlGeneratorScriptControl>
 </form>
</body>
</html>

c18.indd 812c18.indd 812 8/20/07 7:56:18 PM8/20/07 7:56:18 PM

Chapter 18: Web Services Bridges and Transformers

813

 Transformers
 Run the page shown in Listing 18-18 in debug mode. Go to the following directory on your machine:

 %WindDir%\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files

 If you have installed the .NET framework in a directory different from the standard %WinDir% , you
need to locate the Temporary ASP.NET Files directory in that directory.

 Look for a directory with the same name as your application. For example, if your application name is
 AJAXTCPEnabledWebSite2 , look for the directory named ajaxtcpenabledwebsite2 (all in lowercase).
Then go to a couple of directories below this directory (note that ASP.NET uses a random hash algorithm
to generate the names of these two directories). Then look for a source file with the name similar to the
following:

 App_Web_amazonsearch.asbx.cdcab7d2.rxua8pbv.0.cs

 Note that the name of the file consists of the keyword App_Web_ , the name of the file that that this source
file represents (which is amazonsearch.aspx in this case), some random hash (cdcab7d2), another
 random hash (rxua8pbv), the number 0 , and finally the file extension .cs . Open this file in your favorite
directory. You should see the code shown in Listing 18-19 .

 Listing 18-19: The Content of App_Web_ amazonsearch.asbx.cdcab7d2.rxua8pbv.0.cs

 namespace MyServices
{
 using System;
 using System.Net;
 using System.Web.Services;
 using System.Collections;
 using System.Xml.Serialization;
 using Microsoft.Web.Preview.Services;
 using System.Web.Script.Services;
 using System.Collections.Generic;

 [ScriptService()]
 [WebService(Name = “http://tempuri.org/”)]
 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
 public partial class AmazonService : BridgeHandler
 {
 public AmazonService()
 {
 this.VirtualPath = “/AJAXFuturesEnabledWebSite3/AmazonSearch.asbx”;

 this.BridgeXml = @”<?xml version=””1.0”” encoding=””utf-8”” ?>
 <bridge namespace=””MyServices””
 className=””AmazonService””>
 <proxy
 type=””CustomComponents3.AmazonService, App_Code””/>
 <method name=””Search””>
 <input>
 <parameter name=””pageIndex”” />

(continued)

c18.indd 813c18.indd 813 8/20/07 7:56:19 PM8/20/07 7:56:19 PM

Chapter 18: Web Services Bridges and Transformers

814

 Listing 18-19 (continued)

 <parameter name=””searchQuery”” />
 </input>
 </method>
 </bridge>”;
 }

 [WebMethodAttribute()]
 [ScriptMethodAttribute(UseHttpGet = false,
 ResponseFormat = ResponseFormat.Json)]
 public virtual object Search(IDictionary args)
 {
 return this.Invoke(new BridgeRequest(“Search”, args));
 }

 public override object CallServiceClassMethod(string method,
 Dictionary<string, object> args,
 ICredentials credentials,
 string url)
 {
 if (“Search”.Equals(method))
 {
 CustomComponents3.AmazonService proxy =
 new CustomComponents3.AmazonService();
 object obj;
 args.TryGetValue(“pageIndex”, out obj);
 int arg0 = ((int)(BridgeHandler.ConvertToType(obj, typeof(int))));
 args.TryGetValue(“searchQuery”, out obj))
 string arg1 = ((string)(BridgeHandler.ConvertToType(obj, typeof(string))));
 return proxy.Search(arg0, arg1);
 }
 }
 }
}

 If you’re wondering who generated this code, open the web.config file and look for the compilation
section. You should see the XML fragment shown in the following listing:

 <configuration>
 <system.web>
 <compilation debug=”true”>
 <buildProviders>
 <add extension=”.asbx”
 type=”Microsoft.Web.Preview.Services.BridgeBuildProvider” />
 </buildProviders>
 </compilation>
 </system.web>
</configuration>

c18.indd 814c18.indd 814 8/20/07 7:56:19 PM8/20/07 7:56:19 PM

Chapter 18: Web Services Bridges and Transformers

815

 As you can see, the buildProviders subsection of the compilation section registers a build
provider named BridgeBuildProvider for the .asbx file extension. A build provider is an ASP.NET
class that knows how to parse a file with a specific extension into a .NET class. For example, the
 BridgeBuildProvider knows how to parse a file with the extension .asbx into a .NET class such as
the one shown in Listing 18-19 .

 The ASP.NET framework enables you to implement and register your own custom build provider.

 In other words, the BridgeBuildProvider parses the AmazonSearch.asbx file shown in Listing 18-12
(repeated in the following listing) into the AmazonService class shown in Listing 18-19 . Note that
the value of the className attribute of the bridge element in the following code listing determines the
name of this dynamically generated class, and the value of the namespace attribute of this element
determines the name of the namespace of this dynamically generated class, which is MyServices in this
case. Also, note that the AmazonService class shown in Listing 18-19 contains a method named Search .
The value of the name attribute of the method subelement of the proxy element determines the name of
this method. Also note that the names and number of the parameters of this method are determined by
the parameter subelements of the input subelement of this method element. Basically, each parameter
subelement specifies the name of a particular parameter of the method.

 <?xml version=”1.0” encoding=”utf-8” ?>
<bridge namespace=”MyServices” className=”AmazonService”>
 <proxy type=”CustomComponents3.AmazonService, App_Code”/>
 <method name=”Search”>
 <input>
 <parameter name=”pageIndex” />
 <parameter name=”searchQuery” />
 </input>
 </method>
</bridge>

 Note that the AmazonService class shown in Listing 18-19 is annotated with the WebService metadata
attribute. This means that this class is a Web service. In other words, the BridgeBuildProvider creates
a Web service out of the content of the .asbx that it parses. The base class of a normal Web service
is a class named WebService . However, as you can see from Listing 18-19 , the base class of the
 AmazonService Web service is not the WebService class. Instead it is an ASP.NET class named
 BridgeHandler . I’ll discuss this class shortly.

 Keep in mind that ASP.NET Web services are not required to inherit from the WebService base class.
Inheriting from this optional class provides the ASP.NET Web service with typical ASP.NET objects
such as Request , Response , Server , and so on.

 As you can see from Listing 18-19 , the constructor of the AmazonSearch class sets two of its properties.
The first is a string property named VirtualPath , whose value is set to the virtual path of the .asbx

c18.indd 815c18.indd 815 8/20/07 7:56:19 PM8/20/07 7:56:19 PM

Chapter 18: Web Services Bridges and Transformers

816

file, which is /AJAXFuturesEnabledWebSite3/AmazonSearch.asbx in our case. The second is a string
property named BridgeXml , whose value is set to a string that contains the content of the .aspx file:

 public AmazonService()
 {
 this.VirtualPath = “/AJAXFuturesEnabledWebSite3/AmazonSearch.asbx”;

 this.BridgeXml = @”<?xml version=””1.0”” encoding=””utf-8”” ?>
 <bridge namespace=””MyServices””
 className=””AmazonService””>
 <proxy
 type=””CustomComponents3.AmazonService, App_Code””/>
 <method name=””Search””>
 <input>
 <parameter name=””pageIndex”” />
 <parameter name=””searchQuery”” />
 </input>
 </method>
 </bridge>”;
 }

 As I mentioned earlier, the AmazonSearch Web service contains a Web method named Search . Note
that this method takes an IDictionary collection that contains the arguments that will be passed into
the Search Web method of the AWSE CommerceService Web service. As you can see, this method calls a
method named Invoke and passes an instance of an ASP.NET class named BridgeRequest into it. As
the name suggests, this class represents the current request:

 public class BridgeRequest
 {
 private IDictionary _args;
 private string _method;
 private string _serviceUrl;

 public BridgeRequest(string method, IDictionary args)
 {
 _method = method;
 if (args == null)
 args = new Hashtable();
 _args = args;
 }

 public IDictionary Args { get {return _args;} set {_args = value;} }
 public string Method { get {return _method;} set {_method = value;} }
 public string ServiceUrl { get{return _serviceUrl;} set{_serviceUrl = value;}}
 }

 What matters to us here is that the Search method of the AmazonSearch class calls the Invoke method.
This class inherits the Invoke method from its base class — that is, the BridgeHandler . This is an
important method, which will be discussed shortly.

c18.indd 816c18.indd 816 8/20/07 7:56:19 PM8/20/07 7:56:19 PM

Chapter 18: Web Services Bridges and Transformers

817

 [WebMethodAttribute()]
 [ScriptMethodAttribute(UseHttpGet = false,
 ResponseFormat = ResponseFormat.Json)]
 public virtual object Search(IDictionary args)
 {
 return this.Invoke(new BridgeRequest(“Search”, args));
 }

 Before diving into the implementation of the Invoke method, let’s wrap up our discussions of
the AmazonSearch class shown in Listing 18-19 by briefly discussing its CallServiceClassMethod . The
 AmazonSearch class inherits this method from its base class (that is, BridgeHandler) and overrides this
method. First, it instantiates an instance of a class named CustomComponents3.AmazonService . If you
check with the AmazonSearch.asbx file, you’ll notice that this class is nothing but the class that we
 registered through the type attribute of the proxy subelement of the bridge element. This class is
shown in Listing 18-13 . Next the CallServiceClassMethod simply invokes the Search method on the
newly created instance of the CustomComponents3.AmazonService :

 public override object CallServiceClassMethod(string method,
 Dictionary<string, object> args,
 ICredentials credentials,
 string url)
 {
 if (“Search”.Equals(method))
 {
 CustomComponents3.AmazonService proxy =
 new CustomComponents3.AmazonService();
 object obj;
 args.TryGetValue(“pageIndex”, out obj);
 int arg0 = ((int)(BridgeHandler.ConvertToType(obj, typeof(int))));
 args.TryGetValue(“searchQuery”, out obj))
 string arg1 = ((string)(BridgeHandler.ConvertToType(obj, typeof(string))));
 return proxy.Search(arg0, arg1);
 }
 }

 As I discussed earlier, the AmazonService class shown in Listing 18-19 exposes a method named
 Search that calls the Invoke method that this class inherits from its base class, the BridgeHandler .
When you run the page shown in Listing 18-18 , enter a search query into the search text box, and hit the
Search button to perform an Amazon search, the Search method of the AmazonService class shown in
Listing 18-19 is invoked, which in turn calls the Invoke method of its base class, the BridgeHandler .
The Invoke method performs two important tasks. First, it calls the CallServiceClassMethod method
shown in Listing 18-19 to process the request. As I mentioned earlier, the CallServiceClassMethod
method ends up calling the Search method of the CustomComponents3.AmazonService class shown
in Listing 18-13 . Recall that this method is the one that makes the actual request to the AWSECommerce
Web service and receives the response or the search results from the Amazon Web service.

 The Invoke method does not directly return to the client the result returned from the Search method of
the Customcomponents3.AmazonService class. Instead it checks whether the associated .asbx file
contains any transformers for the specified method. As the name suggests, a transformer is a component
that transforms the return value of the method call before the value is sent back to the client. As you’ll
see later, different types of transformers perform different types of transformations on the return value
of the method call. For example, the ASP.NET AJAX framework comes with a transformer named

c18.indd 817c18.indd 817 8/20/07 7:56:20 PM8/20/07 7:56:20 PM

Chapter 18: Web Services Bridges and Transformers

818

XmlBridgeTransformer that transforms this return value into its XML representation. You can even
write your own custom transformer to perform custom transformation on this return value. This will all
be clear by the end of this chapter.

 The AmazonSearch.asbx file that we’ve been using so far does not contain any transformers. Listing 18-
20 presents the contents of a new file named AmazonSearch2.asbx that contains a transformer for the
 Search method. Take these steps to add a transformer for a specified method:

1. If you haven’t already done so, add a child element named transforms to the method element
that represents the specified method in the .asbx file:

 <method name=”Search”>
 <input>
 <parameter name=”pageIndex” />
 <parameter name=”searchQuery” />
 </input>

 <transforms>

 <transform type=”CustomComponents3.XmlBridgeTransformer”/>

 </transforms>

 </method>

2. Add a child element named transform to the transforms element:

 <method name=”Search”>
 <input>
 <parameter name=”pageIndex” />
 <parameter name=”searchQuery” />
 </input>
 <transforms>

 <transform

 type=”CustomComponents3.XmlBridgeTransformer”/>
 </transforms>
 </method>

3. Set the value of the type attribute of this transform element to the fully qualified name of the
desired transformer:

 <method name=”Search”>
 <input>
 <parameter name=”pageIndex” />
 <parameter name=”searchQuery” />
 </input>
 <transforms>
 <transform

 type=”CustomComponents3.XmlBridgeTransformer”/>

 </transforms>
 </method>

c18.indd 818c18.indd 818 8/20/07 7:56:20 PM8/20/07 7:56:20 PM

Chapter 18: Web Services Bridges and Transformers

819

 You must repeat steps 2 and 3 if you need to add more transformers for the same method. You’ll see an
example of adding more transformers later in this chapter.

 Listing 18-20: The AmazonSearch2.asbx

 <?xml version=”1.0” encoding=”utf-8” ?>
<bridge namespace=”MyServices2” className=”AmazonService2”>
 <proxy type=”CustomComponents3.AmazonService2, App_Code”/>
 <method name=”Search”>
 <input>
 <parameter name=”pageIndex” />
 <parameter name=”searchQuery” />
 </input>
 <transforms>
 <transform type=”CustomComponents3.XmlBridgeTransformer”/>
 </transforms>
 </method>
</bridge>

 As I discussed earlier, after invoking the CallServiceClassMethod method (which in turn invokes
the Search method on the CustomComponents3.AmazonService class), the Invoke method
of the BridgeHandler checks whether the associated .asbx file contains transformers for the
specified method. In the case of Listing 18-20 , the .asbx file contains a transformer of type
XmlBridgeTransformer for the Search method. As you’ll see later, the .asbx file may contain
more than one transformer for the same method.

 The Invoke method then instantiates these transformers by means of the .NET reflection and the values
of the type attributes of the transform subelements of the transforms subelement of the method
 element that represents the specified method. The transformers are then linked together to form a
 pipeline: the output of a transformer in the pipeline becomes an input into the next. Since the .asbx file
shown in Listing 18-11 contains a single transformer named XmlBridgeTransformer , this pipeline
 contains a single transformer.

 The Invoke method passes the return value of the CallServiceClassMethod method into the first
transformer in the pipeline, which is the XmlBridgeTransform in the case of Listing 18-11 . The
first transformer performs its specific transformation on its input. In other words, the output of this
transformer is the transformed version of the return value of the CallServiceClassMethod method.

 The Invoke method then passes this output as an input to the second transformer in the pipeline.
In other words, the second transformer receives a transformed version of the return value of the
 CallServiceClassMethod method. The second transformer, in turn, performs its own transformation
on its input and outputs the transformed version. The Invoke method then repeats the same process
with any subsequent transformers in the pipeline. The Invoke method finally returns the output of
the last transformer to the client.

 Every ASP.NET AJAX transformer implements an interface named IBridgeResponseTransformer . As
you can see from Listing 18-21 , this interface exposes two methods:

c18.indd 819c18.indd 819 8/20/07 7:56:20 PM8/20/07 7:56:20 PM

Chapter 18: Web Services Bridges and Transformers

820

 ❑ Initialize : This method allows a transformer to initialize itself. It takes a single argument of
type BridgeTransformData , which will be discussed shortly.

❑ Transform : The Invoke method calls the Transform method of a transformer, passing in an
object to allow the transform to perform its specific transformation on this object. As I discussed
earlier, this object is the output of the previous transformer in the pipeline. The Invoke method
then passes the return value of the Transform method of the transformer as input into the
 Transform method of the next transformer. What a Transform method of a transformer does to
the object passed into it is completely up to the transformer. The Transform methods of differ-
ent transformers perform different types of transformations on their input. As you’ll see later,
you can implement your own transformer whose Transform method performs some custom
transformation on its input.

 Listing 18-21: The IBridgeResponseTransformer Interface

 public interface IBridgeResponseTransformer
{
 void Initialize(BridgeTransformData data);
 object Transform(object results);
}

 Listing 18-22 presents the declaration of the BridgeTransformData class. As you can see, the constructor
of BridgeTransformData creates two dictionaries. The first dictionary is a dictionary of dictionaries in
which each dictionary is uniquely identified by a key, which is a string. The BridgeTransformData class
exposes a property named Dictionaries that returns a reference to the first dictionary. The second
 dictionary is a dictionary of string values in which each string value is uniquely identified by a key, which
is a string. The BridgeTransformData class exposes a property named Attributes that returns a
 reference to the second dictionary.

 Listing 18-22: The BridgeTransformData Class

 public class BridgeTransformData
{
 private Dictionary<string, string> _attributes;
 private Dictionary<string, Dictionary<string, string>> _dictionaries;

 public BridgeTransformData()
 {
 this._dictionaries = new Dictionary<string, Dictionary<string, string>>();
 this._attributes = new Dictionary<string, string>();
 }

 public Dictionary<string, string> Attributes
 {
 get { return this._attributes; }
 }

 public Dictionary<string, Dictionary<string, string>> Dictionaries
 {
 get { return this._dictionaries; }
 }
}

c18.indd 820c18.indd 820 8/20/07 7:56:21 PM8/20/07 7:56:21 PM

Chapter 18: Web Services Bridges and Transformers

821

 To understand the role of the Dictionaries and Attributes properties of BridgeTransformData we
need to revisit a typical .asbx file, shown in Listing 18-23 . As you can see, each transform element
 contains a subelement named data , which in turn contains zero or more attribute elements and zero or
more dictionary elements. The value of the name attribute of each attribute element uniquely identi-
fies that attribute element among other attribute elements of the specified transformer. The value of
the value attribute of each attribute element contains the string representation of a particular parame-
ter of the associated transformer. What this parameter means depends completely on the transformer.

 The value of the name attribute of each dictionary element uniquely identifies that dictionary
 element among other dictionary elements. Note that each dictionary element contains one or more
 item subelements. The value of the name attribute of each item element uniquely identifies that item
element among others of the specified dictionary. The value of the value attribute of each item element
contains the string representation of a particular parameter of the associated transformer. What the
 values of the value attributes of the item elements of a given dictionary of a transformer mean depends
completely on the transformer. You’ll see an example of using different value attributes later in this
chapter.

 Listing 18-23: A typical .asbx File

 <?xml version=”1.0” encoding=”utf-8” ?>
<bridge namespace=”...” className=”...”>
 <proxy type=”...”/>
 <method name=”...”>
 <input>
 <parameter name=”...” />
 <parameter name=”...” />
 .
 .
 .
 <parameter name=”...” />
 </input>
 <transforms>
 <transform type=”...”>
 <data>
 <attribute name=”...” value=”...” />
 <attribute name=”...” value=”...” />
 .
 .
 .
 <attribute name=”...” value=”...” />

 <dictionary name=”...”>
 <item name=”...” value=”...” />
 <item name=”...” value=”...” />
 .
 .
 .
 <item name=”...” value=”...” />
 </dictionary>
 .
 .
 .

(continued)

c18.indd 821c18.indd 821 8/20/07 7:56:21 PM8/20/07 7:56:21 PM

Chapter 18: Web Services Bridges and Transformers

822

 Listing 18-23 (continued)

 <dictionary name=”...”>
 <item name=”...” value=”...” />
 <item name=”...” value=”...” />
 .
 .
 .
 <item name=”...” value=”...” />
 </dictionary>
 </data>
 </transform>
 </transforms>
 </method>
</bridge>

 As I discussed earlier, the Initialize method of a transformer takes a single parameter of type
 BridgeTransformData . The ASP.NET AJAX framework performs these tasks for each transform
 element in the .asbx file (recall that each transform element represents a transformer):

 ❑ Parses the content of the data subelement of the transform element. Recall that the content of
the data subelement consists of a bunch of attribute elements and a bunch of dictionary
elements.

❑ Instantiates a BridgeTransformData object.

❑ Populates the Attributes dictionary of the BridgeTransformData object with the values of
the name and value attributes of the attribute elements. This means that the Initialize
method of a transformer can use the value of the name attribute of an attribute element as an
index into the Attributes property of the BridgeTransformData object passed into it to
 access the value of the value attribute of the attribute element as shown in the following
code snippet. As I discussed earlier, the value that the Attributes collection returns is the
string representation of some .NET object. The Initialize method can then use the appropri-
ate converter to convert this string to the actual .NET object.

 public class SomeTransformer : IBridgeResponseTransformer
{
 void IBridgeResponseTransformer.Initialize(BridgeTransformData data)
 {
 string valueOfTheValueAttributeOfTheAttributeElement =
 data.Attributes[“ValueOfTheNameAttributeOfTheAttributeElement”];
 . . .
 }
 object Transform(object results);
}

 ❑ Populates the Dictionaries collection of the BridgeTransformData object with the content
of the dictionary elements. Since each dictionary element is uniquely identified by
the value of its name attribute, the Initialize method of a transformer can use the value of the
 name attribute of a dictionary element as an index into the Dictionaries property of
the BridgeTransformData object passed into it to access the Dictionary object that
 contains the content of the dictionary element. Since the value of the name attribute of an

c18.indd 822c18.indd 822 8/20/07 7:56:21 PM8/20/07 7:56:21 PM

Chapter 18: Web Services Bridges and Transformers

823

 item subelement of a dictionary element uniquely identifies the item element, the
 Initialize method can use the value of the name attribute of an item element as an index into
this Dictionary object to return the value of the value attribute of the item element. As I
 discussed earlier, the value of the value attribute of an item element is the string representation
of some .NET object. The Initialize method can then use the appropriate type converter to
convert this string representation to the actual .NET object:

 public class SomeTransformer : IBridgeResponseTransformer
{
 void IBridgeResponseTransformer.Initialize(BridgeTransformData data)
 {
 Dictionary<string, string> dictionary =
 data.Dictionaries[“ValueOfTheNameAttributeOfTheDictionaryElement”];
 string valueOfTheValueAttributeOfTheItemElement =
 dictionary[“ValueOfTheNameAttributeOfTheItemElement”];
 . . .
 }
 object Transform(object results);
}

 Using Transformers
 In this section, first I’ll implement fully functional replicas of the XmlBridgeTransformer and
 XsltBridgeTransformer transformers and present several examples in which these transformers
are used. I’ll then show you how to implement your own custom transformer and plug it into the
ASP.NET AJAX transformation infrastructure.

 XmlBridgeTransformer
 Listing 18-24 presents the implementation of the replica XmlBridgeTransformer .
The XmlBridgeTransformer , like any other ASP.NET AJAX transformer, derives from the
IBridgeResponseTransformer interface and implements the Initialize and Transform
methods of this interface.

 Listing 18-24: The XmlBridgeTransformer

 using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using Microsoft.Web.Preview.Services;
using System.Xml.Serialization;
using System.Xml;

(continued)

c18.indd 823c18.indd 823 8/20/07 7:56:22 PM8/20/07 7:56:22 PM

Chapter 18: Web Services Bridges and Transformers

824

 Listing 18-24 (continued)

using System.IO;
using System.Text;

namespace CustomComponents3
{
 public class XmlBridgeTransformer : IBridgeResponseTransformer
 {
 public void Initialize(BridgeTransformData data) { }

 public object Transform(object results)
 {
 object obj2;
 XmlSerializer serializer = new XmlSerializer(results.GetType());
 MemoryStream w = new MemoryStream();
 using (XmlTextWriter writer = new XmlTextWriter(w, Encoding.UTF8))
 {
 serializer.Serialize((XmlWriter)writer, results);
 w.Position = 0;
 using (StreamReader reader = new StreamReader(w))
 {
 obj2 = reader.ReadToEnd();
 }
 }
 return obj2;
 }
 }
}

 As you can see from the .asbx file shown in Listing 18-20 , the transform element that represents
the XmlBridgeTransformer does not have the data subelement because the XmlBridgeTransformer
does not have any parameters. That is why the Initialize method of the XmlBridgeTransformer
doesn’t do anything:

 public void Initialize(BridgeTransformData data) { }

 Next I’ll walk you through the implementation of the Transform method of the replica
XmlBridgeTransformer . As I discussed earlier, the Invoke method of the BridgeHandler passes the
return value of the Transform method of the transformer that comes before a given transformer in
the pipeline as an input into the Transform method of the transformer. The main responsibility of the
 Transform method is to perform its own transformation on the input and return the transformed object
as output to the Invoke method. The type of transformation a transformer performs on the object passed
into its Transform method depends on the type of transformer.

 As you can see from Listing 18-24 , the Transform method of the XmlBridgeTransformer simply serial-
izes the object passed into it into an XML document and returns this document to its caller — that is, the
 Invoke method of the BridgeHandler . The Transform method of the XmlBridgeTransformer takes

c18.indd 824c18.indd 824 8/20/07 7:56:22 PM8/20/07 7:56:22 PM

Chapter 18: Web Services Bridges and Transformers

825

the following steps to perform its transformation. First, it instantiates an XmlSerializer . Note that it
passes into the constructor of the XmlSerializer class the Type object that represents the type of the
object being serialized:

 XmlSerializer serializer = new XmlSerializer(results.GetType());

 Next, it instantiates a MemoryStream into which the XML document will be written:

 MemoryStream w = new MemoryStream();

 Then it instantiates an XmlTextWriter to write the XML document into the MemoryStream :

 XmlTextWriter writer = new XmlTextWriter(w, Encoding.UTF8)

 Next, it invokes the Serialize method on the XmlSerializer to serialize the object passed into it
into its XML representation, and uses the XmlTextWriter to write this XML representation into the
 MemoryStream :

 serializer.Serialize((XmlWriter) writer, results);

 Next, it instantiates a StreamReader to read the XML document from the MemoryStream :

 StreamReader reader = new StreamReader(w)

 Finally, it invokes the ReadToEnd method on the StreamReader to read the entire XML representation
or document from the MemoryStream , which is then returned to the caller of the Transform method, the
 BridgeHandler .

 Next, I’ll present an example that shows the replica XmlBridgeTransformer in action. This example uses
the .asbx file shown in Listing 18-11 , which contains only one transformer, XmlBridgeTransformer .
This means that the Invoke method of the BridgeHandler directly passes the return value of the Search
method of the CustomComponents3.AmazonService class into the Transform method of the
 XmlBridgeTransformer and returns the return value of this Transform method to the client. In other
words, the XmlBridgeTransformer simply serializes the return value of the Search method of the
 CustomComponents3.AmazonService class into its XML representation, which is subsequently sent to
the client. To put it differently, the generateHtml method of the HtmlGenerator client component
receives the XML representation of the data that the Search method returns.

 Since the generateHtml method must extract the title , author , amazonUrl , imageUrl , listPrice ,
and price values of each book from this XML representation to display them to the end user, it expects the
XML representation to have a specific schema. Listing 18-25 presents a new ASP.NET AJAX client control
named HtmlGenerator2 , which derives from HtmlGenerator and overrides its generateHtml method.

c18.indd 825c18.indd 825 8/20/07 7:56:22 PM8/20/07 7:56:22 PM

Chapter 18: Web Services Bridges and Transformers

826

 Listing 18-25: The HtmlGenerator2 Client Control

 CustomComponents3.HtmlGenerator2 =
function CustomComponents3$HtmlGenerator2()
{
 CustomComponents3.HtmlGenerator2.initializeBase(this);
}

function CustomComponents3$HtmlGenerator2$generateHtml(xml)
{
 var title;
 var author;
 var amazonUrl;
 var imageUrl;
 var listPrice;
 var price;

 var builder = new Sys.StringBuilder();
 builder.append(“<table cellspacing=’10’ style=’”);
 builder.append(this._tableStyle);
 builder.append(“’>”);
 var xmlDocument = new XMLDOM(xml);
 var items = xmlDocument.documentElement;
 var item = items.firstChild;
 var i = 0;
 while (item != null)
 {
 title = item.getAttribute(“title”);
 author = item.getAttribute(“author”);
 amazonUrl = item.getAttribute(“amazonUrl”);
 imageUrl = item.getAttribute(“imageUrl”);
 listPrice = item.getAttribute(“listPrice”);
 price = item.getAttribute(“price”);

 builder.append(“<tr>”);
 builder.append(“<td valign=’top’ width=’100%’>”);
 builder.append(“<table cellspacing=’10’ style=’”);
 if (i % 2 == 0)
 builder.append(this._rowStyle);
 else
 builder.append(this._alternatingRowStyle);
 builder.append(“’>”);
 builder.append(“<tr>”);
 builder.append(“<td align=’center’ valign=’top’ width=’20%’>”);
 builder.append(“<img alt=’’ src=’”);
 builder.append(imageUrl);
 builder.append(“’/>”);
 builder.append(“</td>”);
 builder.append(“<td align=’left’ valign=’top’>”);
 builder.append(“<p>”);
 builder.append(“<a href=’”);
 builder.append(amazonUrl);
 builder.append(“’>”);
 builder.append(title);

c18.indd 826c18.indd 826 8/20/07 7:56:23 PM8/20/07 7:56:23 PM

Chapter 18: Web Services Bridges and Transformers

827

 builder.append(“”);
 builder.append(“
”);
 builder.append(“by “);
 builder.append(author);
 builder.append(“ (Author)”);
 builder.append(“</p>”);
 builder.append(“<p>”);
 builder.append(“ List Price: <s>”);
 builder.append(listPrice);
 builder.append(“</s></br>”);
 builder.append(“ Price: “);
 builder.append(price);
 builder.append(“</br>”);
 builder.append(“</td>”);
 builder.append(“</tr>”);
 builder.append(“<tr>”);
 builder.append(“<td colspan=’2’>”);
 builder.append(“</td>”);
 builder.append(“</tr>”);
 builder.append(“</table>”);
 builder.append(“</td>”);
 builder.append(“</tr>”);
 item = item.nextSibling;
 i++;
 }

 builder.append(“</table>”);
 return builder.toString();
}

function CustomComponents3$HtmlGenerator2$initialize()
{
 CustomComponents3.HtmlGenerator2.callBaseMethod(this, “initialize”);
}

CustomComponents3.HtmlGenerator2.prototype =
{
 generateHtml: CustomComponents3$HtmlGenerator2$generateHtml,
 initialize: CustomComponents3$HtmlGenerator2$initialize
}

CustomComponents3.HtmlGenerator2.registerClass(“CustomComponents3.HtmlGenerator2”,
 CustomComponents3.HtmlGenerator);

 As you can see from Listing 18-38 , the generateHtml method of the HtmlGenerator2 client component
assumes that the XML representation it receives from the server has the schema shown in Listing 18-26 .
As you can see, this schema defines an XML document with a document element named results ,
which contains zero or more child elements named result , each having six attributes: title , author ,
 amazonUrl , imageUrl , listPrice , and price .

c18.indd 827c18.indd 827 8/20/07 7:56:23 PM8/20/07 7:56:23 PM

Chapter 18: Web Services Bridges and Transformers

828

 Listing 18-26: The Expected XML Schema of the XML Representation Received
from the Server

 <?xml version=”1.0” encoding=”utf-8” ?>
<xs:schema id=”Results” xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
 <xs:element name=”results” type=”results”/>
 <xs:complexType name=”results”>
 <xs:sequence>
 <xs:element name=”result” type=”result” minOccurs=”0” maxOccurs=”unbounded”/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name=”result”>
 <xs:attribute name=”title” type=”xs:string”/>
 <xs:attribute name=”author” type=”xs:string”/>
 <xs:attribute name=”amazonUrl” type=”xs:string”/>
 <xs:attribute name=”imageUrl” type=”xs:string”/>
 <xs:attribute name=”listPrice” type=”xs:string”/>
 <xs:attribute name=”price” type=”xs:string”/>
 </xs:complexType>
</xs:schema>

 This raises the following question: how can we make sure that the XmlBridgeTransformer serializes
the return value of the Search method of the CustomComponents3.AmazonService class into an XML
representation or document with the XML schema presented in Listing 18-26 — that is, the XML schema
that the generateHtml method of the HtmlGenerator2 client component expects to receive from the
server? Since the XmlBridgeTransformer internally uses an XmlSerializer to serialize the return
value of the Search method into an XML document, the question then becomes: how can we communi-
cate to this XmlSerializer that we want it to serialize the return value of the Search method into an
XML document with the schema presented in Listing 18-26 ?

 The ASP.NET framework provides you with two means to communicate with XmlSerializer :

 ❑ You can annotate your types and their public properties and fields with the appropriate meta-
data attributes such as XmlAttribute , XmlElement , and so on to tell the XmlSerializier how
you want it to serialize the public properties and fields and the return values of these types.

❑ You can have your types implement the IXmlSerializer interface to let them take complete
control over their serialization. This is the most flexible way to achieve the desired serialization.

 Before diving into the details of these two approaches, we need to implement a new version of the
 CustomComponents3.AmazonService named CustomComponents3.AmazonService2 , as shown in
Listing 18-27 . The boldface portions of Listing 18-27 are the only differences between AmazonService
and AmazonService2 .

 To understand the significance of these boldface portions, you’ll need to revisit Listing 18-16 . Recall that
this code listing defines the HtmlGenerator ASP.NET AJAX client control. Listing 18-28 presents a
 portion of Listing 18-16 . If you compare the bottom boldface portion of Listing 18-27 with the high-
lighted portion of Listing 18-28 , you’ll notice that they’re the same. In other words, we’ve moved this
logic from the HtmlGenerator ASP.NET AJAX client control to the AmazonService2 class. Moving
this logic from the client side to the server side enables us to filter the search results on the server side
to avoid sending useless data over the wire to the client.

c18.indd 828c18.indd 828 8/20/07 7:56:23 PM8/20/07 7:56:23 PM

Chapter 18: Web Services Bridges and Transformers

829

 Listing 18-27: The AmazonService2 Class

 using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.IO;
using System.Xml;
using System.Collections;
using com.amazon.webservices;
using System.Xml.Serialization;
using System.Xml.Schema;

namespace CustomComponents3
{
 [XmlRootAttribute(ElementName = “results”)]
 public partial class Results
 {
 private Result[] resultField;

 [XmlElementAttribute(“result”)]
 public Result[] Result
 {
 get { return this.resultField; }
 set { this.resultField = value; }
 }
 }

 public class Result
 {
 private string title;

 [XmlAttribute(AttributeName = “title”)]
 public string Title
 {
 get { return this.title; }
 set { this.title = value; }
 }

 private string author;

 [XmlAttribute(AttributeName = “author”)]
 public string Author
 {
 get { return this.author; }
 set { this.author = value; }
 }

(continued)

c18.indd 829c18.indd 829 8/20/07 7:56:24 PM8/20/07 7:56:24 PM

Chapter 18: Web Services Bridges and Transformers

830

 Listing 18-27 (continued)

 private string amazonUrl;

 [XmlAttribute(AttributeName = “amazonUrl”)]
 public string AmazonUrl
 {
 get { return this.amazonUrl; }
 set { this.amazonUrl = value; }
 }

 private string imageUrl;

 [XmlAttribute(AttributeName = “imageUrl”)]
 public string ImageUrl
 {
 get { return this.imageUrl; }
 set { this.imageUrl = value; }
 }

 private string listPrice;

 [XmlAttribute(AttributeName = “listPrice”)]
 public string ListPrice
 {
 get { return this.listPrice; }
 set { this.listPrice = value; }
 }

 private string price;

 [XmlAttribute(AttributeName = “price”)]
 public string Price
 {
 get { return this.price; }
 set { this.price = value; }
 }
 }

 public class AmazonService2
 {
 public Results Search(int pageIndex, string searchQuery)
 {
 ItemSearchRequest itemSearchRequest = new ItemSearchRequest();
 itemSearchRequest.Keywords = searchQuery;
 itemSearchRequest.SearchIndex = “Books”;
 itemSearchRequest.ResponseGroup =
 new string[] { “Small”, “Images”, “ItemAttributes”, “OfferFull” };
 itemSearchRequest.ItemPage = pageIndex.ToString();

 ItemSearch itemSearch = new ItemSearch();
 itemSearch.SubscriptionId =
 ConfigurationManager.AppSettings[“SubscriptionID”];

c18.indd 830c18.indd 830 8/20/07 7:56:24 PM8/20/07 7:56:24 PM

Chapter 18: Web Services Bridges and Transformers

831

 itemSearch.AssociateTag = “”;
 itemSearch.Request = new ItemSearchRequest[1] { itemSearchRequest };

 ItemSearchResponse itemSearchResponse;
 try
 {
 AWSECommerceService amazonService = new AWSECommerceService();
 itemSearchResponse = amazonService.ItemSearch(itemSearch);
 }

 catch (Exception e)
 {
 throw e;
 }

 Items[] itemsResponse = itemSearchResponse.Items;

 // Check for errors in the reponse
 if (itemsResponse == null)
 throw new Exception(“Response from amazon.com contains not items!”);
 if (itemsResponse[0].Request.Errors != null)
 throw new Exception(
 “Response from amazon.com contains this error message: “ +
 itemsResponse[0].Request.Errors[0].Message);

 Items items = itemsResponse[0];

 Item[] results = items.Item;
 if (results == null || results.Length == 0)
 return null;

 Item item;
 Result result;
 ArrayList list = new ArrayList();

 for (int i = 0; i < results.Length; i++)
 {
 item = results[i];
 if (item == null)
 continue;

 result = new Result();

 if (!string.IsNullOrEmpty(item.ItemAttributes.Title))
 result.Title = item.ItemAttributes.Title;

 if (item.ItemAttributes.Author != null &&
 item.ItemAttributes.Author.Length != 0)
 result.Author = item.ItemAttributes.Author[0];

 if (!string.IsNullOrEmpty(item.DetailPageURL))
 result.AmazonUrl = item.DetailPageURL;

(continued)

c18.indd 831c18.indd 831 8/20/07 7:56:24 PM8/20/07 7:56:24 PM

Chapter 18: Web Services Bridges and Transformers

832

 Listing 18-27 (continued)

 if (item.MediumImage != null)
 result.ImageUrl = item.MediumImage.URL;

 if (item.ItemAttributes.ListPrice != null)
 result.ListPrice = item.ItemAttributes.ListPrice.FormattedPrice;

 if (item.Offers != null)
 {
 Offer[] offerArray = item.Offers.Offer;
 if (offerArray != null && offerArray.Length != 0)
 {
 if (offerArray[0].OfferListing != null &&
 offerArray[0].OfferListing.Length != 0)
 {
 if (offerArray[0].OfferListing[0].Price != null)
 result.Price =
 item.Offers.Offer[0].OfferListing[0].Price.FormattedPrice;
 }
 }
 }
 list.Add(result);
 }

 Results results2 = new Results();
 results2.Result = new Result[list.Count];
 list.CopyTo(results2.Result);
 return results2;
 }
 }
}

 Listing 18-27 contains the definition of a custom class named Result , the instances of which are used to
contain the filtered data sent to the clients. As you can see, the Result class exposes six properties —
 Title , Author , AmazonUrl , ImageUrl , ListPrice , and Price — that precisely represent the data that
the client side displays.

 As I discussed earlier, there are two ways to tell the XmlSerializer that the XmlBridgeTranformer
uses internally how to serialize the return value of the Search method of the AmazonService2 class.
Listing 18-27 shows the first approach, where two classes, Results and Result , are defined and
 annotated as follows:

 ❑ The Results class itself is annotated with an XmlRootAttribute metadata attribute with the
 ElementName value of results , to instruct the XmlSerializer to serialize a given instance of
the Results class as an XML document with the document element named results :

 <?xml version=”1.0” encoding=”utf-8” ?>
<results>
 . . .
</results>

c18.indd 832c18.indd 832 8/20/07 7:56:25 PM8/20/07 7:56:25 PM

Chapter 18: Web Services Bridges and Transformers

833

 ❑ The Results class exposes an array property of type Result named Result , which is
 annotated with an XmlElementAttribute metadata attribute with the ElementName value of
 result , to instruct the XmlSerializer to serialize a given instance of the Result class as an
XML element named result , as shown in the highlighted portion of the following XML
fragment:

 <?xml version=”1.0” encoding=”utf-8” ?>
<results>

 <result . . . />
 <result . . . />
 .
 .
 .
 <result . . . />

</results>

❑ The Title property of the Result class is annotated with an XmlAttribute metadata attribute
with the AttributeName value of title , to instruct the XmlSerializer to serialize the Title
property of a given instance of the Result class as an attribute named title on the XML
 element that represents the instance, which is the result element in this case, as shown in the
boldface portions of the following XML fragment:

 <?xml version=”1.0” encoding=”utf-8” ?>
<results>
 <result title=”...” . . . />
 <result title=”...” . . . />
 .
 .
 .
 <result title=”...” . . . />
</results>

 ❑ The Author property of the Result class is annotated with an XmlAttribute metadata attri-
bute with the AttributeName value of author , to instruct the XmlSerializer to serialize the
 Author property of a given instance of the Result class as an attribute named author on the
XML element that represents the instance, which is the result element in this case, as shown in
the boldface portions of the following XML fragment:

 <?xml version=”1.0” encoding=”utf-8” ?>
<results>
 <result title=”...” author=”...” . . . />
 <result title=”...” author=”...” . . . />
 .
 .
 .
 <result title=”...” author=”...” . . . />
</results>

c18.indd 833c18.indd 833 8/20/07 7:56:25 PM8/20/07 7:56:25 PM

Chapter 18: Web Services Bridges and Transformers

834

 ❑ The AmazonUrl property of the Result class is annotated with an XmlAttribute metadata
 attribute with the AttributeName value of amazonUrl , to instruct the XmlSerializer to
 serialize the AmazonUrl property of a given instance of the Result class as an attribute named
 amazonUrl on the XML element that represents the instance, which is the result element in
this case, as shown in the boldface portions of the following XML fragment:

 <?xml version=”1.0” encoding=”utf-8” ?>
<results>
 <result title=”...” author=”...” amazonUrl=”...” . . . />
 <result title=”...” author=”...” amazonUrl=”...” . . . />
 .
 .
 .
 <result title=”...” author=”...” amazonUrl=”...” . . . />
</results>

❑ The ImageUrl property of the Result class is annotated with an XmlAttribute metadata
 attribute with the AttributeName value of imageUrl , to instruct the XmlSerializer to
 serialize the ImageUrl property of a given instance of the Result class as an attribute named
 imageUrl on the XML element that represents the instance, which is the result element in this
case, as shown in the boldface portions of the following XML fragment:

 <?xml version=”1.0” encoding=”utf-8” ?>
<results>
 <result title=”...” author=”...” amazonUrl=”...” imageUrl=”...” ... />
 <result title=”...” author=”...” amazonUrl=”...” imageUrl=”...” ... />
 .
 .
 .
 <result title=”...” author=”...” amazonUrl=”...” imageUrl=”...” ... />
</results>

 ❑ The ListPrice property of the Result class is annotated with an XmlAttribute metadata
 attribute with the AttributeName value of listPrice , to instruct the XmlSerializer to
 serialize the ListPrice property of a given instance of the Result class as an attribute named
 listPrice on the XML element that represents the instance, which is the result element in
this case, as shown in the boldface portions of the following XML fragment:

 <?xml version=”1.0” encoding=”utf-8” ?>
<results>
 <result title=”...” author=”...” amazonUrl=”...” imageUrl=”...”
 listPrice=”...” . . . />
 <result title=”...” author=”...” amazonUrl=”...” imageUrl=”...”
 listPrice=”...” . . . />
 .
 .
 .
 <result title=”...” author=”...” amazonUrl=”...” imageUrl=”...”
 listPrice=”...” . . . />
</results>

c18.indd 834c18.indd 834 8/20/07 7:56:25 PM8/20/07 7:56:25 PM

Chapter 18: Web Services Bridges and Transformers

835

 The Price property of the Result class is annotated with an XmlAttribute metadata attribute with the
 AttributeName value of price , to instruct the XmlSerializer to serialize the Price property of a
given instance of the Result class as an attribute named price on the XML element that represents the
instance, which is the result element in this case, as shown in the boldface portions of the following
XML fragment:

 <?xml version=”1.0” encoding=”utf-8” ?>
<results>
 <result title=”...” author=”...” amazonUrl=”...” imageUrl=”...”
 listPrice=”...” price=”...” />
 <result title=”...” author=”...” amazonUrl=”...” imageUrl=”...”
 listPrice=”...” price=”...” />
 .
 .
 .
 <result title=”...” author=”...” amazonUrl=”...” imageUrl=”...”
 listPrice=”...” price=”...” />
</results>

 Listing 18-28: Portion of Listing 18-16

 function CustomComponents3$HtmlGenerator$generateHtml(items)
{
 var title;
 var author;
 var amazonUrl;
 var imageUrl;
 var listPrice;
 var price;
 var item;

 var results = items.Item;
 if (!results)
 return;

 var builder = new Sys.StringBuilder();
 builder.append(“<table cellspacing=’10’ style=’”);
 builder.append(this._tableStyle);
 builder.append(“’>”);

 for (var i=0; i<results.length-1; i++)
 {

 item = results[i];
 if (!item)
 continue;

 if (item.ItemAttributes.Title)
 title = item.ItemAttributes.Title;

 if (item.ItemAttributes.Author)
 author = item.ItemAttributes.Author[0];

(continued)

c18.indd 835c18.indd 835 8/20/07 7:56:25 PM8/20/07 7:56:25 PM

Chapter 18: Web Services Bridges and Transformers

836

 Listing 18-28 (continued)

 if (item.DetailPageURL)
 amazonUrl = item.DetailPageURL;

 if (item.MediumImage)
 imageUrl = item.MediumImage.URL;

 if (item.ItemAttributes.ListPrice)
 listPrice = item.ItemAttributes.ListPrice.FormattedPrice;

 if (item.Offers)
 {
 var offerArray = item.Offers.Offer;
 if (offerArray)
 {
 if (offerArray[0].OfferListing)
 {
 if (offerArray[0].OfferListing[0].Price)
 price = item.Offers.Offer[0].OfferListing[0].Price.FormattedPrice;
 }
 }
 }

 builder.append(“<tr>”);
 builder.append(“<td valign=’top’ width=’100%’>”);
 builder.append(“<table cellspacing=’10’ style=’”);
 if (i % 2 == 0)
 builder.append(this._rowStyle);
 else
 builder.append(this._alternatingRowStyle);
 builder.append(“’>”);
 builder.append(“<tr>”);
 builder.append(“<td align=’center’ valign=’top’ width=’20%’>”);
 builder.append(“<img alt=’’ src=’”);
 builder.append(imageUrl);
 builder.append(“’/>”);
 builder.append(“</td>”);
 builder.append(“<td align=’left’ valign=’top’>”);
 builder.append(“<p>”);
 builder.append(“<a href=’”);
 builder.append(amazonUrl);
 builder.append(“’>”);
 builder.append(title);
 builder.append(“”);
 builder.append(“
”);
 builder.append(“by “);
 builder.append(author);
 builder.append(“ (Author)”);
 builder.append(“</p>”);
 builder.append(“<p>”);

c18.indd 836c18.indd 836 8/20/07 7:56:26 PM8/20/07 7:56:26 PM

Chapter 18: Web Services Bridges and Transformers

837

 builder.append(“ List Price: <s>”);
 builder.append(listPrice);
 builder.append(“</s></br>”);
 builder.append(“ Price: “);
 builder.append(price);
 builder.append(“</br>”);
 builder.append(“</td>”);
 builder.append(“</tr>”);
 builder.append(“<tr>”);
 builder.append(“<td colspan=’2’>”);
 builder.append(“</td>”);
 builder.append(“</tr>”);
 builder.append(“</table>”);
 builder.append(“</td>”);
 builder.append(“</tr>”);
 }

 builder.append(“</table>”);
 return builder.toString();
}

 As you can see, you can manually annotate classes such as Results and Result and their public
 properties and fields with the appropriate metadata attributes to tell the XmlSerializer used
 internally by the XmlBridgeTransformer how to serialize the return value of the Search method of
the CustomComponents3.AmazonService2 . The manual annotation of a class and its public properties
and fields can get really cumbersome for large classes, especially when the desired schema is not as
 simple as Listing 18-26 .

 The ASP.NET framework comes with a command-line tool named xsd.exe that takes a schema file such
as the one shown in Listing 18-26 and automatically generates the classes, such as Results and Result ,
with the appropriate annotations. Follow these steps to use this tool:

1. Store Listing 18-26 in a file named Result.xsd .

2. Launch the Visual Studio Command Prompt.

3. Go to the directory where the Result.xsd file is located.

4. Run the following command:

 xsd.exe Result.xsd /c

 This will automatically generate a file named Result.cs that contains the definitions of the Results
and Result classes shown in Listing 18-27 . Both classes and their public properties are automatically
annotated with the metadata attributes shown in this code listing. This saves you from having to imple-
ment the Results and Result classes and annotate these classes and their public properties with the
appropriate metadata attributes.

 Before we go any further with our discussions, let’s implement a Web page that uses the components
we’ve implemented so far to give you chance to play with the code and get a better understanding of
how these components operate. Recall from the previous sections that we developed a Web application

c18.indd 837c18.indd 837 8/20/07 7:56:26 PM8/20/07 7:56:26 PM

Chapter 18: Web Services Bridges and Transformers

838

that contains all the replica components we developed in the previous chapter and the components we
developed in the previous sections of this chapter. Add the following files to this Web application:

1. Add the content of Listing 18-25 to the existing HtmlGenerator.js file. Recall that this code
 listing contains the definition of the HtmlGenerator2 . Since HtmlGenerator2 derives
from HtmlGenerator , we need to include the definitions of both HtmlGenerator
and HtmlGenerator2 client components. The best way to do this is to put them in the
same HtmlGenerator.js file.

2. Add a new source file named AmazonService2.cs to the App_Code directory of the application
and add Listing 18-27 to this source file.

3. Add a new file named AmazonSearch2.asbx to the root directory of the application and add
Listing 18-20 to this file.

4. Add a new source file named XmlBridgeTransformer.cs to the App_Code directory of the
 application and add Listing 18-24 to this file.

5. Add a new Web form named AmazonSearch2.aspx to the root directory of the application and
add Listing 18-29 to this file.

 Listing 18-29: The AmazonSearch2.aspx Page

 <%@ Page Language=”C#” %>

<%@ Register Namespace=”CustomComponents3” TagPrefix=”custom” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Services>
 <asp:ServiceReference InlineScript=”true” Path=”AmazonSearch2.asbx” />
 </Services>
 </asp:ScriptManager>

 <custom:ScriptManager runat=”server” ID=”CustomScriptManager1” />

 <custom:AmazonSearchScriptControl runat=”server” ID=”MyControl1”
 SearchMethod=”MyServices2.AmazonService2.Search”
 HtmlGeneratorID=”MyHtmlGenerator”
 Path=”/AJAXFuturesEnabledWebSite3/AmazonSearchScriptControl.js”
 ClientControlType=”CustomComponents3.AspNetAjaxAmazonSearch” />

 <custom:HtmlGeneratorScriptControl runat=”server” ID=”MyHtmlGenerator”
 Path=”/AJAXFuturesEnabledWebSite3/HtmlGenerator.js”
 ClientControlType=”CustomComponents3.HtmlGenerator2”>
 <RowStyle BackColor=”#eeeeee” Width=”100%” />

c18.indd 838c18.indd 838 8/20/07 7:56:26 PM8/20/07 7:56:26 PM

Chapter 18: Web Services Bridges and Transformers

839

 <AlternatingRowStyle BackColor=”#cccccc” Width=”100%” />
 </custom:HtmlGeneratorScriptControl>
 </form>
</body>
</html>

 IXmlSerializable
 As I discussed earlier, there are two ways to tell the XmlSerializer used internally by the
 XmlBridgeTransformer how to serialize the return value of the Search method. So far I’ve
discussed the first approach, which involves annotating the Results and Result classes and their
 properties with the appropriate metadata attributes.

 The second approach requires you to have the Results class implement the IXmlSerializable
 interface. Listing 18-30 presents the definition of this interface.

 Listing 18-30: The IXmlSerializable Interface

 public interface IXmlSerializable
{
 XmlSchema GetSchema();
 void ReadXml(XmlReader reader);
 void WriteXml(XmlWriter writer);
}

 Implementing the IXmlSerializable interface allows a class such as Results to take full control of its
serialization and deserialization mechanisms. As you can see, this interface exposes three methods:
 GetSchema , ReadXml , and WriteXml . The GetSchema method takes no arguments and returns an
instance of the XmlSchema class. This method is reserved and shouldn’t be used.

 A class implements the ReadXml method to take full control of its deserialization mechanism.
This method allows a class to deserialize itself from a given XML representation or document. The
 ReadXml method takes an XmlReader instance as its argument, which the class uses to access the con-
tents of the XML document and to populate its own properties with the appropriate values from the
XML document. Since our example does not involve deserialization of the Results class, this class’s
implementation of this method does not do anything.

 A class implements the WriteXml method to take full control of its serialization mechanism. The
 WriteXml method takes an XmlWriter instance, which the class uses to generate the appropriate
XML representations.

 You must annotate your class with the XmlSchemaProvider metadata attribute. This attribute is used to
specify the name of the method that generates the XML schema document that fully describes the struc-
ture of the XML document that the WriteXml method generates and the ReadXml method consumes.

 Listing 18-31 presents the implementation of the Results and Result classes. Note that neither the
classes nor their properties are annotated with any of the previously mentioned metadata attributes.
I’ll discuss the implementation of the methods of the Results class in the following sections.

c18.indd 839c18.indd 839 8/20/07 7:56:26 PM8/20/07 7:56:26 PM

Chapter 18: Web Services Bridges and Transformers

840

 Listing 18-31: The Results and Result Classes

 using System;
using System.Web;
using System.Xml;
using System.Xml.Schema;
using System.Xml.Serialization;

namespace CustomComponents
{
 [XmlSchemaProvider(“ResultsSchema”)]
 public class Results: IXmlSerializable
 {
 private Result[] resultField;
 public Result[] Result
 {
 get { return this.resultField; }
 set { this.resultField = value; }
 }

 XmlSchema IXmlSerializable.GetSchema()
 {
 return null;
 }

 void IXmlSerializable.ReadXml(XmlReader reader)
 {
 }

 public static XmlQualifiedName ResultsSchema(XmlSchemaSet xs)
 {
 XmlSerializer serializer = new XmlSerializer(typeof(XmlSchema));
 XmlReader reader =
 XmlReader.Create(HttpContext.Current.Server.MapPath(“Results.xsd”));
 XmlSchema schema = (XmlSchema)serializer.Deserialize(reader);
 xs.Add(schema);
 return new XmlQualifiedName(“results”);
 }

 void IXmlSerializable.WriteXml(XmlWriter writer)
 {
 foreach (Result result in this.Result)
 {
 writer.WriteStartElement(“result”);
 writer.WriteAttributeString(“title”, result.Title);
 writer.WriteAttributeString(“author”, result.Author);
 writer.WriteAttributeString(“amazonUrl”, result.AmazonUrl);
 writer.WriteAttributeString(“imageUrl”, result.ImageUrl);
 writer.WriteAttributeString(“listPrice”, result.ListPrice);
 writer.WriteAttributeString(“price”, result.Price);
 writer.WriteEndElement();
 }
 }
 }

c18.indd 840c18.indd 840 8/20/07 7:56:27 PM8/20/07 7:56:27 PM

Chapter 18: Web Services Bridges and Transformers

841

 public class Result
 {
 private string title;
 public string Title
 {
 get { return this.title; }
 set { this.title = value; }
 }

 private string author;
 public string Author
 {
 get { return this.author; }
 set { this.author = value; }
 }

 private string amazonUrl;
 public string AmazonUrl
 {
 get { return this.amazonUrl; }
 set { this.amazonUrl = value; }
 }

 private string imageUrl;
 public string ImageUrl
 {
 get { return this.imageUrl; }
 set { this.imageUrl = value; }
 }

 private string listPrice;
 public string ListPrice
 {
 get { return this.listPrice; }
 set { this.listPrice = value; }
 }

 private string price;
 public string Price
 {
 get { return this.price; }
 set { this.price = value; }
 }
 }
}

c18.indd 841c18.indd 841 8/20/07 7:56:27 PM8/20/07 7:56:27 PM

Chapter 18: Web Services Bridges and Transformers

842

 WriteXml
 As you can see from Listing 18-32 , the Results class implements the WriteXml method of the
 IXmlSerializable interface to generate its XML representation. The WriteXml method of the Results
class, like the WriteXml method of any other class that implements the IXmlSerializable interface,
writes its XML representation or document into the XmlWrite passed into it as its only argument. This
method iterates through the Result objects in the Result collection property of the Results class and
takes the following steps to generate the XML representation of each enumerated Result object. First,
it invokes the WriteStartElement method on the XmlWrite object to write out a new element
named result :

 writer.WriteStartElement(“result”);

 Next, it invokes the WriteAttributeString method on the XmlWriter object six times to write out six
attributes — title , author , amazonUrl , imageUrl , listPrice , and price — on the Result element
and set the values of these attributes to the value of the Title , Author , AmazonUrl , ImageUrl ,
 ListPrice , and Price properties of the enumerated Result object, respectively.

 Listing 18-32: The WriteXml Method of the Results Class

 void IXmlSerializable.WriteXml(XmlWriter writer)
 {
 foreach (Result result in this.Result)
 {
 writer.WriteStartElement(“result”);
 writer.WriteAttributeString(“title”, result.Title);
 writer.WriteAttributeString(“author”, result.Author);
 writer.WriteAttributeString(“amazonUrl”, result.AmazonUrl);
 writer.WriteAttributeString(“imageUrl”, result.ImageUrl);
 writer.WriteAttributeString(“listPrice”, result.ListPrice);
 writer.WriteAttributeString(“price”, result.Price);
 writer.WriteEndElement();
 }
 }

 ResultsSchema
 Every class that implements the IXmlSerializable interface must implement a method with the
 following signature:

 public static XmlQualifiedName MethodName (XmlSchemaSet xs);

 You can give this method any name you wish as long as the following conditions are met:

 ❑ It takes a single argument of type XmlSchemaSet .

❑ It returns a value of type XmlQualifiedName .

❑ It is static.

❑ It is public.

c18.indd 842c18.indd 842 8/20/07 7:56:27 PM8/20/07 7:56:27 PM

Chapter 18: Web Services Bridges and Transformers

843

 You must also annotate the class that implements the IXmlSerializable interface with the
XmlSchemaProvider metadata attribute, to specify which method of the class is responsible for
generating the XML schema of the XML document that WriteXml generates and ReadXml consumes:

 namespace CustomComponents
{

 [XmlSchemaProvider(“ResultsSchema”)]
 public class Results: IXmlSerializable

 {
 . . .

 public static XmlQualifiedName ResultsSchema(XmlSchemaSet xs)

 {
 XmlSerializer serializer = new XmlSerializer(typeof(XmlSchema));
 XmlReader reader =
 XmlReader.Create(HttpContext.Current.Server.MapPath(“Results.xsd”));
 XmlSchema schema = (XmlSchema)serializer.Deserialize(reader);
 xs.Add(schema);
 return new XmlQualifiedName(“results”);
 }
 . . .
 }
}

 Listing 18-33 presents the implementation of the ResultsSchema method of the Results class. This
method is the one that is responsible for generating the XML schema of the XML document that
WriteXml generates and ReadXml consumes. In general, there are two ways to implement this method.
We will only discuss the first approach in this chapter. The second approach requires you to make use
of the classes in the System.Xml.Schema namespace.

 Listing 18-33 uses the first approach, which requires you to create a separate XSD file that contains the
XML schema document. Our example uses the XSD document shown in Listing 18-26 . As you can see,
the ResultsSchema method first instantiates an XmlSerializer , passing in the Type object that repre-
sents the XmlSchema type:

 XmlSerializer serializer = new XmlSerializer(typeof(XmlSchema));

 Passing a Type object into the constructor of the XmlSerializer allows the XmlSerializer to use
.NET reflection to extract the complete information about the specified class, which is the XmlSchema
class. The XmlSerializer uses this information when it is serializing an instance of this class.

 Next, the ResultsSchema method instantiates an XmlReader and loads the content of the Results.xsd
schema file into this XmlReader :

 XmlReader reader =
 XmlReader.Create(HttpContext.Current.Server.MapPath(“Results.xsd”));

c18.indd 843c18.indd 843 8/20/07 7:56:28 PM8/20/07 7:56:28 PM

Chapter 18: Web Services Bridges and Transformers

844

 Then ResultsSchema invokes the Deserialize method on the XmlSerializer to deserialize an
 XmlSchema object from the XML schema document loaded into the XmlReader :

 XmlSchema schema = (XmlSchema)serializer.Deserialize(reader);

 Next, ResultsSchema adds this XmlSchema object into the XmlSchemaSet collection passed into the
method as its argument:

 xs.Add(schema);

 Finally, ResultsSchema returns an XmlQualifiedName that contains the qualified name of the XSD
type of the document element of the XML document that WriteXml generates and ReadXml consumes:

 return new XmlQualifiedName(“results”);

 Listing 18-33: The ResultsSchema Method

 public static XmlQualifiedName ResultsSchema(XmlSchemaSet xs)
 {
 XmlSerializer serializer = new XmlSerializer(typeof(XmlSchema));
 XmlReader reader =
 XmlReader.Create(HttpContext.Current.Server.MapPath(“Results.xsd”));
 XmlSchema schema = (XmlSchema)serializer.Deserialize(reader);
 xs.Add(schema);
 return new XmlQualifiedName(“results”);
 }

 Now let’s implement a page that uses the components developed in this section. In previous sections
we developed a Web application that contains all the replica components we developed in the previous
chapter and the components we developed in the previous sections of this chapter. Now do the
following:

1. Add a new source file named Results.cs to the App_Code directory of the application and add
Listing 18-31 to this source file.

2. Add a new source file named AmazonService3.cs to the App_Code directory of the application
and add Listing 18-34 to this source file. This code listing contains a new version of the
 AmazonService2 class, named AmazonService3 , that makes use of the Results and Result
classes defined in Listing 18-31 .

3. Add a new file named AmazonSearch3.asbx to the root directory of the application and add
Listing 18-35 to this file. Every time we introduce a new version of our AmazonService class we
must also introduce a new version of our .asbx file to reference this class.

4. Add a new XSD file named Results.xsd to the root directory of the application and add
 Listing 18-26 to this file.

5. Add a new Web form named AmazonSearch3.aspx to the root directory of the application and
add Listing 18-36 to this file.

c18.indd 844c18.indd 844 8/20/07 7:56:28 PM8/20/07 7:56:28 PM

Chapter 18: Web Services Bridges and Transformers

845

 Listing 18-34: The AmazonService3.cs

 using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.IO;
using System.Xml;
using System.Collections;
using com.amazon.webservices;
using System.Xml.Serialization;
using System.Xml.Schema;

namespace CustomComponents3
{
 public class AmazonService3
 {
 public CustomComponents.Results Search(int pageIndex, string searchQuery)
 {
 ItemSearchRequest itemSearchRequest = new ItemSearchRequest();
 itemSearchRequest.Keywords = searchQuery;
 itemSearchRequest.SearchIndex = “Books”;
 itemSearchRequest.ResponseGroup =
 new string[] { “Small”, “Images”, “ItemAttributes”, “OfferFull” };
 itemSearchRequest.ItemPage = pageIndex.ToString();

 ItemSearch itemSearch = new ItemSearch();
 itemSearch.SubscriptionId =
 ConfigurationManager.AppSettings[“SubscriptionID”];
 itemSearch.AssociateTag = “”;
 itemSearch.Request = new ItemSearchRequest[1] { itemSearchRequest };

 ItemSearchResponse itemSearchResponse;
 try
 {
 AWSECommerceService amazonService = new AWSECommerceService();
 itemSearchResponse = amazonService.ItemSearch(itemSearch);
 }

 catch (Exception e)
 {
 throw e;
 }

 Items[] itemsResponse = itemSearchResponse.Items;

 // Check for errors in the reponse
 if (itemsResponse == null)
 throw new Exception(“Response from amazon.com contains not items!”);

(continued)

c18.indd 845c18.indd 845 8/20/07 7:56:28 PM8/20/07 7:56:28 PM

Chapter 18: Web Services Bridges and Transformers

846

 Listing 18-34 (continued)

 if (itemsResponse[0].Request.Errors != null)
 throw new Exception(
 “Response from amazon.com contains this error message: “ +
 itemsResponse[0].Request.Errors[0].Message);

 Items items = itemsResponse[0];
 Item[] results = items.Item;
 if (results == null || results.Length == 0)
 return null;

 Item item;
 CustomComponents.Result result;
 ArrayList list = new ArrayList();

 for (int i = 0; i < results.Length; i++)
 {
 item = results[i];
 if (item == null)
 continue;

 result = new CustomComponents.Result();

 if (!string.IsNullOrEmpty(item.ItemAttributes.Title))
 result.Title = item.ItemAttributes.Title;

 if (item.ItemAttributes.Author != null &&
 item.ItemAttributes.Author.Length != 0)
 result.Author = item.ItemAttributes.Author[0];

 if (!string.IsNullOrEmpty(item.DetailPageURL))
 result.AmazonUrl = item.DetailPageURL;

 if (item.MediumImage != null)
 result.ImageUrl = item.MediumImage.URL;

 if (item.ItemAttributes.ListPrice != null)
 result.ListPrice = item.ItemAttributes.ListPrice.FormattedPrice;

 if (item.Offers != null)
 {
 Offer[] offerArray = item.Offers.Offer;
 if (offerArray != null && offerArray.Length != 0)
 {
 if (offerArray[0].OfferListing != null &&
 offerArray[0].OfferListing.Length != 0)
 {
 if (offerArray[0].OfferListing[0].Price != null)
 result.Price =
 item.Offers.Offer[0].OfferListing[0].Price.FormattedPrice;
 }
 }
 }

c18.indd 846c18.indd 846 8/20/07 7:56:28 PM8/20/07 7:56:28 PM

Chapter 18: Web Services Bridges and Transformers

847

 list.Add(result);
 }

 CustomComponents.Results results2 = new CustomComponents.Results();
 results2.Result = new CustomComponents.Result[list.Count];
 list.CopyTo(results2.Result);
 return results2;
 }
 }
}

 Listing 18-35: The AmazonSearch3.asbx

 <?xml version=”1.0” encoding=”utf-8” ?>
<bridge namespace=”MyServices3” className=”AmazonService3”>
 <proxy type=”CustomComponents3.AmazonService3, App_Code”/>
 <method name=”Search”>
 <input>
 <parameter name=”pageIndex” />
 <parameter name=”searchQuery” />
 </input>
 <transforms>
 <transform type=”CustomComponents3.XmlBridgeTransformer”/>
 </transforms>
 </method>
</bridge>

 Listing 18-36: The AmazonSearch3.aspx

 <%@ Page Language=”C#” %>

<%@ Register Namespace=”CustomComponents3” TagPrefix=”custom” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Services>
 <asp:ServiceReference InlineScript=”true” Path=”AmazonSearch3.asbx” />
 </Services>
 </asp:ScriptManager>
 <custom:ScriptManager runat=”server” ID=”CustomScriptManager1” />

 <custom:AmazonSearchScriptControl runat=”server” ID=”MS”
 SearchMethod=”MyServices3.AmazonService3.Search”
 HtmlGeneratorID=”MyHtmlGenerator”
 Path=”/AJAXFuturesEnabledWebSite3/AmazonSearchScriptControl.js”
 ClientControlType=”CustomComponents3.AspNetAjaxAmazonSearch” />

(continued)

c18.indd 847c18.indd 847 8/20/07 7:56:29 PM8/20/07 7:56:29 PM

Chapter 18: Web Services Bridges and Transformers

848

 Listing 18-36 (continued)

 <custom:HtmlGeneratorScriptControl runat=”server” ID=”MyHtmlGenerator”
 Path=”/AJAXFuturesEnabledWebSite3/HtmlGenerator.js”
 ClientControlType=”CustomComponents3.HtmlGenerator2”>
 <RowStyle BackColor=”#eeeeee” Width=”100%” />
 <AlternatingRowStyle BackColor=”#cccccc” Width=”100%” />
 </custom:HtmlGeneratorScriptControl>
 </form>
</body>
</html>

 XsltBridgeTransformer
 The ASP.NET AJAX framework comes with another transformer, named XsltBridgeTransformer .
As the name suggests, this transformer performs XSLT transformation on a specified XML document.
The XsltBridgeTransformer , like any other ASP.NET AJAX transformer, derives from the
IBridgeResponseTransformer interface and implements its Initialize and Transform methods.

 Listing 18-37 presents the implementation of the replica XsltBridgeTransformer . Next I’ll walk you
through the implementation of the Initialize method of the replica. Recall that when this method is
invoked, a BridgeTransformData object is passed into it. As thoroughly discussed earlier, this object
exposes a collection property named Attributes that contains the values of the name and value
 attributes of the attribute subelements of the data subelement of the transform element that
 represents the transformer in the .asbx file. The data subelement of the transform element
that represents the XsltBridgeTransformer contains a single attribute subelement whose
name attribute is set to the keyword stylesheetFile and whose value attribute is set to the
virtual path of the XSLT file. For example, Listing 18-38 shows an .asbx file that uses our replica
XsltBridgeTransformer , where the value of the value attribute element is set to the virtual path of an
XSLT file named MyFile.xsl :

 <attribute name=”stylesheetFile” value=”/AJAXFuturesEnabledWebSite3/MyFile.xsl”/>

 The Initialize method of the XsltBridgeTransformer uses the keyword stylesheetFile as an
index into the Attributes collection to return the value of the value attribute of the attribute subele-
ment. Note that the Initialize method stores this value in a private field named _xsltVirtualPath .

 Next, I’ll walk you through the implementation of the Transform method of our replica
XsltBridgeTransformer . This method first checks whether the object passed into it is a string. If
not, it raises an exception. As you’ll see shortly, the Transform method expects the value passed into
it to be an XML document.

 string xml = results as string;
 if (xml == null)
 throw new ArgumentException(“String Only”, “results”);

 The fact that the Transform method expects an XML document has a significant consequence.
Since the return value of a method such as the Search method of the AmazonService is a .NET
object, not an XML document, it cannot be directly passed into the Transform method of the
XsltBridgeTransformer . In other words, the Transform method of the

c18.indd 848c18.indd 848 8/20/07 7:56:29 PM8/20/07 7:56:29 PM

Chapter 18: Web Services Bridges and Transformers

849

XsltBridgeTransformer expects to receive the XML representation of a .NET object, not the object
itself. Therefore, you must use the XmlBridgeTransformer before the XsltBridgeTransformer
in the transformer pipeline to have the Invoke method of the BridgeHandler pass the return value
of a method, such as the Search method of the AmazonService , into the Transform method of the
 XmlBridgeTransformer to serialize this value into its XML representation before it is passed into
the Transform method of the XsltBridgeTransformer . For example, the .asbx file shown in
Listing 18-38 uses an XmlBridgeTransformer before the XsltBridgeTransformer .

 Next, the Transform method instantiates an XmlDocument :

 XmlDocument document = new XmlDocument();

 Then it populates this XmlDocument with the XML document contained in the string passed into
the method:

 document.LoadXml(xml);

 Next, it instantiates an XslCompiledTransform , which will be used to perform XSLT transformation on
the above XML document:

 XslCompiledTransform transform = new XslCompiledTransform();

 Then it instantiates a StringWriter into which the transformed XML document will be written:

 using (StringWriter writer = new StringWriter(CultureInfo.CurrentCulture))

 Next, it evaluates the absolute path of the XSLT file. Recall that the .asbx file such as the one shown in
Listing 18-38 provides the virtual path to the XSLT file:

 this._xsltVirtualPath =
 VirtualPathUtility.ToAbsolute(this._xsltVirtualPath);

 Then it invokes the OpenFile static method to load the content of the XSLT file into a Stream :

 using (Stream input = VirtualPathProvider.OpenFile(this._xsltVirtualPath))

 Next, it loads this Stream into an XmlReader :

 using (XmlReader stylesheet = XmlReader.Create(input))

 Then it loads this XmlReader into the XsltCompiledTransform . Keep in mind that this XmlReader
contains the content of the XSLT file:

 transform.Load(stylesheet);

 Next, it invokes the Transform method on the XsltCompiledTransform to transform the XML
 document based on the XSLT rules specified in the XSLT files. Note that the transformed XML document
is written into the StringWriter :

 transform.Transform((IXPathNavigable)document, null,
 (TextWriter)writer);

c18.indd 849c18.indd 849 8/20/07 7:56:29 PM8/20/07 7:56:29 PM

Chapter 18: Web Services Bridges and Transformers

850

 Finally, it returns the content of this StringWriter :

 return writer.GetStringBuilder().ToString();

 Listing 18-37: The XsltBridgeTransformer

 using System;
using System.Data;
using System.Configuration;
using System.Web;
using Microsoft.Web.Preview.Services;
using System.Xml.Serialization;
using System.Xml;
using System.IO;
using System.Text;
using System.Xml.XPath;
using System.Xml.Xsl;
using System.Web.Hosting;
using System.Globalization;

namespace CustomComponents3
{
 public class XsltBridgeTransformer : IBridgeResponseTransformer
 {
 private string _xsltVirtualPath;

 public XsltBridgeTransformer()
 {
 this._xsltVirtualPath = string.Empty;
 }

 public void Initialize(BridgeTransformData data)
 {
 this._xsltVirtualPath = data.Attributes[“stylesheetFile”];
 }

 public object Transform(object results)
 {
 string xml = results as string;
 if (xml == null)
 throw new ArgumentException(“String Only”, “results”);

 XmlDocument document = new XmlDocument();
 document.LoadXml(xml);
 XslCompiledTransform transform = new XslCompiledTransform();
 using (StringWriter writer = new StringWriter(CultureInfo.CurrentCulture))
 {
 this._xsltVirtualPath =
 VirtualPathUtility.ToAbsolute(this._xsltVirtualPath);

c18.indd 850c18.indd 850 8/20/07 7:56:30 PM8/20/07 7:56:30 PM

Chapter 18: Web Services Bridges and Transformers

851

 using (Stream input = VirtualPathProvider.OpenFile(this._xsltVirtualPath))
 {
 using (XmlReader stylesheet = XmlReader.Create(input))
 {
 transform.Load(stylesheet);
 transform.Transform((IXPathNavigable)document, null,
 (TextWriter)writer);
 }
 }
 return writer.GetStringBuilder().ToString();
 }
 }
 }
}

 Listing 18-38: The AmazonSearch4.asbx

 <?xml version=”1.0” encoding=”utf-8” ?>
<bridge namespace=”MyServices4” className=”AmazonService4”>
 <proxy type=”CustomComponents3.AmazonService4, App_Code”/>
 <method name=”Search”>
 <input>
 <parameter name=”pageIndex” />
 <parameter name=”searchQuery” />
 </input>

 <transforms>
 <transform type=”CustomComponents3.XmlBridgeTransformer”/>

 <transform type=”CustomComponents3.XsltBridgeTransformer”>
 <data>
 <attribute name=”stylesheetFile”
 value=”/AJAXFuturesEnabledWebSite3/MyFile.xsl”/>
 </data>
 </transform>
 </transforms>
 </method>
</bridge>

 Next, I’ll implement an example that uses the replica XsltBridgeTransformer . This example uses the
 .asbx file shown in Listing 18-38 . Note that this file uses an XSLT file named MyFile.xsl . Listing 18-39
presents the content of this XSLT file. As you can see, this XSLT file basically transforms the original
XML document, which is the XML representation of the return value of the Search method of the
 CustomComponents3.AmazonService4 class shown in Listing 18-40 , into an XML document that
the HtmlGenerator2 expects. Recall that the generateHtml method of the HtmlGenerator2 client
component expects the XML document with the schema shown in Listing 18-33 .

c18.indd 851c18.indd 851 8/20/07 7:56:30 PM8/20/07 7:56:30 PM

Chapter 18: Web Services Bridges and Transformers

852

 Listing 18-39: The MyFile.xsl File

 <?xml version=”1.0” encoding=”utf-8”?>

<xsl:stylesheet version=”1.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

 <xsl:template match=”/”>
 <results>
 <xsl:apply-templates select=”//Result” />
 </results>
 </xsl:template>

 <xsl:template match=”//Result”>
 <result title=”{Title}” author=”{Author}” amazonUrl=”{AmazonUrl}”
 imageUrl=”{ImageUrl}” listPrice=”{ListPrice}” price=”{Price}” />
 </xsl:template>
</xsl:stylesheet>

 Listing 18-40 presents a new version of our AmazonService class named AmazonService4 . Note that
this file makes use of the Result class (not the Results class) defined in Listing 18-31 .

 Listing 18-40: The AmazonService4 Class

 using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.IO;
using System.Xml;
using System.Collections;
using com.amazon.webservices;
using System.Xml.Serialization;

namespace CustomComponents3
{
 public class AmazonService4
 {
 public CustomComponents.Result[] Search(int pageIndex, string searchQuery)
 {
 ItemSearchRequest itemSearchRequest = new ItemSearchRequest();
 itemSearchRequest.Keywords = searchQuery;
 itemSearchRequest.SearchIndex = “Books”;
 itemSearchRequest.ResponseGroup =
 new string[] { “Small”, “Images”, “ItemAttributes”, “OfferFull” };
 itemSearchRequest.ItemPage = pageIndex.ToString();

 ItemSearch itemSearch = new ItemSearch();

c18.indd 852c18.indd 852 8/20/07 7:56:30 PM8/20/07 7:56:30 PM

Chapter 18: Web Services Bridges and Transformers

853

 itemSearch.SubscriptionId =
 ConfigurationManager.AppSettings[“SubscriptionID”];
 itemSearch.AssociateTag = “”;
 itemSearch.Request = new ItemSearchRequest[1] { itemSearchRequest };

 ItemSearchResponse itemSearchResponse;
 try
 {
 AWSECommerceService amazonService = new AWSECommerceService();
 itemSearchResponse = amazonService.ItemSearch(itemSearch);
 }

 catch (Exception e)
 {
 throw e;
 }

 Items[] itemsResponse = itemSearchResponse.Items;

 // Check for errors in the reponse
 if (itemsResponse == null)
 throw new Exception(“Response from amazon.com contains not items!”);

 if (itemsResponse[0].Request.Errors != null)
 throw new Exception(“Response from amazon.com contains this error message:“
 + itemsResponse[0].Request.Errors[0].Message);

 Items items = itemsResponse[0];
 Item[] results = items.Item;
 if (results == null || results.Length == 0)
 return null;

 Item item;
 CustomComponents.Result result;
 ArrayList list = new ArrayList();

 for (int i = 0; i < results.Length; i++)
 {
 item = results[i];
 if (item == null)
 continue;

 result = new CustomComponents.Result();

 if (!string.IsNullOrEmpty(item.ItemAttributes.Title))
 result.Title = item.ItemAttributes.Title;

 if (item.ItemAttributes.Author != null &&
 item.ItemAttributes.Author.Length != 0)
 result.Author = item.ItemAttributes.Author[0];

 if (!string.IsNullOrEmpty(item.DetailPageURL))
 result.AmazonUrl = item.DetailPageURL;

(continued)

c18.indd 853c18.indd 853 8/20/07 7:56:31 PM8/20/07 7:56:31 PM

Chapter 18: Web Services Bridges and Transformers

854

 Listing 18-40 (continued)

 if (item.MediumImage != null)
 result.ImageUrl = item.MediumImage.URL;

 if (item.ItemAttributes.ListPrice != null)
 result.ListPrice = item.ItemAttributes.ListPrice.FormattedPrice;

 if (item.Offers != null)
 {
 Offer[] offerArray = item.Offers.Offer;
 if (offerArray != null && offerArray.Length != 0)
 {
 if (offerArray[0].OfferListing != null &&
 offerArray[0].OfferListing.Length != 0)
 {
 if (offerArray[0].OfferListing[0].Price != null)
 result.Price =
 item.Offers.Offer[0].OfferListing[0].Price.FormattedPrice;
 }
 }
 }
 list.Add(result);
 }

 CustomComponents.Result[] list2 = new CustomComponents.Result[list.Count];
 list.CopyTo(list2);
 return list2;
 }
 }
}

 Recall from the previous sections that we developed a Web application that contains all the replica
 components we developed in the previous chapter and the components we developed in the previous
sections of this chapter. Then take the following steps:

1. Add a new source file named XsltBridgeTransformer.cs to the App_Code directory of the
application and add Listing 18-37 to this source file.

2. Add a new source file named AmazonService4.cs to the App_Code directory of the application
and add Listing 18-40 to this source file.

3. Add a new file named AmazonSearch4.asbx to the root directory of the application and add
Listing 18-38 to this file.

4. Add a new XSLT file named MyFile.xsl to the root directory of the application and add
Listing 18-39 to this file.

5. Add a new Web form named AmazonSearch4.aspx to the root directory of the application
and add Listing 18-41 to this file.

c18.indd 854c18.indd 854 8/20/07 7:56:31 PM8/20/07 7:56:31 PM

Chapter 18: Web Services Bridges and Transformers

855

 Listing 18-41: The AmazonSearch4.aspx

 <%@ Page Language=”C#” %>

<%@ Register Namespace=”CustomComponents3” TagPrefix=”custom” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Services>
 <asp:ServiceReference InlineScript=”true” Path=”AmazonSearch4.asbx” />
 </Services>
 </asp:ScriptManager>
 <custom:ScriptManager runat=”server” ID=”CustomScriptManager1” />

 <custom:AmazonSearchScriptControl runat=”server” ID=”MS”
SearchMethod=”MyServices4.AmazonService4.Search” HtmlGeneratorID=”MyHtmlGenerator”
Path=”/AJAXFuturesEnabledWebSite3/AmazonSearchScriptControl.js”
 ClientControlType=”CustomComponents3.AspNetAjaxAmazonSearch”/>

 <custom:HtmlGeneratorScriptControl runat=”server” ID=”MyHtmlGenerator”
Path=”/AJAXFuturesEnabledWebSite3/HtmlGenerator.js”
 ClientControlType=”CustomComponents3.HtmlGenerator2”>
 <RowStyle BackColor=”#eeeeee” Width=”100%” />
 <AlternatingRowStyle BackColor=”#cccccc” Width=”100%” />
 </custom:HtmlGeneratorScriptControl>
 </form>
</body>
</html>

 Summary
 This chapter implemented custom script server controls that use ASP.NET AJAX Web services bridges
to retrieve data from external Web services such as Amazon Web services. The chapter also discussed
ASP.NET AJAX transformers in detail.

 In the next chapter, we’ll move on to the important topic of asynchronous partial page rendering and
the associated UpdatePanel and ScriptManager server controls.

c18.indd 855c18.indd 855 8/20/07 7:56:31 PM8/20/07 7:56:31 PM

c18.indd 856c18.indd 856 8/20/07 7:56:31 PM8/20/07 7:56:31 PM

 UpdatePanel and
ScriptManager

 The ASP.NET AJAX Framework extends the ASP.NET Framework to add support for a new type
of page postback that enables what is known as asynchronous partial page rendering or updates . The
asynchronous partial page rendering is characterized by the following characteristics:

 ❑ The values of the form elements are posted through an asynchronous HTTP request, allow-
ing the end user to interact with the page while the request makes its way to the server and
processed by the server-side code and the server response makes its way back to the client.
The asynchronous nature of the client-server communications goes a long way to improve
the interactivity, responsiveness, and performance of ASP.NET AJAX applications.

❑ When the server response arrives, only designated portions of the page are updated and
 re-rendered. The rest of the page remains intact, hence the name “partial page rendering.”
ASP.NET AJAX developers must use UpdatePanel server controls to tell the ASP.NET
AJAX Framework which regions of a page must be updated on an asynchronous page
postback.

 Enabling Asynchronous Partial Page Rendering
 One of the great advantages of the ASP.NET AJAX partial page rendering feature is that you can
enable it declaratively without writing a single line of client script. Enabling partial page rendering
for an ASP.NET page takes two simple steps:

 ❑ Add a single instance of the ScriptManager server control to the .aspx page

 Every ASP.NET page can contain only one instance of the ScriptManager server control.

 ❑ Add one or more UpdatePanel server controls to designate portions of the page that you
want to have updated when an asynchronous page postback occurs

 Listing 19-1 presents a page that consists of two sections. The page uses an UpdatePanel server
control to designate the top section as a partially updatable portion of the page. The bottom por-
tion is an area of the page that can be updated only on a regular synchronous page postback.

c19.indd 857c19.indd 857 8/20/07 8:33:20 PM8/20/07 8:33:20 PM

Chapter 19: UpdatePanel and ScriptManager

858

If you run this page, you should see the result shown in Figure 19-1 . As you can see from this figure,
each section of the page contains an ASP.NET Label and Button server control, where the Label
 displays the last time at which the associated section was refreshed.

 Now click the Update button in the top section. Notice that:

 ❑ The browser does not display the little animation that it normally displays when a page is
posted back to the server. This is because the page postback is done asynchronously in the
background.

❑ Only the timestamp of the top portion of the page changes. In other words, this asynchronous
page postback does not affect the bottom portion of the page — hence the name “partial page
rendering.”

 Listing 19-1: Enabling a Page for Partial Page Rendering

 <%@ Page Language=”C#” %>

<%@ Import Namespace=”System.Drawing” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
 void Page_Load(object sender, EventArgs e)
 {
 string text = “Refreshed at “ + DateTime.Now.ToString();
 UpdatePanel1Label.Text = text;
 NonPartiallyUpdatableLabel.Text = text;
 }
</script>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”/>
 <asp:UpdatePanel ID=”UpdatePanel1” runat=”server”>
 <ContentTemplate>
 <table cellspacing=”10” style=”background-color: #dddddd”>
 <tr>
 <th colspan=”2” align=”center”>
 Partially Updatable Portion (UpdatePanel1) </th>
 </tr>
 <tr>
 <td>
 <asp:Label ID=”UpdatePanel1Label” runat=”server” />
 </td>

c19.indd 858c19.indd 858 8/20/07 8:33:21 PM8/20/07 8:33:21 PM

Chapter 19: UpdatePanel and ScriptManager

859

 <td>
 <asp:Button ID=”UpdatePanelButton” runat=”server”
 Text=”Update” />
 </td>
 </tr>
 </table>
 </ContentTemplate>
 </asp:UpdatePanel>

 <table cellspacing=”10” style=”background-color: #dddddd”>
 <tr>
 <th colspan=”2”> Non Partially Updatable Portion </th>
 </tr>
 <tr>
 <td>
 <asp:Label ID=”NonPartiallyUpdatableLabel” runat=”server” />
 </td>
 <td>
 <asp:Button runat=”server” Text=”Update” />
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

Figure 19-1

c19.indd 859c19.indd 859 8/20/07 8:33:21 PM8/20/07 8:33:21 PM

Chapter 19: UpdatePanel and ScriptManager

860

 Conditional Updates
 By default, every UpdatePanel server control on a page is updated on every single asynchronous page
postback. You can see this from the following example.

 Listing 19-2 presents a page that uses two UpdatePanel server controls. If you run this page, you should
get the result shown in Figure 19-2 . Now click the Update button in the top UpdatePanel server control
(UpdatePanel1). Note that both UpdatePanel server controls are updated. Here is the reason. The
 UpdatePanel server control exposes UpdateMode , a property of type UpdatePanelUpdateMode
 enumerator with possible values of Always and Conditional . The default value of this property is
 Always , which means that the UpdatePanel server control is updated on every single asynchronous
page postback.

 Listing 19-2: A Page that Uses Two UpdatePanel Server Controls

 <%@ Page Language=”C#” %>

<script runat=”server”>
 void Page_Load(object sender, EventArgs e)
 {
 string text = “Refreshed at “ + DateTime.Now.ToString();
 UpdatePanel1Label.Text = text;
 UpdatePanel2Label.Text = text;
 NonPartiallyUpdatableLabel.Text = text;
 }
</script>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”/>
 <asp:UpdatePanel ID=”UpdatePanel1” runat=”server”>
 <ContentTemplate>
 <table cellspacing=”10” style=”background-color: #dddddd”>
 <tr>
 <th colspan=”2” align=”center”>
 Partially Updatable Portion (UpdatePanel1) </th>
 </tr>
 <tr>
 <td>
 <asp:Label ID=”UpdatePanel1Label” runat=”server” />
 </td>
 <td>
 <asp:Button ID=”UpdatePanelButton” runat=”server” Text=”Update” />
 </td>
 </tr>
 </table>
 </ContentTemplate>
 </asp:UpdatePanel>

c19.indd 860c19.indd 860 8/20/07 8:33:22 PM8/20/07 8:33:22 PM

Chapter 19: UpdatePanel and ScriptManager

861

 <asp:UpdatePanel ID=”UpdatePanel2” runat=”server”>
 <ContentTemplate>
 <table cellspacing=”10”
 style=”background-color: #dddddd”>
 <tr>
 <th colspan=”2”>
 Partially Updatable Portion (UpdatePanel2) </th>
 </tr>
 <tr>
 <td>
 <asp:Label ID=”UpdatePanel2Label” runat=”server” />
 </td>
 <td>
 <asp:Button runat=”server” Text=”Update” />
 </td>
 </tr>
 </table>
 </ContentTemplate>
 </asp:UpdatePanel>

 <table cellspacing=”10” style=”background-color: #dddddd”>
 <tr>
 <th colspan=”2”> Non Partially Updatable Portion </th>
 </tr>
 <tr>
 <td>
 <asp:Label ID=”NonPartiallyUpdatableLabel” runat=”server” />
 </td>
 <td>
 <asp:Button runat=”server” Text=”Update” />
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

c19.indd 861c19.indd 861 8/20/07 8:33:22 PM8/20/07 8:33:22 PM

Chapter 19: UpdatePanel and ScriptManager

862

 Listing 19-3 shows a new version of Listing 19-2 for which the UpdateMode properties of both
 UpdatePanel server controls are set to Conditional . Note that the boldface portions of Listing 19-3
are the only differences between Listings 19-2 and 19-3 . Now if you run this code listing and click the
Update button in the top UpdatePanel server control, only the top UpdatePanel server control will
update; the bottom UpdatePanel server control will be left as is.

 Listing 19-3: A Page that Uses Conditional Updates

 <%@ Page Language=”C#” %>

<script runat=”server”>
 void Page_Load(object sender, EventArgs e)
 {
 // Same as Listing 19-2
 }
</script>

Figure 19-2

c19.indd 862c19.indd 862 8/20/07 8:33:22 PM8/20/07 8:33:22 PM

Chapter 19: UpdatePanel and ScriptManager

863

<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”/>
 <asp:UpdatePanel ID=”UpdatePanel1” runat=”server”
 UpdateMode=”Conditional” >
 <ContentTemplate>

 <!-- Same as Listing 19-2 -->

 </ContentTemplate>
 </asp:UpdatePanel>

 <asp:UpdatePanel ID=”UpdatePanel2” runat=”server”
 UpdateMode=”Conditional” >
 <ContentTemplate>

 <!-- Same as Listing 19-2 -->

 </ContentTemplate>
 </asp:UpdatePanel>

 <!-- Same as Listing 19-2 -->

 </form>
</body>
</html>

 As the name of the setting suggests, when the UpdateMode property of an UpdatePanel server control
is set to Conditional , the UpdatePanel server control updates only when one of the conditions
 discussed in the following sections is met.

 Children as Triggers
 The UpdatePanel server control exposes a Boolean property named ChildrenAsTriggers , which is
 true by default. When this property is set to true , every asynchronous page postback originating from
a server control inside the UpdatePanel server control causes the UpdatePanel server control to
update. Listing 19-3 showed an example of this scenario.

 Listing 19-4 shows you what happens if you explicitly set the ChildrenAsTriggers property of an
 UpdatePanel server control to false . This code listing is a new version of Listing 19-3 in which the
 ChildrenAsTriggers property of the top UpdatePanel server control is set to false, as shown in
the boldface portion of this code listing.

 If you run this code listing and click the Update button in the top UpdatePanel server control, you’ll see
that this UpdatePanel server control does not update.

c19.indd 863c19.indd 863 8/20/07 8:33:22 PM8/20/07 8:33:22 PM

Chapter 19: UpdatePanel and ScriptManager

864

 Listing 19-4: A Page that Uses ChildrenAsTriggers Property

 <%@ Page Language=”C#” %>

<script runat=”server”>
 void Page_Load(object sender, EventArgs e)
 {
 // Same as Listing 19-2
 }
</script>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”/>
 <asp:UpdatePanel ID=”UpdatePanel1” runat=”server”
 UpdateMode=”Conditional” ChildrenAsTriggers=”false” >
 <ContentTemplate>

 <!-- Same as Listing 19-2 -->

 </ContentTemplate>
 </asp:UpdatePanel>

 <asp:UpdatePanel ID=”UpdatePanel2” runat=”server”
 UpdateMode=”Conditional”>
 <ContentTemplate>

 <!-- Same as Listing 19-2 -->

 </ContentTemplate>
 </asp:UpdatePanel>

 <!-- Same as Listing 19-2 -->

 </form>
</body>
</html>

 Inclusion of One UpdatePanel in another UpdatePanel
 As mentioned earlier, when the UpdateMode property of an UpdatePanel server control is set to
 Conditional , the UpdatePanel server control updates only when one of the predefined conditions is
met. I discussed one of these conditions in the preceding section. Here is the second condition. When an
 UpdatePanel server control updates, all its descendant UpdatePanel server controls update as well.
This happens in several different scenarios, which I will discuss in the following sections.

 Direct Inclusion of One UpdatePanel in another UpdatePanel
 In this scenario the descendant UpdatePanel server controls are directly declared inside the
 UpdatePanel control.

c19.indd 864c19.indd 864 8/20/07 8:33:23 PM8/20/07 8:33:23 PM

Chapter 19: UpdatePanel and ScriptManager

865

 Listing 19-5 presents an example of the first scenario. Here UpdatePanel2 is declared directly inside
 UpdatePanel1 . If you run this page, you should see the result shown in Figure 19-3 . Now click the
Update button in the parent UpdatePanel server control. Note that both parent and child UpdatePanel
server controls are updated. Now click the Update button in the child UpdatePanel server control. Note
that only the child UpdatePanel server control is updated.

 Listing 19-5: An Example of the Scenario where One UpdatePanel Contains Another
UpdatePanel

 <%@ Page Language=”C#” %>

<%@ Import Namespace=”System.Drawing” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
 void Page_Load(object sender, EventArgs e)
 {
 string text = “Refreshed at “ + DateTime.Now.ToString();
 UpdatePanel1Label.Text = text;
 UpdatePanel2Label.Text = text;
 NonPartiallyUpdatableLabel.Text = text;
 }
</script>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />
 <table>
 <tr>
 <td>
 <asp:UpdatePanel ID=”UpdatePanel1” runat=”server”
 UpdateMode=”Conditional”>
 <ContentTemplate>
 <table cellspacing=”10” style=”background-color: #dddddd”>
 <tr>
 <th colspan=”2” align=”center”>
 Parent UpdatePanel Server Control (UpdatePanel1)
 </th>
 </tr>
 <tr>
 <td>
 <asp:Label ID=”UpdatePanel1Label” runat=”server” />
 </td>

(continued)

c19.indd 865c19.indd 865 8/20/07 8:33:23 PM8/20/07 8:33:23 PM

Chapter 19: UpdatePanel and ScriptManager

866

 Listing 19-5 (continued)

 <td>
 <asp:Button ID=”UpdatePanelButton” runat=”server”
 Text=”Update” />
 </td>
 </tr>
 <tr>
 <td colspan=”2”>

 <asp:UpdatePanel ID=”UpdatePanel2” runat=”server”
 UpdateMode=”Conditional”>
 <ContentTemplate>
 <table cellspacing=”10”
 style=”background-color: #aaaaaa”>
 <tr>
 <th colspan=”2”>
 Child UpdatePanel Server Control(UpdatePanel2)
 </th>
 </tr>
 <tr>
 <td>
 <asp:Label ID=”UpdatePanel2Label”
 runat=”server” />
 </td>
 <td>
 <asp:Button ID=”Button1” runat=”server”
 Text=”Update” />
 </td>
 </tr>
 </table>
 </ContentTemplate>
 </asp:UpdatePanel>
 </td>
 </tr>
 </table>
 </ContentTemplate>
 </asp:UpdatePanel>
 </td>
 </tr>
 <tr>
 <td>

 <table cellspacing=”10”
 style=”background-color: #eeeeee” width=”100%”>

c19.indd 866c19.indd 866 8/20/07 8:33:23 PM8/20/07 8:33:23 PM

Chapter 19: UpdatePanel and ScriptManager

867

 <tr>
 <th colspan=”2”>
 Non Partially Updatable Portion </th>
 </tr>
 <tr>
 <td>
 <asp:Label ID=”NonPartiallyUpdatableLabel” runat=”server” />
 </td>
 <td>
 <asp:Button ID=”Button2” runat=”server” Text=”Update” />
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

Figure 19-3

c19.indd 867c19.indd 867 8/20/07 8:33:23 PM8/20/07 8:33:23 PM

Chapter 19: UpdatePanel and ScriptManager

868

 Indirect Inclusion of One UpdatePanel in Another UpdatePanel
via a User Control

 This scenario occurs when an UpdatePanel server control is part of a user control that is added to
another UpdatePanel server control.

 Listing 19-6 contains a user control that encapsulates an UpdatePanel server control.

 Listing 19-6: A User Control that Encapsulates an UpdatePanel Server Control

 <%@ Control Language=”C#” ClassName=”WebUserControl” %>

<script runat=”server”>
 void Page_Load(object sender, EventArgs e)
 {
 UpdatePanel2Label.Text = “Refreshed at “ + DateTime.Now.ToString();
 }
</script>
<table style=”background-color: #aaaaaa” cellspacing=”20”>
 <tr>
 <th>
 User Control
 </th>
 </tr>
 <tr>
 <td>
 <asp:UpdatePanel ID=”UpdatePanel2” runat=”server”
 UpdateMode=”Conditional”>
 <ContentTemplate>
 <table cellspacing=”10” style=”background-color: #cccccc”>
 <tr>
 <th colspan=”2” align=”center”>
 UpdatePanel Server Control
 </th>
 </tr>
 <tr>
 <td>
 <asp:Label ID=”UpdatePanel2Label” runat=”server” />
 </td>
 <td>
 <asp:Button runat=”server” Text=”Update” />
 </td>
 </tr>
 </table>
 </ContentTemplate>
 </asp:UpdatePanel>
 </td>
 </tr>
</table>

c19.indd 868c19.indd 868 8/20/07 8:33:24 PM8/20/07 8:33:24 PM

Chapter 19: UpdatePanel and ScriptManager

869

 Listing 19-7 presents a page where this user control is added within an UpdatePanel server control that
acts as the parent of this user control.

 Listing 19-7: A Page that Uses the User Control from Listing 19-6

 <%@ Page Language=”C#” %>
<%@ Register Src=”~/WebUserControl.ascx” TagName=”MyUserControl” TagPrefix=”custom” %>
<%@ Import Namespace=”System.Drawing” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
 void Page_Load(object sender, EventArgs e)
 {
 string text = “Refreshed at “ + DateTime.Now.ToString();
 UpdatePanel1Label.Text = text;
 NonPartiallyUpdatableLabel.Text = text;
 }
</script>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />
 <table>
 <tr>
 <td>
 <asp:UpdatePanel ID=”UpdatePanel1” runat=”server”
 UpdateMode=”Conditional”>
 <ContentTemplate>
 <table cellspacing=”10” style=”background-color: #dddddd”>
 <tr>
 <th colspan=”2” align=”center”>
 Parent UpdatePanel Server Control
 </th>
 </tr>
 <tr>
 <td>
 <asp:Label ID=”UpdatePanel1Label” runat=”server” />
 </td>

(continued)

c19.indd 869c19.indd 869 8/20/07 8:33:24 PM8/20/07 8:33:24 PM

Chapter 19: UpdatePanel and ScriptManager

870

 Listing 19-7 (continued)

 <td>
 <asp:Button ID=”UpdatePanelButton” runat=”server”
 Text=”Update” />
 </td>
 </tr>
 <tr>
 <td colspan=”2”>

 <custom:MyUserControl runat=”server” />
 </td>
 </tr>
 </table>
 </ContentTemplate>
 </asp:UpdatePanel>
 </td>
 </tr>
 <tr>
 <td>

 <table cellspacing=”10” style=”background-color: #eeeeee” width=”100%”>
 <tr>
 <th colspan=”2”>
 Non Partially Updatable Portion
 </th>
 </tr>
 <tr>
 <td>
 <asp:Label ID=”NonPartiallyUpdatableLabel” runat=”server” />
 </td>
 <td>
 <asp:Button ID=”Button2” runat=”server” Text=”Update” />
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

 If you run the page in Listing 19-7 , you should get the result shown in Figure 19-4 . Now click the Update
button in the parent UpdatePanel server control. Note that both the parent UpdatePanel server control
and the UpdatePanel server control defined as part of the user control are updated.

c19.indd 870c19.indd 870 8/20/07 8:33:24 PM8/20/07 8:33:24 PM

Chapter 19: UpdatePanel and ScriptManager

871

 Indirect Inclusion of an UpdatePanel in Another UpdatePanel
via a Content Page

 The third scenario occurs when the following conditions are met:

 ❑ A master page includes an UpdatePanel server control that contains a ContentPlaceHolder
server control.

 ❑ A content page includes a Content server control, associated with the above
 ContentPlaceHolder server control, which contain one or more UpdatePanel server controls.

 Listing 19-8 shows a master page that includes an UpdatePanel server control that contains a
 ContentPlaceHolder server control.

Figure 19-4

c19.indd 871c19.indd 871 8/20/07 8:33:24 PM8/20/07 8:33:24 PM

Chapter 19: UpdatePanel and ScriptManager

872

 Listing 19-8: A Master Page that Includes an UpdatePanel Server Control

 <%@ Master Language=”C#” %>
<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<script runat=”server”>
 void Page_Load(object sender, EventArgs e)
 {
 string text = “Refreshed at “ + DateTime.Now.ToString();
 UpdatePanel1Label.Text = text;
 NonPartiallyUpdatableLabel.Text = text;
 }
</script>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />
 <table>
 <tr>
 <td>
 <asp:UpdatePanel ID=”UpdatePanel1” runat=”server”
 UpdateMode=”Conditional”>
 <ContentTemplate>
 <table cellspacing=”10” style=”background-color: #dddddd”>
 <tr>
 <th colspan=”2” align=”center”>
 Parent UpdatePanel Server Control </th>
 </tr>
 <tr>
 <td>
 <asp:Label ID=”UpdatePanel1Label” runat=”server” />
 </td>
 <td>
 <asp:Button ID=”UpdatePanelButton” runat=”server”
 Text=”Update” />
 </td>
 </tr>
 <tr>
 <td colspan=”2”>

 <asp:ContentPlaceHolder ID=”ContentPlaceHolder1”
 runat=”server” /> </td>
 </tr>
 </table>
 </ContentTemplate>
 </asp:UpdatePanel>

c19.indd 872c19.indd 872 8/20/07 8:33:25 PM8/20/07 8:33:25 PM

Chapter 19: UpdatePanel and ScriptManager

873

 </td>
 </tr>
 <tr>
 <td>

 <table cellspacing=”10” style=”background-color: #eeeeee” width=”100%”>
 <tr>
 <th colspan=”2”>
 Non Partially Updatable Portion </th>
 </tr>
 <tr>
 <td>
 <asp:Label ID=”NonPartiallyUpdatableLabel” runat=”server” />
 </td>
 <td>
 <asp:Button ID=”Button2” runat=”server” Text=”Update” />
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

 Listing 19-9 shows a content page that contains a Content server control associated with the
 ContentPlaceHolder server control specified within the UpdatePanel server control shown in
 Listing 19-8 . Note that this Content server control contains an UpdatePanel server control. If you run
this page, you’ll get the result shown in Figure 19-5 . Note that if you click the Update button in the
 master UpdatePanel server control, it automatically updates the UpdatePanel server control declared
in the content page.

 Listing 19-9: A Content Page that Uses the Master Page from Listing 19-8

<%@ Page Language=”C#” MasterPageFile=”MasterPage.master” %>

<script runat=”server”>
 void Page_Load(object sender, EventArgs e)
 {
 UpdatePanel2Label.Text = “Refreshed at “ + DateTime.Now.ToString();
 }
</script>

<asp:Content ContentPlaceHolderID=”ContentPlaceHolder1” runat=”server”>
 <table style=”background-color: #aaaaaa” cellspacing=”20”>
 <tr>
 <th>
 Content Page
 </th>
 </tr>

c19.indd 873c19.indd 873 8/20/07 8:33:25 PM8/20/07 8:33:25 PM

Chapter 19: UpdatePanel and ScriptManager

874

Listing 19-9 (continued)

 <tr>
 <td>
 <asp:UpdatePanel ID=”UpdatePanel2” runat=”server”
 UpdateMode=”Conditional”>
 <ContentTemplate>
 <table cellspacing=”10” style=”background-color: #cccccc”>
 <tr>
 <th colspan=”2” align=”center”>
 UpdatePanel Server Control
 </th>
 </tr>
 <tr>
 <td>
 <asp:Label ID=”UpdatePanel2Label” runat=”server” />
 </td>
 <td>
 <asp:Button runat=”server” Text=”Update” />
 </td>
 </tr>
 </table>
 </ContentTemplate>
 </asp:UpdatePanel>
 </td>
 </tr>
 </table>
</asp:Content>

 Note also that this example declares the ScriptManager server control on the master page, which
means that all content pages that use this master page will automatically inherit this ScriptManager
server control. The side effect of this approach is that the partial page rendering is automatically enabled
for all content pages that use this master page. If this is not what you want, do one of the following:

 ❑ Programmatically disable the partial page rendering for the desired content pages
(see Listing 19-10).

 ❑ Declare a separate ScriptManager server control on each content page instead of declaring
the ScriptManager server control on the master page. Keep in mind that if you choose to
 declare ScriptManager server controls on content pages, you mustn’t declare a
 ScriptManager server control on the master page. This is because when you access a content
page from your browser, the ASP.NET merges the content and master pages together, which
means that they form a single page. As I mentioned earlier, every page can contain only a single
instance of the ScriptManager server control.

c19.indd 874c19.indd 874 8/20/07 8:33:25 PM8/20/07 8:33:25 PM

Chapter 19: UpdatePanel and ScriptManager

875

 The boldface portion of Listing 19-10 shows how to programmatically disable partial page rendering for
a specific content page. As this portion demonstrates, you must disable partial page rendering in the
 Init life-cycle phase of the current page.

Figure 19-5

c19.indd 875c19.indd 875 8/20/07 8:33:25 PM8/20/07 8:33:25 PM

Chapter 19: UpdatePanel and ScriptManager

876

 Listing 19-10: Disabling Partial Page Rendering for a Content Page

 <%@ Page Language=”C#” MasterPageFile=”~/MasterPage.master” %>

<asp:Content ContentPlaceHolderID=”ContentPlaceHolder1” runat=”server”>

 <script runat=”server”>
 void Page_Init(object sender, EventArgs e)
 {
 ScriptManager sm = ScriptManager.GetCurrent(this.Page);
 sm.EnablePartialRendering = false;
 }

 void Page_Load(object sender, EventArgs e)
 {
 UpdatePanel2Label.Text = “Refreshed at “ + DateTime.Now.ToString();
 }
 </script>

 <table style=”background-color: #aaaaaa” cellspacing=”20”>
 <tr>
 <th>
 Content Page
 </th>
 </tr>
 <tr>
 <td>
 <asp:UpdatePanel ID=”UpdatePanel2” runat=”server” UpdateMode=”Conditional”>
 <ContentTemplate>
 <table cellspacing=”10” style=”background-color: #cccccc”>
 <tr>
 <th colspan=”2” align=”center”>
 UpdatePanel Server Control </th>
 </tr>
 <tr>
 <td>
 <asp:Label ID=”UpdatePanel2Label” runat=”server” />
 </td>
 <td>
 <asp:Button ID=”Button1” runat=”server” Text=”Update” />
 </td>
 </tr>
 </table>
 </ContentTemplate>
 </asp:UpdatePanel>
 </td>
 </tr>
 </table>
</asp:Content>

c19.indd 876c19.indd 876 8/20/07 8:33:26 PM8/20/07 8:33:26 PM

Chapter 19: UpdatePanel and ScriptManager

877

 Using Triggers
 As I mentioned earlier, when the UpdateMode property of an UpdatePanel server control is set to
 Conditional , the UpdatePanel server control updates only when one of the predefined conditions is
met. Here is the third condition. The UpdatePanel server control exposes Triggers , a collection
 property of type UpdatePanelTriggerCollection that contains objects known as triggers. As the
name implies, a trigger is an object that triggers the update of the UpdatePanel server control whose
 Triggers collection property contains the trigger.

 Listing 19-11 presents a page that contains an UpdatePanel server control that uses a trigger that causes
an asynchronous page postback. As you can see, an asynchronous page postback trigger is an instance of
a class named AsyncPostBackTrigger , which is declaratively added to the <Triggers> child element
of the associated <asp:UpdatePanel> tag. If you run this page, you should see the result shown in
 Figure 19-6 . Note that the trigger in this case is an ASP.NET Button server control located in the non-
partially updatable section of the page. In other words, a trigger enables you to trigger the update of a
specified UpdatePanel server control from outside the control. This approach is different from the
approach discussed earlier in which you set the ChildrenAsTriggers property of the UpdatePanel
server control to true to have the server controls residing inside the control trigger the update of
the control.

 Listing 19-11: A Page that Contains an UpdatePanel Server Control that Uses a Trigger

 <%@ Page Language=”C#” %>

<%@ Import Namespace=”System.Drawing” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
 void Page_Load(object sender, EventArgs e)
 {
 string text = “Refreshed at “ + DateTime.Now.ToString();
 UpdatePanel1Label.Text = text;
 NonPartiallyUpdatableLabel.Text = text;
 }
</script>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />
 <asp:UpdatePanel ID=”UpdatePanel1” runat=”server”>
 <ContentTemplate>
 <table cellspacing=”10” style=”background-color: #dddddd”>
 <tr>
 <th colspan=”2” align=”center”>
 Partially Updatable Portion (UpdatePanel1) </th>
 </tr>

(continued)

c19.indd 877c19.indd 877 8/20/07 8:33:26 PM8/20/07 8:33:26 PM

Chapter 19: UpdatePanel and ScriptManager

878

 Listing 19-11 (continued)

 <tr>
 <td>
 <asp:Label ID=”UpdatePanel1Label” runat=”server” />
 </td>
 <td>
 <asp:Button ID=”UpdatePanelButton” runat=”server” Text=”Update” />
 </td>
 </tr>
 </table>
 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID=”AsyncPostBackButton”
 EventName=”Click” />
 </Triggers>
 </asp:UpdatePanel>

 <table cellspacing=”10” style=”background-color: #dddddd”>
 <tr>
 <th colspan=”2”> Non Partially Updatable Portion </th>
 </tr>
 <tr>
 <td>
 <asp:Label ID=”NonPartiallyUpdatableLabel” runat=”server” />
 </td>
 <td>
 <asp:Button ID=”Button1” runat=”server” Text=”Update” />
 </td>
 </tr>
 <tr>
 <td colspan=”2” align=”center”>

 <asp:Button ID=”AsyncPostBackButton” runat=”server”
 Text=”Async Postback Trigger” />
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

 Imperative Update
 The UpdatePanel server control exposes a public method named Update that you can call from within
your managed code to imperatively update the control. You must set the UpdateMode property of the
 UpdatePanel server control to Conditional if you want to update the control imperatively. Otherwise
an exception will be raised.

c19.indd 878c19.indd 878 8/20/07 8:33:26 PM8/20/07 8:33:26 PM

Chapter 19: UpdatePanel and ScriptManager

879

 Listing 19-12 presents a page that updates an UpdatePanel server control imperatively. This page first
adds an ASP.NET Button server control to the non-partially updatable part of the page and registers
a method named AsyncPostBackButtonCallback as an event handler for the Click event of
this button:

 <asp:Button ID=”AsyncPostBackButton” runat=”server”
Text=”Async Postback Trigger”
OnClick=”AsyncPostbackButtonCallback” />

 Next, it implements the AsyncPostbackButtonCallback method, where it invokes the Update method
on the UpdatePanel server control to update the control. This means that every time the end user clicks
the ASP.NET Button server control, the callback for the Click event of this button automatically
updates the UpdatePanel server control:

 void AsyncPostbackButtonCallback(object sender, EventArgs e)
 {
 UpdatePanel1.Update();
 }

Figure 19- 6

c19.indd 879c19.indd 879 8/20/07 8:33:27 PM8/20/07 8:33:27 PM

Chapter 19: UpdatePanel and ScriptManager

880

 We’re not done yet! If you don’t take the next step, the ASP.NET Button server control will trigger a
 regular synchronous page postback to the server, where not only the UpdatePanel server control
but also the non-partially updatable section of the page will be updated. The next step adds the
 following line of code to the Page_Load method. As you can see, this line of code calls the
RegisterAsyncPostBackControl method on the current ScriptManager server control to register
the ASP.NET Button server control as the trigger for asynchronous page postbacks:

 ScriptManager1.RegisterAsyncPostBackControl(AsyncPostBackButton);

 Listing 19-12: A Page that Imperatively Updates an UpdatePanel Server Control

 <%@ Page Language=”C#” %>

<%@ Import Namespace=”System.Drawing” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
 void AsyncPostbackButtonCallback(object sender, EventArgs e)
 {
 UpdatePanel1.Update();
 }

 void Page_Load(object sender, EventArgs e)
 {
 string text = “Refreshed at “ + DateTime.Now.ToString();
 UpdatePanel1Label.Text = text;
 NonPartiallyUpdatableLabel.Text = text;

 ScriptManager1.RegisterAsyncPostBackControl(AsyncPostBackButton);
 }
</script>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />
 <asp:UpdatePanel ID=”UpdatePanel1” runat=”server” UpdateMode=”Conditional”>
 <ContentTemplate>
 <table cellspacing=”10” style=”background-color: #dddddd”>
 <tr>
 <th colspan=”2” align=”center”>
 Partially Updatable Portion (UpdatePanel1) </th>
 </tr>

c19.indd 880c19.indd 880 8/20/07 8:33:27 PM8/20/07 8:33:27 PM

Chapter 19: UpdatePanel and ScriptManager

881

 <tr>
 <td>
 <asp:Label ID=”UpdatePanel1Label” runat=”server” />
 </td>
 <td>
 <asp:Button ID=”UpdatePanelButton” runat=”server” Text=”Update” />
 </td>
 </tr>
 </table>
 </ContentTemplate>
 </asp:UpdatePanel>

 <table cellspacing=”10” style=”background-color: #dddddd”>
 <tr>
 <th colspan=”2”> Non Partially Updatable Portion </th>
 </tr>
 <tr>
 <td>
 <asp:Label ID=”NonPartiallyUpdatableLabel” runat=”server” />
 </td>
 <td>
 <asp:Button ID=”Button1” runat=”server” Text=”Update” />
 </td>
 </tr>
 <tr>
 <td colspan=”2” align=”center”>

 <asp:Button ID=”AsyncPostBackButton” runat=”server”
 Text=”Async Postback Trigger”
 OnClick=”AsyncPostbackButtonCallback” />
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

 Developing Par tial-Rendering Enabled
Custom Composite Server Controls

 Master/detail forms play an important role in ASP.NET applications. As the name suggests, a master/
detail form consists of two main components, the master and the detail. The master displays a set of
selectable records to the end users. When an end user selects a record from the master, the detail displays
detailed information about the selected record.

c19.indd 881c19.indd 881 8/20/07 8:33:27 PM8/20/07 8:33:27 PM

Chapter 19: UpdatePanel and ScriptManager

882

 Several different ASP.NET server controls can be used as master and detail components, and a master/
detail form can be made up of any combination of these server controls. For example, you could have a
master/detail form in which ASP.NET GridView and DetailsView controls are used as master and
detail components, respectively. Or you could have a master/detail form in which ASP.NET
DropDownList and DetailsView controls are used as master and detail components.

 As you can see, different types of master/detail forms can use different types of ASP.NET server controls
as master and detail components. All these different types of master/detail forms have certain character-
istics in common. I’ll first develop an abstract base class named BaseMasterDetailControl that
 captures these common characteristics.

 Some of the important characteristics that all master/detail forms share are their usability, responsiveness,
and performance. Let’s take a look at a scenario where these common characteristics play significant roles.
When the end user selects a record from the master, two things must happen:

 ❑ A round trip must be made to the server to retrieve the detailed information about the selected
record. As you can imagine, such round trips can easily degrade the usability, responsiveness,
and performance of the master/detail form if they block the user from further interaction with
the page until the server response arrives. As a result, it is of paramount importance that such
round trips are made asynchronously in the background, allowing the user to interact with the
page while the data is being downloaded from the server .

❑ The detail component of the master/detail form must be updated with the new information.
As you can imagine, such updates can easily degrade the usability, responsiveness, and
 performance of the master/detail form if they cause the entire page — including those parts of
the page that have absolutely nothing to do with the master/detail form — to update. This is
 especially a problem for graphics-heavy pages. As a result, it is of paramount importance that
such updates are limited to the master/detail form itself and do not propagate to the entire page.

 Therefore, a master/detail form must be designed to meet these two requirements. First, all round trips
to the server must be performed asynchronously in the background without interrupting the user’s
interaction with the page. Second, all updates must be limited to the master/detail form without causing
the entire page to reload.

 The ASP.NET AJAX Framework provides you with two main approaches to designing a master/detail
form that meets these two requirements. One approach is to use the ASP.NET AJAX Web service con-
sumption infrastructure to make asynchronous round trips to a Web service to retrieve the required data,
and to use the ASP.NET AJAX client-side Framework to dynamically update the master/detail form with
the retrieved data. Another approach is to use the ASP.NET AJAX partial page rendering infrastructure
to make asynchronous page postbacks to the server and to dynamically update the master/detail form.
As I discussed earlier, this infrastructure requires you to use a ScriptManager and one or more
 UpdatePanel server controls. In this chapter I will use the second approach.

 BaseMasterDetailControl
 In this section I’ll implement an abstract base class named BaseMasterDetailControl that will capture
the logic that all types of master/detail forms have in common, as shown in Listing 19-13 . Since the
 BaseMasterDetailControl consists of two components — master and detail — it is an example of
what is known as a composite server control .

c19.indd 882c19.indd 882 8/20/07 8:33:27 PM8/20/07 8:33:27 PM

Chapter 19: UpdatePanel and ScriptManager

883

 The controls from which a composite server control such as BaseMasterDetailControl is assembled
are known as child controls . Composite controls delegate most of their responsibilities — such as
 rendering content HTML and handling postback events — to their child controls. Implementing
a custom composite server control such as the BaseMasterDetailControl control involves the
following actions:

 1. Deriving from CompositeControl

2. Choosing child controls

3. Choosing layout

4. Implementing a custom container control

5. Creating a container control

6. Creating the child controls of a container control

7. Applying style to a container control

8. Adding a container control to the custom composite server control

9. Rendering a container control

10. Overriding the CreateChildControls method

11. Overriding the TagKey property

12. Overriding the CreateControlStyle method

13. Exposing the ControlStyle ’s properties as if they were the properties of the composite control

14. Overriding the RenderContents method

15. Exposing the properties of the child controls as if they were the properties of the composite
control

Listing 19-13 uses the above recipe to implement the BaseMasterDetailControl composite server control
as discussed in the following sections .

 Listing 19-13: The BaseMasterDetailControl Server Control

 using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;
using System.Collections;
using System.Drawing;
using System.ComponentModel;

(continued)

c19.indd 883c19.indd 883 8/20/07 8:33:28 PM8/20/07 8:33:28 PM

Chapter 19: UpdatePanel and ScriptManager

884

 Listing 19-13 (continued)

namespace CustomComponents
{
 public abstract class BaseMasterDetailControl : CompositeControl
 {
 Control master;
 Control detail;
 UpdatePanel masterUpdatePanel;
 UpdatePanel detailUpdatePanel;
 MasterDetailContainer masterContainer;
 MasterDetailContainer detailContainer;

 protected abstract Control CreateMaster();
 protected abstract Control CreateDetail();
 protected abstract void RegisterMasterEventHandlers();
 protected abstract void RegisterDetailEventHandlers();

 public Control Master
 {
 get { EnsureChildControls(); return this.master; }
 }

 public Control Detail
 {
 get { EnsureChildControls(); return this.detail; }
 }

 public string MasterSkinID
 {
 get
 {
 EnsureChildControls();
 return master.SkinID;
 }
 set
 {
 EnsureChildControls();
 master.SkinID = value;
 }
 }

 public string DetailSkinID
 {
 get
 {
 EnsureChildControls();
 return detail.SkinID;
 }
 set
 {
 EnsureChildControls();
 detail.SkinID = value;
 }
 }

c19.indd 884c19.indd 884 8/20/07 8:33:28 PM8/20/07 8:33:28 PM

Chapter 19: UpdatePanel and ScriptManager

885

 public virtual object SelectedValue
 {
 get { return ViewState[“SelectedValue”]; }
 set { ViewState[“SelectedValue”] = value; }
 }

 protected override Style CreateControlStyle()
 {
 return new TableStyle(ViewState);
 }

 public virtual GridLines GridLines
 {
 get { return ((TableStyle)ControlStyle).GridLines; }
 set { ((TableStyle)ControlStyle).GridLines = value; }
 }

 public virtual int CellSpacing
 {
 get { return ((TableStyle)ControlStyle).CellSpacing; }
 set { ((TableStyle)ControlStyle).CellSpacing = value; }
 }

 public virtual int CellPadding
 {
 get { return ((TableStyle)ControlStyle).CellPadding; }
 set { ((TableStyle)ControlStyle).CellPadding = value; }
 }

 public virtual HorizontalAlign HorizontalAlign
 {
 get { return ((TableStyle)ControlStyle).HorizontalAlign; }
 set { ((TableStyle)ControlStyle).HorizontalAlign = value; }
 }

 public virtual string BackImageUrl
 {
 get { return ((TableStyle)ControlStyle).BackImageUrl; }
 set { ((TableStyle)ControlStyle).BackImageUrl = value; }
 }

 protected virtual void CreateContainerChildControls(
 MasterDetailContainer container)
 {
 switch (container.ContainerType)
 {
 case ContainerType.Master:
 masterUpdatePanel = new UpdatePanel();
 masterUpdatePanel.UpdateMode = UpdatePanelUpdateMode.Conditional;
 master = this.CreateMaster();
 if (string.IsNullOrEmpty(master.ID))
 master.ID = ”MasterServerControl”;

(continued)

c19.indd 885c19.indd 885 8/20/07 8:33:28 PM8/20/07 8:33:28 PM

Chapter 19: UpdatePanel and ScriptManager

886

 Listing 19-13 (continued)

 this.RegisterMasterEventHandlers();
 masterUpdatePanel.ContentTemplateContainer.Controls.Add(master);
 container.Controls.Add(masterUpdatePanel);
 break;
 case ContainerType.Detail:
 detailUpdatePanel = new UpdatePanel();
 detailUpdatePanel.UpdateMode = UpdatePanelUpdateMode.Conditional;
 detail = this.CreateDetail();
 if (string.IsNullOrEmpty(detail.ID))
 detail.ID = ”DetailServerControl”;
 this.RegisterDetailEventHandlers();
 detailUpdatePanel.ContentTemplateContainer.Controls.Add(detail);
 container.Controls.Add(detailUpdatePanel);
 break;
 }
 }

 protected void UpdateMaster(object sender, EventArgs e)
 {
 master.DataBind();
 masterUpdatePanel.Update();
 }

 protected void UpdateDetail(object sender, EventArgs e)
 {
 detail.DataBind();
 detailUpdatePanel.Update();
 }

 protected virtual void AddContainer(MasterDetailContainer container)
 {
 Controls.Add(container);
 }

 protected virtual void RenderContainer(MasterDetailContainer container,
 HtmlTextWriter writer)
 {
 container.RenderControl(writer);
 }

 protected virtual MasterDetailContainer CreateContainer
 (ContainerType containerType)
 {
 return new MasterDetailContainer(containerType);
 }

c19.indd 886c19.indd 886 8/20/07 8:33:28 PM8/20/07 8:33:28 PM

Chapter 19: UpdatePanel and ScriptManager

887

(continued)

 private TableItemStyle masterContainerStyle;
 [DefaultValue((string)null)]
 [PersistenceMode(PersistenceMode.InnerProperty)]
 [NotifyParentProperty(true)]
 [DesignerSerializationVisibility(DesignerSerializationVisibility.Content)]
 public TableItemStyle MasterContainerStyle
 {
 get
 {
 if (masterContainerStyle == null)
 {
 masterContainerStyle = new TableItemStyle();
 if (IsTrackingViewState)
 ((IStateManager)masterContainerStyle).TrackViewState();
 }

 return masterContainerStyle;
 }
 }

 private TableItemStyle detailContainerStyle;
 [DefaultValue((string)null)]
 [PersistenceMode(PersistenceMode.InnerProperty)]
 [NotifyParentProperty(true)]
 [DesignerSerializationVisibility(DesignerSerializationVisibility.Content)]
 public TableItemStyle DetailContainerStyle
 {
 get
 {
 if (detailContainerStyle == null)
 {
 detailContainerStyle = new TableItemStyle();
 if (IsTrackingViewState)
 ((IStateManager)detailContainerStyle).TrackViewState();
 }

 return detailContainerStyle;
 }
 }

 protected override void TrackViewState()
 {
 base.TrackViewState();

 if (masterContainerStyle != null)
 ((IStateManager)masterContainerStyle).TrackViewState();

c19.indd 887c19.indd 887 8/20/07 8:33:29 PM8/20/07 8:33:29 PM

Chapter 19: UpdatePanel and ScriptManager

888

 Listing 19-13 (continued)

 if (detailContainerStyle != null)
 ((IStateManager)detailContainerStyle).TrackViewState();
 }

 protected override object SaveViewState()
 {
 object[] state = new object[3];

 state[0] = base.SaveViewState();

 if (masterContainerStyle != null)
 state[1] = ((IStateManager)masterContainerStyle).SaveViewState();

 if (detailContainerStyle != null)
 state[2] = ((IStateManager)detailContainerStyle).SaveViewState();

 foreach (object obj in state)
 {
 if (obj != null)
 return state;
 }

 return null;
 }

 protected override void LoadViewState(object savedState)
 {
 if (savedState != null)
 {
 object[] state = savedState as object[];
 if (state != null && state.Length == 3)
 {
 base.LoadViewState(state[0]);

 if (state[1] != null)
 ((IStateManager)MasterContainerStyle).LoadViewState(state[1]);

 if (state[2] != null)
 ((IStateManager)DetailContainerStyle).LoadViewState(state[2]);
 }
 }

 else
 base.LoadViewState(savedState);
 }

c19.indd 888c19.indd 888 8/20/07 8:33:29 PM8/20/07 8:33:29 PM

Chapter 19: UpdatePanel and ScriptManager

889

 protected virtual void ApplyContainerStyles()
 {
 foreach (MasterDetailContainer container in Controls)
 {
 switch (container.ContainerType)
 {
 case ContainerType.Master:
 if (masterContainerStyle != null)
 container.ApplyStyle(masterContainerStyle);
 break;
 case ContainerType.Detail:
 if (detailContainerStyle != null)
 container.ApplyStyle(detailContainerStyle);
 break;
 }
 }
 }

 protected override void CreateChildControls()
 {
 Controls.Clear();

 masterContainer = CreateContainer(ContainerType.Master);
 CreateContainerChildControls(masterContainer);
 AddContainer(masterContainer);

 detailContainer = CreateContainer(ContainerType.Detail);
 CreateContainerChildControls(detailContainer);
 AddContainer(detailContainer);

 ChildControlsCreated = true;
 }

 protected override HtmlTextWriterTag TagKey
 {
 get { return HtmlTextWriterTag.Table; }
 }

 protected override void RenderContents(HtmlTextWriter writer)
 {
 ApplyContainerStyles();
 writer.RenderBeginTag(HtmlTextWriterTag.Tr);
 RenderContainer(masterContainer, writer);
 writer.RenderEndTag();

 writer.RenderBeginTag(HtmlTextWriterTag.Tr);
 RenderContainer(detailContainer, writer);
 writer.RenderEndTag();
 }
 }
}

c19.indd 889c19.indd 889 8/20/07 8:33:29 PM8/20/07 8:33:29 PM

Chapter 19: UpdatePanel and ScriptManager

890

 Deriving from CompositeControl
 The ASP.NET Framework comes with a base class named CompositeControl that provides the basic
features that every composite control must support. These features will be discussed later in this chapter.
You must derive your custom composite control from the CompositeControl base class to save yourself
from having to re-implement the features that your control can easily inherit from this base class.

 public class BaseMasterDetailControl: CompositeControl

 Choosing the Child Controls
 The next order of business in developing a custom composite control is to choose the child controls that
you’ll need in order to assemble your custom control. You’ll need the following server controls to assemble
the BaseMasterDetailControl control (each child control is named for ease of reference):

 ❑ A server control to display the master data records (master)

❑ A server control to display the detailed information about the selected record of the master
 control (detail)

 The BaseMasterDetailControl control exposes two abstract methods that its subclasses must override
to create the appropriate master and detail server controls:

 protected abstract Control CreateMaster();
protected abstract Control CreateDetail();

 Choosing the Layout
 Next you need to choose the desired layout for your child controls. As Figure 19-7 shows, the
 BaseMasterDetailControl control uses a tabular layout for its child controls, in which each table
cell contains a child control. Note that the table cells in Figure 19-7 are numbered for ease of reference.
Keep in mind that cell numbers 1 and 2 contain the master and detail server controls, respectively.

1

2

Figure 19- 7

c19.indd 890c19.indd 890 8/20/07 8:33:29 PM8/20/07 8:33:29 PM

Chapter 19: UpdatePanel and ScriptManager

891

 Implementing a Custom Container Control
 Since the BaseMasterDetailControl control uses a tabular layout for its child controls, in which each
table cell contains a child control, the appropriate container for the child controls is TableCell control.
However, the TableCell control doesn’t meet the following requirements:

 ❑ It doesn’t implement the INamingContainer interface. I’ll discuss later why it’s important for a
container control to implement this interface. You’ll also see that this is a marker interface and
doesn’t have any methods or properties.

❑ It doesn’t expose a property that uniquely locates or identifies a cell among other cells. It’s
 important to know which cell you’re dealing with because different cells contain different types
of child controls. For example, cell number 1 contains the master control while cell number 2
contains the detail control.

 Therefore, I’ll implement a custom container control named MasterDetailContainer that derives
from TableCell , implements the INamingContainer interface, and exposes a property named
 ContainerType whose value uniquely locates or identifies each cell among other cells.

 As Figure 19-7 shows, the number of a cell is used to identify or locate the cell among other cells. The
 BaseMasterDetailControl control defines an enumeration named ContainerType whose values
 correspond to the cell numbers shown in Figure 19-7 . Listing 19-14 presents the definition of this
enumerator.

 Listing 19-14: The ContainerType Enumerator

 namespace CustomComponents
{
 public enum ContainerType
 {
 Master = 1,
 Detail = 2
 }
}

 Listing 19-15 shows the implementation of the MasterDetailContainer container control.

 Listing 19-15: The MasterDetailContainer Container Control

 using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

(continued)

c19.indd 891c19.indd 891 8/20/07 8:33:30 PM8/20/07 8:33:30 PM

Chapter 19: UpdatePanel and ScriptManager

892

 Listing 19-15 (continued)

namespace CustomComponents
{
 public class MasterDetailContainer : TableCell, INamingContainer
 {
 private ContainerType containerType;

 public MasterDetailContainer(ContainerType containerType)
 {
 this.containerType = containerType;
 }

 public ContainerType ContainerType
 {
 get { return containerType; }
 }
 }
}

 Creating a Container Control
 The extensibility of a custom control is of paramount importance. As a matter of fact, the extensibility of
your custom control is much more important than its feature set. You’d be better off developing an
extensible custom control with fewer features than a non-extensible one with more features. An extensible
control enables others to extend it to add support for missing features, but the non-extensible one is
pretty much it — if it doesn’t support the features the clients of your control need, they have no choice
but to dump it.

 That said, you can’t design a custom control that can be extended to support all possible features. This is
simply not practical, for two reasons. First, you can’t see the future, which means you can’t plan for all
possible extensions. Second, extensibility comes with a price in terms of both time and budget. The more
extensible you want your custom control to be, the more time and effort you have to put into it.

 This chapter will show you a few examples of how you can make your custom controls more extensible.
Listing 19-13 shows the first example, in which the protected virtual CreateContainer method
 encapsulates and isolates the instantiation of the container control. This will enable others to write new
container controls that derive from the MasterDetailContainer control and override this method to
return their own container controls.

 Creating the Child Controls of a Container Control
 As discussed earlier, a MasterDetailContainer control is used to represent each numbered cell shown
in Figure 19-7 . The next order of business is to create the child controls that go into each container control.
This is a tricky one because you have to do it in such a way that it doesn’t tie your custom control
to a specific set of child controls. The trick is to implement a new protected virtual method
(CreateContainerChildControls , shown in Listing 19-13) that encapsulates the code that does the
dirty job of creating the child controls. This method must take the container control as its argument,
 create the child controls, and add them to the container. Therefore the only dependency between your
custom control and its child controls is the container control. This dependency is weak, considering the
fact that others can override the CreateContainer method to use their own custom container controls.

c19.indd 892c19.indd 892 8/20/07 8:33:30 PM8/20/07 8:33:30 PM

Chapter 19: UpdatePanel and ScriptManager

893

 You can think of the container control as a bucket. Your custom control first calls the CreateContainer
method to create the bucket. The CreateContainer method isolates your custom control from the
code that does the dirty job of creating the bucket. Your custom control then passes the bucket to the
CreateContainerChildControls method shown in Listing 19-13 . CreateContainerChildControls
creates the child controls and puts them in the bucket. Your custom control doesn’t know or care what
this method puts into the bucket because your custom control deals only with the bucket, not its contents.

 The CreateContainerChildControls method first uses the ContainerType property of the container
control to identify the table cell into which the respective child control will go. Recall that the values of
the ContainerType property correspond to the cell numbers shown in Figure 19-7 . The containing cell
matters because it determines what types of child controls the CreateContainerChildControls
method must create. For example, the child control responsible for displaying the master data records
goes into the cell number 1 in Figure 19-7 . The child control responsible for displaying the details of the
record that the end user selects from the master, on the other hand, goes into the cell number 2. The
method then creates the child control that goes into the specified cell or container control, as follows.

 If the container type is Master , the method first instantiates an UpdatePanel server control:

 masterUpdatePanel = new UpdatePanel();

 This UpdatePanel server control will contain the master server control — that is, the server control that
will display the master records. Placing the master server control in an UpdatePanel server control
 provides the following important benefit: any postback originating from the inside the master server
control, such as selecting a record, will be treated as an asynchronous page postback, which means that
the page will be posted back asynchronously in the background without interrupting the end user
 interaction with the page.

 As Listing 19-13 shows, the CreateContainerChildControls method sets the UpdateMode property
of the master UpdatePanel server control to Conditional :

 masterUpdatePanel.UpdateMode = UpdatePanelUpdateMode.Conditional;

 As you’ll see later, this ensures that the master server control is updated only when one of these
 conditions is met:

 ❑ The user selects a record from the master server control

❑ The user updates the record shown in the detail server control

❑ The user deletes the record shown in the detail server control

❑ The user inserts a new record in the detail server control

 Next, the CreateContainerChildControls method invokes the CreateMaster method to create
the master server control. As mentioned earlier, the CreateMaster method is an abstract method. It is the
responsibility of the subclasses of the BaseMasterDetailControl to override this method to create
the appropriate master server control. For example, one subclass may override this method to

c19.indd 893c19.indd 893 8/20/07 8:33:30 PM8/20/07 8:33:30 PM

Chapter 19: UpdatePanel and ScriptManager

894

create and return a GridView server control. Another subclass, on the other hand, may override this
method to create and return a DropDownList server control. In other words, it is completely up to
the subclass to decide what type of server control should be used to display the master records:

 master = this.CreateMaster();

 Next, the CreateContainerChildControls method invokes the
RegisterMasterEventHandlers method:

 this.RegisterMasterEventHandlers();

 The RegisterMasterEventHandlers method is an abstract method:

 protected abstract void RegisterMasterEventHandlers();

 As such, it is the responsibility of the subclass of the BaseMasterDetailControl to override this
method to register the appropriate event handlers for those events of the master server control that
require the detail server control to update. For example, if the master server control is a DropDownList
control, the subclass must register an event handler for the SelectedIndexChanged event of the
 DropDownList control because when this event fires, the detail server control must be updated with
the detailed information about the newly selected record.

 Next, the CreateContainerChildControls method adds the master server control to the Controls
collection of the content template container server control of the master UpdatePanel server control:

 masterUpdatePanel.ContentTemplateContainer.Controls.Add(master);

 In general, there are two ways to add content to a UpdatePanel server control: declarative and
 programmatic. The declarative approach requires you to add HTML or ASP.NET server controls within
the opening and closing tags of the ContentTemplate child element of the tag that represents the
 UpdatePanel server control on an .aspx or .ascx file. Here is an example:

 <asp:UpdatePanel runat=”server” ID=”UpdatePanel1”>
 <ContentTemplate>
 <!-- HTML and/or ASP.NET server control goes here -->
 </ContentTemplate>
</asp:UpdatePanel>

 The imperative approach, on the other hand, requires you to add ASP.NET server controls to the Controls
collection of the content template container control of the UpdatePanel server control from your C# or
VB.NET code.

 Next, the CreateContainerChildControls method adds the master UpdatePanel server control to
the Controls collection of the container server control:

 container.Controls.Add(masterUpdatePanel);

 If the container type is Detail , the CreateContainerChildControls method first instantiates an
 UpdatePanel server control:

 detailUpdatePanel = new UpdatePanel();

c19.indd 894c19.indd 894 8/20/07 8:33:30 PM8/20/07 8:33:30 PM

Chapter 19: UpdatePanel and ScriptManager

895

 This UpdatePanel server control will contain the detail server control — that is, the server control that
will display the details of the record that the user selects from the master server control. Placing the
detail server control in an UpdatePanel server control provides the following two important benefits.
First, any postback originating from the inside the detail server control such as clicking an Update but-
ton to update a record will be treated as an asynchronous page postback, which means that the page will
be posted back asynchronously in the background without interrupting the end-user interaction with the
page. Second, when the end user selects a new record from the master records, the detail server control is
the only part of the page that gets updated. That is, this update does not trigger the entire page to reload.
This gives an important performance, usability, and responsiveness boost in graphics-heavy pages.

 As Listing 19-13 shows, the CreateContainerChildControls method sets the UpdateMode property
of the detail UpdatePanel server control to Conditional :

 detailUpdatePanel.UpdateMode = UpdatePanelUpdateMode.Conditional;

 As you’ll see later and as I mentioned earlier, this ensures that the detail server control is updated only
when one of these conditions is met:

 ❑ The user selects a new record from the master server control

❑ The user updates the record shown in the detail server control

❑ The user deletes the record shown in the detail server control

❑ The user inserts a new record in the detail server control

 Next, the CreateContainerChildControls method invokes the CreateDetail method to create
the detail server control. As mentioned earlier, the CreateDetail method is an abstract method. It is the
responsibility of the subclasses of the BaseMasterDetailControl to override this method to create
the appropriate detail server control. For example, one subclass may override this method to create and
to return a DetailsView server control. Another subclass, on the other hand, may override this method to
create and to return a different type of server control. In other words, it is completely up to the subclass
to decide what type of server control should be used to display the detail record:

 detail = this.CreateDetail();

 Next, the CreateContainerChildControls method invokes the
RegisterDetailEventHandlers method:

 this.RegisterDetailEventHandlers();

 The RegisterDetailEventHandlers method is an abstract method:

 protected abstract void RegisterDetailEventHandlers();

 Because of this, it is the responsibility of the subclass of the BaseMasterDetailControl to override
this method to register the appropriate event handlers for those events of the detail server control that
require the master server control to update. For example, if the detail server control is a DetailsView
control, the subclass must register an event handler for the ItemDeleted event of the
DetailsView control, because when this event fires, the master server control must be updated to
“undisplay” the deleted record.

c19.indd 895c19.indd 895 8/20/07 8:33:31 PM8/20/07 8:33:31 PM

Chapter 19: UpdatePanel and ScriptManager

896

 Next, the CreateContainerChildControls method adds the detail server control to the Controls
 collection of the content template container server control of the detail UpdatePanel server control:

 detailUpdatePanel.ContentTemplateContainer.Controls.Add(detail);

 Finally, the CreateContainerChildControls method adds the detail UpdatePanel server control to
the Controls collection of the container server control:

 container.Controls.Add(detailUpdatePanel);

 Note that the CreateContainerChildControls method assigns unique values to the ID properties of
the child controls. Also note that the CreateContainerChildControls method initializes the child
controls before they are added to the Controls collection.

 You must initialize your child controls before you add them to the Controls collection of your custom
control, because if you initialize them afterward these initialized property values will be saved to the
view state. This will unnecessarily increase the size of your custom control’s view state. Recall that
the containing page stores the string representation of your control’s view state in a hidden field on the
page, which means that any increase in the size of your control’s view state will increase the size of
the page that the requesting browser has to download from the server.

 Applying Style to a Container Control
 Recall that container controls are of type MasterDetailContainer . As Listing 19-15 shows, the
 MasterDetailContainer class derives from the TableCell control, which in turn derives from
 WebControl . Every control that derives from WebControl exposes a property named ControlStyle .
The real type of this property may vary from one control to another; the ControlStyle property of the
 TableCell control is of type TableItemStyle .

 The TableItemStyle class exposes the following 12 style properties: ForeColor , BorderColor ,
 BackColor , BorderWidth , BorderStyle , Width , Height , Font , CssClass , HorizontalAlign ,
 VerticalAlign , and Wrap . This means that the ControlStyle of each container control exposes these
style properties.

 The BaseMasterDetailControl server control exposes two properties of type TableItemStyle , each
of which internally maps to the ControlStyle property of its associated container control, as shown in
the following table.

Style Property Associated Container Control

masterContainerStyle ContainerType.Master

detailContainerStyle ContainerType.Detail

 These two properties enable page developers to set the ControlStyle property of a container control as
if they were setting the style properties of the BaseMasterDetailControl server control itself. In other
words, the BaseMasterDetailControl server control hides the ControlStyle properties of its
 container controls and exposes them as its own properties.

c19.indd 896c19.indd 896 8/20/07 8:33:31 PM8/20/07 8:33:31 PM

Chapter 19: UpdatePanel and ScriptManager

897

 As Listing 19-13 shows, the ApplyContainerStyles method iterates through the container controls in
the Controls collection of the BaseMasterDetailControl server control and calls the ApplyStyle
method of each enumerated container control if its associated style property isn’t null . Notice that the
 ApplyContainerStyles method uses the ContainerType property of each enumerated container
 control to determine which container control it’s dealing with.

 State Management
 Object-oriented applications use objects to service their users. Each object normally keeps the informa-
tion that it needs to function properly in memory. This information includes, but is not limited to, the
property and field values of the object. This in-memory information is known as the state of the object.
Invoking the methods and properties of an object normally changes its state. The state of an object is lost
forever when the object is disposed of. This isn’t an issue in a desktop application, because the objects
are disposed of only when they’re no longer needed. However, it causes a big problem in a Web applica-
tion where each user session normally consists of more than one request.

 Due to the stateless nature of the HTTP protocol, the objects are disposed of at the end of each request,
even though the session that the request belongs to still needs the objects. That is, the states of these
objects are lost at the end of each request and new objects of the same types are recreated at the begin-
ning of the next request. These newly created objects have no memory of the previous objects and start
off with their default states.

 The ASP.NET view state mechanism enables you to save the states of your objects at the end of each
request and load them at the beginning of the next request. The next request does the following:

 ❑ Creates new objects of the same types as those that were disposed of at the end of the previous
request

❑ Loads the states of the old objects into the new objects

 Since the newly created objects at the beginning of each request have the same types and states as the
objects disposed of at the end of the previous request, it gives the illusion that objects are not disposed of
at the end of each request and that the same objects are being used all along.

 Now you’ll see how the ASP.NET view state mechanism works. Every server control inherits three
 methods from the Control class: TrackViewState , SaveViewState , and LoadViewState . At the end
of each request, the following sequence of events occurs:

 1. The page automatically calls the SaveViewState method of the controls in its Controls collec-
tion. Remember, the Controls collection contains all the controls that were declared in the
 .aspx file. Page developers can also programmatically create server controls and manually add
them to the Controls collection of the page.

2. The SaveViewState method of each control must save the state of the control and its child con-
trols into an appropriate object and return the object.

3. The page collects the objects returned from the SaveViewState methods of the controls in its
 Controls collection and forms a tree of objects known as an object graph .

c19.indd 897c19.indd 897 8/20/07 8:33:31 PM8/20/07 8:33:31 PM

Chapter 19: UpdatePanel and ScriptManager

898

4. The page framework then uses the type converter associated with each object to convert the
 object into a string representation, and combines these string representations into a single string
that represents the entire object graph.

5. The page framework then stores the string representation of the entire object graph in a hidden
field named __VIEWSTATE , which looks something like the following:

 <input type=”hidden” name=”__VIEWSTATE” id=”__VIEWSTATE”
value=”/wEPDwULLTE3MDU5MjY4MTkPZBYCAgMPZBYCAgEPFCsAAmRkFgZm
D2QWAmYPDxYCHgRUZXh0BQ5Q
YXltZW50IE1ldGhvZGRkAgEPZBYCZg8PDxY
CHgtfIURhdGFCb3VuZGdkZGQCBw9kFgRmDw8PFgIfAWdkZGQ
CAg8PDxYCHw
FnZGRkZJDAqbyjCj4rjagRWSiVYTp7nQfM” />

 Therefore the __VIEWSTATE hidden field is sent to the client browser as part of the containing page.
When the page is posted back to the server, the following sequence of events occurs:

 1. The page framework retrieves the string representation of the object graph from the
__VIEWSTATE hidden field.

2. The page framework extracts the string representation of each object.

3. The page framework uses the type converter associated with each object to recreate the object
from its string representation.

4. The page calls the LoadViewState method of each control in its Controls collection and passes
the respective object into it. (Remember that this object contains the state of the control and its
child controls at the end of the previous request.)

5. The LoadViewState method of each control must load the contents (the state of the control at
the end of the previous request) of this object into itself. Therefore the control will have the same
state as in the previous request.

6. The page calls the TrackViewState method of each control in its Controls collection.

7. The TrackViewState of each control must set an internal Boolean field to true to specify that it’s
tracking the control’s state. What this means is that from this point on, any changes in the state of
the object will be marked as dirty and saved at the end of the request (as discussed before).

 As I mentioned, the state of a control includes, but is not limited to, its property values. In general, there
are two types of properties:

 ❑ Simple properties : A simple property is one whose type doesn’t expose any properties. For
 example, the MasterSkinID property of the BaseMasterDetailControl server control is of
type string , which doesn’t expose any properties.

❑ Complex properties : A complex property is one whose type exposes properties. For
example, the MasterContainerStyle and DetailContainerStyle properties of the
 BaseMasterDetailControl server control are of type TableItemStyle , which exposes
 properties such as Font , Width , Height , and so on.

 Simple properties use the ViewState collection as their backing store to manage their states across page
postbacks. How about the MasterContainerStyle and DetailContainerStyle complex properties of
the BaseMasterDetailControl server control? How do they manage their states across page postbacks?

c19.indd 898c19.indd 898 8/20/07 8:33:32 PM8/20/07 8:33:32 PM

Chapter 19: UpdatePanel and ScriptManager

899

This is where the IStateManager interface comes into play. The type of MasterContainerStyle and
 DetailContainerStyle complex properties — that is, the TableItemStyle — implements this
interface.

 IStateManager exposes one Boolean property, IsTrackingViewState , and three methods,
 TrackViewState , SaveViewState , and LoadViewState .

 When the TrackViewState method of a control is called, the method calls the TrackViewState
 methods of its complex properties. The TrackViewState method of a complex property does exactly
what the TrackViewState method of a control does — sets an internal Boolean field to true to specify
that any state changes will be marked as dirty and saved at the end of the current request.

 When the SaveViewState method of a control is called, the method calls the SaveViewState methods
of its complex properties. The SaveViewState method of a complex property does exactly what
the SaveViewState method of a control does — it saves its state into an appropriate object and returns
the object.

 It then collects the objects returned from the SaveViewState methods of its complex properties and
saves them into the same object to which it saves its own state. Finally, it returns the object that contains
the states of both the control and its complex properties.

 When the LoadViewState method of a control is called, it retrieves the objects that contain the states of
its complex properties. It then calls the LoadViewState method of each complex property and passes
the object that contains the saved state into it. The LoadViewState method of a complex property does
exactly what the LoadViewState of a control does.

 As you can see from the implementation of the MasterContainerStyle and DetailContainerStyle
properties shown in Listing 19-13 , when these two style properties are created and
BaseMasterDetailControl server control is tracking its view state, the control calls the
TrackViewState method of these two properties to inform them that they must start tracking their
view states.

 TrackViewState
 BaseMasterDetailControl overrides TrackViewState to call the TrackViewState methods of its
style properties, as shown in Listing 19-13 . Note that TrackViewState calls the TrackViewState
method of a style property if and only if the style isn’t null — that is, if the page developer has specified
the style.

 SaveViewState
 BaseMasterDetailControl overrides SaveViewState to call the SaveViewState methods of its style
properties, as shown in Listing 19-13 . The SaveViewState method of each style property stores its
view state in an appropriate object and returns the object to the SaveViewState method of
BaseMasterDetailControl , which in turn puts all these objects, and the object that contains the
view state of its base class, in an array and returns the array to its caller.

 Notice that SaveViewState checks whether all the objects that the array contains are null . If they are, it
returns null . If at least one of the objects isn’t null , it returns the whole array.

c19.indd 899c19.indd 899 8/20/07 8:33:32 PM8/20/07 8:33:32 PM

Chapter 19: UpdatePanel and ScriptManager

900

 LoadViewState
 BaseMasterDetailControl overrides LoadViewState to call the LoadViewState methods of its
style properties, as shown in Listing 19-13 . As you can see, the LoadViewState method of
BaseMasterDetailControl retrieves the array of objects that contains the saved view state of its base
class and style properties. The method then calls the LoadViewState methods of its base class and
 properties in the order in which the SaveViewState method of BaseMasterDetailControl called
their SaveViewState methods. The LoadViewState method of each style property loads its view state
with the saved view state.

 Adding a Container Control to a Composite Control
 The BaseMasterDetailControl server control implements a method named AddContainer , shown in
Listing 19-13 , that encapsulates the code that adds a container control to the Controls collection of the
 BaseMasterDetailControl control. Note that this method is marked as protected virtual to enable
 others to override it — in order, for example, to raise an event before or after the container is added to
the Controls collection.

 Rendering a Container Control
 The BaseMasterDetailControl server control exposes a method named RenderContainer , shown in
Listing 19-13 , which encapsulates the code that renders a container. This method is marked as protected
virtual to enable others to override it.

 Overriding CreateChildControls: One-Stop Shopping for
All Your Child Controls

 The Control class exposes a method named CreateChildControls that you must override to create
the child controls that you need in order to assemble your custom control. One important thing to keep
in mind about child controls is that they’re created on demand. Don’t assume that they’re created at a
particular stage of your custom control’s life cycle. They can be created at any time. In other words, the
 CreateChildControls method can be called at any stage of your custom control’s life cycle to create
the child controls.

 This has important consequences. One of these is that you must create the child controls of your custom
control in one and only one place — the CreateChildControls method. Your custom control mustn’t
create any of its child controls in any other place. If you create your child controls in any other place,
they cannot be created on demand because the on-demand child-control creation feature of the
ASP.NET Framework is accomplished via calling the CreateChildControls method. Think of
CreateChildControls as your one-stop shopping place for all your child controls. You mustn’t shop
anywhere else!

 Next, I’ll walk you through the implementation of the CreateChildControls method shown in
 Listing 19-13 . This method first calls the Clear method of the Controls collection to clear the collection.
This ensures that multiple copies of child controls aren’t added to the Controls collection when the
 CreateChildControls method is called multiple times:

 Controls.Clear();

c19.indd 900c19.indd 900 8/20/07 8:33:32 PM8/20/07 8:33:32 PM

Chapter 19: UpdatePanel and ScriptManager

901

 If you examine the implementation of the BaseMasterDetailControl server control, you’ll notice
that this method is never called multiple times. You may be wondering, then, why you should bother with
clearing the collection. You’re right as far as the implementation of the BaseMasterDetailControl
server control goes, because you’re the author of this control and you can make sure your implementation
of it doesn’t call the CreateChildControls method multiple times. However, you have no control
over others when they’re deriving from your control to author their own custom controls. There’s nothing
that would stop them from calling the CreateChildControls method multiple times. This example
shows that when you’re writing a custom control you must take the subclasses of your custom control
into account.

 Then it takes the following actions for each cell shown in Figure 19-7 to create the child control that goes
into the cell:

 ❑ It calls the CreateContainer method to create the container control that represents the cell. For
example, the following call to the CreateContainer method creates the container control that
represents the cell number 2 in Figure 19-7 :

 detailContainer = CreateContainer(ContainerType.Detail);

 ❑ It calls the CreateContainerChildControls method and passes the container control into it.
As I mentioned earlier, the CreateContainerChildControls method creates the child con-
trols, initializes them, and adds them to the container control. For example, the following call to
the CreateContainerChildControls method creates the detail server control and adds it
to the detailContainer server control:

 CreateContainerChildControls(detailContainer);

 ❑ It calls the AddContainer method to add the container control to the BaseMasterDetailControl
server control. For example, the following code adds the container control that represents the cell
number 2 in Figure 19-7 to the BaseMasterDetailControl control:

 AddContainer(detailContainer);

 After all the child controls are created, the method then sets the ChildControlsCreated property
to true :

 ChildControlsCreated = true;

 As I mentioned, the child controls aren’t created at any particular stage of your custom control’s life
cycle. They’re created on demand. This means that the CreateChildControls method can be called
multiple times, though this will waste server resources because this method recreates the child controls
every single time it’s called, regardless of whether or not the child controls have already been created.

 To address this problem, the Control class exposes a method named EnsureChildControls and a
Boolean property named ChildControlsCreated . The EnsureChildControls method checks
whether the ChildControlsCreated property is set to false . If it is, the method first calls the
 CreateChildControls method and then sets the ChildControlsCreated property to true . The
 EnsureChildControls method uses this property to avoid multiple invocations of the
 CreateChildControls method.

c19.indd 901c19.indd 901 8/20/07 8:33:33 PM8/20/07 8:33:33 PM

Chapter 19: UpdatePanel and ScriptManager

902

 That is why your custom control’s implementation of the CreateChildControls method must set the
 ChildControlsCreated property to true to signal the EnsureChildControls method that child con-
trols have been created and the CreateChildControls mustn’t be called again.

 Overriding the TagKey Property
 Your custom control must use the TagKey property to specify the HTML element that will contain the
entire contents of your custom control — that is, the containing element of your custom control. Since
 BaseMasterDetailControl displays its contents in a table, the control overrides the TagKey property
to specify the table HTML element as its containing element (see Listing 19-13).

 Overriding the CreateControlStyle Method
 Your custom control must override the CreateControlStyle method to specify the appropriate Style
subclass. The properties of this Style subclass are rendered as CSS style attributes on the containing
HTML element. Since BaseMasterDetailControl uses a table HTML element as its containing ele-
ment, it overrides the CreateControlStyle method to use a TableStyle instance (see Listing 19-13).
The TableStyle class exposes properties such as GridLines , CellSpacing , CellPadding ,
 HorizontalAlign , and BackImageUrl that are rendered as CSS table style attributes.

 Exposing Style Properties
 When you override the CreateControlStyle method, you must also define new style properties for
your custom control that expose the corresponding properties of the Style subclass. This provides page
developers with a convenient mechanism to set the CSS style properties of the containing HTML
element.

 BaseMasterDetailControl exposes five properties named GridLines , CellSpacing , CellPadding ,
 HorizonalAlign , and BackImageUrl that correspond to the properties of the TableStyle class with
the same names as shown in Listing 19-13 .

 Overriding the RenderContents Method
 The CreateChildControls method is where you create and initialize the child controls that you need
in order to assemble your custom control. The RenderContents method is where you do the assembly
— that is, where you assemble your custom control from the child controls. First you need to understand
how the default implementation (the WebControl class’s implementation) of the RenderContents
method assembles your custom control from the child controls.

 The WebControl class’s implementation of RenderContents calls the Render method of its base class,
the Control class:

 protected internal virtual void RenderContents(HtmlTextWriter writer)
{
 base.Render(writer);
}

c19.indd 902c19.indd 902 8/20/07 8:33:33 PM8/20/07 8:33:33 PM

Chapter 19: UpdatePanel and ScriptManager

903

 Render calls the RenderChildren method of the Control class:

 protected internal virtual void Render(HtmlTextWriter writer)
{
 RenderChildren(writer);
}

 RenderChildren calls the RenderControl methods of the child controls in the order in which they are
added to the Controls collection:

 protected internal virtual void RenderChildren(HtmlTextWriter writer)
{
 foreach (Control childControl in Controls)
 childControl.RenderControl(writer);
}

 In conclusion, the default implementation of the RenderContents method assembles the child controls
in the order in which the CreateChildControls method adds them to the Controls collection. This
default assembly of the BaseMasterDetailControl custom control will simply lay down the child con-
trols on the page one after another in a linear fashion, which is not the layout you want. As Listing 19-13
shows, the BaseMasterDetailControl server control overrides the RenderContents method to com-
pose or assemble the child controls in a tabular fashion.

 As Figure 19-7 shows, the BaseMasterDetailControl server control renders its contents in
a table that consists of two rows. The RenderContents method in Listing 19-13 first calls the
ApplyContainerStyles method to apply container styles. Then, for each table row, it calls the
RenderBeginTag method of the HtmlTextWriter object passed in as its argument to render
the opening tag of the tr HTML element that represents the row:

 writer.RenderBeginTag(HtmlTextWriterTag.Tr);

 It then calls the RenderContainer method to render the masterContainer and detailContainer
container controls that represent the cells numbered 1 and 2, respectively, in Figure 19-7 :

 RenderContainer(masterContainer,writer);
RenderContainer(detailContainer,writer);

 Finally, it calls the RenderEndTag method of the HtmlTextWriter object to render the closing tag of the
 tr HTML element that represents the row:

 writer.RenderEndTag();

 Exposing the Properties of Child Controls
 Your composite control must expose the properties of its child controls as if they were its own properties
in order to enable page developers to treat these properties as attributes on the tag that represents your
custom control on an ASP.NET page. BaseMasterDetailControl exposes the following properties of
its child master and detail controls as its own properties, as shown in Listing 19-13 .

c19.indd 903c19.indd 903 8/20/07 8:33:33 PM8/20/07 8:33:33 PM

Chapter 19: UpdatePanel and ScriptManager

904

 Since the child controls of your custom composite control are created on demand, there are no
 guarantees that the child controls are created when the getters and setters of these properties access
them. That’s why the getters and setters of these properties call EnsureChildControls before they
access the respective child controls. In general, your custom control must call EnsureChildControls
before it accesses any of its child controls.

 Exposing the properties of child controls as the top-level properties of your composite control provides
page developers with the following benefits:

 ❑ They can set the property values of child controls as attributes on the tag that represents your
composite control on an ASP.NET page.

 ❑ If your custom composite control doesn’t expose the properties of its child controls as its
top-level properties, page developers will have no choice but to use the error-prone approach of
indexing the Controls collection of the composite control to access the desired child control
and set its properties.

❑ They can treat your custom control as a single entity. In other words, your composite control
enables page developers to set the properties of its child controls as if they were setting its own
properties.

 What Your Custom Control Inherits from CompositeControl
 The ASP.NET CompositeControl provides the basic features that every composite control must
support:

 ❑ Overriding the Controls collection

❑ Implementing INamingInterface

❑ Overriding the DataBind method

❑ Implementing the ICompositeControlDesignerAccessor interface. This interface exposes a
single method named RecreateChildControls that enables designer developers to recreate
the child controls of a composite control on the designer surface. This is useful if you want to
 develop a custom designer for your composite control. A designer is a component that enables
page developers to work with your custom composite control in a designer such as Visual
 Studio. (This chapter doesn’t cover designers.)

❑ Overriding the Render method to call EnsureChildControls when the control is in design
mode before the actual rendering begins. This ensures that child controls are created before they
are rendered.

 Overriding the Controls Collection
 As I discussed earlier, the child controls that you need in order to assemble your custom control aren’t
created at any particular phase of your control’s life cycle. They’re created on demand. Therefore, there
are no guarantees that the child controls are created when the Controls collection is accessed. That’s

c19.indd 904c19.indd 904 8/20/07 8:33:34 PM8/20/07 8:33:34 PM

Chapter 19: UpdatePanel and ScriptManager

905

why CompositeControl overrides the Collection property to call the EnsureChildControls
method to ensure that the child controls are created before the collection is accessed:

 public override ControlCollection Controls
{
 get
 {
 EnsureChildControls();
 return base.Controls;
 }
}

 I NamingContainer Interface
 As Listing 19-13 shows, the BaseMasterDetailControl server control assigns unique values to the ID
properties of all of its child controls. For example, it assigns the string value MasterServerControl to
the ID property of the master child control. This string value is unique in that no other child control
of the BaseMasterDetailControl control has the same ID property.

 Now let’s examine what happens when page developers use two instances of the
BaseMasterDetailControl control on the same ASP.NET Web page. Call the first instance
MasterDetailControl_1 and the second instance MasterDetailControl_2 . Even though the
ID properties of the child controls of each instance are unique within the scope of the instance, they
aren’t unique within the page scope, because the ID property of a given child control of one instance
is the same as the ID property of the corresponding child control of the other instance. For example,
the ID property of the master child control of the MasterDetailControl_1 instance is the same as the
ID property of the master child control of the MasterDetailControl_2 instance.

 So can the ID property value of a child control of a composite control be used to locate the control? It
depends. Any code within the scope of the composite control can use the ID property value of a child
control to locate it, because the ID property values are unique within the scope of the composite control.

 However, if the code isn’t within the scope of the composite control, it can’t use the ID property to locate
the child control on the page if the page contains more than one instance of the composite control. Two
very good examples of this circumstance are as follows:

 ❑ The client-side code uses the id attribute of a given HTML element to locate it on the page. This
scenario is very common, because DHTML is so popular.

❑ The page needs to uniquely identify and locate a server control on the page to delegate postback
and postback data events to it.

 So what property of the child control should the code from outside the scope of the composite control
use to locate the child control on the page? The Control class exposes two important properties named
 ClientID and UniqueID . The page is responsible for assigning values to these two properties that are
unique on the page. The ClientID and UniqueID properties of a control are rendered as the id and

c19.indd 905c19.indd 905 8/20/07 8:33:34 PM8/20/07 8:33:34 PM

Chapter 19: UpdatePanel and ScriptManager

906

 name HTML attributes on the HTML element that contains the control. As you know, client code uses the
 id attribute to locate the containing HTML element on the page while the page uses the name attribute to
locate the control on the page.

 The page doesn’t automatically assign unique values to the ClientID and UniqueID properties
of the child controls of a composite control. The composite control must implement the
 INamingContainer interface to request the page to assign unique values to these two properties.
The INamingContainer interface is a marker interface and doesn’t expose any methods,
properties, or events.

 You may wonder how the page assigns unique values to the ClientID and UniqueID properties of
the child controls of a composite control. A child control, like any other control, inherits the
NamingContainer property from the Control class. This property refers to the first ascendant control
of the child control that implements the INamingContainer interface. If your custom composite control
implements this interface, it becomes the NamingContainer of its child controls. The page concatenates
the ClientID of the NamingContainer of a child control to its ID with an underscore character as the
separator to create a unique string value for the ClientID of the child control. The page does the same
thing to create a unique string value for the UniqueID of the child control with one difference — the
 separator character is a dollar sign character rather than an underscore character.

 BaseMasterDetailControl2
 One of the best choices for a detail server control is the ASP.NET DetailsView server control, and
one of the best choices for a master server control is the subclasses of BaseDataBoundControl , which
include GridView , BulletedList , ListBox , CheckBoxList , RadioButtonList , and so on. I’ll
 implement another abstract base class named BaseMasterDetailControl2 that derives from
 BaseMasterDetailControl and extends its functionality to use a DetailsView server control as
detail server control and a BaseDataBoundControl server control as master server control, as shown
in Listing 19-16 .

 Listing 19-16: The BaseMasterDetailControl2 Server Control

 using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Collections;
using System.Drawing;
using System.ComponentModel;

c19.indd 906c19.indd 906 8/20/07 8:33:34 PM8/20/07 8:33:34 PM

Chapter 19: UpdatePanel and ScriptManager

907

namespace CustomComponents
{
 public abstract class BaseMasterDetailControl2 : BaseMasterDetailControl
 {
 protected override Control CreateMaster()
 {
 BaseDataBoundControl master = this.CreateBaseDataBoundControlMaster();
 master.DataBound += new EventHandler(Master_DataBound);
 return master;
 }

 protected abstract void Master_DataBound(object sender, EventArgs e);
 protected abstract BaseDataBoundControl CreateBaseDataBoundControlMaster();

 protected override Control CreateDetail()
 {
 DetailsView detail = new DetailsView();
 detail.AllowPaging = false;
 detail.AutoGenerateDeleteButton = true;
 detail.AutoGenerateEditButton = true;
 detail.AutoGenerateInsertButton = true;
 detail.AutoGenerateRows = true;
 detail.ID=”DetailDetailsView”;

 return detail;
 }

 protected override void RegisterDetailEventHandlers()
 {
 ((DetailsView)Detail).ItemDeleted +=
 new DetailsViewDeletedEventHandler(UpdateMaster);
 ((DetailsView)Detail).ItemInserted +=
 new DetailsViewInsertedEventHandler(UpdateMaster);
 ((DetailsView)Detail).ItemUpdated +=
 new DetailsViewUpdatedEventHandler(UpdateMaster);
 }

 public string MasterDataSourceID
 {
 get
 {
 return ((BaseDataBoundControl)Master).DataSourceID;
 }
 set
 {
 ((BaseDataBoundControl)Master).DataSourceID = value;
 }
 }

(continued)

c19.indd 907c19.indd 907 8/20/07 8:33:35 PM8/20/07 8:33:35 PM

Chapter 19: UpdatePanel and ScriptManager

908

 Listing 19-16 (continued)

 public string DetailDataSourceID
 {
 get
 {
 return ((DetailsView)Detail).DataSourceID;
 }
 set
 {
 ((DetailsView)Detail).DataSourceID = value;
 }
 }
 }
}

 CreateMaster
 As you can see from Listing 19-16 , the CreateMaster method first invokes another method named
CreateBaseDataBoundControlMaster to create and return a BaseDataBoundControl server control
as the master server control:

 BaseDataBoundControl master = this.CreateBaseDataBoundControlMaster();

 Next, it registers a method named Master_DataBound as event handler for the DataBound event of the
master server control:

 master.DataBound += new EventHandler(Master_DataBound);

 As you’ll see later, the master server control is normally bound to an ASP.NET data source control such
as SqlDataSource . A BaseDataBoundControl server control raises the DataBound event every time it
is bound or rebound to the underlying data source control. This normally happens when the DataBind
method of the control is invoked. Since rebinding the master server control causes the control to
 download fresh data from the underlying data store and to reload, you need to ensure that the selected
record is set back to the original record if the fresh data contains the original record. That is why the
 BaseMasterDetailControl2 registers the Master_DataBound method as an event handler for
the DataBound event of the master server control.

 As Listing 19-16 shows, the CreateBaseDataBoundControlMaster method is an abstract method and
must be implemented by the subclasses of BaseMasterDetailControl2 . This allows each subclass to
use a different subclass of BaseDataBoundControl as a master server control:

 protected abstract BaseDataBoundControl CreateBaseDataBoundControlMaster();

 As you can see from Listing 19-16 , the Master_DataBound is an abstract method and must be imple-
mented by the subclasses of BaseMasterDetailControl2 . This allows each subclass to perform tasks
specific to the specific type of the BaseDataBoundControl server control being used:

 protected abstract void Master_DataBound(object sender, EventArgs e);

c19.indd 908c19.indd 908 8/20/07 8:33:35 PM8/20/07 8:33:35 PM

Chapter 19: UpdatePanel and ScriptManager

909

 CreateDetail
 As you can see from Listing 19-16 , the BaseMasterDetailControl2 control implements the
CreateDetail method of its base class to instantiate and initialize a DetailsView server control
as the detail server control.

 RegisterDetailEventHandlers
 The main responsibility of the RegisterDetailEventHandlers method is to register event handlers
for those events of the detail server control that require the master server control to update. As you can
see from Listing 19-16 , in the case of the DetailsView server control, the following events are of
interest:

 ❑ ItemDeleted : The DetailsView server control raises this event when the end user deletes the
 selected data record. The BaseMasterDetailControl2 registers a method named UpdateMaster
as an event handler for this event to update the master server control accordingly:

 ((DetailsView)Detail).ItemDeleted +=
 new DetailsViewDeletedEventHandler(UpdateMaster);

 ❑ ItemInserted : The DetailsView server control raises this event when the end user inserts a
new data record into the underlying data store. The BaseMasterDetailControl2 registers the
 UpdateMaster as an event handler for this event to update the list of records that the master
server control is displaying:

 ((DetailsView)Detail).ItemInserted +=
 new DetailsViewInsertedEventHandler(UpdateMaster);

❑ ItemUpdated : The DetailsView server control raises this event when the end user updates the
selected data record. The BaseMasterDetailControl2 registers the UpdateMaster as an
event handler for this event to update the master server control accordingly:

 ((DetailsView)Detail).ItemUpdated +=
 new DetailsViewUpdatedEventHandler(UpdateMaster);

 The BaseMasterDetailControl2 inherits the UpdateMaster method from the
 BaseMasterDetailControl . The main responsibility of this method is to retrieve fresh data
from the underlying data store and to update the master server control with this data. As Listing 19-16
shows, the UpdateMaster method first invokes the DataBind method on the master server control to
rebind the control and consequently to retrieve fresh data from the underlying data store. Next, the
method calls the Update method on the master UpdatePanel server control to cause this control to
update.

 If you don’t call the Update method on the UpdatePanel server control after rebinding the master
server control, the master server control will retrieve the data from the underlying data store but will
not refresh itself with the retrieved data. You’ll see the logic behind this process in the following
chapters.

c19.indd 909c19.indd 909 8/20/07 8:33:35 PM8/20/07 8:33:35 PM

Chapter 19: UpdatePanel and ScriptManager

910

 Properties
 As you can see from Listing 19-16 , the BaseMasterDetailControl2 control, like any other composite
server control, exposes the properties of its child controls as its own top-level properties, as follows:

 ❑ MasterDataSourceID : This string property exposes the DataSourceID property of the master
server control, which is a BaseDataBoundControl control, as a top-level property.

❑ DetailDataSourceID : This string property exposes the DataSourceID property of the detail
server control, which is a DetailsView control, as a top-level property.

 Summary
 This chapter used numerous examples to provide you with an introduction to the ASP.NET AJAX partial
page rendering. I then developed two base custom partial-page-enabled server controls named
 BaseMasterDetailControl and BaseMasterDetailControl2 , which we will use in the next chapter
to build partial-page-enabled server controls.

c19.indd 910c19.indd 910 8/20/07 8:33:35 PM8/20/07 8:33:35 PM

 Using UpdatePanel in User
Controls and Custom

Controls
 The previous chapter developed two partial-rendering-enabled custom controls named
 BaseMasterDetailControl and BaseMasterDetailControl2 , which I will use in this chapter
to develop partial-rendering-enabled custom server controls. I’ll then use examples to show you
how to use ASP.NET AJAX partial page rendering in your own Web applications.

 MasterDetailControl
 MasterDetailControl is a server control that inherits from BaseMasterDetailControl2 and
extends its functionality to use the ASP.NET GridView as a master server control, as shown in
Listing 20-1 .

 Listing 20-1: The MasterDetailControl Server Control

 using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Collections;
using System.Drawing;
using System.ComponentModel;

(continued)

c20.indd 911c20.indd 911 8/20/07 8:34:10 PM8/20/07 8:34:10 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

912

 Listing 20-1 (continued)

namespace CustomComponents
{
 public class MasterDetailControl : BaseMasterDetailControl2
 {
 protected override BaseDataBoundControl CreateBaseDataBoundControlMaster()
 {
 GridView master = new GridView();
 master.AllowPaging = true;
 master.AllowSorting = true;
 master.AutoGenerateColumns = true;
 master.AutoGenerateSelectButton = true;
 master.ID = “MasterGridView”;
 return master;
 }

 protected override void RegisterMasterEventHandlers()
 {
 ((GridView)Master).SelectedIndexChanged +=
 new EventHandler(Master_SelectedIndexChanged);
 ((GridView)Master).PageIndexChanged +=
 new EventHandler(Master_ResetSelectedValue);
 ((GridView)Master).Sorted += new EventHandler(Master_ResetSelectedValue);
 }

 public int PageSize
 {
 get
 {
 EnsureChildControls();
 return ((GridView)Master).PageSize;
 }
 set
 {
 EnsureChildControls();
 ((GridView)Master).PageSize = value;
 }
 }

 [TypeConverter(typeof(StringArrayConverter))]
 public string[] DataKeyNames
 {
 get
 {
 EnsureChildControls();
 return ((GridView)Master).DataKeyNames;
 }
 set

c20.indd 912c20.indd 912 8/20/07 8:34:11 PM8/20/07 8:34:11 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

913

 {
 EnsureChildControls();
 ((GridView)Master).DataKeyNames = value;
 ((DetailsView)Detail).DataKeyNames = value;
 }
 }

 protected override void Master_DataBound(object sender, EventArgs e)
 {
 for (int i = 0; i < ((GridView)Master).Rows.Count; i++)
 {
 if (((GridView)Master).DataKeys[i].Value == this.SelectedValue)
 {
 ((GridView)Master).SelectedIndex = i;
 break;
 }
 }

 Master_SelectedIndexChanged(null, null);
 }

 void Master_ResetSelectedValue(object sender, EventArgs e)
 {
 if (((GridView)Master).SelectedIndex != -1)
 {
 ((GridView)Master).SelectedIndex = -1;
 Master_SelectedIndexChanged(null, null);
 }
 }

 protected virtual void Master_SelectedIndexChanged(object sender, EventArgs e)
 {
 if (((GridView)Master).SelectedIndex == -1)
 this.Detail.Visible = false;
 else
 this.Detail.Visible = true;

 this.SelectedValue = ((GridView)Master).SelectedValue;
 UpdateDetail(sender, e);
 }
 }
}

 I’ll discuss the methods and properties of the MasterDetailControl server control in the following
sections.

 CreateBaseDataBoundControlMaster
 As Listing 20-1 shows, the MasterDetailControl server control overrides the
CreateBaseDataBoundControlMaster method of its base class to create and return a GridView server
control as the master server control. As you can see, this method instantiates a GridView server control
and sets its AllowPaging , AllowSorting , AutoGenerateColumns , and AutoGenerateSelectButton
properties.

c20.indd 913c20.indd 913 8/20/07 8:34:11 PM8/20/07 8:34:11 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

914

 RegisterMasterEventHandlers
 The main responsibility of the RegisterMasterEventHandlers method is to register event handlers
for those events of the master server control that require the detail server control to update. The
 GridView server control exposes the following three important events that meet that description, as
shown in Listing 20-1 :

 ❑ SelectedIndexChanged : The GridView server control raises this event when the end user
 selects a new record from the records that the control is displaying. Since the detail server control
displays the details of the selected record, every time a new record is selected — that is, every
time the SelectedIndexChanged event is raised — the detail server control must be updated
with the details of the newly selected record. Because of this, the MasterDetailControl
 registers a method named Master_SelectedIndexChanged as an event handler for the
SelectedIndexChanged event of the GridView server control:

 ((GridView)Master).SelectedIndexChanged +=
 new EventHandler(Master_SelectedIndexChanged);

 ❑ PageIndexChanged : The GridView server control raises this event when the end user clicks an
element in the pager user interface to display a new page of records. Since the new page of
 records may not include the selected record, you need to hide the detail server control until the
end user makes a new selection. That is why the MasterDetailControl registers a method
named Master_ResetSelectedValue as an event handler for the PageIndexChanged event of
the GridView server control:

 ((GridView)Master).PageIndexChanged +=
 new EventHandler(Master_ResetSelectedValue);

 ❑ Sorted : The GridView server control raises this event when the end user clicks the header
text of a column to sort the displayed records. Again, the newly sorted records may not
 include the selected record, so you need to hide the detail server control. That is why the
MasterDetailControl registers the Master_ResetSelectedValue method as an event
 handler for the Sorted event of the GridView server control:

 ((GridView)Master).Sorted += new EventHandler(Master_ResetSelectedValue);

 Master_SelectedIndexChanged
 As you can see from Listing 20-1 , this method hides the detail server control if the SelectedIndex
 property of the master server control is set to -1 — that is, if no record is selected. There is no point in
rendering the detail server control if there is no selected record to display:

 if (((GridView)Master).SelectedIndex == -1)
 this.Detail.Visible = false;
 else
 this.Detail.Visible = true

 Next, the method stores the value of the SelectedValue of the GridView server control in the
 SelectedValue property of the MasterDetailControl :

 this.SelectedValue = ((GridView)Master).SelectedValue;

c20.indd 914c20.indd 914 8/20/07 8:34:11 PM8/20/07 8:34:11 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

915

 The MasterDetailControl inherits the SelectedValue property from the BaseMasterDetailControl .
As Listing 20-1 shows, this property stores its value in the view state for future reference. It is necessary to
store the selected record in the view state because the following requests may end up rebinding the
 GridView server control and consequently resetting the SelectedValue property of the control. In such
situations, you can retrieve the selected value from the view state and assign it to the SelectedValue
property of the GridView server control after rebinding the control if the control still contains the
selected record.

 As Listing 20-1 shows, the Master_SelectedIndexChanged method finally calls the UpdateDetail
method to update the detail server control. This is necessary because a new record has been selected.

 MasterDetailControl inherits the UpdateDetail method from its base class — that is, from the
 BaseMasterDetailControl . As you can see from Listing 20-1 , this method first calls the DataBind
method on the detail server control to rebind the control and consequently to retrieve fresh data from
the underlying data store:

 detail.DataBind();

 Next, the method calls the Update method on the detail UpdatePanel server control to force this control
to update.

 Master_ResetSelectedValue
 As you can see from Listing 20-1 , this method simply sets the SelectedIndex property of
the GridView server control to -1 to signal that no record is selected, and then invokes the
Master_SelectedIndexChanged method discussed in the previous section.

 Master_DataBound
 As you can see from Listing 20-1 , this method first searches through the GridViewRow server controls in
the Rows collection of the GridView server control for a GridViewRow server control with the same
 primary key field value as the one stored in the SelectedValue property. If the search succeeds, the
method assigns the index of the GridViewRow server control to the SelectedIndex property of
the GridView server control to specify this GridViewRow server control as the selected row:

 for (int i = 0; i < ((GridView)Master).Rows.Count; i++)
 {
 if (((GridView)Master).DataKeys[i].Value == this.SelectedValue)
 {
 ((GridView)Master).SelectedIndex = i;
 break;
 }
 }

 The GridView server control uses an instance of a server control named GridViewRow to display each
of its data records. The Rows collection property of the GridView server control contains all the
 GridViewRow server controls that display the data records of the server control.

 The GridView server control exposes a collection property named DataKeys , which contains one
 DataKey object for each displayed data record in which the names and values of the primary key
datafields of the record are stored. In other words, each DataKey object in the DataKeys collection
 corresponds to a GridViewRow server control in the Rows collection.

c20.indd 915c20.indd 915 8/20/07 8:34:12 PM8/20/07 8:34:12 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

916

 Next, the method invokes the Master_SelectedIndexChanged method discussed earlier:

 Master_SelectedIndexChanged(null, null);

 Properties
 As you can see from Listing 20-1 , the MasterDetailControl , like any other composite server control,
exposes the properties of its child controls as its own top-level properties, as follows:

 ❑ PageSize : This string property exposes the PageSize property of the GridView server control
as top-level property. Recall that the PageSize property of a GridView server control specifies
the total number of records to display.

❑ DataKeyNames : This array property exposes the DataKeyNames property of the GridView
server control as top-level property. Recall that the DataKeyNames property of a
 GridView server control contains the list of primary key datafield names.

 Note that the DataKeyNames property is annotated with the TypeConverter(typeof(StringArray
Converter)) metadata attribute to instruct the page parser that it must use the
 StringArrayConverter to convert the declarative value of the DataKeyNames to the array. This
declarative value is the value that the page developer declaratively assigns to the DataKeyNames
 attribute on the tag that represents the MasterDetailControl server control on an .aspx or .ascx file.
This declarative value is a string of comma-separated list of substrings in which each substring contains
the name of a primary key datafield name. As the name suggests, the StringArrayConverter
 converts this string into an array, which the page parser then automatically assigns to the
DataKeyNames property of the MasterDetailControl server control.

 Note that the getters and setters of these properties of the MasterDetailControl invoke the
 EnsureChildControls method before they attempt to access the associated child server controls,
as I mentioned earlier.

 Using MasterDetailControl in a Web Page
 Add the following files to the App_Code directory of the application that contains the page that uses the
 MasterDetailControl control:

 ❑ BaseMasterDetailControl.cs : Listing 19-12 presents the content of this file.

❑ ContainerType.cs : Listing 19-13 presents the content of this file.

❑ MasterDetailContainer.cs : Listing 19-14 presents the content of this file.

❑ BaseMasterDetailControl2.cs : Listing 19-15 presents the content of this file.

❑ MasterDetailControl.cs : Listing 20-1 presents the content of this file.

 Listing 20-2 presents a page that uses the MasterDeatilControl . Note that this page uses a theme,
a database with two tables named Products and Categories, and a connections string named
 MyConnectionString. I’ll discuss this theme, database, and connection string shortly. If you run this
page, you’ll get the result shown in Figure 20-1 .

c20.indd 916c20.indd 916 8/20/07 8:34:12 PM8/20/07 8:34:12 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

917

 Listing 20-2: A Page that Uses the MasterDetailControl

 <%@ Page Language=”C#” Theme=”Theme1” %>

<%@ Register Namespace=”CustomComponents” TagPrefix=”custom” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />

 <custom:MasterDetailControl ID=”MasterDetailControl1” runat=”server”
 DataKeyNames=”ProductID” DetailDataSourceID=”DetailDataSource”
 MasterDataSourceID=”MasterDataSource” PageSize=”3”
 MasterSkinID=”GridView1” DetailSkinID=”DetailsView1” CellSpacing=”20”
 HorizontalAlign=”Center” GridLines=”both” BorderStyle=”Ridge”
 BorderWidth=”20” BorderColor=”Yellow” BackImageUrl=”images.jpg”>
 <MasterContainerStyle HorizontalAlign=”center” BorderStyle=”Ridge”
 BorderWidth=”20” BorderColor=”Yellow” />
 <DetailContainerStyle BorderStyle=”Ridge” BorderWidth=”20”
 BorderColor=”Yellow” />
 </custom:MasterDetailControl>

 <asp:SqlDataSource runat=”server” ID=”MasterDataSource”
 ConnectionString=”<%$ ConnectionStrings:MyConnectionString %>”
 SelectCommand=”Select ProductID, ProductName, UnitPrice From Products” />

 <asp:SqlDataSource ID=”DetailDataSource” runat=”server”
 ConnectionString=”<%$ ConnectionStrings:MyConnectionString %>”
 SelectCommand=”Select * From Products where ProductID=@ProductID”
 UpdateCommand=”Update Products Set ProductName=@ProductName,
 CategoryID=@CategoryID,
 UnitPrice=@UnitPrice,
 DistributorName=@DistributorName
 where ProductID=@ProductID”
 DeleteCommand=”Delete From Products where ProductID=@ProductID”
 InsertCommand=”Insert Into Products (ProductName, CategoryID, UnitPrice,
 DistributorName)
 Values (@ProductName, @CategoryID, @UnitPrice,
 @DistributorName)”>
 <SelectParameters>
 <asp:ControlParameter ControlID=”MasterDetailControl1” Name=”ProductID”
 PropertyName=”SelectedValue” DefaultValue=”1” />
 </SelectParameters>
 </asp:SqlDataSource>
 </form>
</body>
</html>

c20.indd 917c20.indd 917 8/20/07 8:34:12 PM8/20/07 8:34:12 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

918

 As you can see, the MasterDetailControl displays only the master portion of the control. Now if you
select a record from the GridView control, you’ll get the result shown in Figure 20-2 : the DetailsView
server control displays the detail of the selected record.

 Note that the DetailsView server control displays the standard Edit and Delete buttons to enable end
users to edit and delete the current record from the underlying data store. The DetailsView server
 control also contains the New button to enable the end user to add a new record to the data store.

 Thanks to the ASP.NET AJAX partial page rendering infrastructure, all the user interactions with the
 GridView and DetailsView server controls are handled asynchronously in the background without
interrupting the user or reloading the entire page.

 Note that the page shown in Listing 20-2 takes advantage of ASP.NET 2.0 themes. A theme is
 implemented as a subfolder under the App_Themes folder. The subfolder must have the same name as
the theme. A theme subfolder consists of one or more skin files and their respective image and Cascading
Style Sheet files. Since ASP.NET 2.0 merges all the skin files of a theme into a single skin file, page devel-
opers can use as many skin files as necessary to organize the theme folder. Themes are assigned to the
containing page, not to the the individual controls.

Figure 20-1

c20.indd 918c20.indd 918 8/20/07 8:34:13 PM8/20/07 8:34:13 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

919

 The @Page directive in ASP.NET 2.0 exposes a new attribute named Theme , which is set to the name of
the desired theme. Since all themes are subfolders of the App_Themes folder, the ASP.NET framework
knows where to find the assigned theme. A skin file includes one or more control skins. A control skin
defines the appearance properties of a class of server controls. The definition of a control skin is very
similar to the declaration of an instance of the control on an ASP.NET page. This doesn’t mean that all
properties of a server control can be set in its skin. In general, only the appearance properties can be
included and set in a control skin. If the SkinID property of a control skin isn’t set, the control skin is
treated as the default skin. A default skin is automatically applied to the control instances whose SkinID
properties aren’t set. If the SkinID property of a control skin is set, it will be applied only to the control
instances whose SkinID property is set to the same value.

Figure 20-2

c20.indd 919c20.indd 919 8/20/07 8:34:13 PM8/20/07 8:34:13 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

920

 The page shown in Listing 20-2 uses a theme named Theme1 that contains a skin file with the following
content:

 <asp:GridView SkinID=”GridView1” runat=”server” BackColor=”LightGoldenrodYellow”
 BorderColor=”Tan” BorderWidth=”1px” CellPadding=”2” ForeColor=”Black”
 GridLines=”None”>
 <FooterStyle BackColor=”Tan” />
 <SelectedRowStyle BackColor=”DarkSlateBlue” ForeColor=”GhostWhite” />
 <PagerStyle BackColor=”PaleGoldenrod” ForeColor=”DarkSlateBlue”
 HorizontalAlign=”Center” />
 <HeaderStyle BackColor=”Tan” Font-Bold=”True” />
 <AlternatingRowStyle BackColor=”PaleGoldenrod” />
</asp:GridView>

<asp:DetailsView SkinID=”DetailsView1” runat=”server” Width=”100%”
 BackColor=”LightGoldenrodYellow” BorderColor=”Tan” BorderWidth=”1px”
 CellPadding=”2” ForeColor=”Black” GridLines=”None” HorizontalAlign=”Center”>
 <FooterStyle BackColor=”Tan” />
 <EditRowStyle BackColor=”DarkSlateBlue” ForeColor=”GhostWhite” />
 <PagerStyle BackColor=”PaleGoldenrod” ForeColor=”DarkSlateBlue”
 HorizontalAlign=”Center” />
 <HeaderStyle BackColor=”Tan” Font-Bold=”True” />
 <AlternatingRowStyle BackColor=”PaleGoldenrod” />
</asp:DetailsView>

 Also note that the page shown in Listing 20-2 connects to a database named ProductsDB that consists of
two database tables named Products and Categories . The following table describes the Products
database table:

 The following table describes the Categories database table:

Column Name Data Type

ProductID int

ProductName varchar (50)

CategoryID int

UnitPrice decimal (18, 0)

DistributorName varchar (50)

Column Name Data Type

CategoryID int

CategoryName varchar (50)

CategoryDescription varchar (255)

DateCreated datetime

c20.indd 920c20.indd 920 8/20/07 8:34:13 PM8/20/07 8:34:13 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

921

 Note that the data source controls in Listing 20-2 make use of a connection string named
MyConnectionString . You need to add the following fragment to the web.config file of your
application:

 <configuration>
 <connectionStrings>
 <add
 connectionString=”server=YOUR_SERVER_NAME;initial catalog=ProductsDB;integrated
 security=SSPI” name=”MyConnectionString”/>
 </connectionStrings>
</configuration>

 MasterDetailControl2
 In this section, you’ll implement a new server control named MasterDetailControl2 that derives from
 BaseMasterDetailControl2 and extends its functionality to use a DropDownList server control as the
master server control, as shown in Listing 20-3 .

 Listing 20-3: The MasterDetailControl2 Server Control

 using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Collections;
using System.Drawing;
using System.ComponentModel;

namespace CustomComponents
{
 public class MasterDetailControl2 : BaseMasterDetailControl2
 {
 protected override BaseDataBoundControl CreateBaseDataBoundControlMaster()
 {
 DropDownList master = new DropDownList();
 master.AutoPostBack = true;
 master.ID = “DropDownList”;
 return master;
 }

 protected override void RegisterMasterEventHandlers()
 {
 ((ListControl)Master).SelectedIndexChanged +=
 new EventHandler(Master_SelectedIndexChanged);
 }

(continued)

c20.indd 921c20.indd 921 8/20/07 8:34:14 PM8/20/07 8:34:14 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

922

 Listing 20-3 (continued)

 protected override void Master_DataBound(object sender, EventArgs e)
 {
 ListItem selectedItem =
 ((ListControl)Master).Items.FindByValue((string)SelectedValue);
 int selectedIndex = ((ListControl)Master).Items.IndexOf(selectedItem);
 ((ListControl)Master).SelectedIndex = selectedIndex;
 Master_SelectedIndexChanged(null, null);
 }

 protected virtual void Master_SelectedIndexChanged(object sender, EventArgs e)
 {
 if (((ListControl)Master).SelectedIndex == -1)
 this.Detail.Visible = false;
 else
 this.Detail.Visible = true;

 this.SelectedValue = ((ListControl)Master).SelectedValue;
 this.UpdateDetail(sender, e);
 }

 public string DataTextField
 {
 get
 {
 return ((ListControl)Master).DataTextField;
 }
 set
 {
 ((ListControl)Master).DataTextField = value;
 }
 }

 public string DataValueField
 {
 get
 {
 return ((ListControl)Master).DataValueField;
 }
 set
 {
 ((ListControl)Master).DataValueField = value;
 }
 }

 [TypeConverter(typeof(StringArrayConverter))]
 public string[] DataKeyNames
 {
 get
 {
 return ((DetailsView)Detail).DataKeyNames;
 }

c20.indd 922c20.indd 922 8/20/07 8:34:14 PM8/20/07 8:34:14 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

923

 set
 {
 ((DetailsView)Detail).DataKeyNames = value;
 }
 }
 }
}

 CreateBaseDataBoundControlMaster
 As you can see from Listing 20-3 , the MasterDetailControl2’s implementation of this method
 instantiates and initializes a DropDownList server control as the master server control.

 RegisterMasterEventHandlers
 As Listing 20-3 shows, this method registers a method named Master_SelectedIndexChanged as an
event handler for the SelectedIndexChanged event of the master server control. Note that this method
treats the master server control as a ListControl object rather than a DropDownList . This is possible
because the ASP.NET DropDownList server control derives from the ListControl base class. As you’ll
see in the next section, treating the master server control as a ListControl enables you to use the same
implementation of the RegisterMasterEventHandlers method for all types of ListControl controls,
such as DropDownList and ListBox .

 Master_SelectedIndexChanged
 When the ListControl control raises the SelectedIndexChanged event, the
Master_SelectedIndexChanged method shown in Listing 20-3 is automatically invoked. This
 method first checks whether any item has been selected from the ListControl control. If not, it
hides the detail server control, as I mentioned earlier:

 if (((ListControl)Master).SelectedIndex == -1)
 this.Detail.Visible = false;
 else
 this.Detail.Visible = true;

 Next, it assigns the value of the SelectedValue property of the ListControl control to the
SelectedValue property of the MasterDetailControl2 control:

 this.SelectedValue = ((ListControl)Master).SelectedValue;

 Finally, it invokes the UpdateDetail method to update the detail server control. As discussed
earlier, the detail server control picks up the new value of the SelectedValue property of the
MasterDetailControl2 and displays the detail information about the selected item:

 this.UpdateDetail(sender, e);

 Master_DataBound
 Recall that the Master_DataBound method is automatically invoked when the DataBound event of the
master server control is fired. As you can see from Listing 20-3 , this method first accesses the ListItem

c20.indd 923c20.indd 923 8/20/07 8:34:14 PM8/20/07 8:34:14 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

924

object whose value is given by the SelectedValue property of the MasterDetailControl2 . Recall that
this property contains the value associated with the selected item:

 ListItem selectedItem =
 ((ListControl)Master).Items.FindByValue((string)SelectedValue);

 Next, it accesses the index of the selected item:

 int selectedIndex = ((ListControl)Master).Items.IndexOf(selectedItem);

 Then it assigns this index to the SelectedIndex property of the ListControl master:

 ((ListControl)Master).SelectedIndex = selectedIndex;

 Finally, it invokes the SelectedIndexChanged method discussed earlier:

 Master_SelectedIndexChanged(null, null);

 Properties
 MasterDetailControl2 , like any other composite control, exposes the properties of its child controls as
its own top-level properties, as shown in Listing 20-3 . Note that the DataKeyNames property is anno-
tated with the [TypeConverter(typeof(StringArrayConverter))] metadata attribute to instruct
the page parser that it must use the StringArrayConverter to convert the declarative value of this
property to its imperative value. The declarative value is the string containing a list of comma-separated
substrings that the page developer assigns to the DataKeyNames attribute on the tag that represents the
 MasterDetailControl2 control on the .aspx page. The imperative value is the value that the
 DataKeyNames property expects — that is, an array of strings. The StringArrayConverter knows how
to convert the string containing a list of comma-separated substrings to a .NET array that contains these
substrings.

 Using MasterDetailControl2
 Listing 20-4 presents a page that uses the MasterDetailControl2 . Figure 20-3 shows what you’ll see
on your browser when you access this page. Note that this page uses a theme named Theme1 that con-
tains a skin file with the following content:

 <asp:DetailsView SkinID=”DetailsView1” runat=”server” Width=”100%”
 BackColor=”LightGoldenrodYellow” BorderColor=”Tan” BorderWidth=”1px”
 CellPadding=”2” ForeColor=”Black” GridLines=”None” HorizontalAlign=”Center”>
 <FooterStyle BackColor=”Tan” />
 <EditRowStyle BackColor=”DarkSlateBlue” ForeColor=”GhostWhite” />
 <HeaderStyle BackColor=”Tan” Font-Bold=”True” />
 <AlternatingRowStyle BackColor=”PaleGoldenrod” />
</asp:DetailsView>

c20.indd 924c20.indd 924 8/20/07 8:34:14 PM8/20/07 8:34:14 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

925

<asp:DropDownList SkinID=”DropDownList1” runat=”server”
 BackColor=”LightGoldenrodYellow” BorderColor=”Tan” BorderWidth=”1px”
 CellPadding=”2” ForeColor=”Black” GridLines=”None” Width=”100%”/>

 This page assumes that the following files are added to the App_Code directory of the application that
contains the page:

 ❑ BaseMasterDetailControl.cs : Listing 19-12 presents the content of this file.

❑ ContainerType.cs : Listing 19-13 presents the content of this file.

❑ MasterDetailContainer.cs : Listing 19-14 presents the content of this file.

❑ BaseMasterDetailControl2.cs : Listing 19-15 presents the content of this file.

❑ MasterDetailControl.cs : Listing 20-1 presents the content of this file.

❑ MasterDetailControl2.cs : Listing 20-3 presents the content of this file.

 Also note that this page uses the same database (ProductsDB) and connection string discussed in the
previous section.

 Again, thanks to the ASP.NET AJAX partial page infrastructure, every time the end user selects a new
item from the DropDownList master control, or deletes, inserts, or updates a record in the DetailsView
detail control, the following things happen:

 ❑ The current page is posted back to the server asynchronously in the background, without
 interrupting the user interaction with the current page.

❑ When the server response finally arrives, only the MasterDetailControl2 is updated,
 without causing the entire page to reload.

 Listing 20-4: A Page that Uses MasterDetailControl2

 <%@ Page Language=”C#” Theme=”Theme1” %>

<%@ Register Namespace=”CustomComponents” TagPrefix=”custom” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />

(continued)

c20.indd 925c20.indd 925 8/20/07 8:34:15 PM8/20/07 8:34:15 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

926

 Listing 20-4 (continued)

 <custom:MasterDetailControl2 ID=”MasterDetailControl21” runat=”server”
 DataKeyNames=”ProductID” DetailDataSourceID=”DetailDataSource”
 MasterDataSourceID=”MasterDataSource” MasterSkinID=”DropDownList1”
 DetailSkinID=”DetailsView1” CellSpacing=”20” HorizontalAlign=”Center”
 GridLines=”both” BorderStyle=”Ridge” BorderWidth=”20” BorderColor=”Yellow”
 BackImageUrl=”images.jpg” DataTextField=”ProductName”
 DataValueField=”ProductID”>
 <MasterContainerStyle HorizontalAlign=”center” BorderStyle=”Ridge”
 BorderWidth=”20” BorderColor=”Yellow” />
 <DetailContainerStyle BorderStyle=”Ridge” BorderWidth=”20”
 BorderColor=”Yellow” />
 </custom:MasterDetailControl2>

 <asp:SqlDataSource runat=”server” ID=”MasterDataSource”
 ConnectionString=”<%$ ConnectionStrings:MyConnectionString %>”
 SelectCommand=”Select ProductID, ProductName From Products” />

 <asp:SqlDataSource ID=”DetailDataSource” runat=”server”
 ConnectionString=”<%$ ConnectionStrings:MyConnectionString %>”
 SelectCommand=”Select * From Products where ProductID=@ProductID”
 UpdateCommand=”Update Products Set ProductName=@ProductName,
 CategoryID=@CategoryID,
 UnitPrice=@UnitPrice,
 DistributorName=@DistributorName
 where ProductID=@ProductID”
 DeleteCommand=”Delete From Products where ProductID=@ProductID”
 InsertCommand=”Insert Into Products (ProductName, CategoryID, UnitPrice,
 DistributorName)
 Values (@ProductName, @CategoryID, @UnitPrice,
 @DistributorName)”>
 <SelectParameters>
 <asp:ControlParameter ControlID=”MasterDetailControl21” Name=”ProductID”
 PropertyName=”SelectedValue” DefaultValue=”1” />
 </SelectParameters>
 </asp:SqlDataSource>

 </form>
</body>
</html>

c20.indd 926c20.indd 926 8/20/07 8:34:15 PM8/20/07 8:34:15 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

927

 MasterDetailControl3
 In this section, you’ll implement a new server control named MasterDetailControl3 that derives from
 MasterDetailControl2 and extends its functionality to use a ListBox server control rather than the
 DropDownList server control as master server control, as shown in Listing 20-5 . As you can see,
 MasterDetailControl3 simply overrides the CreateBaseDataBoundControlMaster method that
it inherits from MasterDetailControl2 and replaces the DropDownList server control with a
 ListBox server control.

 Listing 20-5: The MasterDetailControl3 Control

 using System;
using System.Data;
using System.Configuration;

Figure 20-3

(continued)

c20.indd 927c20.indd 927 8/20/07 8:34:15 PM8/20/07 8:34:15 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

928

Listing 20-5 (continued)

using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;
using System.Collections;
using System.Drawing;
using System.ComponentModel;

namespace CustomComponents
{
 public class MasterDetailControl3 : MasterDetailControl2
 {
 protected override BaseDataBoundControl CreateBaseDataBoundControlMaster()
 {
 ListBox master = new ListBox();
 master.AutoPostBack = true;
 master.ID = “ListBox”;
 return master;
 }
 }
}

 Using MasterDetailControl3
 Listing 20-6 contains a page that uses MasterDetailControl3 . Note that this page uses a theme named
 Theme1 , which contains a skin file with the following content:

 <asp:DetailsView SkinID=”DetailsView1” runat=”server” Width=”100%”
 BackColor=”LightGoldenrodYellow” BorderColor=”Tan” BorderWidth=”1px”
 CellPadding=”2” ForeColor=”Black” GridLines=”None” HorizontalAlign=”Center”>
 <FooterStyle BackColor=”Tan” />
 <EditRowStyle BackColor=”DarkSlateBlue” ForeColor=”GhostWhite” />
 <HeaderStyle BackColor=”Tan” Font-Bold=”True” />
 <AlternatingRowStyle BackColor=”PaleGoldenrod” />
</asp:DetailsView>

<asp:ListBox SkinID=”ListBox1” runat=”server” BackColor=”LightGoldenrodYellow”
 BorderColor=”Tan” BorderWidth=”1px” ForeColor=”Black” Width=”200”/>

 Note also that this page assumes that the following files are added to the App_Code directory of the
application that contains this page:

 ❑ BaseMasterDetailControl.cs : Listing 19-12 presents the content of this file.

❑ ContainerType.cs : Listing 19-13 presents the content of this file.

❑ MasterDetailContainer.cs : Listing 19-14 presents the content of this file.

❑ BaseMasterDetailControl2.cs : Listing 19-15 presents the content of this file.

c20.indd 928c20.indd 928 8/20/07 8:34:16 PM8/20/07 8:34:16 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

929

❑ MasterDetailControl.cs : Listing 20-1 presents the content of this file.

❑ MasterDetailControl2.cs : Listing 20-3 presents the content of this file.

❑ MasterDetailControl3.cs : Listing 20-5 presents the content of this file.

 Also note that this page uses the same database (ProductsDB) and connection string as the pages in the
previous sections.

 Figure 20-4 shows what you’ll get when you access this page. As you can see, the master server control is
now a ListBox server control. Again, thanks to the ASP.NET AJAX partial page infrastructure, every
time the end user selects a new item from the ListBox master control or deletes, inserts, or updates a
record in the DetailsView detail control, the following things happen:

 ❑ The current page is posted back to the server asynchronously in the background, without inter-
rupting the user interaction with the current page.

❑ When the server response finally arrives, only the MasterDetailControl3 is updated, without
causing the entire page to reload.

 Listing 20-6: A Page that Uses the MasterDetailControl3 Control

 <%@ Page Language=”C#” Theme=”Theme1” %>

<%@ Register Namespace=”CustomComponents” TagPrefix=”custom” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />

 <custom:MasterDetailControl3 ID=”MasterDetailControl21” runat=”server”
 DataKeyNames=”ProductID” DetailDataSourceID=”DetailDataSource”
 MasterDataSourceID=”MasterDataSource” MasterSkinID=”ListBox1”
 DetailSkinID=”DetailsView1” CellSpacing=”20” HorizontalAlign=”Center”
 GridLines=”both” BorderStyle=”Ridge” BorderWidth=”20” BorderColor=”Yellow”
 BackImageUrl=”images.jpg” DataTextField=”ProductName”
 DataValueField=”ProductID”>
 <MasterContainerStyle HorizontalAlign=”center” BorderStyle=”Ridge”
 BorderWidth=”20” BorderColor=”Yellow” />
 <DetailContainerStyle BorderStyle=”Ridge” BorderWidth=”20”
 BorderColor=”Yellow” />
 </custom:MasterDetailControl3>

(continued)

c20.indd 929c20.indd 929 8/20/07 8:34:16 PM8/20/07 8:34:16 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

930

Listing 20-6 (continued)

 <asp:SqlDataSource runat=”server” ID=”MasterDataSource”
 ConnectionString=”<%$ ConnectionStrings:MyConnectionString %>”
 SelectCommand=”Select ProductID, ProductName From Products” />

 <asp:SqlDataSource ID=”DetailDataSource” runat=”server”
 ConnectionString=”<%$ ConnectionStrings:MyConnectionString %>”
 SelectCommand=”Select * From Products where ProductID=@ProductID”
 UpdateCommand=”Update Products Set ProductName=@ProductName,
 CategoryID=@CategoryID,
 UnitPrice=@UnitPrice,
 DistributorName=@DistributorName
 where ProductID=@ProductID”
 DeleteCommand=”Delete From Products where ProductID=@ProductID”
 InsertCommand=”Insert Into Products (ProductName, CategoryID, UnitPrice,
 DistributorName)
 Values (@ProductName, @CategoryID, @UnitPrice,
 @DistributorName)”>
 <SelectParameters>
 <asp:ControlParameter ControlID=”MasterDetailControl21” Name=”ProductID”
 PropertyName=”SelectedValue” DefaultValue=”1” />
 </SelectParameters>
 </asp:SqlDataSource>

 </form>
</body>
</html>

 MasterDetailControl4
 In this section I’ll implement a server control named MasterDetailControl4 that derives from the
MasterDetailControl2 and overrides its SelectedValue property. Recall that the MasterDetailControl2
inherits this property from the BaseMasterDetailControl . MasterDetailControl4 overrides this property
to use the ASP.NET Session object as the backing store. Recall that the BaseMasterDetailControl’s imple-
mentation of this property uses the ViewState as the backing store. In the next section we’ll implement a cus-
tom data control field that will demonstrate the significance of using the ASP.NET Session object as the
backing store. Listing 20-7 presents the implementation of MasterDetailControl4 .

 Listing 20-7: The MasterDetailControls4 Server Control

 namespace CustomComponents
{
 public class MasterDetailControl4 : MasterDetailControl2
 {
 public override object SelectedValue
 {
 get { return this.Page.Session[“SelectedValue”]; }
 set { this.Page.Session[“SelectedValue”] = value; }
 }
 }
}

c20.indd 930c20.indd 930 8/20/07 8:34:16 PM8/20/07 8:34:16 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

931

 Developing Par tial-Rendering-Enabled
Data Control Fields

 The foreign and primary key pairs establish relationships among database tables. The value of a foreign
key field in a given record is one of the existing values of its corresponding primary key field. Most
 database tables automatically generate the primary key value of a record when the record is added to the
table. Therefore the actual foreign key value is an auto-generated integer that doesn’t mean anything to
end users. However, the table that contains the primary key field normally contains other field values
that are more meaningful to them.

 For instance, consider a database that contains tables named Products and Categories . The Products
table has a foreign key field named CategoryID . The Categories table contains the corresponding
 primary key field, CategoryID . The Categories table also exposes fields such as CategoryName and

Figure 20-4

c20.indd 931c20.indd 931 8/20/07 8:34:16 PM8/20/07 8:34:16 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

932

 CategoryDescription , which provide more meaningful information to end users. Wouldn’t it be great
if you could provide end users the appropriate user interface with which to view more meaningful
 information about the available categories, so they can make more intelligent decisions as to which cate-
gory to choose for a given record? This is exactly what you’re going to do in this section. You’ll imple-
ment a custom data control field named MasterDetailField that will present the end users with a user
interface that consists of a DropDownList master server control and a DetailsView detail server control,
so users can view more detailed information about a given foreign key field. The MasterDetailField
will take advantage of the ASP.NET AJAX partial rendering infrastructure to retrieve the required data
from the server asynchronously and to update only the necessary part of the page — that is, the detail
server control — without forcing a complete page reload.

 As you’ll see, the MasterDetailField data control field not only displays detailed information about a
selected foreign key field value but also enables the end user to update this information. In other words,
the end user gets to update the records of both the table that contains the primay key field values and the
table that contains the associated foreign key field values, simultaneously.

 Extending BoundField
 Most standard data control fields internally use server controls to display the values of their respective
database fields. For example, the ImageField and CheckBoxField data control fields internally use
 Image and CheckBox server controls, respectively, to display their field values. The data type of the field
and the state of its containing row determine the type of server control used to display the value of the
field. For instance, an ImageField data control field uses an Image server control to display its field
value when its containing row is in the normal state, and a TextBox server control when its containing
row is in the Edit or Insert state.

 The MasterDetailField custom data control field will use a MasterDetailControl4 server control
to display all the legal values of its field when its containing row is in the Edit or Insert state. The
 MasterDetailField data control field will display the current value of its field as simple text when its
containing row isn’t in the Edit or Insert state. The MasterDetailField data control field derives from
the BoundField data control field because BoundField provides all the necessary base functionality
when the containing row isn’t in the Edit or Insert state, such as:

 ❑ Extracting the current value of the field whose name is the value of the DataField property.
The MasterDetailField overrides this property and defines a new property named
 DataTextField to replace it because DataTextField is a more appropriate name than
 DataField .

❑ Displaying the current value as simple text if the current value isn’t null .

❑ Displaying the value of the NullDisplayText property if the current value is null .

❑ Displaying the value of the HeaderText property as simple text if sorting is disabled and as a
hyperlink if sorting is enabled.

❑ Raising the sort event when sorting is enabled and the header hyperlink is clicked.

 The main shortcoming of the BoundField data control field is that it displays the current value of the
field in a TextBox control when the containing row is in the Edit or Insert state. The TextBox control is
not the appropriate server control for editing foreign key fields because it enables users to enter any
value instead of restricting values to the legal ones. The MasterDetailField data control field over-
rides the InitializeDataCell , OnDataBindField , and ExtractValuesFromCell methods of the

c20.indd 932c20.indd 932 8/20/07 8:34:17 PM8/20/07 8:34:17 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

933

 BoundField data control field to add the support needed when the containing row is in the Edit or
Insert state. Listing 20-8 shows all the properties and methods of the MasterDetailField data control
field. In the following sections I’ll walk you through the implementation of these properties and
methods.

 Listing 20-8: The MasterDetailField Data Control Field

 namespace CustomComponents
{
 using System;
 using System.Web;
 using System.Web.UI;
 using System.Web.UI.WebControls;
 using System.ComponentModel;
 using System.Collections.Specialized;
 using System.Collections;
 using System.Data;

 public class MasterDetailField : BoundField
 {
 public override string DataField
 {
 get
 {
 return base.DataField;
 }

 set
 {
 throw new global::System.NotImplementedException();
 }
 }

 public virtual string DataTextField
 {
 get
 {
 return base.DataField;
 }
 set
 {
 base.DataField = value;
 }
 }

 public virtual string MasterSkinID
 {
 get
 {
 return (ViewState[“MasterSkinID”] != null) ?
 (string)ViewState[“MasterSkinID”] : String.Empty;
 }

(continued)

c20.indd 933c20.indd 933 8/20/07 8:34:17 PM8/20/07 8:34:17 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

934

 Listing 20-8 (continued)

 set
 {
 ViewState[“MasterSkinID”] = value;
 }
 }

 public virtual string DetailSkinID
 {
 get
 {
 return (ViewState[“DetailSkinID”] != null) ?
 (string)ViewState[“DetailSkinID”] : String.Empty;
 }
 set
 {
 ViewState[“DetailSkinID”] = value;
 }
 }

 [TypeConverter(typeof(StringArrayConverter))]
 public virtual string[] DataKeyNames
 {
 get
 {
 return (ViewState[“DataKeyNames”] != null) ?
 (string[])ViewState[“DataKeyNames”] : null;
 }
 set
 {
 ViewState[“DataKeyNames”] = value;
 }
 }

 public virtual bool EnableTheming
 {
 get
 {
 return (ViewState[“EnableTheming”] != null) ?
 (bool)ViewState[“EnableTheming”] : true;
 }
 set
 {
 ViewState[“EnableTheming”] = value;
 }
 }

 public virtual string DataValueField
 {
 get
 {
 return (ViewState[“DataValueField”] != null) ?
 (string)ViewState[“DataValueField”] : String.Empty;
 }

c20.indd 934c20.indd 934 8/20/07 8:34:17 PM8/20/07 8:34:17 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

935

 set
 {
 ViewState[“DataValueField”] = value;
 }
 }

 public virtual string MasterDataSourceID
 {
 get
 {
 return (ViewState[“MasterDataSourceID”] != null) ?
 (string)ViewState[“MasterDataSourceID”] : String.Empty;
 }
 set
 {
 ViewState[“MasterDataSourceID”] = value;
 }
 }

 public virtual string DetailDataSourceID
 {
 get
 {
 return (ViewState[“DetailDataSourceID”] != null) ?
 (string)ViewState[“DetailDataSourceID”] : String.Empty;
 }
 set
 {
 ViewState[“DetailDataSourceID”] = value;
 }
 }

 protected override void OnDataBindField(Object sender, EventArgs e)
 {
 DropDownList ddl = sender as DropDownList;
 if (ddl == null)
 {
 base.OnDataBindField(sender, e);
 return;
 }

 Control parent = ddl.Parent;
 DataControlFieldCell cell = null;
 while (parent != null)
 {
 cell = parent as DataControlFieldCell;
 if (cell != null)
 break;
 parent = parent.Parent;
 }

(continued)

c20.indd 935c20.indd 935 8/20/07 8:34:18 PM8/20/07 8:34:18 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

936

 Listing 20-8 (continued)

 IDataItemContainer container = (IDataItemContainer)cell.Parent;
 object dataItem = container.DataItem;
 if (dataItem == null || String.IsNullOrEmpty(DataValueField))
 return;
 object dataValueField = DataBinder.Eval(dataItem, DataValueField);

 if (dataValueField.Equals(DBNull.Value))
 ddl.SelectedIndex = 0;
 else
 ddl.SelectedIndex =
 ddl.Items.IndexOf(ddl.Items.FindByValue(dataValueField.ToString()));
 }

 protected override void InitializeDataCell(DataControlFieldCell cell,
 DataControlRowState rowState)
 {
 if ((rowState & DataControlRowState.Edit) != 0 ||
 (rowState & DataControlRowState.Insert) != 0)
 {
 MasterDetailControl4 mdc = new MasterDetailControl4();
 mdc.MasterSkinID = MasterSkinID;
 mdc.DetailSkinID = DetailSkinID;
 mdc.EnableTheming = EnableTheming;
 mdc.MasterDataSourceID = this.MasterDataSourceID;
 mdc.DetailDataSourceID = this.DetailDataSourceID;
 mdc.DataKeyNames = DataKeyNames;
 ((DropDownList)mdc.Master).DataTextField = DataTextField;
 ((DropDownList)mdc.Master).DataValueField = DataValueField;
 if (DataTextField.Length != 0 && DataValueField.Length != 0)
 ((DropDownList)mdc.Master).DataBound +=
 new EventHandler(OnDataBindField);
 cell.Controls.Add(mdc);
 }
 else
 base.InitializeDataCell(cell, rowState);
 }

 public override void ExtractValuesFromCell(IOrderedDictionary dictionary,
 DataControlFieldCell cell,
 DataControlRowState rowState,
 bool includeReadOnly)
 {
 if (cell.Controls.Count > 0)
 {
 MasterDetailControl4 mdc = cell.Controls[0] as MasterDetailControl4;
 if (mdc == null)
 throw new InvalidOperationException(
 “MasterDetailField could not extract control.”);

 string dataValueField = ((DropDownList)mdc.Master).SelectedValue;

c20.indd 936c20.indd 936 8/20/07 8:34:18 PM8/20/07 8:34:18 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

937

 if (dictionary.Contains(DataValueField))
 dictionary[DataValueField] = int.Parse(dataValueField);

 else
 dictionary.Add(DataValueField, int.Parse(dataValueField));
 }
 }
 }
}

 Overriding InitializeDataCell
 The BoundField data control field exposes a method named InitializeDataCell that contains the
code that generates the appropriate HTML markup text for the data cell. The InitializeDataCell
method takes two arguments. The first argument is the DataControlFieldCell cell being initialized.
The second argument is the state of the containing row.

 What HTML markup text the BoundField class’s implementation of the InitializeDataCell method
emits depends on the state of its containing row. If the containing row is not in the Edit or Insert state,
the method simply registers the OnDataBindField method as the callback for the DataBinding event
of the respective DataControlFieldCell instance. When the DataBinding event of the cell is raised,
the OnDataBindField method extracts the current value of the respective field (the name of the field
is the value of the DataField property). If the current value is null , the value of the NullDisplayText
property is displayed. Otherwise the current value is displayed as simple text.

 The BoundField class’s implementation of the InitializeDataCell method in normal state is exactly
what you need. However, the BoundField class’s implementation of the method when the containing row
is in the Edit or Insert state is not acceptable, because the method instantiates an instance of the TextBox
control. You need an implementation that instantiates an instance of the MasterDetailControl4 control.
That is why the MasterDetailField data control field overrides the InitializeDataCell method. The
 MasterDetailField data control field calls the base version of the InitializeDataCell method when
the containing row is in the normal state, because the behavior of the base version is exactly what you
need. However, the MasterDetailField data control field provides its own implementation when the
containing row is in the Edit or Insert state.

 As Listing 20-8 shows, the MasterDetailField data control field’s implementation of the
 InitializeDataCell method instantiates an instance of the MasterDetailControl4 control
and sets its MasterDataSourceID and DetailDataSourceID properties to the values of the
MasterDataSourceID and DetailDataSourceID properties of the MasterDetailField data control
field, respectively. It is the responsibility of page developers to set the MasterDataSourceID and
 DetailDataSourceID properties of the MasterDetailField data control field to the values of the ID
properties of the appropriate data source controls in the containing page. Page developers must also
set the DataTextField and DataValueField properties of the MasterDetailField data control
field to the names of the appropriate database fields. This allows the MasterDetailField data
 control field to automatically populate its MasterDetailControl4 control with the valid values of the
foreign key field. Note that InitializeDataCell method also sets the DataKeyNames property of
the MasterDetailControl4 control to the value of the DataKeyNames property of the

c20.indd 937c20.indd 937 8/20/07 8:34:18 PM8/20/07 8:34:18 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

938

MasterDetailField . Again, it’s the responsibility of page developers to assign the comma-separated
list of primary key field names to the DataKeyNames property of the MasterDetailField :

 MasterDetailControl4 mdc = new MasterDetailControl4();
 mdc.MasterSkinID = MasterSkinID;
 mdc.DetailSkinID = DetailSkinID;
 mdc.EnableTheming = EnableTheming;
 mdc.MasterDataSourceID = this.MasterDataSourceID;
 mdc.DetailDataSourceID = this.DetailDataSourceID;
 mdc.DataKeyNames = DataKeyNames;
 ((DropDownList)mdc.Master).DataTextField = DataTextField;
 ((DropDownList)mdc.Master).DataValueField = DataValueField;

 One of the requirements for the MasterDetailField data control field is that it has to set the selected
value of the MasterDetailControl4 control to the current value of the respective foreign key field.
This is done in a callback registered for the DataBound event of the DropDownList master server control
of the MasterDetailControl4 control. The DropDownList control inherits the DataBound event
from the BaseDataBoundControl class. There is a difference between the DataBound event that the
 BaseDataBoundControl class exposes and the DataBinding event that the Control class exposes:
the DataBinding event is raised before the data is actually bound, while the DataBound event is raised
after the data binding process finishes.

 Since the selected value of the MasterDetailControl4 control must be set after the control is bound to
its data source, it is set within the callback for the DataBound event. The InitializeDataCell method
registers the OnDataBindField method as the callback for the DataBound event of the DropDownList
master server control:

 if (DataTextField.Length != 0 && DataValueField.Length != 0)
 ((DropDownList)mdc.Master).DataBound += new EventHandler(OnDataBindField);

 Handling the DataBound Event
 When the DataBinding event of the cell is raised, the OnDataBindField method is called to
display the current value in display mode — that is, as a simple text. When the DataBound event of
the DropDownList master server control of the MasterDetailControl4 control is raised, the
 OnDataBindField method is called to display the current value in edit mode — that is, as the selected
item of the MasterDetailControl4 control.

 Before the OnDataBindField method can display the current value in the edit or insert mode, it has to
extract the value. The OnDataBindField method uses the parent control of the cell to access the value:

 Control parent = ddl.Parent;
 DataControlFieldCell cell = null;
 while (parent != null)
 {
 cell = parent as DataControlFieldCell;
 if (cell != null)
 break;
 parent = parent.Parent;
 }

c20.indd 938c20.indd 938 8/20/07 8:34:18 PM8/20/07 8:34:18 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

939

 IDataItemContainer container = (IDataItemContainer)cell.Parent;
 object dataItem = container.DataItem;

 The parent of the cell is a row of type GridViewRow in GridView controls and of type DetailsViewRow
in DetailsView controls. Both these types implement the IDataItemContainer interface.
 IDataItemContainer exposes a property named DataItem of type Object . The DataItem object
 represents the record of the database that the row is bound to. After you access the dataItem object,
you can use the DataBinder class to extract the current value of the field whose name is the value of
the DataValueField property:

 object dataValueField = DataBinder.Eval(dataItem, DataValueField);

 The value of the DataValueField property is the name of the foreign key field.

 The OnDataBindField method then sets the SelectedIndex of the DropDownList master server con-
trol of the MasterDetailControl4 control to the index of dataValueField if dataValueField is not
equal to DBNull . Otherwise it configures this DropDownList server control to display the newly added
item as its selected item:

 if (dataValueField.Equals(DBNull.Value))
 ddl.SelectedIndex = 0;
 else
 ddl.SelectedIndex =
 ddl.Items.IndexOf(ddl.Items.FindByValue(dataValueField.ToString()));

 Extracting Values from Cells
 Data-bound controls such as GridView and DetailsView enable users to edit database fields. Users
click on the Update button after they make the desired changes. GridView and DetailsView con-
trols are equipped with internal handlers to handle the Update event. These handlers call the
 ExtractRowValues method of the GridView or DetailsView control, which in turn calls
the ExtractValuesFromCell methods of its cells. The ExtractRowValues method provides
each ExtractValuesFromCell method with a container of type IOrderedDictionary . Each
ExtractValuesFromCell method extracts the value of its cell and inserts the value into the container.
The internal handler for the Update event then uses these values in its internal data access code to
update the underlying database fields.

 The ExtractValuesFromCell method of the MasterDetailField data control field extracts the
selected value of the MasterDetailControl4 control and inserts it into the IOrderedDictionary
 container passed in as its first input argument.

 Appearance Properties
 The DataControlField class exposes a property of type Style named ControlStyle . The
DataControlField class internally uses the value of the ControlStyle property to set the style
 properties of the server control that the DataControlField instance renders. In the case of the
 MasterDetailField data control field, the ControlStyle property is applied to the
MasterDetailControl4 control that the class contains.

c20.indd 939c20.indd 939 8/20/07 8:34:19 PM8/20/07 8:34:19 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

940

 The ControlStyle property is not the only styling option available. Another styling option is the
ASP.NET 2.0 themes.

 The MasterDetailField class exposes two new properties named MasterSkinID and DetailSkinID .
It’s the responsibility of page developers to set these two properties to the values of the SkinID
 properties of the desired DropDownList and DetailsView control skins, respectively. The
InitializeDataCell method sets the MasterSkinID and DetailSkinID properties of the
MasterDetailControl4 control to the values of the MasterSkinID and DetailSkinID properties
of the MasterDetailField object. Themes give page developers full control over the appearance
 properties of the MasterDetailControl4 control that the MasterDetailField object renders.

 Using MasterDetailField
 Page developers can use the MasterDetailField data control field declaratively. Listing 20-9 shows a
page that uses an instance of the MasterDetailField declaratively. Note that this page uses a theme
that contains the following skin file:

 <asp:DetailsView SkinID=”RainyDay” runat=”server” Width=”100%” BackColor=”White”
BorderColor=”#999999” BorderStyle=”None” BorderWidth=”1px” CellPadding=”3”
GridLines=”Vertical”>
 <FooterStyle BackColor=”#CCCCCC” ForeColor=”Black” />
 <EditRowStyle BackColor=”#008A8C” Font-Bold=”True” ForeColor=”White” />
 <RowStyle BackColor=”#EEEEEE” ForeColor=”Black” />
 <PagerStyle BackColor=”#999999” ForeColor=”Black” HorizontalAlign=”Center” />
 <HeaderStyle BackColor=”#000084” Font-Bold=”True” ForeColor=”White” />
 <AlternatingRowStyle BackColor=”#DCDCDC” />
</asp:DetailsView>

<asp:DropDownList SkinID=”RainyDay2” runat=”server” BackColor=”White”
BorderColor=”#999999” BorderStyle=”None” BorderWidth=”1px” CellPadding=”3”
GridLines=”Vertical” Width=”100%”/>

 As Listing 20-9 shows, the SkinID property values of the preceding two control skins are assigned to
the MasterSkinID and DetailSkinID properties, respectively, of the MasterDetailField data
control field.

 Note that this page assumes that the following files are added to the App_Code directory of the applica-
tion that contains this page:

 ❑ BaseMasterDetailControl.cs : Listing 19-12 presents the content of this file.

❑ ContainterType.cs : Listing 19-13 presents the content of this file.

❑ MasterDetailContainer.cs : Listing 19-14 presents the content of this file.

❑ BaseMasterDetailControl2.cs : Listing 19-15 presents the content of this file.

❑ MasterDetailControl.cs : Listing 20-1 presents the content of this file.

❑ MasterDetailControl2.cs : Listing 20-3 presents the content of this file.

❑ MasterDetailControl4.cs : Listing 20-7 presents the content of this file.

c20.indd 940c20.indd 940 8/20/07 8:34:19 PM8/20/07 8:34:19 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

941

❑ MasterDetailField.cs: Listing 20-8 presents the content of this file.

❑ Product.cs : The following code listing presents the content of this file. (Notice that the
 ObjectDataSource control shown in Listing 20-9 uses the Product class defined in this file.)

 using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Data.SqlClient;

public class Product
{
 public static IEnumerable Select(string sortExpression)
 {
 string connectionString =
 ConfigurationManager.ConnectionStrings[“MyConnectionString”].ConnectionString;

 string commandText = “Select CategoryName, ProductName, ProductID,” +
 “Products.CategoryID As CategoryID From Products, Categories “ +
 “Where Products.CategoryID = Categories.CategoryID”;

 if (!string.IsNullOrEmpty(sortExpression))
 commandText += “ Order By “ + sortExpression;

 SqlConnection con = new SqlConnection(connectionString);
 SqlCommand com = new SqlCommand(commandText, con);
 con.Open();
 return com.ExecuteReader(CommandBehavior.CloseConnection);
 }

 public static void Update(int ProductID, string ProductName, int CategoryID)
 {
 string connectionString =
 ConfigurationManager.ConnectionStrings[“MyConnectionString”].ConnectionString;

 string commandText = “Update Products Set ProductName=@ProductName,” +
 “CategoryID=@CategoryID Where ProductID=@ProductID”;

 SqlConnection con = new SqlConnection(connectionString);
 SqlCommand com = new SqlCommand(commandText, con);
 com.Parameters.AddWithValue(“@ProductName”, ProductName);
 com.Parameters.AddWithValue(“@CategoryID”, CategoryID);
 com.Parameters.AddWithValue(“@ProductID”, ProductID);

 con.Open();
 com.ExecuteNonQuery();
 con.Close();
 }
}

c20.indd 941c20.indd 941 8/20/07 8:34:19 PM8/20/07 8:34:19 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

942

 Also note that the page shown in Listing 20-9 uses the same database (ProductsDB) and connection
string as the pages in the previous sections.

 Listing 20-9: Using the MasterDetailField Data Control Field Declaratively

 <%@ Page Language=”C#” Theme=”Theme1” %>

<%@ Register TagPrefix=”custom” Namespace=”CustomComponents” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>
</script>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />

 <asp:GridView ID=”gv2” runat=”Server” AutoGenerateColumns=”false”
 AllowSorting=”true” DataSourceID=”GridViewSource”
 AutoGenerateEditButton=”true” DataKeyNames=”ProductID”
 BackColor=”LightGoldenrodYellow” BorderColor=”Tan” BorderWidth=”1px”
 CellPadding=”2” ForeColor=”Black” GridLines=”None”>
 <FooterStyle BackColor=”Tan” />
 <SelectedRowStyle BackColor=”DarkSlateBlue” ForeColor=”GhostWhite” />
 <PagerStyle BackColor=”PaleGoldenrod” ForeColor=”DarkSlateBlue”
 HorizontalAlign=”Center” />
 <HeaderStyle BackColor=”Tan” Font-Bold=”True” />
 <AlternatingRowStyle BackColor=”PaleGoldenrod” />
 <Columns>
 <asp:BoundField DataField=”ProductName” HeaderText=”Product Name”
 SortExpression=”ProductName”/>

 <custom:MasterDetailField MasterSkinID=”RainyDay2”
 DetailSkinID=”RainyDay” EnableTheming=”true”
 DataValueField=”CategoryID” DataKeyNames=”CategoryID, DateCreated”
 DataTextField=”CategoryName” MasterDataSourceID=”MasterSource”
 SortExpression=”CategoryName” HeaderText=”Category Name”
 NullDisplayText=”Unknown” DetailDataSourceID=”DetailSource” />

 </Columns>
 </asp:GridView>
 <asp:ObjectDataSource ID=”GridViewSource” runat=”Server”
 SortParameterName=”sortExpression” TypeName=”Product” SelectMethod=”Select”
 UpdateMethod=”Update” />

 <asp:SqlDataSource ID=”MasterSource” runat=”Server”
 ConnectionString=”<%$ ConnectionStrings:MyConnectionString %>”
 SelectCommand=”Select * From Categories” />

c20.indd 942c20.indd 942 8/20/07 8:34:20 PM8/20/07 8:34:20 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

943

 <asp:SqlDataSource ID=”DetailSource” runat=”Server”
 ConnectionString=”<%$ ConnectionStrings:MyConnectionString %>”
 SelectCommand=”Select * From Categories Where CategoryID=@CategoryID”
 UpdateCommand=”Update Categories Set CategoryName=@CategoryName,
 CategoryDescription=@CategoryDescription,
 DateCreated=@DateCreated
 Where CategoryID=@CategoryID”
 InsertCommand=”Insert Into Categories (CategoryName, CategoryDescription)
 Values (@CategoryName, @CategoryDescription)”
 DeleteCommand=”Delete From Categories Where CategoryID=@CategoryID2”>
 <SelectParameters>
 <asp:SessionParameter Name=”CategoryID” SessionField=”SelectedValue” />
 </SelectParameters>
 <UpdateParameters>
 <asp:SessionParameter Name=”CategoryID” SessionField=”SelectedValue” />
 </UpdateParameters>
 <DeleteParameters>
 <asp:SessionParameter Name=”CategoryID2” SessionField=”SelectedValue” />
 </DeleteParameters>
 </asp:SqlDataSource>
 </form>
</body>
</html>

 If you run this page, you’ll get the result shown in Figure 20-5 . Now, if you click the Edit link on the fifth
row, you’ll get the result shown in Figure 20-6 . As you can see, the Category cell now contains the
 MasterDetailControl4 server control, which consists of a DropDownList master server control and
a DetailsView detail server control.

Figure 20-5

c20.indd 943c20.indd 943 8/20/07 8:34:20 PM8/20/07 8:34:20 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

944

 Note that the DetailsView detail server control contains the standard Edit, Delete, and New buttons to
enable the end user to edit an existing category, delete a category, and add a new category. If you click
the Edit button, you’ll get the result shown in Figure 20-7 .

Figure 20-6

Figure 20- 7

c20.indd 944c20.indd 944 8/20/07 8:34:20 PM8/20/07 8:34:20 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

945

 The great thing about the MasterDetailField is that it takes full advantage of the ASP.NET AJAX
 partial page rendering infrastructure where all these operations are performed asynchronously in the
background without interrupting the user interaction with the current page and without causing
 the entire page to reload.

 Developing Par tial-Rendering-Enabled
User Controls

 The previous section showed you how to develop custom server controls that take full advantage of the
ASP.NET AJAX partial page rendering infrastructure to:

 ❑ Perform page postbacks to the server asynchronously, without interrupting the user interaction

❑ Update themselves without causing the entire page to reload

 This section will show you how to develop user controls that achieve similar goals. To make our discus-
sions more concrete, I’ll develop a partial-rendering-enabled threaded discussion forum user control that
you can use in your own Web applications. Before diving into the details of the implementation of this
user control, let’s see what it looks like in action. Figure 20-8 shows this user control.

Figure 20- 8

 As you can see, this user control consists of two main parts: the top part is a TreeView server control
that displays the subjects of all the messages of the threaded discussion forum. When the end user clicks
a given subject, the DetailsView control at the bottom of the user control displays detailed information
about the message, including its body. Note that this DetailsView control contains the standard Reply,
Edit, and Delete buttons to enable the end user to reply to, edit, or delete a message. For example, when
the end user clicks the Reply button, the page shown in Figure 20-9 is displayed, which includes the user
interface that enables the user to enter the reply to the specified message.

c20.indd 945c20.indd 945 8/20/07 8:34:21 PM8/20/07 8:34:21 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

946

 Listing 20-10 presents the implementation of the partial-rendering-enabled threaded discussion forum
user control. As you can see from this code listing, this user control consists of two UpdatePanel server
controls with ID property values of MasterUpdatePanel and DetailUpdatePanel . Note that the
 UpdateMode properties of both UpdatePanel server controls are set to Conditional to ensure that they
get updated only when the required conditions are met.

 Notice that the top and bottom UpdatePanel server controls respectively contain the TreeView and
 DetailsView server controls discussed earlier. Since the TreeView and DetailsView server controls
are the children of these UpdatePanel server controls and since these UpdatePanel server controls
update conditionally, the partial-rendering-enabled threaded discussion forum user control takes full
advantage of the ASP.NET AJAX partial rendering infrastructure to ensure that all the communications
with the backend server are done asynchronously in the background without interrupting the end user’s
interactions with the page that contains the user control, and to ensure that all the page updates are lim-
ited to the associated UpdatePanel server controls without reloading the entire page all over again.

Figure 20- 9

c20.indd 946c20.indd 946 8/20/07 8:34:21 PM8/20/07 8:34:21 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

947

 Listing 20-10: The Partial-Rendering-Enabled Threaded Discussion Forum User Control

 <%@ Control Language=”C#” ClassName=”ThreadedDiscussionForum” %>
<%@ Import Namespace=”System.Xml” %>
<%@ Import Namespace=”System.IO” %>
<%@ Import Namespace=”System.Xml.XPath” %>

<script runat=”server”>
 public string DataFile
 {
 get { return MySource.DataFile; }
 set
 {
 MySource.DataFile = value;
 MySource2.DataFile = value;
 }
 }

 void DataBound(Object sender, TreeNodeEventArgs e)
 {
 if (((XmlNode)e.Node.DataItem).LocalName == “Message”)
 e.Node.Text = XPathBinder.Eval(e.Node.DataItem, “Subject”).ToString() +
 “, by “ +
 XPathBinder.Eval(e.Node.DataItem, “@UserName”).ToString() +
 “ “ +
 XPathBinder.Eval(e.Node.DataItem, “@AddedDate”).ToString();
 }

 void SelectedNodeChanged(object sender, EventArgs e)
 {
 MySource2.XPath = TreeView1.SelectedNode.DataPath;

 if (DetailsView1.CurrentMode != DetailsViewMode.ReadOnly)
 DetailsView1.ChangeMode(DetailsViewMode.ReadOnly);

 DetailUpdatePanel.Update();
 }
 void DetailsView_ItemCommand(object sender, DetailsViewCommandEventArgs e)
 {
 switch (e.CommandName)
 {
 case “SubmitUpdate”:
 Update();
 break;
 case “SubmitInsert”:
 Insert();
 break;
 case “SubmitDelete”:
 Delete();
 break;
 }

(continued)

c20.indd 947c20.indd 947 8/20/07 8:34:22 PM8/20/07 8:34:22 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

948

 Listing 20-10 (continued)

 MasterUpdatePanel.Update();
 }

 void Insert()
 {
 TextBox subject1 = (TextBox)DetailsView1.FindControl(“InsertSubject”);
 TextBox body1 = (TextBox)DetailsView1.FindControl(“InsertBody”);

 XmlDocument doc = MySource2.GetXmlDocument();
 XmlElement message = doc.CreateElement(“Message”);
 XmlNode parent;

 if (ViewState[“NewThread”] == null)
 parent = doc.SelectSingleNode(TreeView1.SelectedNode.DataPath);

 else
 {
 ViewState.Remove(“NewThread”);
 parent = doc.DocumentElement;
 }

 parent.AppendChild(message);
 message.SetAttribute(“AddedDate”, DateTime.Now.ToShortDateString());
 message.SetAttribute(“UserName”, this.Context.User.Identity.Name);
 XmlElement subject = doc.CreateElement(“Subject”);
 message.AppendChild(subject);
 subject.InnerText = subject1.Text;
 XmlElement body = doc.CreateElement(“Body”);
 message.AppendChild(body);
 body.InnerText = body1.Text;
 Save();
 }

 void Update()
 {
 TextBox subject1 = (TextBox)DetailsView1.FindControl(“EditSubject”);
 TextBox body1 = (TextBox)DetailsView1.FindControl(“EditBody”);

 XmlDocument doc = MySource2.GetXmlDocument();

 string subjectPath = TreeView1.SelectedNode.DataPath + “/Subject”;
 XmlNode subject = doc.SelectSingleNode(subjectPath);
 subject.InnerText = subject1.Text;

 string bodyPath = TreeView1.SelectedNode.DataPath + “/Body”;
 XmlNode body = doc.SelectSingleNode(bodyPath);
 body.InnerText = body1.Text;

 Save();
 }

c20.indd 948c20.indd 948 8/20/07 8:34:22 PM8/20/07 8:34:22 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

949

 void Delete()
 {
 XmlDocument doc = MySource2.GetXmlDocument();
 XmlNode message = doc.SelectSingleNode(TreeView1.SelectedNode.DataPath);
 message.ParentNode.RemoveChild(message);
 MySource2.XPath = “”;
 Save();
 }

 void Save()
 {
 MySource2.Save();
 if (DetailsView1.CurrentMode != DetailsViewMode.ReadOnly)
 DetailsView1.ChangeMode(DetailsViewMode.ReadOnly);

 Cache.Remove(“MyKey”);
 TreeView1.DataBind();
 }

 void NewThreadClick(object sender, EventArgs e)
 {
 DetailsView1.ChangeMode(DetailsViewMode.Insert);
 ViewState[“NewThread”] = “NewThread”;
 }

</script>

<asp:LinkButton ID=”NewThread” runat=”server”
 OnClick=”NewThreadClick”>New Thread</asp:LinkButton>

<asp:UpdatePanel runat=”server” ID=”MasterUpdatePanel” UpdateMode=”Conditional”>
 <ContentTemplate>
 <asp:TreeView ID=”TreeView1” runat=”Server” AutoGenerateDataBindings=”False”
 OnSelectedNodeChanged=”SelectedNodeChanged” DataSourceID=”MySource”
 OnTreeNodeDataBound=”DataBound” ImageSet=”Simple”>
 <SelectedNodeStyle BackColor=”DarkSlateBlue” ForeColor=”GhostWhite” />
 <DataBindings>
 <asp:TreeNodeBinding DataMember=”Message” TextField=”UserName” />
 </DataBindings>
 <NodeStyle Font-Names=”Tahoma” Font-Size=”10pt” ForeColor=”Black” />
 <HoverNodeStyle BackColor=”DarkSlateBlue” ForeColor=”GhostWhite” />
 </asp:TreeView>
 </ContentTemplate>
</asp:UpdatePanel>

(continued)

c20.indd 949c20.indd 949 8/20/07 8:34:22 PM8/20/07 8:34:22 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

950

 Listing 20-10 (continued)

<asp:UpdatePanel runat=”server” ID=”DetailUpdatePanel” UpdateMode=”Conditional”>
 <ContentTemplate>
 <asp:DetailsView ID=”DetailsView1” runat=”Server” DataSourceID=”MySource2”
 AutoGenerateRows=”false” OnItemCommand=”DetailsView_ItemCommand”>
 <Fields>
 <asp:TemplateField>
 <ItemTemplate>
 <table bgcolor=”#DCDCDC” border=”1” width=”500px”>
 <tr bgcolor=”#000080” style=”color: white”>
 <td style=”border: 0px”>
 <table border=”0” width=”100%” bgcolor=”#00008”
 style=”color: white”>
 <tr>
 <td align=”left” style=”font-style: italic”>

 <%# XPath(“Subject/text()”) %>
 <small>, <%# XPath(“@UserName”) %>
 <%# XPath(“@AddedDate”) %>
 </small>
 </td>
 <td align=”right”>
 <asp:LinkButton ID=”LinkButton1” ForeColor=”White”
 runat=”server” CommandName=”New”
 Visible=’<%# Context.User.Identity.IsAuthenticated %>’>
 Reply
 </asp:LinkButton>

 <asp:LinkButton ID=”LinkButton2” ForeColor=”White”
 runat=”server” CommandName=”Edit”
 Visible=’<%# Context.User.Identity.IsAuthenticated %>’>
 Edit
 </asp:LinkButton>

 <asp:LinkButton ID=”LinkButton3” ForeColor=”White”
 runat=”server” CommandName=”SubmitDelete”
 Visible=’<%# Context.User.Identity.IsAuthenticated %>’>
 Delete
 </asp:LinkButton>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td style=”border: 0px”>
 <%# XPath(“Body/text()”) %>
 </td>
 </tr>

c20.indd 950c20.indd 950 8/20/07 8:34:22 PM8/20/07 8:34:22 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

951

 </table>
 </ItemTemplate>
 <InsertItemTemplate>
 <table width=”500px” style=”color: black; background-color: #dcdcdc”>
 <thead align=”center”
 style=”font-weight: bold; color: white; background-color: #000084”>
 <tr>
 <td>
 Reply</td>
 </tr>
 </thead>
 <tr>
 <td>
 Subject:

 <asp:TextBox BackColor=”#EEEEEE” ID=”InsertSubject”
 runat=”server” Width=”100%” />
 </td>
 </tr>
 <tr>
 <td>
 Body:

 <asp:TextBox ID=”InsertBody” runat=”server” BackColor=”#EEEEEE”
 Width=”100%” TextMode=”MultiLine” Rows=”15” />
 </td>
 </tr>
 <tr>
 <td align=”center”>
 <asp:Button ID=”Submit” runat=”server” Text=”Submit”
 Font-Bold=”True” CommandName=”SubmitInsert” />
 <asp:Button ID=”Button2” runat=”server” Text=”Cancel”
 Font-Bold=”True” CommandName=”Cancel” />
 </td>
 </tr>
 </table>
 </InsertItemTemplate>
 <EditItemTemplate>
 <table width=”500px” style=”color: black; background-color: #dcdcdc”>
 <thead align=”center”
 style=”font-weight: bold; color: white; background-color: #000084”>
 <tr>
 <td>
 Edit</td>
 </tr>
 </thead>

(continued)

c20.indd 951c20.indd 951 8/20/07 8:34:23 PM8/20/07 8:34:23 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

952

 Listing 20-10 (continued)

 <tr>
 <td>
 Subject:

 <asp:TextBox BackColor=”#EEEEEE” ID=”EditSubject” runat=”server”
 Width=”100%” Text=’<%# XPath(“Subject/text()”) %>’ />
 </td>
 </tr>
 <tr>
 <td>
 Body:

 <asp:TextBox ID=”EditBody” runat=”server” BackColor=”#EEEEEE”
 Width=”100%” TextMode=”MultiLine” Rows=”15” />
 </td>
 </tr>
 <tr>
 <td align=”center”>
 <asp:Button ID=”EditSubmit” runat=”server” Text=”Update”
 Font-Bold=”True” CommandName=”SubmitUpdate” />
 <asp:Button ID=”Button1” runat=”server” Text=”Cancel”
 Font-Bold=”True” CommandName=”Cancel” />
 </td>
 </tr>
 </table>
 </EditItemTemplate>
 </asp:TemplateField>
 </Fields>
 </asp:DetailsView>
 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID=”NewThread” EventName=”Click” />
 </Triggers>
</asp:UpdatePanel>

<asp:XmlDataSource ID=”MySource” runat=”Server” EnableCaching=”true”
 CacheDuration=”300” CacheExpirationPolicy=”Sliding” CacheKeyDependency=”MyKey”
 XPath=”/Messages/Message” />

<asp:XmlDataSource ID=”MySource2” runat=”Server” />

c20.indd 952c20.indd 952 8/20/07 8:34:23 PM8/20/07 8:34:23 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

953

 The partial-rendering-enabled threaded discussion forum uses an XML document as its underlying data
store. Listing 20-11 shows part of the XML document.

 Listing 20-11: Part of the XML Document that Stores the Messages

 <?xml version=”1.0” encoding=”utf-8”?>
<Messages>
 <Message AddedDate=”1/15/2007” UserName=”User1”>
 <Subject>Looking for a good book on ASP.NET</Subject>
 <Body>I’m looking for a book with lot of examples.</Body>
 <Message AddedDate=”1/16/2007” UserName=”User2”>
 <Subject>Are you looking for a book for beginners?</Subject>
 <Body>What kind of book are you looking for?</Body>
 <Message AddedDate=”1/16/2007” UserName=”User1”>
 <Subject>Books for beginers with lot of examples</Subject>
 <Body>I’m looking for a book with lot of examples</Body>
 <Message AddedDate=”1/16/2007” UserName=”User3”>
 <Subject>What sort of examples?</Subject>
 <Body>Could you be more specific?</Body>
 <Message AddedDate=”1/16/2007” UserName=”User1”>
 <Subject>Examples with practical applications</Subject>
 <Body>Code examples that I could use in my work</Body>
 </Message>
 </Message>
 </Message>
 </Message>
 <Message AddedDate=”1/16/2007” UserName=”User4”>
 <Subject>New ASP.NET books are coming out</Subject>
 <Body>You may want to checkout amazon.com for new books on ASP.NET</Body>
 <Message AddedDate=”1/16/2007” UserName=”User1”>
 <Subject>Thanks, I will</Subject>
 <Body>I will check out amazon.com. I may get lucky there.</Body>
 </Message>
 </Message>
 </Message>
 <Message AddedDate=”1/16/2007” UserName=”User5”>
 <Subject>Any one has code examples for data source controls</Subject>
 <Body>I need code examples that show how to use data source controls in big
 applications</Body>
 <Message AddedDate=”1/16/2007” UserName=”User6”>
 <Subject>What type of data source controls?</Subject>
 <Body>There are all kinds of data source controls. Which ones are you
 planning on using?</Body>
 </Message>
 </Message>
</Messages>

c20.indd 953c20.indd 953 8/20/07 8:34:23 PM8/20/07 8:34:23 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

954

 A <Message> element represents a posted message in which the <Subject> and <Body> child elements
contain the subject and body, respectively. The AddedDate and UserName attributes of a given
<Message> element represent the date on which the message was added and the user name of the
author, respectively. As Listing 20-10 shows, the partial-rendering-enabled threaded discussion forum
user control uses an XmlDataSource server control to interact with the underlying XML document.

 The XmlDataSource control must first load the document into memory. The XmlDataSource control
uses the W3C DOM model to load the entire contents of the messages.xml file into an instance of the
 XmlDocument class and generates the in-memory tree representation of the document, as shown in
 Figure 20-10 .

 Let us compare the XmlDataSource and SqlDataSource loading models. The SqlDataSource control
loads the underlying database tables into an instance of the DataSet class, and generates the in-memory
tabular representation of the underlying tables. The in-memory tabular representation consists of inter-
connected rows, each of which is an instance of the DataRow class.

 Now compare that with the in-memory tree representation such as the one shown in Figure 20-10 , which
consists of interconnected nodes, each of which is an instance of the XmlNode class. The XmlNode class is
an abstract class that represents any type of node. Each of its subclasses represents a particular type of
node. For instance, the XmlElement subclass represents element nodes, such as <Message> , <Subject> ,
and <Body> , while the XmlAttribute subclass represents attribute nodes, such as AddedDate and
 UserName .

 When you select, delete, insert, or update a row in a DataSet object, you do not directly select, delete,
insert, or update the corresponding row in the underlying database table because the DataSet object is
not connected to the database. In other words, you select, delete, insert, or update the row in the
in-memory tabular representation of the database table, not the database table itself. That is why the
changes made to the in-memory tabular representation must be explicitly committed to the underlying
database tables.

 The same logic applies to the XmlDocument object that has been loaded with the data from the underly-
ing messages.xml file. When you select, delete, insert, or update a node in the XmlDocument object, you
do not directly select, delete, insert, or update the corresponding node in the underlying XML document,
because the XmlDocument object is not connected to the underlying XML file itself. You are really
 manipulating the node in the in-memory tree representation of the XML document, not the file itself.

Message Message

AddedDate Message Message MessageUserName

Message

Subject Body

AddedDate Message MessageUserNameSubject Body

AddedDate UserNameSubject Body

text() text()

text() text()

text() text()

Root

Messages

Figure 20- 10

c20.indd 954c20.indd 954 8/20/07 8:34:23 PM8/20/07 8:34:23 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

955

Again, that is why the changes to made the in-memory tree representation must be explicitly committed
to the underlying XML file.

 In order to select, delete, insert, or update a row or node, you have to first select, delete, insert, or update
the row or node in the corresponding tabular or tree representation and then commit the changes to the
underlying data store. Since a tabular or tree representation is a collection of rows or nodes, you cannot
select, delete, insert, or update a row or node in the collection unless you have a way to locate and iden-
tify that row or node.

 Page developers use the primary key of a row to uniquely locate and identify the row in the underlying
tabular representation. The primary key of a row plays a crucial role in data operations because without
it there is no way to know which row is being selected, deleted, updated, or inserted. The XPath data
model uses a concept known as hierarchical or location path to uniquely locate or identify a node in the
tree hierarchy. The hierarchical or location paths play the same role in a tree hierarchy that primary keys
play in a tabular representation. Without it there is no way to know which node is being selected,
deleted, updated, or inserted.

 As Figure 20-10 shows, every node in the tree is the root node of yet another tree, unless the node is a
leaf node. This means the tree is a hierarchy of trees of which each tree is built out of smaller trees. Since
you have to locate the root node of a subtree in order to locate the subtree itself, the location of the root
node of a subtree uniquely identifies the subtree in the hierarchy of trees. This means that the hierarchi-
cal path of a node in a tree hierarchy uniquely identifies and locates not only the node itself but also the
subtree associated with the node.

 The primary key of a row is normally an autogenerated integer number with a unique value. The hierar-
chical or location path of a node, on the other hand, is built out of the location steps of its ancestor nodes
all the way up to the root node of the entire tree hierarchy. The hierarchical path of a node is based on an
imaginary journey from the root node of the tree all the way down to the node itself. The journey con-
sists of several location steps. Each location step takes you from your current node to the next. Let us
consider an example. Suppose you want to locate the gray node in Figure 20-10 .

 The journey begins at the root node of the entire tree hierarchy. The XPath data model uses the notation /
 to represent the root node. The first location step, Messages[position()=1] , takes you from the root
node to the Messages node. So far the location path is /Messages[position()=1] .

 The second location step, Message[position()=1] , takes you from the Messages node to the first
 Message node. The location path so far is /Messages[position()=1]/Message[position()=1] .
The third location step, Message[position()=3] , takes you from the current Message node to the next
 Message node. The location path is now /Messages[position()=1]/Message[position()=1]/
Message[position()=3] . The final location step, Message[position()=3] , takes you to the destina-
tion, the gray node. Therefore the location path of the gray node is as follows:

 /Messages[position()=1]/Message[position()=1]/Message[position()=3]/
Message[position()=3]

 As the example shows, the loation path of a node, such as the gray node, uniquely identifies and locates
the node and its associated subtree in the tree hierarchy.

 The XmlDataSource control provides hierarchical data-bound controls such as TreeView and Menu
with the hierarchical views of the underlying XML document. A hierarchical view represents a particular
subtree in the in-memory tree representation of the document. Therefore the hierarchical path of the root

c20.indd 955c20.indd 955 8/20/07 8:34:24 PM8/20/07 8:34:24 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

956

node of a subtree uniquely identifies the hierarchical view that represents the subtree. That is why the
hierarchical path of the root node of a subtree is also referred to as a view path. Every hierarchical view
has a unique view path.

 As we discussed earlier, the user interface of the partial-rendering-enabled threaded discussion forum
user control consists of a TreeView and a DetailsView control. The TreeView control displays the sub-
ject, added date, and user name of all the message nodes of the tree hierarchy. The TreeView and
 DetailsView controls create a master/detail form in which the user selects a message from the
TreeView control to see its details in the DetailsView control. The DetailsView control also enables
users to edit, delete, or reply to the selected message, or to start a new thread of discussion.

 The DetailsView control therefore does not display, edit, delete, or reply to all the message nodes of the
tree. It only displays, edits, deletes, or replies to the message node that the user has selected from the
 TreeView control. This means that the DetailsView control must first locate the selected message
node in the underlying tree representation. The only way to locate a node in a tree is to find out its hier-
archical or location path. Let us see how the DetailsView control accesses the hierarchical path of the
selected message.

 The TreeView control creates an instance of the TreeNode class for each message node it displays and
sets its DataPath property to the hierarchical or location path of the message node. When the user
selects a message from the TreeView control, the SelectedNode property of the control is set to the
 TreeNode object that represents the selected message node. Therefore the DetailsView control can
 easily use the DataPath property of the SelectedNode object of the TreeView control to access the
hierarchical path of the selected message node, TreeView1.SelectedNode.DataPath .

 One of the responsibilities of the DetailsView control is to use the hierarchical path of the selected mes-
sage node to locate the node in the underlying tree representation, extract its details, and display them to
users. Thanks to the new ASP.NET 2.0 data source and data-bound model this is all done automatically.
All you need to do is to set the XPath property of the XmlDataSource associated with the DetailsView
control to the hierarchical path of the selected message node. You an do this easily in the callback for the
 SelectedNodeChanged event of the TreeView control:

 void SelectedNodeChanged(object sender, EventArgs e)
 {
 MySource2.XPath = TreeView1.SelectedNode.DataPath;
 if (dv.CurrentMode != DetailsViewMode.ReadOnly)
 dv.ChangeMode(DetailsViewMode.ReadOnly);
 }

 Setting the XPath property of the XmlDataSource control associated with the DetailsView control
(MySource2) to the hierarchical path of the selected message node is all it takes to have the
 DetailsView control extract the details of the selected message node from the tree and display
them. Let us see what makes this possible.

 The DetailsView control internally registers a callback for the DataSourceChanged event of its associ-
ated XmlDataSource control, i.e. MySource2 . The XmlDataSource control raises the event when one of
the following conditions is met:

 ❑ One or more of its properties change value.

❑ The underlying data store changes because of a delete, update, or insert operation.

c20.indd 956c20.indd 956 8/20/07 8:34:24 PM8/20/07 8:34:24 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

957

 Therefore, setting the XPath property of the XmlDataSource control raises the DataSourceChanged
event and calls the internal callback function by which the DetailsView control uses the
XmlDataSource control to automatically extract the details of the selected message node from the
underlying tree and displays them to users.

 The great thing about the DetailsView control is that it allows all operations (display, edit, delete, reply,
and add a new thread) to be handled within the same server control, the DetailsView control. You
switch from one operation to another by switching the mode of the DetailsView control. The
DetailsView control can be in one of the three possible modes: DetailsViewMode.ReadOnly ,
 DetailsViewMode.Edit , and DetailsViewMode.Insert .

 When the user selects a message from the TreeView control, the DetailsView control is switched to the
 DetailsViewMode.ReadOnly mode, in which the details of the selected message are displayed. When
the user clicks the Edit button of the DetailsView control, the DetailsView control is switched to the
 DetailsViewMode.Edit mode, in which the user can edit the selected message. When the user
clicks the Reply button of the DetailsView control, the DetailsView control is switched to the
DetailsViewMode.Insert mode, in which the user can reply to the selected message. When the user
clicks the New Thread button, the DetailsView control is switched to the DetailsViewMode.Insert
mode, in which the user can start a new thread.

 Displaying all Messages
 The TreeView control uses the following XmlDataSource control to extract all the message nodes from
the tree:

 <asp:XmlDataSource ID=”MySource” Runat=”Server”
 EnableCaching=”true” CacheDuration=”300”
 CacheExpirationPolicy=”Sliding” CacheKeyDependency=”MyKey”
 DataFile=”messages.xml” XPath=”/Messages/Message” />

 The XPath property operates like the SelectCommand attribute of the SqlDataSource control — that is,
it specifies which message nodes will be selected. In this case it is set to the value “ /Messages/
Message” to extract all the message nodes.

 Accessing the underlying data store is one of the most time-consuming operations in data-driven Web
applications. Page developers normally cache data query results in the Cache object to improve perfor-
mance. The XmlDataSource control enables you to cache data without writing a single line of code. All
you have to do is to set the EnableCaching , CacheDuration , and CacheExpirationPolicy proper-
ties of the XmlDataSource control. The possible values of CacheExpirationPolicy are Sliding and
 Absolute .

 Automatic caching is possible because the XmlDataSource control uses W3C DOM APIs to load the
entire XML document into memory. The streaming load model, on the other hand, does not allow
 caching because only the current node is kept in memory.

 The downside of every caching is the problem of stale data. The problem occurs when the underlying
data store changes but the application still displays out-of-date information. The XmlDataSource
 control, like any other ASP.NET component, internally uses the Insert method of the Cache object to
cache the XML document if its caching feature is enabled. The Insert method takes an argument that
specifies a cache key. This cache key is an arbitrary key under which some arbitrary information is

c20.indd 957c20.indd 957 8/20/07 8:34:24 PM8/20/07 8:34:24 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

958

cached in the Cache object. The Insert method internally establishes a dependency between the cache
key under which the XML document is cached and the cache key passed into the method. This means
that if you invalidate the cache key passed into the Insert method as its argument, you’ll automatically
invalidate the cache key under which the XML document is cached, because of the dependency
between these two cache keys. The XmlDataSource control exposes a public property named
CacheKeyDependency , which you must set to the cache key that you want the control to pass into
the Insert method of the Cache object when it is caching the XML document.

 You will see later that the callbacks for the Delete, Update, and Edit operations in the DetailsView
 control call the Remove method of the Cache object to invalidate the data cached under the key specified
in the CacheKeyDependency property, and consequently to invalidate the cached XML document. The
next time the page is accessed, the XmlDataSource control will extract fresh data from the underlying
XML document. This automatically resolves the problem of stale data.

 The application also registers the DataBound method as the callback for the TreeNodeDataBound event
of the TreeView control, in which it specifies what information to display for each message:

 void DataBound(Object sender, TreeNodeEventArgs e)
 {
 if (((XmlNode)e.Node.DataItem).LocalName == “Message”)
 e.Node.Text = XPathBinder.Eval(e.Node.DataItem, “Subject”).ToString() +
 “, by “ +
 XPathBinder.Eval(e.Node.DataItem, “@UserName”).ToString() +
 “ “ +
 XPathBinder.Eval(e.Node.DataItem, “@AddedDate”).ToString();
 }

 The Eval method of the XPathBinder takes two arguments. The first argument is the object against
which a given XPath expression is evaluated. The second argument is the XPath expression being evalu-
ated. The first argument accepts only objects whose classes implement the IXPathNavigable interface.
This is because the Eval method simply calls the CreateNavigator method of the object to access its
 XPathNavigator object. The Eval method then calls the Select method of the XPathNavigator object
and passes the XPath expression as its argument.

 Let us take a look at the XPath expressions used as the second arguments of the Eval method calls
 Subject , @UserName , and @AddedDate . These expressions refer to the <Subject> child element and
the UserName and AddedDate attributes of the selected message node. As Figure 20-10 shows, the
<Subject> child element and UserName and AddedDate attributes are themselves nodes of the tree
 hierarchy. Therefore the XPath expressions are nothing but the location steps that take you from
 the selected message node to the Subject , UserName , and AddedDate nodes. The Select method of the
 XPathNavigator object uses these location steps to locate these nodes and return references to them.

 Displaying the Details of a Message
 Since the DetailsView control is bound to an XmlDataSource control in which every data item imple-
ments the IXPathNavigable interface, it uses XPathBinder in its data-binding expressions. XPath is

c20.indd 958c20.indd 958 8/20/07 8:34:25 PM8/20/07 8:34:25 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

959

the short version of XPathBinder.Eval(Container.DataItem, xpathexpression, format) . The
 DetailsView control uses four XPath data-binding expressions:

 1. XPath(“Subject/text()”) returns the subject of the selected message node. The text()
function returns the text within the opening and closing tags of the <Subject> element in the
XML document. As Figure 20-10 shows, the text itself is a node in the tree hierarchy. The XPath
expression Subject/text() is therefore a location path that takes us from the selected message
node to the text node.

2. XPath(“Body/text()”) returns the body of the selected message node.

3. XPath(“@AddedDate”) returns the value of the AddedDate attribute of the selected <Message>
element. As Figure 20-10 shows, the attribute itself is a node.

4. XPath(“@UserName”) returns the value of the UserName attribute of the selected <Message>
element.

 The DetailsView control and its associated XmlDataSource control work together to automatically dis-
play the details of the message node that the user selects from the TreeView control. In other words, the
select operation is done automatically. However, XmlDataSource does not provide automatic support
for delete, update, and insert operations. The application must explicitly handle these operations.

 Deleting a Message
 The ItemTemplate section of the DetailsView control contains the Delete button. The DetailsView
control provides built-in support for deleting items. Page developers need only add a new Delete button
to the ItemTemplate section and set its CommandName property to Delete . When the user clicks the
Delete button, the DetailsView control checks the value of the CanDelete property of its associated
view object. If it is true , the control calls the Delete method of the view object; otherwise it throws
an exception. The CanDelete property value is true only when the view object implements the
 Delete method.

 However, the XmlDataSourceView class does not implement the Delete method. Therefore the
 application must not set the CommandName property of the Delete button to the value “Delete,” or an
exception will be thrown when the button is clicked. The application sets the CommandName property of
the Delete button to the value “SubmitDelete” instead, and registers the DetailsView_ItemCommand
method as the callback for the ItemCommand event of the DetailsView control to handle the delete
event. Later you will see that the DetailsView_ItemCommand method will also be used to handle the
update and insert events.

 The method calls the Delete method to handle the delete event. As discussed before, the XmlDataSource
control uses the W3C DOM APIs to load the entire messages.xml file into memory and creates an
in-memory tree representation of the XML document. The great thing about the W3C DOM model is
that it enables page developers to add, update, and delete nodes from the in-memory tree. The
XmlDataSource control exposes a method named GetXmlDocument that returns a reference to the
 underlying XmlDocument object.

c20.indd 959c20.indd 959 8/20/07 8:34:25 PM8/20/07 8:34:25 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

960

 As you can see from the implementation of the Delete method shown in Listing 20-10 , deleting a node
from the tree hierarchy involves the following four steps:

 1. Find out the hierarchical path of the node to be deleted. Since the message node being deleted is
the node that the user selected from the TreeView control, the value of the DataPath property
of the SelectedNode of the TreeView control is the hierarchical path of the node being deleted.

2. Call the SelectSingleNode method of the XmlDocument object and pass the hierarchical path
of the node as its argument. The method uses the hierarchical path to locate the message node in
the tree:

 XmlNode message = doc.SelectSingleNode(TreeView1.Selected.DataPath);

 3. Access the parent node of the node being deleted:

 XmlNode parent = message.ParentNode;

 4. Call the RemoveChild method of the parent node to delete the node from the tree:

 parent.RemoveChild(message);

 The Delete method then calls the Save method. As you can see from Listing 20-10 , the Save method
takes care of the following issues:

 ❑ Removing the selected message node from the in-memory tree hierarchy does not automatically
remove the message from the underlying data store — that is, the XML document. The Save
method calls the Save method of the associated XmlDataSource control to propagate the
changes to the XML document.

❑ Recall that the XmlDataSource control associated with the TreeView control caches the XML
document in the Cache object. Since the Delete method changes the underlying data store, it
must call the Remove method of the Cache object to invalidate the cached data, otherwise the
 TreeView control will show out-of-date data.

❑ The DataBind method of the TreeView control must be called to update the TreeView control
display. Since the cached data has already been invalidated, the DataBind method will extract
fresh data from the underlying XML document.

❑ The DetailsView control must be switched back to its ReadOnly mode.

 Updating a Message
 The ItemTemplate section of the DetailsView control contains the Edit button. Since the CommandName
property of the button is set to “ Edit ”, when the user clicks the button the DetailsView control
 automatically switches to DetailsViewMode.Edit mode, in which it renders the contents of its
 EditItemTemplate section, including the Update and Cancel buttons.

 When the Cancel button is clicked, the DetailsView control automatically switches back to the
 DetailsViewMode.ReadOnly mode, in which it renders the contents of its ItemTemplate section.
Notice that the CommandName property of the Update button is not set to “ Update ” for the same reason

c20.indd 960c20.indd 960 8/20/07 8:34:25 PM8/20/07 8:34:25 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

961

that the CommandName property of the Delete button was not set to “ Delete ”. The application sets the
property to “ SubmitUpdate ” and uses the DetailsView_ItemCommand method to handle the event.
The method calls the Update method to handle the Update event. As you can see from Listing 20-10 , the
 Update method first extracts the new values for the subject and body of the selected message. Updating
a node in the tree hierarchy involves the following steps:

 1. Find out the hierarchical path of the node to be updated.

 Since the message node being updated is the message that the user selected from the TreeView
control, the value of the DataPath property of the SelectedNode of the TreeView control is
the hierarchical path of the message node. However, you want to update the child nodes (the
subject and body nodes) of the message node, not the message node itself.

 Recall that the hierarchical path of a node takes you from the root node of the tree, node by
node, all the way down to the node itself. The hierarchical path consists of location steps, each of
which takes you from your current node to the next. This means that you need to add another
location step to the hierarchical path of the message node to go from the message node to its
child nodes, the subject and body nodes. Therefore the hierarchical paths of the subject and
body nodes are as follows:

 string subjectPath = TreeView1.SelectedNode.DataPath + “/Subject”;
sring bodyPath = TreeView1.SelectedNode.DataPath + “/Body”;

 2. Call the SelectSingleNode method of the XmlDocument object and pass the hierarchical path
of the node to access the node in the tree:

 XmlNode subject = doc.SelectSingleNode(subjectPath);
XmlNode body = doc.SelectSingleNode(bodyPath);

 3. Update the node:

 subject.InnerText = subject1.Text;
body.InnerText = body1.Text;

 Notice that the SelectSingleNode method returns the reference to the actual node in the tree. This
enables you to directly update the properties of the subject and body nodes. At the end, the Update
method calls the Save method, exactly as the Delete method did.

 Replying to a Message
 The ItemTemplate property of the DetailsView control contains the Reply button. Since the
CommandName property of the button is set to “ New ”, when the user clicks the button the DetailsView
control automatically switches to the DetailsViewMode.Insert mode, in which the control renders
the contents of its InsertItemTemplate section that also includes the Insert button.

 Notice that the CommandName property of the Insert button is not set to “ Insert” for the same
 reason that the CommandName properties of the Delete and Update buttons were not set to
“Delete” and “Update” . The application sets the property to “SubmitInsert” and uses the
DetailsView_ItemCommand method to handle the event. The method calls the Insert method to

c20.indd 961c20.indd 961 8/20/07 8:34:26 PM8/20/07 8:34:26 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

962

 handle the Insert event. Listing 20-10 shows the code for the Insert method. Adding a new element
node to the tree hierarchy involves the following six steps:

 1. Call the CreateElement method of the XmlDocument object to create the new element node.

2. Set the properties of the new element node.

3. Call the SetAttribute method of the new element node to set its attributes.

4. Find out the hierarchical path of the element node that will act as the parent node of the new
 element node.

5. Call the SelectSingleNode method of the XmlDocument object and pass the hierarchical path
of the parent node as its argument to access the parent node in the tree.

6. Call the AppendChild method of the parent node to add the new element node to the tree as its
child node.

 The Insert method creates three element nodes and adds them to the tree hierarchy. The first element
node represents the reply message itself. The second and third element nodes represent the subject and
body of the reply message, respectively. The Insert method follows the preceding six steps for each
 element node that it creates and adds to the tree hierarchy. For instance, consider the six steps for the
 creation and addition of the element node that represents the reply message itself:

 1. Create the element node:

 XmlElement message = doc.CreateElement(“Message”);

 2. Not applicable.

3. Since the message element exposes two attributes, you have to call the SetAttribute
method twice:

 message.SetAttribute(“AddedDate”, DateTime.Now.ToShortDateString());
message.SetAttribute(“UserName”, User.Identity.Name);

 4. Since the message node being added is the reply to the message node that the user selected from
the TreeView control, the selected message node will be the parent of the new message node.
Therefore the value of the DataPath property of the SelectedNode of the TreeView control is
the hierarchical path of the parent node of the new element node.

5. Access the parent element node in the tree hierarchy:

 XmlNode parent = doc.SelectSingleNode(TreeView1.SelectedNode.DataPath);

 6. Add the new element node to the tree hierarchy as the child node of the parent node:

 parent.AppendChild(message);

 At the end, the Insert method calls the Save method to commit all the changes to the disk and update
the TreeView and DetailsView controls.

c20.indd 962c20.indd 962 8/20/07 8:34:26 PM8/20/07 8:34:26 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

963

 Starting a New Thread
 The NewThreadClick method is registered as the callback for the Click event of the NewThread button,
as shown in Listing 20-10 . As you can see from this code listing, the method calls the ChangeMode
method of the DetailsView control to change its mode to DetailsViewMode.Insert , in which the
control renders the contents of its InsertItemTemplate property. The method also stores “ NewThread ”
in ViewState under the key “ NewThread ”.

 Since replying to a message and creating a new thread both switch the DetailsView control to its
 Insert mode, the same discussions presented in the previous section apply here. The only difference is
that the Insert method appends the newly created message node as the child node of the document
 element because it starts a new thread. The Insert method uses ViewState[“ NewThread “] as the
 signal to find out whether the user is starting a new thread or replying to an existing message.

 Note that the partial-rendering-enabled threaded discussion forum user control registers the NewThread
button as the trigger for the automatic update of the UpdatePanel server control that contains the
 DetailsView server control. This ensures that when the end user clicks the NewThread button to add a
new thread of discussions, this UpdatePanel server control and consequently its child DetailsView
server control are automatically updated.

 <Triggers>
 <asp:AsyncPostBackTrigger ControlID=”NewThread” EventName=”Click” />
 </Triggers>

 The following code listing presents a page that uses the partial-rendering-enabled threaded discussion
forum user control:

 <%@ Page Language=”C#” %>

<%@ Register TagName=”DiscussionForum” TagPrefix=”custom”
Src=”~/DiscussionForum.ascx” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />
 <custom:DiscussionForum runat=”server” ID=”DiscussionForum1”
 DataFile=”messages.xml” />
 </form>
</body>
</html>

c20.indd 963c20.indd 963 8/20/07 8:34:26 PM8/20/07 8:34:26 PM

Chapter 20: Using UpdatePanel in User Controls and Custom Controls

964

 This page assumes that you’ve stored Listing 20-10 in a file named DiscussionForum.ascx and Listing
 20-11 in a file named messages.xml . Note that Listing 20-10 uses the value of the IsAuthenticated
property of the Identity property of the User object to determine whether to display the following
 LinkButton server controls:

 <asp:LinkButton ID=”LinkButton1” ForeColor=”White” runat=”server” CommandName=”New”
 Visible=’<%# Context.User.Identity.IsAuthenticated %>’ >Reply</asp:LinkButton>

<asp:LinkButton ID=”LinkButton2” ForeColor=”White” runat=”server”
 CommandName=”Edit” Visible=’<%# Context.User.Identity.IsAuthenticated %>’ >Edit
</asp:LinkButton>

<asp:LinkButton ID=”LinkButton3” ForeColor=”White” runat=”server”
 CommandName=”SubmitDelete” Visible=’<%# Context.User.Identity.IsAuthenticated %>’ >
Delete</asp:LinkButton>

 This means that you need to use the ASP.NET Web Site Administration Tool to configure your
 application to use the ASP.NET 2.0 security features. You can launch this tool from the Website menu
of Visual Studio 2005.

 Summary
 This chapter used numerous examples to show you how to use ASP.NET AJAX partial page rendering in
your own Web applications. You also learned how to develop custom partial-page-rendering-enabled
server controls and user controls. The next chapter will delve deeper into the ASP.NET AJAX partial-
page-rendering infrastructure, and you’ll learn a great deal about the constituent components of this
infrastructure.

c20.indd 964c20.indd 964 8/20/07 8:34:27 PM8/20/07 8:34:27 PM

 Page Life Cycle and
Asynchronous Partial Page

Rendering
 The main goal of this and the next few chapters is to help you gain a solid understanding of the
ASP.NET AJAX asynchronous page postback or partial-page-rendering-request-processing infra-
structure. This infrastructure consists of two groups of components:

 ❑ Server-side components: This group includes the ScriptManager , UpdatePanel ,
 PageRequestManager , and ScriptRegistrationManager classes.

❑ Client-side components: This group includes the PageRequestManager , WebRequest ,
 WebRequestExecutor , WebRequestManager , XMLHttpExecutor , and Application
classes, among others.

 Note that both the server and client sides contain a component named PageRequestManager .
Even though they have the same name, they are two different components defined in two different
frameworks. One is defined in the ASP.NET AJAX server-side framework while the other
 is defined in the ASP.NET AJAX client-side framework. For ease of reference, I’ll refer to the one
defined in the server-side framework as the server-side PageRequestManager and the other as
the client-side PageRequestManager . These components are at the heart of ASP.NET AJAX partial
page rendering, which, as you’ll see later, is the result of the communications between the client-
side and server-side PageRequestManager components. As their names suggest, they’re the ones
that are responsible for managing and processing asynchronous partial-page-rendering requests.

 Here is how these two components work together. The current client-side PageRequestManager
instance makes an asynchronous page postback request to the server. The current server-side
 PageRequestManager instance picks up and processes the request and sends the reponse text
back to the client. The current client-side PageRequestManager instance then picks up and
 processes the response text and updates the regions of the page enclosed within the specified
 UpdatePanel server controls.

c21.indd 965c21.indd 965 8/20/07 8:37:01 PM8/20/07 8:37:01 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

966

 Your server-side code cannot directly access the current server-side PageRequestManager
instance. Your code gets to interact with the current server-side PageRequestManager instance via the
current ScriptManager server control, as you’ll see later in this chapter. Your client-side code, on
the other hand, can directly access the current client-side PageRequestManager instance. This will all
be cleared up later in this and the following chapters.

 Processing a Request
 When an HTTP request — be it synchronous, asynchronous, partial-page-update, or normal postback —
for an ASP.NET Web page arrives, the ASP.NET framework parses the requested page into a dynamically
generated class that inherits the ASP.NET Page class. By default, the name of this class consists of two
parts separated by an underscore character (_). The first part is the name of the file that contains the page
and the second part is the string aspx . For example, if the requested page is in a file named default
.aspx , ASP.NET parses the content of this file into a dynamically generated class named default_aspx
that inherits the Page class.

 All ASP.NET dynamically generated classes, such as default_aspx , belong to a standard namespace
named ASP . As a matter of fact, Visual Studio provides IntelliSense support for this namespace and
its constituent dynamically generated classes. To see this, open the file that contains the code-behind file
for an ASP.NET Web page (for example, the default.aspx.cs) in Visual Studio and type the first letter
of the ASP namespace, that is, the letter A. You should see the popup that displays all the namespaces
whose names begin with that letter, including the ASP namespace. Now, if you select ASP from this
popup and type the dot character (.) you should see the name of the dynamically generated class
(for example, default_aspx) associated with the current Web page.

 After parsing the requested page into a dynamically generated class that inherits from the ASP.NET
 Page class, the ASP.NET framework temporarily stores the code for this class in a source file a couple of
directories below the directory named after the current Web application, in a standard directory named
 Temporary ASP.NET Files , under the directory on your machine where the .NET framework is
installed:

 %windir%\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\
ajaxenabledwebsite11\de910baf\54181126

 The name of this source file follows this format: App_Web_FileName.aspx.RandomHash.0.cs , where
the FileName is the name of the .aspx file and the RandomHash is a randomly generated hash value
that ensures the uniqueness of the source-file name.

 Figure 21-1 shows an example that represents this file structure for an ASP.NET application
named AjaxEnabledWebSite11. This Web application is a very simple one that consists of a
single page named default.aspx , as shown in the following code listing. The file named
App_Web_default.aspx.cdcab7d2.a5hjdn-i.0 shown in Figure 21-1 contains the source code
for the ASP.default_aspx class that represents the default.aspx file.

c21.indd 966c21.indd 966 8/20/07 8:37:02 PM8/20/07 8:37:02 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

967

 <%@ Page Language=”C#” %>
<script runat=”server”>
 void SubmitCallback(object sender, EventArgs e)
 {
 Info.Text = TextBox1.Text;
 }
</script>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />
 <asp:UpdatePanel runat=”server” ID=”UpdatePanel1”>
 <ContentTemplate>
 Enter text:
 <asp:TextBox runat=”server” ID=”TextBox1” />
 <asp:Button runat=”server” ID=”Button1” Text=”Submit”
 OnClick=”SubmitCallback” />

 <asp:Label runat=”server” ID=”Info” />
 </ContentTemplate>
 </asp:UpdatePanel>
 </form>
</body>
</html>

 If you’re curious to see what this dynamically generated class looks like, go to the previously mentioned
directory and open the file that contains the source code for this class in your favorite editor. For
 example, the file associated with the preceding page contains the following source code (note that I’ve
cleaned it up for presentation purposes):

 As I said earlier, the ASP.NET compilation system temporarily stores the source code in the previously
mentioned source file. Therefore, if you want the file to remain in the directory so you can open it in
your favorite editor, you must run the page in debug mode to instruct ASP.NET not to delete the file.

 using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;
namespace ASP
{
 public class default_aspx : Page
 {
 protected ScriptManager ScriptManager1;
 protected TextBox TextBox1;
 protected Button Button1;
 protected Label Info;
 protected UpdatePanel UpdatePanel1;
 protected HtmlForm form1;

 . . .

(continued)

c21.indd 967c21.indd 967 8/20/07 8:37:02 PM8/20/07 8:37:02 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

968

 private UpdatePanel @__BuildControlUpdatePanel1()
 {
 . . .
 }
 private HtmlForm @__BuildControlform1()
 {
 . . .
 }
 private void @__BuildControlTree(default_aspx @__ctrl)
 {
 IParserAccessor @__parser = ((IParserAccessor)(@__ctrl));
 @__parser.AddParsedSubObject(
 new LiteralControl(“<html xmlns=\”http://www.w3.org/1999/xhtml\”>”));
 @__parser.AddParsedSubObject(new LiteralControl(“\r\n<body>\r\n “));
 HtmlForm @__ctrl2 = this.@__BuildControlform1();
 @__parser.AddParsedSubObject(@__ctrl2);
 @__parser.AddParsedSubObject(
 new LiteralControl(“\r\n</body>\r\n</html>\r\n”));
 }
 protected override void FrameworkInitialize()
 {
 base.FrameworkInitialize();
 this.@__BuildControlTree(this);
 }
 }
}

Figure 21-1

 The ASP.NET framework then dynamically compiles the content of the source file that contains the
dynamically generated class into an assembly, stores the assembly in the same directory as the source
file, and deletes the source file afterward. If you run the application in debug mode, the ASP.NET
 framework will not delete the source file after the compilation. As I mentioned earlier, this will
enable you to open the file in your favorite editor and study its content. The name of this assembly

(continued)

c21.indd 968c21.indd 968 8/20/07 8:37:02 PM8/20/07 8:37:02 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

969

 follows the naming convention App_Web_FileName.aspx.RandomHash.0.dll , where FileName is
the name of the .aspx file and RandomHash is a randomly generated hash value that ensures the
 uniqueness of the DLL file name. For example, in the case of Figure 21-1 , the DLL’s name is
 App_Web_default.aspx.cdcab7d2.a5hjdn-i.dll .

 The ASP.NET Framework then loads this assembly — keep in mind that it contains the dynamically
 generated class — into the application domain where the current application is running,
 dynamically instantiates an instance of this compiled class, and calls the ProcessRequest method
on this instance. For ease of reference, I’ll refer to this instance as the Page object or the Page , because
this is an instance of a class that inherits the ASP.NET Page class.

 You can think of this instance (the Page object) as the ASP.NET representation of the requested Web
page. It inherits the ProcessRequest method from the ASP.NET Page class. As the name suggests, this
method processes the current request. The call into this method causes the Page object to start its life
cycle, which consists of different phases. The best way to understand the ASP.NET AJAX asynchronous
page postback or partial-rendering-request-processing infrastructure and its constituent components is
to follow the Page object as it goes through its life cycle phases.

 The Page Life Cycle
 Listing 21-1 presents the internal implementation of the ProcessRequest method of the ASP.NET Page
class. As you can see, this method consists of a bunch of method calls, each of which defines a particular
phase of the Page object’s life cycle, as discussed in the following sections. Figure 21-2 presents the
 flowchart associated with the ProcessRequest method. Keep this flowchart in mind as you’re reading
through this chapter.

 Listing 21-1: The ProcessRequest Method of the Page Class

 public void ProcessRequest(HttpContext context)
{
 this._context = context;
 this.RetrievePostedData();
 if (this.MaintainScrollPositionOnPostBack)
 this.LoadScrollPosition();

 this.PerformPreInit();
 this.InitRecursive(null);
 this.OnInitComplete(EventArgs.Empty);
 if (this.IsPostBack)
 {
 this.LoadAllState();
 this.ProcessPostData(this._requestValueCollection, true);
 }
 this.OnPreLoad(EventArgs.Empty);
 this.LoadRecursive();

(continued)

c21.indd 969c21.indd 969 8/20/07 8:37:03 PM8/20/07 8:37:03 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

970

 Listing 21-1 (continued)

 if (this.IsPostBack)
 {
 this.ProcessPostData(this._leftoverPostData, false);
 this.RaiseChangedEvents();
 this.RaisePostBackEvent(this._requestValueCollection);
 }
 this.OnLoadComplete(EventArgs.Empty);
 this.PreRenderRecursive();

 this.PerformPreRenderComplete();
 this.SaveAllState();
 this.OnSaveStateComplete(EventArgs.Empty);
 this.RenderControl(this.CreateHtmlTextWriter(this.Response.Output));
}

IsPostBack

IsPostBack

MaintainScrollPosition

RetrievePostData

LoadScrollPosition

LoadControlStateLoadViewState

LoadPostData

PerformPreInit

InitRecursive

InitComplete

LoadPostData (second try)RaisePostDataChangedEvent

RaisePostBackEvent

IsPostBack

PreLoad

LoadRecursive

LoadComplete

PreRenderRecursive

PreRenderComplete

SaveControlState

SaveViewState

SaveStateComplete

Render

Yes

Yes

Yes

Yes

Figure 21-2

c21.indd 970c21.indd 970 8/20/07 8:37:03 PM8/20/07 8:37:03 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

971

 Keep in mind that our goal in this chapter is to follow the Page object through its life cycle phases in
order to understand the ASP.NET AJAX asynchronous page postback or partial-page-rendering-request-
processing infrastructure and its constituent server-side and client-side components. As discussed in the
previous chapter, an ASP.NET Web page enabled for partial page rendering contains a single instance of
the ScriptManager server control and one or more instances of the UpdatePanel server controls.

 I’ll begin with the first request that the requesting browser makes to the server to visit an ASP.NET Web
page enabled for partial page rendering. This first request is an HTTP GET request that downloads the
Web page for the first time. Obviously this first request is not a postback or asynchronous postback
request. I’ll first follow the Page object through its life cycle phases to process this very first request,
even though it is not an asynchronous postback request because the first request instantiates and initial-
izes many of the components that come into play in the subsequent asynchronous page postback
requests to the same Web page.

 The First Visit to a Par tial-Page-Rendering-
Enabled Web Page

 As just discussed, to visit for the first time an ASP.NET Web page enabled for partial page rendering, the
browser must send an HTTP GET request to the server. In this section I’ll follow the Page object through
its life cycle phases to process this HTTP GET request. As Figure 21-2 shows, the current Page skips
some of its life cycle phases when it is processing a non-postback request such as the first HTTP GET
request.

 InitRecursive
 I’ll begin when the page enters its InitRecursive (or Init) life cycle phase, where the ProcessRequest
method invokes the InitRecursive method on the current Page (see Listing 21-1 and Figure 21-2). All
server controls, including the Page , ScriptManager , and UpdatePanel , inherit the InitRecursive
method from the Control base class. The InitRecursive method of a server control such as Page
and UpdatePanel recursively invokes the InitRecursive methods of its child server controls. The
 InitRecursive method of a server control takes these actions:

 ❑ Sets the NamingContainer , ID (if it hasn’t already been set), and Page properties of its child
server controls. This step does not apply to the ScriptManager because it does not contain any
child server controls. However, it does apply to the UpdatePanel server controls on the current
page because they do contain other server controls.

❑ Calls the ApplySkin to apply its associated skins if theming is enabled. This step does not apply
to the ScriptManager because it does not render visual HTML, but it does apply to the
UpdatePanel server controls because they may contain child server controls that use skins.

❑ Calls the OnInit method to raise its Init event and consequently invoke all the event handlers
registered for this event.

c21.indd 971c21.indd 971 8/20/07 8:37:04 PM8/20/07 8:37:04 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

972

❑ Calls the TrackViewState method to start tracking its view state. After the call into the
 TrackViewState method goes through, any changes made to the state of a server control,
such as to its property values, will be marked as dirty and stored in the view state at the end of
the current request and consequently sent to the client as part of the current page. As you can
see, the bigger the view state the bigger the current page.

 The Init life cycle phase of the Page object is very complex in that it involves a lot of method calls on
the Page , ScriptManager , PageRequestManager , and UpdatePanel classes. Because of this, it’s really
easy to lose track of these method calls and their surrounding discussions. To make things a little easier
on you, I’ll present these method calls in a diagram. At the end of each section I’ll update this diagram
with the method calls discussed in the section. Therefore, by the time I’m done with our discussions of
the Init life cycle phase of the Page object, you’ll have a single diagram that contains all the method
calls in the order in which they’re made. I’ll do the same for other complex life cycle phases of the Page
object. This way, for each complex life cycle phase you’ll have one diagram that contains all the method
calls made in that phase in the order in which they’re made. Keep in mind that the vertical line in each
diagram represents the timeline. The method calls positioned higher on these vertical lines occur earlier.

 Figure 21-3 presents the diagram that contains the method calls I’ve discussed so far. As you can see,
when the Page enters its Init phase, it first invokes its own InitRecursive method. Since the Page
calls this method on itself, the diagram uses an arrow that starts and ends with the vertical timeline
 associated with the page. The InitRecursive method then calls the InitRecusive methods of the
 ScriptManager and UpdatePanel before calling its own ApplySkin , OnInit , and TrackViewState
methods. The InitRecursive methods of the ScriptManager and UpdatePanel , like the
InitRecusive method of any other server control, call their own ApplySkin , OnInit , and
TrackViewState methods.

 Now the question is: what happens when the OnInit methods of the ScriptManager and UpdatePanel
server controls are invoked? In other words, what sequence of method calls do the calls into the OnInit
methods of the ScriptManager and UpdatePanel server controls trigger? The dashed lines in
 Figure 21-3 are the placeholders for these missing method calls, which will be discussed in the following
sections.

 The OnInit Method of ScriptManager
 Listing 21-2 presents the ScriptManager class’s internal implementation of the OnInit method, which
it inherits from the Control base class. This implementation takes these steps. First, it calls the
 GetCurrent static method on the ScriptManager class to determine whether the current page already
contains an instance of the ScriptManager server control. If so, it raises an exception because every
page can contain only one instance of the ScriptManager server control.

 Next, the OnInit method adds the current instance of the ScriptManager server control to the Items
collection of the current Page object. The next calls into the GetCurrent static method will return the
instance stored in the Items collection of the current page. This ensures that the same instance will
always be used for the entire lifespan of the current request.

 this.Page.Items[typeof(ScriptManager)] = this;

c21.indd 972c21.indd 972 8/20/07 8:37:04 PM8/20/07 8:37:04 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

973

 This behavior of the Items collection has significant consequences when you’re enabling partial page
rendering for a user control or a content page. Since a user control or a content page merges into its
 parent page and consequently forms a single page with its parent, you have to make sure that you do not
declare separate instances of the ScriptManager server control in the parent page and the child
page — be they user controls or content pages.

 You have two choices in these situations. You can declare the ScriptManager server control either in
the parent or the child page (that is, user control or content page). Each option has its own pluses and
minuses. If you declare the ScriptManager server control in the parent page, this automatically
 enables partial page rendering for all child pages — that is, for all user controls and content pages —
which may not be the effect you’re looking for. Doing this also means that if you need to access the
 current ScriptManager server control from within your user control or content page, you must
call the GetCurrent static method on the ScriptManager class to return a reference to the
 ScriptManager server control declared in the parent page.

 If you declare the ScriptManager in the child page you can directly access the current
 ScriptManager server control from the child page without using the GetCurrent static method.
However, this also means that partial page rendering is only enabled for those user controls or content
pages that directly contain the ScriptManager server control, which may not be the effect you’re
 looking for. Another side effect of this approach is that you cannot directly access the current

Figure 21-3

InitRecursive

Page UpdatePanel ScriptManager

InitRecursive () InitRecursive ()

InitRecursive ()

OnInit ()

ApplySkins ()

OnInit ()

ApplySkins ()

OnInit ()

TrackViewState ()

TrackViewState ()

TrackViewState ()

c21.indd 973c21.indd 973 8/20/07 8:37:04 PM8/20/07 8:37:04 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

974

 ScriptManager server control from your parent page because the parent page does not directly
 contain this server control. Instead you must use the GetCurrent static method to return a reference
to this server control. Using this approach also means that if your parent page contains a partial-page-
rendering-related functionality you must add code to check whether the child control does indeed
 contain an instance of the ScriptManager server control. If not, you must disable this functionality
for this child control.

 OnInit then registers the OnPagePreRenderComplete method as an event handler for the
PreRenderComplete event of the current Page object:

 this.Page.PreRenderComplete += new EventHandler(this.OnPagePreRenderComplete);

 Next, OnInit checks whether the page has been posted back to the server. If so, it calls the
IsAsyncPostBackRequest static method on the current server-side PageRequestManager instance,
passing in the request header collection to determine whether the page has been posted back asynchro-
nously. (You’ll learn more about the server-side PageRequestManager class later.) As you’ll see, the
 ScriptManager server control delegates some of its responsibilities to this class, especially those respon-
sibilities that handle asynchronous page postback or partial-rendering requests.

 The IsAsyncPostBackRequest static method will be thoroughly discussed later. For now, suffice it
to say that this method uses the request headers to determine whether the page is posted back
asynchronously — that is, whether the current request is an asynchronous partial-page-rendering request.
Note that OnInit assigns the return value of this method to the _isInAsyncPostback Boolean field:

 if (this.Page.IsPostBack)
 this._isInAsyncPostBack =
 PageRequestManager.IsAsyncPostBackRequest(this.Page.Request.Headers);

 The ScriptManager exposes a read-only Boolean property named IsInAsyncPostBack that
 returns the value of the _isInAsyncPostBack field. Call this property on the current
 ScriptManager server control if you need to know whether the current request is an asynchronous
page postback or partial-page-rendering request.

 Since the current Page object is processing the first HTTP GET request made to the server to visit the
Web page for the first time, the IsAsyncPostBackRequest method of the current server-side
 PageRequestMananager instance is not invoked for this request.

 Next, OnInit calls the OnInit method on the current server-side PageRequestManager instance to
 initialize this instance. Unlike the ScriptManager , the PageRequestManager class is not a server
 control, which means that its OnInit method will not be automatically invoked by the containing page.
That is why the OnInit method of the ScriptManager server control explicitly calls the OnInit method
of the current server-side PageRequestManager instance:

 this.PageRequestManager.OnInit();

 This is an example of a situation in which a server control such as ScriptManager has to work hand
in hand with a non–server control object such as PageRequestManager throughout its life cycle.
Thanks to the Page object, the server control’s life cycle methods, such as OnInit , are automatically
called as the control goes through its life cycle phases. The same does not apply to the non–server control
objects, such as PageRequestManager . In these cases, the server control’s life cycle methods, such as
 OnInit , must call the corresponding methods of the non–server control object to ensure that the

c21.indd 974c21.indd 974 8/20/07 8:37:05 PM8/20/07 8:37:05 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

975

non–server control object gets to run its appropriate life cycle methods as the server control is moving
through its own life cycle phases. This pattern allows a server control, such as ScriptManager , to
 delegate some of its responsibilities to a non–server control object, such as PageRequestManager .

 Listing 21-2: The OnInit Method of the ScriptManager Class

 protected override void OnInit(EventArgs e)
{
 base.OnInit(e);
 if (ScriptManager.GetCurrent(this.Page) != null)
 throw new InvalidOperationException(“OnlyOneScriptManager”);
 this.Page.Items[typeof(ScriptManager)] = this;
 this.Page.PreRenderComplete += new EventHandler(this.OnPagePreRenderComplete);
 if (this.Page.IsPostBack)
 this._isInAsyncPostBack =
 PageRequestManager.IsAsyncPostBackRequest(this.Page.Request.Headers);
 this.PageRequestManager.OnInit();
}

 The OnInit Method of PageRequestManager
 Listing 21-3 presents the internal implementation of the OnInit method of the server-side
 PageRequestManager .

 Listing 21-3: The OnInit Method of the PageRequestManager Class

 internal void OnInit()
{
 if (this._owner.EnablePartialRendering &&
 !this._owner._supportsPartialRenderingSetByUser)
 {
 IHttpBrowserCapabilities capabilities1 = this._owner.Page.Request.Browser;
 this._owner.SupportsPartialRendering =
 (capabilities1.W3CDomVersion >= new Version(1, 0)) &&
 (capabilities1.EcmaScriptVersion >= new Version(1, 0)) &&
 capabilities1.SupportsCallback;
 }
 if (this._owner.IsInAsyncPostBack)
 this._owner.Page.Error += new EventHandler(this.OnPageError);
}

 Note that the current server-side PageRequestManager instance exposes a field named _owner that
 references the current ScriptManager server control. Also note that the ScriptManager server control
exposes the following two Boolean properties:

 ❑ EnablePartialRendering : Gets or sets a Boolean value that specifies whether the partial-
 rendering feature is enabled.

 Set this property to false if you need to turn off the partial page rendering for a page. Keep in
mind that if the current ScriptManager server control is declared on a parent page such as a
master page, setting this property to false will disable partial page rendering for all its child
pages — that is, for all its child user controls and content pages, which may not be the effect
you’re looking for. In this situation, you must take the following steps to explicitly turn on
 partial page rendering for a particular child page. First, call the GetCurrent static method on

c21.indd 975c21.indd 975 8/20/07 8:37:05 PM8/20/07 8:37:05 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

976

the ScriptManager class to return a reference to the ScriptManager server control declared
on the parent page. Then set the EnablePartialRendering property of this ScriptManager
server control to true . Keep in mind that this will enable partial rendering only for this specific
child page, which means that you have to take these same two steps for every child page for
which you need to enable partial page rendering.

 This may seem to suggest that you should always declare the ScriptManager server control on
the child pages, which is not the case; it all depends on the specifics of your application. The
downside of declaring the ScriptManager server control on child pages is that you must now
disable partial page rendering for every single child page if you need to disable partial page
 rendering for all child pages of a given parent page.

❑ SupportsPartialRendering : Gets or sets a Boolean value that specifies whether
the browser supports partial rendering. If you explicitly set the value of this property, the
 ScriptManager sets an internal flag named _supportPartialRenderingSetByUser to signal
to the OnInit method of the current server-side PageRequestManager instance that it does not
need to determine whether the browser indeed supports partial rendering because the user (you)
has explicitly set the value of this property.

 The same argument presented before regarding the effects of setting the value of the
 EnablePartialRendering property in parent/child page scenarios also applies to the
 SupportsPartialRendering property.

 Now let’s walk through Listing 21-3 . As you can see, if partial rendering is enabled but the value of the
 SupportsPartialRendering property of the ScriptManager object has not been explicitly set,
the OnInit method of the PageRequestManager object takes the following steps to set the value of the
 SupportsPartialRendering property. First, it accesses the HttpBrowserCapabilities object that
contains the complete information about the requesting browser’s capabilities:

 HttpBrowserCapabilities capabilities1 = this._owner.Page.Request.Browser;

 The ASP.NET framework uses the browser files to determine the capabilities of the requesting browser
and caches this information in an instance of the HttpBrowserCapabilities class, which is then
assigned to the Browser property of the ASP.NET Request object. The browser files are files with exten-
sion .browser , which are located in the standard directory on your machine. Each browser file normally
describes the capabilities of a particular type of browser. For example, ie.browser describes capabilities
of the IE browser. As you can see, the information stored in the Browser property of the
ASP.NET Request object comes from an offline database on your machine. The ASP.NET framework
enables you to extend the existing browser files by introducing one of your own:

 %WinDir%\Microsoft.NET\Framework\v2.0.50727\CONFIG\Browsers

 Next, OnInit checks whether the requesting browser supports version 1.0 of W3C DOM and
 EcmaScript and the client callbacks:

 this._owner.SupportsPartialRendering =
 (capabilities1.W3CDomVersion >= new Version(1, 0)) &&
 (capabilities1.EcmaScriptVersion >= new Version(1, 0)) &&
 capabilities1.SupportsCallback;

 As I mentioned earlier, you can explicitly set the value of the SupportsPartialRendering property
to instruct the current server-side PageRequestManager instance to bypass this check. This is a

c21.indd 976c21.indd 976 8/20/07 8:37:05 PM8/20/07 8:37:05 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

977

great option when you know for a fact that the browsers that your clients use to access your application
support (or do not support) partial page rendering.

 If the current request is an asynchronous page postback or partial rendering request, the OnInit method
of the current server-side PageRequestManager instance registers its OnPageError method as an event
handler for the Error event of the current Page object. This does not apply to the first request to the
page because the first request is not an asynchronous page postback.

 if (this._owner.IsInAsyncPostBack)
 this._owner.Page.Error += new EventHandler(this.OnPageError);

 Recall that the second dashed line from the left in Figure 21-3 represents the method calls triggered by
the call into the OnInit method of the current ScriptManager server control. As you saw in this sec-
tion, this call triggers a call into the OnInit method of the current server-side PageRequestManager
instance. Figure 21-4 extends Figure 21-3 to add this method call. Note that Figure 21-4 still contains the
first dashed line, which represents the method calls triggered by the call into the OnInit method of
the UpdatePanel server control. I’ll discuss these methods in the following section.

 At this point, we’ll digress from our main discussions to cover two related topics in the following two
subsections.

InitRecursive

Page UpdatePanel ScriptManager PageRequestManager

InitRecursive ()
InitRecursive ()

InitRecursive ()

OnInit ()
OnInit ()

ApplySkins ()

OnInit ()

ApplySkins ()

OnInit ()

TrackViewState ()

TrackViewState ()

TrackViewState ()

Figure 21-4

c21.indd 977c21.indd 977 8/20/07 8:37:06 PM8/20/07 8:37:06 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

978

 Handling the Error Event
 As I mentioned earlier, errors that occur during the first request to a Web page enabled for partial page
rendering are handled through normal ASP.NET error-handling practices. (Complete coverage of these
practices is beyond the scope of this book.) For example, one typical practice is to define a page-level
event handler such as the following:

 protected void Page_Error (object sender, EventArgs e)
{
 Exception error = Server.GetLastError();
 if (error is ArgumentException)
 Server.Transfer(“ArgumentException.aspx”);
 else if (error is ArgumentOutOfRangeException)
 Server.Transfer(“ArgumentOutOfRangeException.aspx”);
 //. . .
 Server.ClearError();
}

 Such an event handler begins by invoking the GetLastError static method on the ASP.NET Server
 object to return a reference to the last unhandled Exception object:

 Exception error = Server.GetLastError();

 Next, it determines the type of the Exception object and redirects the request to the Web page that
 displays more information about the specified type of error. Note that such redirects are normally done
on the server side and does not involve a round trip to the client. Finally, the event handler invokes the
 ClearError static method on the Server object to remove the Exception object.

 Instead of writing an event handler named Page_Error , you could register an event handler for the
 Error event of the current Page object. However, as you can see from Listing 21-3 , such registration
must be done in the Init life cycle phase of the current Page to ensure that your event handler does not
miss any errors. Here is an example:

 <%@ Page Language=”C#” %>
<script runat=”server”>
 void MyErrorHandler(object sender, EventArgs e)
 {
 Exception error = Server.GetLastError();
 if (error is ArgumentException)
 Server.Transfer(“ArgumentException.aspx”);
 else if (error is ArgumentOutOfRangeException)
 Server.Transfer(“ArgumentOutOfRangeException.aspx”);
 //. . .
 Server.ClearError();
 }

 protected override void OnInit(EventArgs e)
 {
 base.OnInit(e);
 this.Error += new EventHandler(MyErrorHandler);
 }
</script>

c21.indd 978c21.indd 978 8/20/07 8:37:06 PM8/20/07 8:37:06 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

979

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 . . .
 </form>
</body>
</html>

 As you can see from Listing 21-3 , the OnInit method of the current server-side PageRequestManager
instance registers a method named OnPageError as an event handler for the Error event of the current
 Page when an asynchronous page postback request is made to a Web page enabled for partial page ren-
dering. I’ll discuss the OnPageError method later because the first request to a partial-page-rendering-
enabled Web page is not an asynchronous page postback.

 Handling the Init Event
 As you saw in Listing 21-2 , the current ScriptManager server control invokes the OnInit method of its
base class to raise the Init event and consequently invoke the event handlers registered for this event. If
you need to run some custom code when the current ScriptManger server control raises its Init
event, you have two options. If your custom code is something that you think a lot of your clients might
be interested in, and is not specific to a particular application, you can write a custom server control that
derives from the ScriptManager server control and overrides its OnInit method to include this custom
code. Here is an example:

 public class MyScriptManager : ScriptManager
{
 protected override void OnInit(EventArgs e)
 {
 base.OnInit(e);
 // Your custom code should go here
 }
}

 It’s very important that your custom server control’s implementation of the OnInit method invoke the
 OnInit method of its base class — that is, the ScriptManager server control. Otherwise none of the
 following code will run and consequently the ASP.NET AJAX partial rendering will not work:

 this.Page.Items[typeof(ScriptManager)] = this;
this.Page.PreRenderComplete += new EventHandler(this.OnPagePreRenderComplete);
if (this.Page.IsPostBack)
 this._isInAsyncPostBack =
 PageRequestManager.IsAsyncPostBackRequest(this.Page.Request.Headers);
this.PageRequestManager.OnInit();

c21.indd 979c21.indd 979 8/20/07 8:37:06 PM8/20/07 8:37:06 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

980

 If your custom code is specific to a particular application, you need to wrap the code in a method and
register the method as the event handler for the Init method of the current ScriptManager server
 control instead of writing a custom server control. Here is an example:

 <%@ Page Language=”C#” %>
<script runat=”server”>
 void MethodContainingYourCustomCode(object sender, EventArgs e)
 {
 // Your custom code should go here
 }
</script>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”
 OnInit=”MethodContainingYourCustomCode” />
 . . .
 </form>
</body>
</html>

 The OnInit Method of UpdatePanel
 Keep in mind that we’re following the Page object as it goes through its life cycle phases to process the
first request made to a Web page enabled for partial page rendering. As you follow the Page object, keep
in mind where you are at every moment of the journey. Currently we’re at the Init life cycle phase
where the OnInit methods of the ScriptManager and UpdatePanel server controls are invoked.
(I covered the OnInit method of the ScriptManager server control in the previous section.) In this
section I’ll discuss the OnInit method of the UpdatePanel server control. Listing 21-4 presents the
internal implementation of this method.

 Listing 21-4: The OnInit Method of the UpdatePanel Control

 protected override void OnInit(EventArgs e)
 {
 base.OnInit(e);
 this.RegisterPanel();
 this.CreateContents(base.DesignMode);
 }

 As you can see, the OnInit method calls the RegisterPanel and CreateContents methods of the
 UpdatePanel server control. I’ll discuss these methods in the following sections.

 Recall that the dashed line in Figure 21-4 represents the method calls triggered by the call into the
 OnInit method of the UpdatePanel server control. As you saw in this section, these triggered method
calls are the calls into the RegisterPanel and CreateContents methods of the UpdatePanel server

c21.indd 980c21.indd 980 8/20/07 8:37:07 PM8/20/07 8:37:07 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

981

control. Figure 21-5 extends Figure 21-4 to add these two method calls. Note that Figure 21-5 now
 contains two dashed lines, which represent the method calls triggered by the calls into the
 RegisterPanel and CreateContents methods. I’ll discuss these two methods in the following
sections.

 I’ll wrap up the this section with the following note on handling the Init event of UpdatePanel server
controls.

Figure 21-5

InitRecursive

Page UpdatePanel ScriptManager PageRequestManager

InitRecursive ()
InitRecursive ()

InitRecursive ()

OnInit ()
OnInit ()

ApplySkins ()

OnInit ()

Registerpanel ()

ApplySkins ()

OnInit ()

TrackViewState ()

CreateContents ()

TrackViewState ()

TrackViewState ()

 As you saw in Listing 21-4 , the UpdatePanel server control invokes the OnInit method of its base class
to raise the Init event and consequently invoke the event handlers registered for this event. If you need to
run some custom code when a specific UpdatePanel server control on the current page raises its Init
event, you have two options. If your custom code is something that you think a lot of your clients might be
interested in and is not specific to a particular application, you can write a custom server control that

c21.indd 981c21.indd 981 8/20/07 8:37:07 PM8/20/07 8:37:07 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

982

derives from the UpdatePanel server control and overrides its OnInit method to include this custom
code. Here is an example:

 public class MyUpdatePanel : UpdatePanel
{
 protected override void OnInit(EventArgs e)
 {
 base.OnInit(e);
 // Your custom code should go here
 }
}

 It’s very important that your custom server control’s implementation of the OnInit method invoke
the OnInit method of its base class — that is, the UpdatePanel server control. Otherwise none of the
 following code will run and consequently the ASP.NET AJAX partial rendering will not work:

 base.OnInit(e);
this.RegisterPanel();
this.CreateContents(base.DesignMode);

 If your custom code is specific to a particular application, you need to wrap the code in a method and
register the method as the event handler for the Init method of the desired UpdatePanel server control
instead of writing a custom server control. Here is an example:

 <%@ Page Language=”C#” %>
<script runat=”server”>
 void MethodContainingYourCustomCode(object sender, EventArgs e)
 {
 // Your custom code should go here
 }
</script>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 . . .
 <asp:UpdatePanel runat=”server” ID=”UpdatePanel1”
 OnInit=”MethodContainingYourCustomCode”>
 . . .
 </asp:UpdatePanel>
 . . .
 </form>
</body>
</html>

 The RegisterPanel Method of the UpdatePanel
 Listing 21-5 contains the code for the RegisterPanel method, which calls the RegisterUpdatePanel
method on the current ScriptManager server control to register the UpdatePanel control with the cur-
rent ScriptManager control. Note that the RegisterPanel method first determines whether the
 UpdatePanel control is contained in another UpdatePanel control. If so, it calls the RegisterPanel

c21.indd 982c21.indd 982 8/20/07 8:37:07 PM8/20/07 8:37:07 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

983

method of the container UpdatePanel control before calling the RegisterUpdatePanel method to
 register the current UpdatePanel . This has two consequences:

 ❑ The container UpdatePanel control of an UpdatePanel control is registered before the
UpdatePanel control itself. You’ll see shortly what this registration entails.

❑ When the RegisterPanel method of an UpdatePanel control returns, you can rest assured
that its container UpdatePanel control, the container UpdatePanel control of its container
 UpdatePanel control, the container UpdatePanel control of the container UpdatePanel
 control of its container UpdatePanel control, and so on are all registered with the current
 ScriptManager server control.

 Note that the RegisterPanel method finally sets the _panelRegistered Boolean field to true to
mark the completion of the registration process:

 this._panelRegistered = true;

 Listing 21-5: The RegisterPanel Method

 private void RegisterPanel()
 {
 if (!this._panelRegistered)
 {
 for (Control control1 = this.Parent; control1 != null;
 control1 = control1.Parent)
 {
 UpdatePanel panel1 = control1 as UpdatePanel;
 if (panel1 != null)
 {
 panel1.RegisterPanel();
 break;
 }
 }
 this.ScriptManager.RegisterUpdatePanel(this);
 this._panelRegistered = true;
 }
 }

 The RegisterUpdatePanel Method of the ScriptManager
 Next, I’ll show you the implementation of the RegisterUpdatePanel method of the ScriptManager
 class. As you can see from Listing 21-6 , this method delegates the responsibility of registering the
 specified UpdatePanel control to the RegisterUpdatePanel method of the current server-side
 PageRequestManager instance.

 Listing 21-6: The RegisterUpdatePanel Method of ScriptManager

 void IScriptManagerInternal.RegisterUpdatePanel(UpdatePanel updatePanel)
{
 this.PageRequestManager.RegisterUpdatePanel(updatePanel);
}

c21.indd 983c21.indd 983 8/20/07 8:37:08 PM8/20/07 8:37:08 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

984

 The RegisterUpdatePanel Method of the PageRequestManager
 The current server-side PageRequestManager instance maintains all UpdatePanel server controls on
the current page in an internal collection named _allUpdatePanels . As Listing 21-7 shows, the
 RegisterUpdatePanel method of the PageRequestManager simply adds the specified UpdatePanel
control to this collection.

 Listing 21-7: The RegisterUpdatePanel Method of the PageRequestManager

 internal void RegisterUpdatePanel(UpdatePanel updatePanel)
{
 if (this._allUpdatePanels == null)
 this._allUpdatePanels = new List<UpdatePanel>();

 this._allUpdatePanels.Add(updatePanel);
}

 Now let’s update Figure 21-5 with the latest method calls. Recall that the top dashed line in Figure 21-5
represents the method calls triggered by the call into the RegisterPanel method of the UpdatePanel
server control. As we discussed earlier, the RegisterPanel method triggers the call into the
 RegisterUpdatePanel method of the current ScriptManager server control, which in turn triggers
the call into the RegisterUpdatePanel method of the current server-side PageRequestManager
instance, which in turn triggers the call into the Add method of the _allUpdatePanels collection to
add the UpdatePanel server control to this collection. Figure 21-6 extends Figure 21-5 to add the latest
triggered method calls.

 Note that Figure 21-6 inherits the bottom dashed line from Figure 21-5 , and remember that this dashed
line represents the method calls triggered by the call into the CreateContents method of the
 UpdatePanel server control. These method calls will also be discussed in the following section.

 The CreateContents Method of the UpdatePanel
 Recall from Listing 21-4 that the OnInit method of the UpdatePanel calls the CreateContents
method, and Listing 21-8 presents its internal implementation. This method takes a Boolean parameter
that specifies whether the contents of the UpdatePanel must be recreated from scratch. If so, the method
first clears the Controls collection of the content template container server control:

 this.ContentTemplateContainer.Controls.Clear();

 As Listing 21-8 shows, the CreateControl method first checks whether it is asked to recreate the
 content of the UpdatePanel from scratch. If so, it takes the following steps. First, it clears the Controls
collection of the template container server control. This collection contains the server controls that repre-
sent the markup text enclosed within the opening and closing tags of the <ContentTemplate> child
 element that represents the ContentTemplate property on the .aspx page.

 this.ContentTemplateContainer.Controls.Clear();

 As I mentioned in the previous chapter, you can access the ContentTemplateContainer property
of an UpdatePanel server control from within your C# or VB.NET code and imperatively add server
controls to the Controls collection of the content template container server control from right within
your code.

c21.indd 984c21.indd 984 8/20/07 8:37:08 PM8/20/07 8:37:08 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

985

 Next, the CreateContents method calls the CreateContentTemplateContainer method to create
the template container server control that will act as the container for the server controls that represent the
markup text enclosed within the opening and closing tags of the <ContentTemplate> child element:

 this._contentTemplateContainer = this.CreateContentTemplateContainer();

 Then the CreateContents method calls the InstantiateIn method on the ContentTemplate
 property, passing in the template container server control. Keep in mind that ASP.NET has already
parsed the markup text enclosed within the opening and closing tags of the <ContentTemplate> child
element into a class, compiled this class, and assigned an instance of it to the ContentTemplate prop-
erty. This means that when the CreateContents method calls the InstantiateIn method on the
 ContentTemplate property, it actually calls the InstantiateIn method of this class instance. As
 discussed earlier, this method adds the server controls that represent the markup text enclosed within
the opening and closing tags of the <ContentTemplate> child element to the Controls collection of the
template container server control:

 this._contentTemplate.InstantiateIn(this._contentTemplateContainer);

InitRecursive

Page UpdatePanel ScriptManager

_allUpdatePanels

PageRequestManager

InitRecursive ()
InitRecursive ()

InitRecursive ()

OnInit ()
OnInit ()

ApplySkins ()

OnInit ()

Registerpanel ()

ApplySkins ()

OnInit ()

TrackViewState ()

CreateContents ()

TrackViewState ()

TrackViewState ()

RegisterUpdatePanel (this)
RegisterUpdatePanel (updatePanel)

Add (updatePanel)

Figure 21-6

c21.indd 985c21.indd 985 8/20/07 8:37:08 PM8/20/07 8:37:08 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

986

 Next, the CreateContents method calls the AddContentTemplateContainer method to add the
 template container server control to the Controls collection of the UpdatePanel control:

 this.AddContentTemplateContainer();

 Listing 21-8: The CreateContents Method of the UpdatePanel

 private void CreateContents(bool recreate)
{
 if (recreate)
 {
 this.ContentTemplateContainer.Controls.Clear();
 this._contentTemplateContainer = null;
 this.ChildControls.ClearInternal();
 }
 if (this._contentTemplateContainer == null)
 {
 this._contentTemplateContainer = this.CreateContentTemplateContainer();
 this._contentTemplate.InstantiateIn(this._contentTemplateContainer);
 this.AddContentTemplateContainer();
 }
}

The following code listing contains the implementation of the CreateContentTemplateContainer
method of the UpdatePanel control. As you can see, the UpdatePanel uses an instance of the Control
base class as the template container server control.

 protected virtual Control CreateContentTemplateContainer()
{
 return new Control();
}

 Now let’s update Figure 21-6 with the latest method calls. Recall that the dashed line in Figure 21-6
 represents the method calls triggered by the call into the CreateContents method of the UpdatePanel ,
and that this method triggers the call into the CreateContentTemplateContainer and
AddContentTemplateContainer methods of the UpdatePanel , as well as the InstantiateIn
 method of the ITemplate interface. Figure 21-7 extends Figure 21-6 to add these three latest trig-
gered method calls. This wraps up our discussions of the Init life cycle phase of the current Page .

 At this point, we digress from our main discussions to cover the related topic of templated controls in
the following subsection.

c21.indd 986c21.indd 986 8/20/07 8:37:09 PM8/20/07 8:37:09 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

987

 Templated Controls
 The UpdatePanel is a templated control that exposes a template property named ContentTemplate . The
 ContentTemplate property, just like any other template property, is of type ITemplate , and as such it
exposes a method named InstantiateIn . This method takes a server control known as a template
container as its argument.

 The great thing about a template property is that you can specify its value declaratively on an .ascx or
 .aspx page without writing a single line of imperative code such as C# or VB.NET. This declarative
value is the markup, including HTML and server controls, that you place within the opening and closing
tags of the element that represents the template property on an .ascx or .aspx page. In the case of the
 UpdatePanel , this declarative value is the markup that you place between the opening and closing tags
of the <ContentTemplate> child element of the UpdatePanel , because this child element represents
the ContentTemplate property on the .ascx or .aspx page.

InitRecursive

Page UpdatePanel ScriptManager

_allUpdatePanels

PageRequestManager

InitRecursive ()
InitRecursive ()

InitRecursive ()

OnInit ()
OnInit ()

ApplySkins ()

OnInit ()

Registerpanel ()

ApplySkins ()

OnInit ()

TrackViewState ()

CreateContents ()

CreateContentTemplateContainer ()

AddContentTemplateContainer ()

TrackViewState ()

TrackViewState ()

ITemplate
InstantiateIn (this._contentTemplateContainer)

RegisterUpdatePanel (this)
RegisterUpdatePanel (updatePanel)

Add (updatePanel)

Figure 21-7

c21.indd 987c21.indd 987 8/20/07 8:37:09 PM8/20/07 8:37:09 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

988

 ASP.NET automatically parses the markup enclosed within the opening and closing tags of the
<ContentTemplate> child element and dynamically generates an instance of a class named
 CompiledTemplateBuilder that implements the ITemplate interface, which means that this class
implements the InstantiateIn method of the interface. This class’s implementation of this method
adds the server controls that represent the markup enclosed within the opening and closing tags of the
 <ContentTemplate> child element to the Controls collection of the server control passed into the
 InstantiateIn method. As mentioned earlier, this server control is known as the template container.
As you can see, the template container server control acts as a container for the server controls that
 represent the markup enclosed within the opening and closing tags of the <ContentTemplate> child
element. ASP.NET then assigns this CompiledTemplateBuilder instance to the ContentTemplate
property of the UpdatePanel .

 As discussed earlier, ASP.NET dynamically generates a class that inherits from the Page class to
 represent the current page, and stores the source file for this class a couple of directories underneath the
directory associated with your Web application under the following standard directory on your machine:

 %windir%\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files

 If you’re curious to see the these principles in action, create a Web application that contains a page
named default.aspx , as shown in the following code listing. In my case this application is named
 AjaxEnabledWebSite11 .:

 <%@ Page Language=”C#” %>
<script runat=”server”>
 void SubmitCallback(object sender, EventArgs e)
 {
 Info.Text = TextBox1.Text;
 }
</script>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />
 <asp:UpdatePanel runat=”server” ID=”UpdatePanel1”>
 <ContentTemplate>
 Enter text:
 <asp:TextBox runat=”server” ID=”TextBox1” />
 <asp:Button runat=”server” ID=”Button1” Text=”Submit”
 OnClick=”SubmitCallback” />

 <asp:Label runat=”server” ID=”Info” />
 </ContentTemplate>
 </asp:UpdatePanel>
 </form>
</body>
</html>

 If you go to a couple of directories (these two directories have weird-looking names because the
ASP.NET framework uses auto-generated hash values to create these names) underneath the directory
named ajaxenabledwebsite11 (which is nothing but the name of the application) underneath the
standard directory Temporary ASP.NET Files, and open the file that contains the source code for
the dynamically generated class that represents the preceding page, as discussed earlier in this chapter,

c21.indd 988c21.indd 988 8/20/07 8:37:09 PM8/20/07 8:37:09 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

989

you’ll see the following code. The boldface portion of this code listing shows how ASP.NET manages to
initialize the value of the ContentTemplate property of the UpdatePanel server control.

 namespace ASP
{
 public class default_aspx : Page
 {
 protected ScriptManager ScriptManager1;
 protected TextBox TextBox1;
 protected Button Button1;
 protected Label Info;
 protected UpdatePanel UpdatePanel1;
 protected HtmlForm form1;
 . . .
 private UpdatePanel @__BuildControlUpdatePanel1()
 {
 UpdatePanel @__ctrl = new UpdatePanel();
 this.UpdatePanel1 = @__ctrl;
 BuildTemplateMethod templateMethod =
 new BuildTemplateMethod(this.@__BuildControl__control4);
 @__ctrl.ContentTemplate = new CompiledTemplateBuilder(templateMethod);
 @__ctrl.ID = “UpdatePanel1”;
 return @__ctrl;
 }
 . . .
 }
}

 Interestingly enough, the CompiledTemplateBuilder class is a public class, which means that you can
use it within your own C# or VB.NET code. As we discussed in the previous chapter, if you need to
imperatively add server controls to an UpdatePanel server control, you must add these server controls
to the Controls collection of the ContentTemplateContainer property of the UpdatePanel server
control.

 You can use the CompiledTemplateBuilder class to enhance the functionality of the ASP.NET
UpdatePanel server control to add support for default templates. The following code listing shows the
implementation of such a custom UpdatePanel server control. To understand the implementation of
this custom server control, you first need to understand how the CompiledTemplateBuilder class
works. The constructor of this class takes an instance of a .NET delegate named BuildTemplateMethod ,
which represents a method that takes a single argument of type Control and returns no value. It is the
responsibility of this method to populate the Controls collection of the Control passed into it with
the appropriate server controls. As you’ll see shortly, these server controls will constitute the content
of the custom UpdatePanel server control.

 Now back to the implementation of the CustomUpdatePanel server control. As you can see from the
 following code listing, the CustomUpdatePanel server control exposes two public properties
named BuildTemplateMethodProviderType and BuildTemplateMethodProviderMethod . The
 BuildTemplateMethodProviderType property specifies the assembly-qualified name of a .NET type.
The assembly-qualified name of a .NET type consists of five parts, which includes the fully
 qualified name of the type (including its complete namespace containment hierarchy) and the name,
 version, culture, and public key token of the assembly where the type resides. The

c21.indd 989c21.indd 989 8/20/07 8:37:10 PM8/20/07 8:37:10 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

990

BuildTemplateMethodProviderMethod property specifies the name of the method of this .NET type
that takes no arguments and returns an instance of the BuildTemplateMethod delegate.

 Next, I’ll walk you through the implementation of the OnInit method of the CustomUpdatePanel
server control, where all the action is. This method begins by checking whether the values of the
BuildTemplateMethodProviderType and BuildTemplateMethodProviderMethod properties are set.
If not, the method simply invokes the OnInit method on its base class — that is, the UpdatePanel server
control. If so, it performs the following tasks. First, it extracts the fully qualified name of the specified
.NET type, excluding the assembly information, from the BuildTemplateMethodProviderType
property:

 string typeName = BuildTemplateMethodProviderType.Trim().Split(
 new char[] { ‘,’ })[0];

 Next, it extracts the assembly information for the BuildTemplateMethodProviderType property:

 string assemblyName = BuildTemplateMethodProviderType.Trim().Remove(
 BuildTemplateMethodProviderType.IndexOf(typeName),
 typeName.Length);

 Then, if the BuildTemplateMethodProviderType property does not contain the assembly information,
the CustomUpdatePanel server control assumes that the specified .NET type resides in the executing
assembly, and consequently invokes the GetExecutingAssembly static method on the Assembly class
to return a reference to the Assembly object that represents the executing assembly:

 Assembly assembly;
 if (string.IsNullOrEmpty(assemblyName))
 assembly = Assembly.GetExecutingAssembly();

 If the BuildTemplateMethodProviderType property does contain the assembly information, it invokes
the Load static method on the Assembly class to load the specified assembly into the current application
domain and to return a reference to the Assembly object that represents this assembly:

 else
 {
 assemblyName = assemblyName.Trim().Remove(0, 1);
 assembly = Assembly.Load(assemblyName);
 }

 Next, the OnInit method invokes the CreateInstance method on the Assembly object, passing in the
fully qualified name of the specified .NET type to instantiate an instance of this .NET type:

 object provider = assembly.CreateInstance(typeName);

 Then it invokes the GetType method on the newly-created instance to return a reference to the Type
object that represents the type of this instance:

 Type type = provider.GetType();

c21.indd 990c21.indd 990 8/20/07 8:37:10 PM8/20/07 8:37:10 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

991

 Next, it invokes the GetMethod on this Type object, passing in the value of the
BuildTemplateMethodProviderMethod property to return a reference to the MethodInfo
object that represents the specified method of the specified .NET type. Recall that this is the method that
returns the BuildTemplateMethod delegate that you must pass into the CompiledTemplateBuilder
constructor:

 MethodInfo methodInfo =
 type.GetMethod(BuildTemplateMethodProviderMethod);

 Then it calls the Invoke method on the MethodInfo object to dynamically invoke the specified
method on the newly created instance and consequently to return the BuildTemplateMethod delegate
that you need:

 BuildTemplateMethod method =
 (BuildTemplateMethod)methodInfo.Invoke(provider, null);

 Next, the OnInit method passes the BuildTemplateMethod instance into the
CompiledTemplateBuilder constructor to instantiate a CompiledTemplateBuilder object,
which is subsequently assigned to the ContentTemplate property that the CustomUpdatePanel server
control inherits from the UpdatePanel server control:

 ContentTemplate = new CompiledTemplateBuilder(method);

 Finally, it invokes the OnInit method of its base class — that is, the UpdatePanel server control. This step
is very important because, as thoroughly discussed earlier, the OnInit method of the UpdatePanel server
control is the method that actually calls the InstantiateIn method on the ContentTemplate property
to create the content of the UpdatePanel control. Nothing will take effect if this last step is not taken.

 Listing 21-9: The CustomUpdatePanel Server Control

 using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Reflection;
namespace CustomComponents5
{
 public class CustomUpdatePanel : UpdatePanel
 {
 public string BuildTemplateMethodProviderType
 {
 get
 {
 return ViewState[“BuildTemplateMethodProviderType”] != null ?
 (string)ViewState[“BuildTemplateMethodProviderType”] : string.Empty;
 }
 set
 {
 ViewState[“BuildTemplateMethodProviderType”] = value;
 }
 }

(continued)

c21.indd 991c21.indd 991 8/20/07 8:37:10 PM8/20/07 8:37:10 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

992

 Listing 21-9 (continued)

 public string BuildTemplateMethodProviderMethod
 {
 get
 {
 return ViewState[“BuildTemplateMethodProviderMethod”] != null ?
 (string)ViewState[“BuildTemplateMethodProviderMethod”] : string.Empty;
 }
 set
 {
 ViewState[“BuildTemplateMethodProviderMethod”] = value;
 }
 }
 protected override void OnInit(EventArgs e)
 {
 if (!string.IsNullOrEmpty(BuildTemplateMethodProviderType) &&
 !string.IsNullOrEmpty(BuildTemplateMethodProviderMethod))
 {
 string typeName = BuildTemplateMethodProviderType.Trim().Split(
 new char[] { ‘,’ })[0];
 string assemblyName = BuildTemplateMethodProviderType.Trim().Remove(
 BuildTemplateMethodProviderType.IndexOf(typeName),
 typeName.Length);
 Assembly assembly;
 if (string.IsNullOrEmpty(assemblyName))
 assembly = Assembly.GetExecutingAssembly();
 else
 {
 assemblyName = assemblyName.Trim().Remove(0, 1);
 assembly = Assembly.Load(assemblyName);
 }
 object provider = assembly.CreateInstance(typeName);
 Type type = provider.GetType();
 MethodInfo methodInfo =
 type.GetMethod(BuildTemplateMethodProviderMethod);
 BuildTemplateMethod method =
 (BuildTemplateMethod)methodInfo.Invoke(provider, null);
 ContentTemplate = new CompiledTemplateBuilder(method);
 }
 base.OnInit(e);
 }
 }
}

 Listing 21-10 contains an example of a .NET type that supports a method that returns a
BuildTemplateMethod delegate. This code listing shows a class named
BuildTemplateMethodProvider that exposes a method named GetBuildTemplateMethod that
instantiates and returns an instance of the BuildTemplateMethod delegate. Note that this method
passes another method named BuildTemplate as an argument into the constructor of
the BuildTemplateMethod delegate. When the CompiledTemplateBuilder invokes the
BuildTemplateMethod delegate, this delegate in turn invokes the method passed into its constructor,
which is the BuildTemplate method in this case. Note that the method passed into this constructor must
take a single argument of type Control and return no value.

c21.indd 992c21.indd 992 8/20/07 8:37:11 PM8/20/07 8:37:11 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

993

 The BuildTemplate method is where the BuildTemplateMethodProvider class builds the server
 controls that go into the UpdatePanel server control. The method can be as complex as you want it to be
and can build any type of server controls that you want to put in. In this simple example, the
 BuildTemplate method first creates a Label control, sets its Text property value to the current date
and time, and adds the Label control to the Controls collection of the Control passed into it. Since the
 CompiledTemplateBuilder passes the ContentTemplateContainer of the UpdatePanel server
 control as the argument of the BuildTemplate method, any server control you add to the Controls
 collection of this control goes right into the UpdatePanel server control.

 label1 = new Label();
 label1.Text = DateTime.Now.ToString();
 c.Controls.Add(label1);

 The BuildTemplate method then creates a Button control, registers a method named Button1_Click
as an event handler for its Click event, and adds the Button to the Controls collection of the Control
passed into it:

 Button button1 = new Button();
 button1.Text = “Update”;
 button1.Click += new EventHandler(Button1_Click);
 c.Controls.Add(button1);

 The Button1_Click method doesn’t do much in this case. It simply displays the current date and time
in the Label control.

 21-10: An Example of a .NET Type that Supports a Method that Returns a
BuildTemplateMethod Delegate

 using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Reflection;
namespace CustomComponents5
{
 public class BuildTemplateMethodProvider
 {
 Label label1;
 public void BuildTemplate(Control c)
 {
 label1 = new Label();
 label1.Text = DateTime.Now.ToString();
 c.Controls.Add(label1);
 Button button1 = new Button();
 button1.Text = “Update”;
 button1.Click += new EventHandler(Button1_Click);
 c.Controls.Add(button1);
 }

(continued)

c21.indd 993c21.indd 993 8/20/07 8:37:11 PM8/20/07 8:37:11 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

994

 21-10 (continued)

 void Button1_Click(object sender, EventArgs e)
 {
 label1.Text = DateTime.Now.ToString();
 }
 public BuildTemplateMethod GetBuildTemplateMethod()
 {
 return new BuildTemplateMethod(BuildTemplate);
 }
 }
}

 The following code listing contains a page that uses the CustomUpdatePanel server control:

 <%@ Page Language=”C#” %>
<%@ Register Namespace=”CustomComponents5” TagPrefix=”custom” %>
<script runat=”server”>
 void Page_Load(object sender, EventArgs e)
 {
 Info.Text = DateTime.Now.ToString();
 }
</script>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1” />

 <custom:CustomUpdatePanel runat=”server” ID=”CustomUpatePanel1”
 BuildTemplateMethodProviderType=“CustomComponents5.BuildTemplateMethodProvider”
 BuildTemplateMethodProviderMethod=”GetBuildTemplateMethod”/>

 <asp:Label runat=”server” ID=”Info” />
 </form>
</body>
</html>

 The official ASP.NET 2.0 documentation from Microsoft makes the following statement about the
 CompiledTemplateBuilder class:

 This class supports the .NET Framework infrastructure and is not intended to be used directly from your code.

 That said, there is nothing technically wrong with directly using this class from your code. Another
important point is that as you’ve seen in the preceding examples, this class makes a great educational
tool for learning about the UpdatePanel server control, which is one of our main goals in this chapter.

c21.indd 994c21.indd 994 8/20/07 8:37:11 PM8/20/07 8:37:11 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

995

 LoadRecursive
 Keep in mind, again, that you’re following the current Page object as it goes through its life cycle phases
to process the first HTTP GET request made to a Web page enabled for partial page rendering. Since the
first request is not a postback, the current Page skips all the postback-related life cycle phases and enters
directly into its LoadRecusive (or Load) life cycle phase, in which the ProcessRequest method of the
current Page (see Listing 21-1) invokes the LoadRecursive method on the current Page . The following
code listing presents the internal implementation of the LoadRecursive method. All server controls,
including the Page , ScriptManager , and UpdatePanel , inherit the LoadRecursive method from the
 Control base class. As the following code listing shows, the LoadRecursive method of a server control
such as Page or UpdatePanel first calls its own OnLoad method and then calls the LoadRecursive
methods of its child server controls.

 internal virtual void LoadRecursive()
{
 this.OnLoad(EventArgs.Empty);
 foreach (Control control in this.Controls)
 {
 control.LoadRecursive();
 }
}

 Therefore, the following sequence of method calls occurs when the current Page enters its
LoadRecusive phase:

 1. The call into the LoadRecusive method of the current Page

2. The call into the OnLoad method of the current Page

3. The call into the LoadRecusive method of the ScriptManager

4. The call into the OnLoad method of the ScriptManager

5. The call into the LoadRecusive method of the UpdatePanel

6. The call into the OnLoad method of the UpdatePanel

 The OnLoad methods of the current Page and the current ScriptManager server control simply raise
the Load event.

 If you need to execute some application-specific logic when the current ScriptManager server control
or a particular UpdatePanel server control enters its Load life cycle phase, you must encapsulate this
logic in a method and register this method as an event handler for the Load event of the current
 ScriptManager server control or the specified UpdatePanel server control.

 If you want the ScriptManager server control to do more work than just raising the Load event, you
can write your own custom ScriptManager server control that inherits from the ScriptManager
server control and overrides its OnLoad method to do whatever else you need the control to do when
it enters its Load life cycle phase. Make sure your custom ScriptManager server control’s
implementation of the OnLoad method calls the OnLoad method of its base class. Otherwise your custom
 ScriptManager server control will not raise the Load event when it enters its Load life cycle phase.

c21.indd 995c21.indd 995 8/20/07 8:37:12 PM8/20/07 8:37:12 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

996

 Listing 21-11 presents the internal implementation of the OnLoad method of the UpdatePanel server
control. As you can see, this method checks whether the current request is an asynchronous page
 postback. If not, it calls the Initialize method of the UpdatePanel to initialize it. Keep in mind that
the current Page is processing the first request to a Web page enabled for partial page rendering.
Since the first request is not a postback, the OnLoad method of the UpdatePanel server control calls its
 Initialize method, which will be discussed in the following section.

 Implement a custom UpdatePanel server control that overrides the OnLoad method if you want the
 UpdatePanel server control to do more work than just raising the Load event and invoking the
 Initialize method.

 Listing 21-11: The OnLoad Method of the UpdatePanel

 protected override void OnLoad(EventArgs e)
 {
 base.OnLoad(e);
 if (!this.ScriptManager.IsInAsyncPostBack)
 this.Initialize();
 }

 Figure 21-8 presents a diagram that contains the method calls that occur when the current Page enters
the LoadRecusive life cycle phase:

LoadRecursive

Page UpdatePanel ScriptManager

LoadRecursive ()

LoadRecursive ()

LoadRecursive ()

OnLoad ()

OnLoad ()

Initialize ()

OnLoad ()

Figure 21-8

c21.indd 996c21.indd 996 8/20/07 8:37:12 PM8/20/07 8:37:12 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

997

 As mentioned earlier, the current ScriptManager server control’s OnLoad method simply raises the
 Load event and consequently invokes the event handlers registered for this event. If you need to run
some custom code when the current ScriptManger server control raises its Load event, you have two
options. If your custom code is something that you think a lot of your clients might be interested in and
is not specific to a particular application, you can write a custom server control that derives from the
 ScriptManager server control and overrides its OnLoad method to include this custom code. Here is an
example:

 public class MyScriptManager : ScriptManager
{
 protected override void OnLoad(EventArgs e)
 {
 base.OnInit(e);
 // Your custom code should go here
 }
}

 It’s very important that your custom server control’s implementation of the OnLoad method invoke the
 OnLoad method of its base class — that is, the ScriptManager server control. Otherwise the Load event
of your custom server control will not be raised and consequently the event handlers registered for this
event will not be invoked.

 If your custom code is specific to a particular application, you need to wrap the code in a method and
register the method as the event handler for the Load method of the current ScriptManager server
 control instead of writing a custom server control. Here is an example:

 <%@ Page Language=”C#” %>
<script runat=”server”>
 void MethodContainingYourCustomCode(object sender, EventArgs e)
 {
 // Your custom code should go here
 }
</script>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”
 OnLoad=”MethodContainingYourCustomCode” />
 . . .
 </form>
</body>
</html>

 As you saw in Listing 21-11 , the UpdatePanel server control invokes the OnLoad method of its base
class to raise the Load event and consequently invoke the event handlers registered for this event. If you
need to run some custom code when a specific UpdatePanel server control on the current page raises its
 Load event, you have the same two options that you have with the ScriptManager , as just discussed.

c21.indd 997c21.indd 997 8/20/07 8:37:12 PM8/20/07 8:37:12 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

998

 The Initialize Method of the UpdatePanel
 The UpdatePanel server control maintains an internal collection of type UpdatePanelTriggerCollection
named _triggers that contains objects of type UpdatePanelTrigger . As the name suggests, an
UpdatePanelTrigger object triggers automatic updates of its associated UpdatePanel server control. Note
that an UpdatePanelTrigger object is an instance of a class, which itself is not a server control. This raises
the following question: what causes an UpdatePanelTrigger object to trigger the automatic updates of its
associated UpdatePanel server control? The answer is “it depends.” Different types of triggers use different
types of mechanisms. The UpdatePanelTrigger class is an abstract base class whose methods and proper-
ties define an API that all triggers must implement in order to act as triggers for automatic updates of their
associated UpdatePanel server controls.

 The UpdatePanel exposes a property of type UpdatePanelTriggerCollection named Triggers that
returns a reference to the _triggers collection, as shown in Listing 21-12 .

 Listing 21-12: The Triggers Collection Property of the UpdatePanel

 [DefaultValue((string)null),
 PersistenceMode(PersistenceMode.InnerProperty)]
 public UpdatePanelTriggerCollection Triggers
 {
 get
 {
 if (this._triggers == null)
 this._triggers = new UpdatePanelTriggerCollection(this);
 return this._triggers;
 }
 }

 As Listing 21-13 shows, the Initialize method of the UpdatePanel first checks whether the
_triggers collection contains any UpdatePanelTrigger objects and whether the partial rendering is
supported. If both of these conditions are met, it calls the Initialize method on the _triggers
collection to initialize the collection.

 Listing 21-13: The Initialize Method of the UpdatePanel

 protected internal virtual void Initialize()
 {
 if ((this._triggers != null) && this.ScriptManager.SupportsPartialRendering)
 this._triggers.Initialize();
 }

 The Initialize Method of the UpdatePanelTriggerCollection
 As Listing 21-14 shows, the Initialize method of the UpdatePanelTriggerCollection iterates
through its constituent UpdatePanelTrigger objects and calls their Initialize methods to initialize
them. Note that the Initialize method sets an internal flag named _initialized to true to mark the
end of the initialization phase.

c21.indd 998c21.indd 998 8/20/07 8:37:13 PM8/20/07 8:37:13 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

999

 Listing 21-14: The Initialize Method of the UpdatePanelTriggerCollection

 internal void Initialize()
{
 using (IEnumerator<UpdatePanelTrigger> enumerator1 = base.GetEnumerator())
 {
 while (enumerator1.MoveNext())
 {
 enumerator1.Current.Initialize();
 }
 }
 this._initialized = true;
}

 Before diving into the implementation of the Initialize method of the UpdatePanelTrigger class,
let’s update Figure 21-8 with the latest method calls. Recall that the dashed line in Figure 21-8 represents
the method calls triggered by the call into the Initialize method of the UpdatePanel server control.
As mentioned earlier, the Initialize method triggers the call into the Initialize method of the
 UpdatePanelTriggersCollection , which in turn triggers the call into the Initialize method of the
 UpdatePanelTrigger . Figure 21-9 extends Figure 21-8 to add these two latest triggered method calls.

 Note that Figure 21-9 contains a dashed line, which represents the method calls triggered by the call into
the Initialize method of the UpdatePanelTrigger , which will be discussed in the following
 sections. I’ll wrap up the discussions of this subsection with the following note on the Initialize
 method of the UpdatePanel server control.

 As you can see from Listing 21-11 , when the UpdatePanel server control enters its Load life cycle phase
it automatically invokes its Initialize method if the current request is not an asynchronous
partial-page-rendering request:

 protected override void OnLoad(EventArgs e)
 {
 base.OnLoad(e);
 if (!this.ScriptManager.IsInAsyncPostBack)
 this.Initialize();
 }

 As Listing 21-13 shows, the Initialize method of the UpdatePanel server control is marked as
 protected virtual . This means that you can write a custom server control that derives from the
 UpdatePanel server control and overrides its Initialize method to extend its functionality. Keep in
mind that any custom code you include in the Initialize method will not be executed when the
 current request is an asynchronous partial page rendering. Also make sure that your custom control’s
implementation of the Initialize method invokes the Initialize method of its base class — that is,
the UpdatePanel server control. Otherwise, none of the triggers registered with your custom controls
will be initialized.

c21.indd 999c21.indd 999 8/20/07 8:37:13 PM8/20/07 8:37:13 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1000

 The Initialize Method of the UpdatePanelTrigger
 As you can see from Listing 21-15 , the UpdatePanelTrigger is an abstract class whose Initialize
method does not do anything. However, the subclasses of this abstract class override this method to per-
form subclass-specific initialization. At this point, we digress from our main discussion to study the
 UpdatePanelTrigger and its subclasses.

 Listing 21-15: The Initialize Method of the UpdatePanelTrigger

 public abstract class UpdatePanelTrigger
{
 protected internal abstract bool HasTriggered();
 protected internal virtual void Initialize() { }
 internal void SetOwner(UpdatePanel owner)
 {
 this._owner = owner;
 }
 private UpdatePanel _owner;
}

LoadRecursive

Page UpdatePanel ScriptManager UpdatePanelTrigger

LoadRecursive ()

LoadRecursive ()

LoadRecursive ()

OnLoad ()

OnLoad ()

Initialize ()

OnLoad ()

UpdatePanelTriggerCollection
Initialize ()

Initialize ()

Figure 21-9

c21.indd 1000c21.indd 1000 8/20/07 8:37:13 PM8/20/07 8:37:13 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1001

 UpdatePanelTrigger and its Subclasses
 The methods of the UpdatePanelTrigger base class define the API that every UpdatePanelTrigger
subclass must implement in order to trigger updates of its owner UpdatePanel server control. Keep in
mind that the owner of an UpdatePanelTrigger object is the UpdatePanel server control whose
 Triggers collection contains the object.

 As Listing 21-15 shows, this API consists of two methods:

 ❑ Initialize : A subclass of the UpdatePanelTrigger base class can override this optional
method to perform any subclass-specific initialization task. You’ll see an example of this later in
this section.

❑ HasTriggered : A subclass of the UpdatePanelTrigger base class must override this mandatory
method, where the subclass’s implementation of this method must use subclass-specific logic to
determine when the trigger has been triggered. You’ll see an example of this later in this section.

 Note that the UpdatePanelTrigger exposes a method named SetOwner that specifies an UpdatePanel
control as the owner of the trigger. This method is marked as internal , which means that you can never set
the owner UpdatePanel server control of a given UpdatePanelTrigger from your code. You may be
 wondering who calls this method. The answer is the Add method of the UpdatePanelTriggerCollection .
Recall from Listing 21-12 that when the Triggers property of the UpdatePanel instantiates the
UpdatePanelTriggerCollection , it passes a reference to the UpdatePanel control into the constructor
of the UpdatePanelTriggerCollection , as shown in the highlighted portion of the following code listing:

 [DefaultValue((string)null),
 PersistenceMode(PersistenceMode.InnerProperty)]
 public UpdatePanelTriggerCollection Triggers
 {
 get
 {
 if (this._triggers == null)

 this._triggers = new UpdatePanelTriggerCollection(this);

 return this._triggers;
 }
 }

 Listing 21-16 presents the internal implementation of the constructor of the
UpdatePanelTriggerCollection . As you can see, this constructor stores the reference to
the owner UpdatePanel server control in a field named _owner for future reference.

 Listing 21-16: The Constructor of the UpdatePanelTriggerCollection

 public UpdatePanelTriggerCollection(UpdatePanel owner)
{
 if (owner == null)
 throw new ArgumentNullException(“owner”);

 this._owner = owner;
}

c21.indd 1001c21.indd 1001 8/20/07 8:37:13 PM8/20/07 8:37:13 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1002

 As a matter of fact, the UpdatePanelTriggerCollection exposes a public read-only property named
 Owner that returns the value of the _owner field, as shown in Listing 21-17 .

 Listing 21-17: The Owner Property of the UpdatePanelTriggerCollection

 public UpdatePanel Owner
{
 get {return this._owner;}
}

 The UpdatePanelTriggerCollection exposes a method named InsertItem , as shown in
 Listing 21-18 . When you call the Add method on the Triggers collection of an UpdatePanel server
 control to add a new UpdatePanelTrigger object to the collection, the Add method internally calls the
 InsertItem method. As you can see from Listing 21-18 , the InsertItem method takes these steps.
First, it calls the SetOwner method on the UpdatePanelTrigger object being inserted, to set its owner
 UpdatePanel server control:

 item.SetOwner(this.Owner);

 Therefore, when the Add method is invoked on the Triggers collection of an UpdatePanel server
 control to add a new UpdatePanelTrigger object to the collection, under the hood the Add method
automatically sets the owner of the newly added UpdatePanelTrigger object.

 In general, there are two ways to add a new UpdatePanelTrigger object to the Triggers collection
of an UpdatePanel server. The first approach, which is the most common, is to do it declaratively. Here
is an example:

 <asp:UpdatePanel runat=”server” ID=”UpdatePanel1”>
 . . .
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID=”Button1” EventName=”Click” />
 </Triggers>
</asp:UpdatePanel>

 When you do this declaratively, the page parser automatically calls the Add method under the hood to
add the specified trigger to the Triggers collection.

 The second approach is to do it imperatively from your code:

 UpdatePanel up;
 AsyncPostBackTrigger trigger = new AsyncPostBackTrigger();
 trigger.ControlID = “Button1”;
 trigger.EventName = “Click”;
 up.Triggers.Add(trigger);

 As you can see, the imperative approach requires you to explicitly invoke the Add method on the
 Triggers collection.

c21.indd 1002c21.indd 1002 8/20/07 8:37:14 PM8/20/07 8:37:14 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1003

 Back to the implementation of the InsertItem method. Next, this method checks whether its
_intialized field has been set. If so, it initializes the object by calling the Initialize method on
the UpdatePanelTrigger object being inserted:

 if (this._initialized)
 item.Initialize();

 Recall from Listing 21-14 that the Initialize method of the UpdatePanelTriggerCollection is the
one that sets the value of the _initialized field.

 Therefore, you can add new UpdatePanelTrigger objects to the Triggers collection of a given
 UpdatePanel server control, even after the Init life cycle phase and rest assured that
the Initialize method of your newly added UpdatePanelTrigger object will be automatically
 invoked. A good place for imperative addition of new UpdatePanelTrigger objects to the Triggers
collection of an UpdatePanel server control is within the Page_Load method of the current page —
that is, where the current Page enters its Load life cycle phase.

 Listing 21-18: The Add Method of the UpdatePanelTriggerCollection

 protected override void InsertItem(int index, UpdatePanelTrigger item)
{
 item.SetOwner(this.Owner);
 if (this._initialized)
 item.Initialize();

 base.InsertItem(index, item);
}

 Note that the UpdatePanelTrigger API does not contain any reference to any server control (see
Listing 21-15). This means that this API does not put a restriction on how a particular subclass of
 UpdatePanelTrigger is triggered. In other words, you could implement a subclass of the
UpdatePanelTrigger base class that is triggered by a mechanism other than a server control.

 The immediate subclass of the UpdatePanelTrigger abstract class is another abstract class named
 UpdatePanelControlTrigger (see Listing 21-19), which exposes a property named ControlID and
a method named FindTargetControl . Every UpdatePanelControlTrigger trigger is associated with a
server control. The user interaction with the associated server control of an UpdatePanelControlTrigger
trigger triggers the UpdatePanelControlTrigger , which in turn triggers the update of its owner
 UpdatePanel server control.

 The ControlID property of the UpdatePanelControlTrigger contains the UniqueID property value
of the trigger’s associated server control. As the name suggests, the FindTargetControl method finds
and returns a reference to the associated server control of the UpdatePanelControlTrigger trigger.

 As Listing 21-19 shows, the FindTargetControl method first checks whether it is asked to limit the
search for the associated server control to the child controls of the UpdatePanel control that owns
the UpdatePanelControlTrigger trigger. If so, the method simply calls the FindControl method
on the owner UpdatePanel control to search for the associated server control. Otherwise, the
 method searches through all the naming containers of the UpdatePanel control and its ancestor
 controls for the associated server control.

c21.indd 1003c21.indd 1003 8/20/07 8:37:14 PM8/20/07 8:37:14 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1004

 Note that the FindTargetControl method is marked as protected . This means that only subclasses of
this base class can access this method. Therefore, when you’re writing your own custom subclass of the
 UpdatePanelControlTrigger class, you can call this method from within your subclass scope to return
a reference to the associated server control of your subclass. Also note that the FindTargetControl
method cannot be overridden because it is not marked as virtual. Your custom subclass must use
this method as is.

 Listing 21-19: The UpdatePanelControlTrigger Class

 public abstract class UpdatePanelControlTrigger : UpdatePanelTrigger
{
 protected Control FindTargetControl(bool searchNamingContainers)
 {
 if (searchNamingContainers)
 {
 Control control2 = base.Owner;
 Control control1 = null;
 while ((control1 == null) && (control2 != base.Owner.Page))
 {
 control2 = control2.NamingContainer;
 if (control2 == null)
 return control1;

 control1 = control2.FindControl(this.ControlID);
 }
 return control1;
 }
 return base.Owner.FindControl(this.ControlID);
 }
 [DefaultValue(“”)]
 public string ControlID
 {
 get { return (this._controlID ?? string.Empty); }
 set { this._controlID = value; }
 }
 private string _controlID;
}

 The ASP.NET AJAX framework comes with two subclasses of the UpdatePanelControlTrigger
 abstract base class: PostBackTrigger and AsyncPostBackTrigger . As the names suggest, these two
triggers are associated with server controls that trigger synchronous and asynchronous page postbacks,
respectively.

 Back to the Initialize Method of UpdatePanelTrigger
 Recall that we digressed from our discussions of the Initialize method of the UpdatePanelTrigger
 class to study this class and its subclasses in more detail. As you may recall from Listing 21-14 , the
 Initialize method of the UpdatePanelTriggerCollection invokes the Initialize method of its
constituent UpdatePanelTrigger objects. As Listing 21-15 shows, the Initialize method of the
 UpdatePanelTrigger abstract base class doesn’t do anything. However, the AsyncPostBackTrigger
subclass of this base class overrides this method, providing the implementations shown in Listing 21-20 .

c21.indd 1004c21.indd 1004 8/20/07 8:37:14 PM8/20/07 8:37:14 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1005

 Before diving into the AsyncPostBackTrigger ’s implementation of the Initialize method, we need to
get some facts straight about an AsyncPostBackTrigger and how it works. An AsyncPostBackTrigger ,
like any other subclass of the UpdatePanelControlTrigger base class, is triggered when its associated
server control raises a specified type of event. That is why, as you can see from Listing 21-20 , the
AsyncPostBackTrigger exposes two read/write properties named ControlID and EventName . You
must set the ControlID property to the value of the ID property of its associated server control. Even
though it’s mandatory that you set the value of the ControlID property, it is not mandatory to set the
 EventName property. However, if you decide to set this property, you must set it to the name of a specified
event of the associated server control.

 public string ControlID
 {
 get { return base.ControlID; }
 set { base.ControlID = value; }
 }
 [DefaultValue(“”)]
 public string EventName
 {
 get
 {
 if (this._eventName == null)
 return string.Empty;
 return this._eventName;
 }
 set { this._eventName = value; }
 }

 Here is an example:

 <asp:UpdatePanel runat=”server” ID=”UpdatePanel1”>
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID=”Button1” EventName=”Click” />
 </Triggers>
 <ContentTemplate>
 . . .
 </ContentTemplate>
</asp:UpdatePanel>
<asp:Button runat=”server” ID=”Button1” Text=”Submit” />

 As you can see, this code listing sets the ControlID property of the AsyncPostBackTrigger to the
value of the ID property of the specified ASP.NET Button server control, and the EventName property
to the string ” Click” to specify that the AsyncPostBackTrigger must be triggered when the Click
event of the specified Button server control is raised.

 Now let’s walk through the Initialize method of the AsyncPostBackTrigger . The whole idea behind
the Initialize method is to register a method named OnEvent as an event handler for the specified
event — that is, the event whose name is given by the EventName property — of the associated server con-
trol so that when the server control raises this event, the OnEvent method of the AsyncPostBackTrigger

c21.indd 1005c21.indd 1005 8/20/07 8:37:15 PM8/20/07 8:37:15 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1006

is automatically invoked, allowing the AsyncPostBackTrigger to mark itself as triggered. As
Listing 21-21 shows, the OnEvent method simply sets an internal flag to mark the current
AsyncPostBackTrigger as triggered:

 public void OnEvent(object sender, EventArgs e)
 {
 this._eventHandled = true;
 }

 As Listing 21-20 shows, the AsyncPostBackTrigger class’ implementation of the Initialize method
is complex. This makes you wonder what is so difficult about registering the OnEvent method as the
event handler for the specified event of the associated server control.

 The difficulty arises from the fact that the only information you’re providing to the
AsyncPostBackTrigger is the value of the ID property of its associated server control and the
name of the event of the associated server control that you want the AsyncPostBackTrigger to
respond to:

 <asp:UpdatePanel runat=”server” ID=”UpdatePanel1”>
 <Triggers>

 <asp:AsyncPostBackTrigger ControlID=”Button1” EventName=”Click” />

 </Triggers>
 <ContentTemplate>
 . . .
 </ContentTemplate>
</asp:UpdatePanel>
<asp:Button runat=”server” ID=”Button1” Text=”Submit” />

 To register a method as an event handler for an event of a server control:

 ❑ You need a reference to the server control.

❑ You need to know the actual delegate type of the event so you can instantiate an instance of this
delegate to represent your method.

 For example, to register the OnEvent method as an event handler for the Click event of the ASP.NET
 Button server control shown in the previous example:

 ❑ You need a reference to the ASP.NET Button server control with the ID property value of
 Button1 . Let’s assume that some variable named myButton references this server control.

❑ You need to know that the Click event of the ASP.NET Button server control is a delegate of
type EventHandler so you can instantiate an instance of the EventHandler delegate to repre-
sent the OnEvent method, and add this delegate to the Click event delegate:

 myButton.Click += new EventHandler(OnEvent);

c21.indd 1006c21.indd 1006 8/20/07 8:37:15 PM8/20/07 8:37:15 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1007

 The AsyncPostBackTrigger only knows the following things:

 ❑ The value of the ID property of the server control instead of the actual reference to the
control itself

❑ The name of the event instead of the actual type of the event delegate

 That is why the Initialize method must take extra steps to use the value of the ID property of the
server control to somehow access a reference to the control itself, and to use the name of the event to
somehow access the actual type of the event delegate. Now let’s walk through the implementation of the
 Initialize method of the AsyncPostBackTrigger shown in Listing 21-20 to see how this method
manages to register the OnEvent method as an event handler for the specified event of the server control
with the specified ID property value.

 Listing 21-20: The AsyncPostBackTrigger Class

 public class AsyncPostBackTrigger : UpdatePanelControlTrigger
{
 public AsyncPostBackTrigger() { }
 internal AsyncPostBackTrigger(IScriptManagerInternal scriptManager)
 {
 this._scriptManager = scriptManager;
 }
 protected internal override bool HasTriggered()
 {
 if (!string.IsNullOrEmpty(this.EventName))
 return this._eventHandled;
 string text1 = this.ScriptManager.AsyncPostBackSourceElementID;
 if (text1 != this._associatedControl.UniqueID)
 return text1.StartsWith(this._associatedControl.UniqueID + “$”,
 StringComparison.Ordinal);
 return true;
 }
 protected internal override void Initialize()
 {
 base.Initialize();
 this._associatedControl = base.FindTargetControl(true);
 this.ScriptManager.RegisterAsyncPostBackControl(this._associatedControl);
 Type associatedControlType = this._associatedControl.GetType();

 EventInfo eventInfo = associatedControlType.GetEvent(this.EventName,
 BindingFlags.Public | BindingFlags.Instance | BindingFlags.IgnoreCase);
 Type eventDelegateType = eventInfo.EventHandlerType;
 MethodInfo methodInfo = eventDelegateType.GetMethod(“Invoke”);
 Delegate delegate = Delegate.CreateDelegate(eventDelegateType, this,
 AsyncPostBackTrigger.EventHandler);
 eventInfo.AddEventHandler(this._associatedControl, delegate);
 }
 public void OnEvent(object sender, EventArgs e)
 {
 this._eventHandled = true;
 }

(continued)

c21.indd 1007c21.indd 1007 8/20/07 8:37:15 PM8/20/07 8:37:15 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1008

 Listing 21-20 (continued)

 public override string ToString()
 {
 if (string.IsNullOrEmpty(this.ControlID))
 return “AsyncPostBack”;
 return (“AsyncPostBack: “ + this.ControlID +
 (string.IsNullOrEmpty(this.EventName) ? string.Empty :
 (“.” + this.EventName)));
 }
 public string ControlID
 {
 get { return base.ControlID; }
 set { base.ControlID = value; }
 }
 private static MethodInfo EventHandler
 {
 get
 {
 if (AsyncPostBackTrigger._eventHandler == null)
 AsyncPostBackTrigger._eventHandler =
 typeof(AsyncPostBackTrigger).GetMethod(“OnEvent”);
 return AsyncPostBackTrigger._eventHandler;
 }
 }
 [DefaultValue(“”)]
 public string EventName
 {
 get
 {
 if (this._eventName == null)
 return string.Empty;
 return this._eventName;
 }
 set { this._eventName = value; }
 }
 internal IScriptManagerInternal ScriptManager
 {
 get
 {
 if (this._scriptManager == null)
 {
 this._scriptManager = ScriptManager.GetCurrent(base.Owner.Page);
 if (this._scriptManager == null)
 throw new InvalidOperationException(“ScriptManagerRequired”);
 }
 return this._scriptManager;
 }
 }
 private Control _associatedControl;
 private bool _eventHandled;
 private static MethodInfo _eventHandler;
 private string _eventName;
 private IScriptManagerInternal _scriptManager;
}

c21.indd 1008c21.indd 1008 8/20/07 8:37:16 PM8/20/07 8:37:16 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1009

 This method first calls the FindTargetControl method that it inherits from its base class to return a
 reference to its associated server control. Recall from Listing 21-19 that the FindTargetControl method
searches through the child controls of all the naming containers of the owner UpdatePanel server
 control and the owner ancestor server controls for the server control with the specified ID property
value. In the case of the previous example, this method will return a reference to the Button server
 control with the ID property value of Button1 . Therefore, the call into the FindTargetControl method
provides the AsyncPostBackTrigger with a reference to the server control for whose event the
 OnEvent method is being registered as an event handler:

 this._associatedControl = base.FindTargetControl(true);

 The method then calls the RegisterAsyncPostBackControl method on the current ScriptManager
instance, passing in the reference to its associated server control to register this control as the trigger for
asynchronous page postbacks. As you’ll see later, the server-side PageRequestManager instance passes
the list of the UniqueID property values of the controls registered as triggers for asynchronous page post
backs to the client-side PageRequestManager instance, where they’re stored in an internal client-side
collection for future reference. When the end user clicks a control to post the form back to the server, the
client-side PageRequestManager intercepts the postback before the actual postback request is made to
the server, and determines whether the end user has clicked a control whose UniqueID property value
belongs to the internal collection. If so, it treats the postback as asynchronous and makes an asynchro-
nous page postback request to the server, bypassing the normal browser’s form submission. This will all
be made clear in the next few chapters.

 this.ScriptManager.RegisterAsyncPostBackControl(this._associatedControl);

 The RegisterAsyncPostBackControl method of the ScriptManager class is a public method
that you can use in your own C# or VB.NET code. In other words, the application of this method is not
limited to the AsyncPostBackTrigger class.

 The rest of the code in the Initialize method is there to access the actual type of the event delegate in
a generic fashion. As you can see, the method first calls the GetType method on its associated server
control to return a reference to the Type object that represents the type of the control:

 Type associatedControlType = this._associatedControl.GetType();

 Next, it calls the GetEvent method on this Type object, passing in the event name to return a reference
to the EventInfo object that represents the specified event of its associated control:

 EventInfo eventInfo = associatedControlType.GetEvent(this.EventName,
 BindingFlags.Public | BindingFlags.Instance | BindingFlags.IgnoreCase);

 Then it accesses the Type object that represents the type of the event delegate:

 Type eventDelegateType = eventInfo.EventHandlerType;

 Next, it calls GetMethod on this Type object to return a reference to the MethodInfo object that repre-
sents the Invoke method of the event delegate:

 MethodInfo methodInfo = eventDelegateType.GetMethod(“Invoke”);

c21.indd 1009c21.indd 1009 8/20/07 8:37:16 PM8/20/07 8:37:16 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1010

 Then it calls the CreateDelegate static method on the Delegate class, passing in three parameters to
create a Delegate object. The first parameter references the Type object that represents the type of the
delegate object being created. The second parameter references the current AsyncPostBackTrigger
object. (This parameter is automatically passed into the delegate object being created as its first argument
when the delegate is finally invoked.) The third parameter references the MethodInfo object that
 represents the method that the delegate object being created encapsulates. As you’ll see shortly, the
 AsyncPostBackTrigger exposes a static property of type MethodInfo named EventHandler that
 represents the OnEvent method.

 Delegate delegate = Delegate.CreateDelegate(eventDelegateType, this,
 AsyncPostBackTrigger.EventHandler);

 Finally, the method calls the AddEventHandler method on the EventInfo object that represents the
event whose name is given by the EventName property, to register the newly created delegate object
as event handler for this event:

 eventInfo.AddEventHandler(this._associatedControl, delegate);

 As mentioned earlier, the AsyncPostBackTrigger class exposes a static property of type MethodInfo
named EventHandler . As you can see from the following code listing, this property represents
the OnEvent method of the AsyncPostBackTrigger class. Therefore, the delegate object that the
 CreateDelegate method creates represents the OnEvent method of the AsyncPostBackTrigger .
This means that when the associated server control finally raises the event whose name is given by the
 EventName property of the AsyncPostBackTrigger , the OnEvent method of the AsyncPostBackTrigger
is automatically invoked:

 private static MethodInfo EventHandler
 {
 get
 {
 if (AsyncPostBackTrigger._eventHandler == null)
 AsyncPostBackTrigger._eventHandler =
 typeof(AsyncPostBackTrigger).GetMethod(“OnEvent”);
 return AsyncPostBackTrigger._eventHandler;
 }
 }

 As discussed earlier, the OnEvent method of the AsyncPostBackTrigger simply sets an internal flag
named _eventHandler to true to mark the AsyncPostBackTrigger as triggered:

 public void OnEvent(object sender, EventArgs e)
 {
 this._eventHandled = true;
 }

 As you’ll see later, at some point in the UpdatePanel server control’s life cycle the HasTriggered prop-
erty is invoked on each UpdatePanelTrigger , including the AsyncPostBackTrigger in the Triggers
collection of the UpdatePanel server control, to determine whether it has been triggered. As the follow-
ing code listing shows, the HasTriggered method of the AsyncPostBackTrigger takes the following
steps. If the EventName property of the AsyncPostBackTrigger has been set, it simply returns the value
of the _eventHandled flag. Otherwise it compares the value of the AsyncPostBackSourceElementID
property of the ScriptManager with the value of the UniqueID property of its associated server control.

c21.indd 1010c21.indd 1010 8/20/07 8:37:16 PM8/20/07 8:37:16 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1011

If they are the same, or if the value of the AsyncPostBackSourceElementID property begins with the
value of the UniqueID property of its associated server control plus the dollar sign, the HasTriggered
method returns true to signal to its caller that the current AsyncPostBackTrigger has indeed been
triggered:

 protected internal override bool HasTriggered()
 {
 if (!string.IsNullOrEmpty(this.EventName))
 return this._eventHandled;
 string text1 = this.ScriptManager.AsyncPostBackSourceElementID;
 if (text1 != this._associatedControl.UniqueID)
 return text1.StartsWith(this._associatedControl.UniqueID + “$”,
 StringComparison.Ordinal);
 return true;
 }

 As mentioned earlier, the HasTriggered method returns true if the value of the
AsyncPostBackSourceElementID property begins with the value of the UniqueID property of
its associated server control plus the dollar sign. This happens when the associated server control of
the AsyncPostBackTrigger is a composite control that contains a child control that triggers the
 asynchronous postbacks. This means that the associated server control of an AsyncPostBackTrigger
does not have to be a simple server control.

 Before diving into the implementation of the RegisterAsyncPostBackControl method of the
 ScriptManager class, let’s update Figure 21-9 with the latest method calls. Recall that the dashed
line in Figure 21-9 represents the method calls triggered by the call into the Initialize method of
the UpdatePanelTrigger . In this case the trigger is the AsyncPostBackTrigger subclass of the
UpdatePanelTrigger . Because of this, we need to replace the UpdatePanelTrigger class shown
in Figure 21-9 with AsyncPostBackTrigger . Again, the Initialize method of
the AsyncPostBackTrigger triggers the call into the FindTargetControl method of the
AsyncPostBackTrigger and the RegisterAsyncPostBackControl method of the ScriptManager .
Figure 21-10 extends Figure 21-9 to add these two latest triggered method calls.

 Note that Figure 21-10 contains a dashed line that represents the method calls triggered by the call into
 RegisterAsyncPostBackControl method of the ScriptManager , which will be discussed in the
 following sections.

 The RegisterAsyncPostBackControl Method of the ScriptManager
 As you saw earlier, the Initialize method of the AsyncPostBackTrigger calls the
RegisterAsyncPostBackControl method on the ScriptManager to register its associated server
 control as a trigger for asynchronous page postbacks. Listing 21-21 presents the internal
 implementation of the RegisterAsyncPostBackControl method of the ScriptManager . As you
can see, this method delegates the responsibility of registering the specified server control to the
RegisterAsyncPostBackControl method of the current server-side PageRequestManager instance.

 Listing 21-21: The RegisterAsyncPostBackControl Method of the ScriptManager

 public void RegisterAsyncPostBackControl(Control control)
{
 this.PageRequestManager.RegisterAsyncPostBackControl(control);
}

c21.indd 1011c21.indd 1011 8/20/07 8:37:17 PM8/20/07 8:37:17 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1012

 The RegisterAsyncPostBackControl Method of PageRequestManager
 Listing 21-22 contains the code for the RegisterAsyncPostBackControl method of the
PageRequestManager . As you can see, this method takes the following steps. First, it raises an
exception if the control being registered is the Page object:

 if (control is Page)
 throw new ArgumentException(“CannotRegisterPage”);

 The Page cannot be registered as a trigger for asynchronous page postbacks.

 Next, it raises an exception if the control being registered implements none of the INamingContainer ,
 IPostBackDataHandler , and IPostBackEventHandler interfaces:

 if ((!(control is INamingContainer) &&
 !(control is IPostBackDataHandler)) &&
 !(control is IPostBackEventHandler))
 throw new ArgumentException(“InvalidControlRegistration”);

LoadRecursive

Page UpdatePanel ScriptManager AsyncPostBack
Trigger

LoadRecursive ()

LoadRecursive ()

LoadRecursive ()

OnLoad ()

OnLoad ()

Initialize ()

OnLoad ()

UpdatePanelTriggerCollection
Initialize ()

Initialize ()

FindTarget
Control ()RegisterAsyncPostBackControl (this._associatedControl)

Figure 21-10

c21.indd 1012c21.indd 1012 8/20/07 8:37:17 PM8/20/07 8:37:17 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1013

 Only server controls that implement at least one of the INamingContainer , IPostBackDataHandler ,
and IPostBackEventHandler interfaces can be registered as triggers for asynchronous page postbacks.
For example, the ASP.NET Button server control can be registered as a trigger for asynchronous page
postbacks because it implements the IPostBackEventHandler interface.

 Note that the current server-side PageRequestManager instance maintains two internal collections
named _ postBackControls and _asyncPostBackControls , where it stores the server controls regis-
tered as triggers for synchronous and asynchronous page postbacks, respectively. As you can see from
Listing 21-22 , the RegisterAsyncPostBackControl method raises an exception if the server control
being registered has already been added to the _postBackControls collections:

 if ((this._postBackControls != null) && this._ postBackControls.Contains(control))
 throw new ArgumentException(“CannotRegisterBothPostBacks”);

 The same server control cannot be registered as a trigger for both synchronous and asynchronous page
postbacks.

 Finally, the RegisterAsyncPostBack method adds the server control being registered to the
 _asyncPostBackControls collection if the collection does not already contain the server control:

 if (!this._asyncPostBackControls.Contains(control))
 this._asyncPostBackControls.Add(control);

 The same server control can be registered multiple times as a trigger for asynchronous page postbacks,
because the RegisterAsyncPostBack method ensures that the same server control is not added
 multiple times to the _asyncPostBackControls collection.

 Listing 21-22: The RegisterAsyncPostBackControl Method of the PageRequestManager

 public void RegisterAsyncPostBackControl(Control control)
{
 if (control == null)
 throw new ArgumentNullException(“control”);

 if (control is Page)
 throw new ArgumentException(“CannotRegisterPage”);

 if (!(control is INamingContainer) &&
 !(control is IPostBackDataHandler) &&
 !(control is IPostBackEventHandler))
 throw new ArgumentException(“InvalidControlRegistration”);
 if ((this._ postBackControls != null) && this._postBackControls.Contains(control))
 throw new ArgumentException(“CannotRegisterBothPostBacks”);

 if (this._asyncPostBackControls == null)
 this._asyncPostBackControls = new List<Control>();

 if (!this._asyncPostBackControls.Contains(control))
 this._asyncPostBackControls.Add(control);
}

c21.indd 1013c21.indd 1013 8/20/07 8:37:17 PM8/20/07 8:37:17 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1014

 Now let’s update Figure 21-10 with the latest method calls. Recall that the dashed line in Figure 21-10
represents the method calls triggered by the call into the RegisterAsyncPostBackControl method
of the ScriptManager . As I mentioned earlier, this method triggers the call into the
RegisterAsyncPostBackControl method of the PageRequestManager , which in turn triggers
the call into the Add method of the _asyncPostBackControls field, which is a collection of type
 List<Control> . Figure 21-11 extends Figure 21-10 to add these two latest triggered method calls. This
wraps up the LoadRecursive life cycle phase.

LoadRecursive

Page UpdatePanel ScriptManager PageRequestManager AsyncPostBack
Trigger

_asyncPostBackControls

LoadRecursive ()

LoadRecursive ()

LoadRecursive ()

OnLoad ()

OnLoad ()

Initialize ()

OnLoad ()

Initialize ()
Initialize ()

Add (asyncPostBackControl)

FindTarget
Control ()RegisterAsyncPostBackControl (this._associatedControl)

RegisterAsyncPostBackControl (asyncPostBackControl)

UpdatePanelTriggerCollection

Figure 21-11

 Before diving into the next life cycle phase, that of PreRenderRecursive , let’s take a look at an example
that shows you how to develop your own custom UpdatePanelTrigger triggers.

 Developing a Custom UpdatePanelTrigger
 In this section, I’ll develop a custom UpdatePanelTrigger named AsyncMultiPostBackTrigger that
is associated with a list of server controls. Listing 21-23 presents the implementation of this trigger. As
you can see, it inherits from the UpdatePanelTrigger base class and overrides its HasTriggered and
 Initialize methods.

 As you can also see, AsyncMultiPostBackTrigger exposes two collection properties named
ControlIDs and EventNames . It is the responsibility of the page developer to assign a comma-
separated list of UniqueID property values and event names, respectively, to these two properties. Each

c21.indd 1014c21.indd 1014 8/20/07 8:37:18 PM8/20/07 8:37:18 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1015

value in the former list must be the UniqueID property value of a server control on the current page.
There must be a one-to-one correspondence between the UniqueID property value and event names.

 Note that the AsyncMultiPostBackTrigger exposes a method named FindTargetControls , which
repeats the logic used in the FindTargetControl method shown in Listing 21-19 once for each
 UniqueID property value in the ControlIDs collection. In other words, the FindTargetControls
method returns an array that contains references to the associated server controls of the
 AsyncMultiPostBackTrigger .

 Also note that the AsyncMultiPostBackTrigger ’s implementation of the HasTriggered and
 Initialize methods repeats the logic used in the HasTriggered and Initialize methods shown in
Listing 21-20 once for each server control in the list of associated server controls. As the boldface portion
of Listing 21-23 shows, the AsyncMultiPostBackTrigger is considered triggered when the first server
control in the list of its associated server control triggers.

 Listing 21-23: The AsyncMultiPostBackTrigger Class

 using System;
using System.Configuration;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;
using System.Reflection;
using System.ComponentModel;
using System.Collections;
namespace CustomComponents
{
 public class AsyncMultiPostBackTrigger : UpdatePanelTrigger
 {
 protected Control[] FindTargetControls(bool searchNamingContainers)
 {
 ArrayList list = new ArrayList();
 if (searchNamingContainers)
 {
 Control control2 = null;
 Control control1 = null;
 foreach (string controlID in this._controlIDs)
 {
 control2 = base.Owner;
 control1 = null;
 while ((control1 == null) && (control2 != base.Owner.Page))
 {
 control2 = control2.NamingContainer;
 if (control2 == null)
 break;
 control1 = control2.FindControl(controlID);
 }
 list.Add(control1);
 }
 }

(continued)

c21.indd 1015c21.indd 1015 8/20/07 8:37:18 PM8/20/07 8:37:18 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1016

 Listing 21-23 (continued)

 else
 {
 foreach (string controlID in this._controlIDs)
 {
 list.Add(base.Owner.FindControl(controlID));
 }
 }
 Control[] controls = new Control[list.Count];
 list.CopyTo(controls);
 return controls;
 }
 protected override bool HasTriggered()
 {
 if (this.EventNames != null && this.EventNames.Length > 0 &&
 !String.IsNullOrEmpty(this.EventNames[0]))
 return this._eventHandled;
 ScriptManager sm = ScriptManager.GetCurrent(this.Owner.Page);
 foreach (Control associatedControl in this._associatedControls)
 {
 if (sm.AsyncPostBackSourceElementID != associatedControl.UniqueID)
 return sm.AsyncPostBackSourceElementID.StartsWith(
 associatedControl.UniqueID + “$”, StringComparison.Ordinal);
 }
 return true;
 }
 protected override void Initialize()
 {
 base.Initialize();
 this._associatedControls = this.FindTargetControls(true);
 ScriptManager sm = ScriptManager.GetCurrent(this.Owner.Page);
 Control associatedControl = null;
 string eventName = “”;
 Type associatedControlType;
 EventInfo eventInfo;
 Type eventDelegateType;
 MethodInfo methodInfo;
 Delegate delegate1;
 for (int i = 0; i < this._associatedControls.Length; i++)
 {
 associatedControl = this._associatedControls[i];
 eventName = this.EventNames[i];
 sm.RegisterAsyncPostBackControl(associatedControl);
 associatedControlType = associatedControl.GetType();
 eventInfo = associatedControlType.GetEvent(eventName,
 BindingFlags.Public | BindingFlags.Instance |
 BindingFlags.IgnoreCase);
 eventDelegateType = eventInfo.EventHandlerType;
 methodInfo = eventDelegateType.GetMethod(“Invoke”);
 delegate1 = Delegate.CreateDelegate(eventDelegateType, this,
 AsyncMultiPostBackTrigger.EventHandler);
 eventInfo.AddEventHandler(associatedControl, delegate1);
 }
 }

c21.indd 1016c21.indd 1016 8/20/07 8:37:18 PM8/20/07 8:37:18 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1017

 public void OnEvent(object sender, EventArgs e)
 {
 this._eventHandled = true;
 }
 [TypeConverter(typeof(StringArrayConverter))]
 public string[] ControlIDs
 {
 get { return this._controlIDs; }
 set { this._controlIDs = value; }
 }
 private static MethodInfo EventHandler
 {
 get
 {
 if (AsyncMultiPostBackTrigger._eventHandler == null)
 AsyncMultiPostBackTrigger._eventHandler =
 typeof(AsyncMultiPostBackTrigger).GetMethod(“OnEvent”);
 return AsyncMultiPostBackTrigger._eventHandler;
 }
 }
 [TypeConverter(typeof(StringArrayConverter))]
 public string[] EventNames
 {
 get { return this._eventNames; }
 set { this._eventNames = value; }
 }
 private bool _eventHandled;
 private Control[] _associatedControls;
 private static MethodInfo _eventHandler;
 private string[] _eventNames;
 private string[] _controlIDs;
 }
}

 The following code listing presents a page that uses the AsyncMultiPostBackTrigger . As the boldface
portion of this code listing shows, the AsyncMultiPostBackTrigger has two associated server
 controls, which have the UniqueID property values AsyncPostBackButton1 and
 AsyncPostBackButton2 .

 <%@ Page Language=”C#” %>
<%@ Register TagPrefix=”custom” Namespace=”CustomComponents” %>
<%@ Import Namespace=”System.Drawing” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<script runat=”server”>
 void Page_Load(object sender, EventArgs e)
 {
 string text = “Refreshed at “ + DateTime.Now.ToString();
 UpdatePanel1Label.Text = text;
 NonPartiallyUpdatableLabel.Text = text;
 }
</script>

(continued)

c21.indd 1017c21.indd 1017 8/20/07 8:37:19 PM8/20/07 8:37:19 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1018

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />
 <asp:UpdatePanel ID=”UpdatePanel1” runat=”server”>
 <ContentTemplate>
 <table cellspacing=”10”
 style=”background-color: #dddddd” width=”100%”>
 <tr>
 <th colspan=”2” align=”center”>
 Partially Updatable Portion (UpdatePanel1)</th>
 </tr>
 <tr>
 <td>
 <asp:Label ID=”UpdatePanel1Label” runat=”server” />
 </td>
 <td>
 <asp:Button ID=”UpdatePanelButton” runat=”server”
 Text=”Update” />
 </td>
 </tr>
 </table>
 </ContentTemplate>
 <Triggers>
 <custom:AsyncMultiPostBackTrigger
 ControlIDs=”AsyncPostBackButton1,AsyncPostBackButton2”
 EventNames=”Click,Click” />
 </Triggers>
 </asp:UpdatePanel>

 <table cellspacing=”10” style=”background-color: #dddddd” width=”100%”>
 <tr>
 <th colspan=”2”>
 Non Partially Updatable Portion</th>
 </tr>
 <tr>
 <td>
 <asp:Label ID=”NonPartiallyUpdatableLabel” runat=”server” />
 </td>
 <td>
 <asp:Button ID=”Button1” runat=”server” Text=”Update” />
 </td>
 </tr>

(continued)

c21.indd 1018c21.indd 1018 8/20/07 8:37:19 PM8/20/07 8:37:19 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1019

 <tr>
 <td align=”left”>
 <asp:Button ID=”AsyncPostBackButton1” runat=”server”
 Text=”Async Postback Trigger1” />
 </td>
 <td align=”left”>
 <asp:Button ID=”AsyncPostBackButton2” runat=”server”
 Text=”Async Postback Trigger2” />
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

 Rendering
 Once again, keep in mind that we’re following the current Page object as it goes through its life cycle
phases to process the first HTTP GET request made to a Web page enabled for partial page rendering. In
the previous sections, you saw what happens when the Page enters its PreInit , InitRecursive ,
 LoadRecursive , and PreRenderRecursive life cycle phases. In this section, you’ll see what
 happens when the Page enters its rendering life cycle phase, where the ProcessRequest method (see
Listing 21-1) calls the RenderControl method on the current Page .

 The current Page inherits the RenderControl from the ASP.NET Control base class. The RenderControl
method internally calls the Render method, which in turn calls the RenderChildren method. Listing 21-24
presents the internal implementation of the RenderChildren method of the Control base class. As you
can see, the RenderChildren method first calls the GetRenderMethod to return a reference to the
RenderMethod delegate registered with the server control, if any. Since this part of the implementation of
the RenderChildren method does not apply to the first request, I’ll postpone the discussion of this part
of the code to later when we’re discussing asynchronous page postback requests.

 In other words, only the boldface portion of the RenderChildren method is executed for the first
request. As you can see, this portion iterates through the child controls in the Controls collection of the
current Page and invokes the RenderControl method on each enumerated child control.

 Synchronous page postbacks and the first requests always end up rendering all visible server controls on
the current page. As you’ll see, asynchronous page postbacks, on the other hand, end up rendering only
specified UpdatePanel server controls on the current page.

c21.indd 1019c21.indd 1019 8/20/07 8:37:19 PM8/20/07 8:37:19 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1020

 Listing 21-24: The RenderChildren Method of the Control Base Class

 protected internal virtual void RenderChildren(HtmlTextWriter writer)
{
 RenderMethod renderMethod = this.GetRenderMethod();
 if (renderMethod != null)
 {
 writer.BeginRender();
 renderMethod(writer, this);
 writer.EndRender();
 }

 else if (this.Controls != null)
 {
 foreach (Control control in this.Controls)
 {
 control.RenderControl(writer);
 }
 }
}

 Therefore, the RenderControl method of the ScriptManager and UpdatePanel server controls is
automatically invoked when the current Page enters its rendering life cycle phase. As just discussed, the
 RenderControl method calls the Render method. Figure 21-12 depicts the method calls that we’ve
 covered so far. Note that this figure contains two dashed lines. These dashed lines represent the method
calls that the Render methods of the ScriptManager and UpdatePanel server controls trigger, as
 discussed in the following sections.

 The Render Method of ScriptManager
 The Render method of the current ScriptManager server control internally calls the
RenderPageRequestManagerScript method on the current server-side PageRequestManager
instance. Listing 21-25 presents the implementation of the RenderPageRequestManagerScript
method. This method renders the script that instantiates and initializes the client-side
PageRequestManager class.

 The instantiation and initialization of the current client-side PageRequestManager instance involves
two steps. First, the _initialize static method must be called on the client-side PageRequestManager
class. Second, the _updateControls instance method must be called on the current client-side
PageRequestManager instance. As Listing 21-25 shows, the RenderPageRequestManagerScript
method takes these steps to render the script that instantiates and initializes the current client-side
 PageRequestManager instance.

c21.indd 1020c21.indd 1020 8/20/07 8:37:19 PM8/20/07 8:37:19 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1021

 Listing 21-25: The RenderPageRequestManagerScript Method of PageRequestManager

 internal void RenderPageRequestManagerScript(HtmlTextWriter writer)
{
 writer.Write(“<script type=\”text/javascript\”>\r\n”);
 writer.Write(“//<![CDATA[\r\nSys.WebForms.PageRequestManager._initialize(‘”);
 writer.Write(this._owner.UniqueID);
 writer.Write(“’, document.getElementById(‘”);
 writer.Write(this._owner.IPage.Form.ClientID);
 writer.Write(“’));\r\n”);
 writer.Write(“Sys.WebForms.PageRequestManager.getInstance()._updateControls([“);
 PageRequestManager.RenderUpdatePanelIDsFromList(writer, this._allUpdatePanels);
 writer.Write(“], [“);
 writer.Write(this.GetAsyncPostBackControlIDs(true));
 writer.Write(“], [“);
 writer.Write(this.GetPostBackControlIDs(true));
 writer.Write(“], “);
 writer.Write(this.GetAsyncPostBackTimeout());
 writer.WriteLine(“);”);
 writer.Write(“//]]>\r\n</script>\r\n”);
}

Rendering Lifecycle Phase

Page ScriptManager UpdatePanel

RenderControl ()

RenderControl ()

RenderControl ()

Render ()

Render ()

Render ()

RenderChildren ()

Figure 21-12

c21.indd 1021c21.indd 1021 8/20/07 8:37:20 PM8/20/07 8:37:20 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1022

 The method begins by rendering the opening tag of the script HTML element that will contain the entire
instantiation/initialization script:

 writer.Write(“<script type=\”text/javascript\”>\r\n”);

 Next, the method renders the part of the script that invokes the _initialize static method on the
 client-side PageRequestManager class:

 writer.Write(“//<![CDATA[\r\nSys.WebForms.PageRequestManager._initialize(‘”);

 Next, the method renders the parameters that are passed into the _initialize method. The
_initialize method takes two parameters. The first is a string that contains the value of the UniqueID
property of the current ScriptManager server control:

 writer.Write(this._owner.UniqueID);

 The second references the form HTML element that contains the current ScriptManager server control
(recall that the ScriptManager server control is always declared inside a <form runat=”server”>
element):

 writer.Write(“’, document.getElementById(‘”);
 writer.Write(this._owner.IPage.Form.ClientID);
 writer.Write(“’));\r\n”);

 Next, the RenderPageRequestManagerScript method renders the portion of the script that invokes
the _updateControls method on the current client-side PageRequestManager instance. It begins by
rendering the method invocation:

 writer.Write(“Sys.WebForms.PageRequestManager.getInstance()._updateControls([“);

 Next, it renders the parameters passed into the _updateControls method. This method takes three
parameters. The first is an array that contains the values of the UniqueID properties of all the
UpdatePanel server controls on the current page. The RenderPageRequestManagerScript method
calls the RenderUpdatePanelIDsFromList static method to return an array that contains these
 UniqueID property values:

 PageRequestManager.RenderUpdatePanelIDsFromList(writer, this._allUpdatePanels);
 writer.Write(“], [“);

 The second parameter of the _updateControls method is an array that contains the values of the
 UniqueID properties of all the server controls that cause asynchronous page postbacks. The
RenderPageRequestManagerScript method calls the GetAsyncPostBackControlIDs method to
return an array that contains these UniqueID property values:

 writer.Write(this.GetAsyncPostBackControlIDs(true));
 writer.Write(“], [“);

c21.indd 1022c21.indd 1022 8/20/07 8:37:20 PM8/20/07 8:37:20 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1023

 The third parameter of the _updateControls method is an array that contains the values of the
 UniqueID properties of all the server controls that cause synchronous page postbacks. The
RenderPageRequestManagerScript method calls the GetPostBackControlIDs method to return
an array that contains these UniqueID property values:

 writer.Write(this.GetPostBackControlIDs(true));
 writer.Write(“], “);

 The fourth parameter of the _updateControls method is a string that contains the asynchronous
 postback timeout. Recall that the server-side PageRequestManager class exposes a field named _owner
that references the current ScriptManager server control. Also recall that the ScriptManager server
control exposes an integer property named AsyncPostBackTimeout that returns the asynchronous
postback request timeout:

 writer.Write(this._owner.AsyncPostBackTimeout.ToString());
 writer.WriteLine(“);”);
 writer.Write(“//]]>\r\n</script>\r\n”);

 Here is an example. Suppose the current page contains a ScriptManager server control with UniqueID
value of ” ScriptManager1” enclosed in a form element with the id HTML attribute value of ” Form1” ,
three UpdatePanel server controls with UniqueID values of ” UpdatePanel1” , ” UpdatePanel2” , and
” UpdatePanel3” , two Button server controls that cause synchronous page postbacks, with UniqueID
values of ” SyncButton1” and ” SyncButton2” , and finally three Button server controls that cause
asynchronous page postbacks, with UniqueID values of ” AsyncButton1” , ” AsyncButton2” ,
and ” AsyncButton3” . The following code fragment shows the script that the
RenderPageRequestManagerScript method will render:

 <script type=”text/javascript”>
 //<![CDATA[
 Sys.WebForms.PageRequestManager._initialize(‘ScriptManager1’,
 document.getElementById(‘Form1’));
 Sys.WebForms.PageRequestManager.getInstance()._updateControls(
 [‘tUpdatePanel1’, ‘fUpdatePanel2’, ‘tUpdatePanel3’],
 [‘SyncButton1’, ‘SyncButton2’],
 [‘AsyncButton1’, ‘AsyncButton2’]);
 //]]
</script>

 Before diving into the implementations of the RenderUpdatePanelIDsFromList ,
GetAsyncPostBackConrolIDs , and GetPostBackControlIDs of the server-side
PageRequestManager , let’s update Figure 21-12 with the latest method calls.

 Figure 21-13 extends Figure 21-12 to add the new method calls. Note that this figure contains three
dashed lines. The figure inherits the left dashed line from Figure 21-12 . Recall that this dashed line
 represents the method calls triggered by the call into the Render method of the UpdatePanel .
The remaining two dashed lines represent the method calls triggered by the calls into the
GetAsynchPostBackControlIDs and GetPostBackControlIDs , which will be discussed in the
next sections.

c21.indd 1023c21.indd 1023 8/20/07 8:37:20 PM8/20/07 8:37:20 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1024

 The RenderUpdatePanelIDsFromList Method of the Server-Side PageRequestManager
 Listing 21-26 presents the implementation of the RenderUpdatePanelIDsFromList method of
 PageRequestManager . This method takes two parameters. The first references an HtmlTextWriter
object. The second is a List<UpdatePanel> collection that contains the list of all UpdatePanel server
controls on the current page. The main responsibility of this method is to retrieve the values of the
 UniqueID and ChildrenAsTriggers properties of all UpdatePanel server controls in this collection
and render them into the HtmlTextWriter object as a comma-separated list of strings, one for each
 UpdatePanel server control, each of which contains the following two parts:

 ❑ The character t if the ChildrenAsTrigger property of the associated UpdatePanel server
 control is true; the character f otherwise

❑ The UniqueID property value of the associated UpdatePanel server control

Rendering Lifecycle Phase

Page ScriptManager UpdatePanel PageRequestManager

RenderControl ()

RenderControl ()

RenderControl ()

Render ()

Render () Render ()

Render ()

RenderChildren ()

RenderPageRequestManagerScript ()

RenderUpdatePanelIDsFromList ()

GetAsyncPostBackControlIDs ()

GetPostBackControlIDs ()

GetAsyncPostBackTimeout ()

Figure 21-13

c21.indd 1024c21.indd 1024 8/20/07 8:37:21 PM8/20/07 8:37:21 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1025

 Listing 21-26: The RenderUpdatePanelIDsFromList Method of PageRequestManager

 private static void RenderUpdatePanelIDsFromList(HtmlTextWriter writer,
 List<UpdatePanel> list)
{
 if ((list != null) && (list.Count > 0))
 {
 bool flag1 = true;
 for (int num1 = 0; num1 < list.Count; num1++)
 {
 if (list[num1].Visible)
 {
 if (!flag1)
 writer.Write(“,”);

 flag1 = false;
 writer.Write(“’”);
 writer.Write(list[num1].ChildrenAsTriggers ? “t” : “f”);
 writer.Write(list[num1].UniqueID);
 writer.Write(“’”);
 }
 }
 }
}

 The GetAsyncPostBackControlIDs Method of the Server-Side PageRequestManager
 Listing 21-27 presents the implementation of the GetAsyncPostBackControlIDs method of the
 PageRequestManager . As you can see, this method simply delegates to the GetControlIDsFromList
method, passing in the _asyncPostBackControls collection. Recall that the PageRequestManager
server class features a private collection named _asyncPostBackControls that contains all the server
controls that cause asynchronous page postbacks.

 Listing 21-27: The GetAsyncPostBackControlIDs Method of the PageRequestManager

 private string GetAsyncPostBackControlIDs(bool includeQuotes)
{
 return PageRequestManager.GetControlIDsFromList(this._asyncPostBackControls,
 includeQuotes);
}

 The GetControlIDsFromList Method of the Server-Side PageRequestManager
 Listing 21-28 contains the code for the GetControlIDsFromList method of the PageRequestManager .
This method takes a List<Control> collection that contains a list of server controls. The main responsi-
bility of this method is to return a comma-separated list of strings, each of which contains the UniqueID
property value of a server control in the List<Control> collection. Note that this method takes a second
Boolean argument that specifies whether these UniqueID property values must be rendered in quotes.

c21.indd 1025c21.indd 1025 8/20/07 8:37:21 PM8/20/07 8:37:21 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1026

 Listing 21-28: The GetControlIDsFromList Method of the PageRequestManager

 private static string GetControlIDsFromList(List<Control> list, bool includeQuotes)
{
 if ((list == null) || (list.Count <= 0))
 return string.Empty;

 StringBuilder builder1 = new StringBuilder();
 bool flag1 = true;
 for (int num1 = 0; num1 < list.Count; num1++)
 {
 if (list[num1].Visible)
 {
 if (!flag1)
 builder1.Append(“,”);

 flag1 = false;
 if (includeQuotes)
 builder1.Append(“’”);

 builder1.Append(list[num1].UniqueID);
 if (includeQuotes)
 builder1.Append(“’”);
 }
 }
 return builder1.ToString();
}

 The GetPostBackControlIDs Method of the Server-Side PageRequestManager
 Listing 21-29 presents the implementation of the GetPostBackControlIDs method of the
 PageRequestManager . As you can see, this method simply delegates to the GetControlIDsFromList
method, passing in the _postBackControls collection. The current server-side PageRequestManager
instance features a private collection field named _postBackControls that contains all the server
 controls on the current page that cause synchronous page postbacks.

 Listing 21-29: The GetPostBackControlIDs Method of the PageRequestManager

 private string GetPostBackControlIDs(bool includeQuotes)
{
 return PageRequestManager.GetControlIDsFromList(this._postBackControls,
 includeQuotes);
}

 The GetAsyncPostBackTimeout Method of the Server-Side PageRequestManager
 As Listing 21-30 shows, this method simply returns the value of the AsyncPostBacktimeout property
of the current ScriptManager server control. Recall that the _owner field of the current server-side
 PageRequestManager instance references the current ScriptManager server control.

c21.indd 1026c21.indd 1026 8/20/07 8:37:21 PM8/20/07 8:37:21 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1027

 Listing 21-30: The GetAsyncPostBackTimeout Method of the PageRequestManager

 private string GetAsyncPostBackTimeout()
{
 return this._owner.AsyncPostBackTimeout.ToString();
}

 Figure 21-14 updates Figure 21-13 with the latest method calls. Note that Figure 21-14 contains a dashed
line that it inherits from Listing 21-13 . Recall that this dashed line represents the method calls triggered
by the call into the RenderControl method of the UpdatePanel server control.

Rendering Lifecycle Phase

Page ScriptManager UpdatePanel PageRequestManager

RenderControl ()

RenderControl ()

RenderControl ()

Render ()

Render ()
Render ()

Render ()

RenderChildren ()

VerifyRenderingInServerForm ()
RenderPageRequestManagerScript ()

RenderUpdatePanelIDsFromList ()

GetAsyncPostBackControlIDs ()

GetControlIDsFromList ()

GetPostBackControlIDs ()

GetControlIDsFromList ()

GetAsyncPostBackTimeout ()
ClientScriptManager

RegisterStartupScript (“Sys.Application.initialize ()”)

Figure 21-14

c21.indd 1027c21.indd 1027 8/20/07 8:37:22 PM8/20/07 8:37:22 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1028

 The Render Method of the UpdatePanel
 The UpdatePanel server control inherits the RenderControl method from the Control base class. The
base class’s implementation of the RenderControl method calls the Render method, shown in Listing
 21-31 . As you can see, this method takes two actions. First, it calls the VerifyRenderingInServerForm
method on the current Page to raise an exception if the UpdatePanel server control is not inside a
 <form runat=”server”> element:

 this.Page.VerifyRenderingInServerForm(this);

 Next, it calls the Render method of its base class, which in turn calls the RenderChildren method, as
shown in Listing 21-32 .

 Listing 21-31: The Render Method of the UpdatePanel

 protected override void Render(HtmlTextWriter writer)
{
 this.Page.VerifyRenderingInServerForm(this);
 base.Render(writer);
}

 Listing 21-32 presents the implementation of the RenderChildren method of the UpatePanel server
control. The method first checks whether the UpdatePanel control is in asynchronous postback mode —
that is, if the current request is an asynchronous page postback. Since the current request is the first
request to a Web page enabled for partial page rendering, and since the first request is not an asynchro-
nous postback, only the boldface portion of the RenderChildren method of the UpdatePanel server
control is executed for the first request. I’ll discuss the non-boldface portion of this method later when
we’re studying the next request, which will be an asynchronous page postback.

 As the boldface portion of the Listing 21-32 shows, the UpdatePanel server control renders its child con-
trols within either a div or span HTML element, depending on the value of its UpdatePanelRenderMode
property. This property is of type UpdatePanelRenderMode enumerator, which can have one of the
 following possible enumeration values:

 public enum UpdatePanelRenderMode
{
 Block,
 Inline
}

 As the boldface portion of Listing 21-32 shows, the RenderChildren method of the UpdatePanel
server control encapsulates its child controls in a div HTML element if its UpdatePanelRenderMode is
set to the enumeration value Block , and in a span HTML element otherwise:

 if (this.RenderMode == UpdatePanelRenderMode.Block)
 writer.RenderBeginTag(HtmlTextWriterTag.Div);
 else
 writer.RenderBeginTag(HtmlTextWriterTag.Span);

c21.indd 1028c21.indd 1028 8/20/07 8:37:22 PM8/20/07 8:37:22 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1029

 Note that the UpdatePanel server control renders the value of its ClientID property as the value of the
 id HTML attribute of the outermost div or span HTML element:

 writer.AddAttribute(HtmlTextWriterAttribute.Id, this.ClientID);

 Listing 21-32: The RenderChildren Method of the UpdatePanel

 protected override void RenderChildren(HtmlTextWriter writer)
{
 if (this._asyncPostBackMode)
 {
 if (this._rendered)
 return;
 HtmlTextWriter writer1 = new HtmlTextWriter(new StringWriter());
 base.RenderChildren(writer1);
 PageRequestManager.EncodeString(writer, “updatePanel”, this.ClientID,
 writer1.InnerWriter.ToString());
 }
 else
 {
 writer.AddAttribute(HtmlTextWriterAttribute.Id, this.ClientID);
 if (this.RenderMode == UpdatePanelRenderMode.Block)
 writer.RenderBeginTag(HtmlTextWriterTag.Div);
 else
 writer.RenderBeginTag(HtmlTextWriterTag.Span);
 base.RenderChildren(writer);
 writer.RenderEndTag();
 }
 this._rendered = true;
}

 Figure 21-15 updates Figure 21-14 with the latest method calls, which wraps up our discussions of the
 Rendering phase of the current Page object.

 Summary
 This chapter followed the Page object through its life cycle phases to process the first request to a Web
page enabled for partial page rendering. As you saw, the server response to this request contains a script
block generated by the current server-side PageRequestManager instance. Recall that this script block
takes the following two important actions:

 ❑ Calls the _initialize static method on the client-side PageRequestManager class to instanti-
ate and to initialize the current client-side PageRequestManager instance

❑ Calls the _updateControls instance method on the current client-side PageRequestManager
instance, passing in three parameters:

 ❑ The first parameter is an array containing one string for each UpdatePanel server control
on the current page, each string consisting of two substrings. The first substring contains

c21.indd 1029c21.indd 1029 8/20/07 8:37:22 PM8/20/07 8:37:22 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1030

the letter t if the ChildrenAsTriggers property of the associated UpdatePanel server
control has been set to true , and the letter f otherwise. The second substring contains the
value of the UniqueID property of the associated UpdatePanel server control.

❑ The second parameter is an array that contains the UniqueID property values of all server
controls on the current page that cause synchronous page postbacks.

❑ The third parameter is an array that contains the UniqueID property values of all server
controls on the current page that cause asynchronous page postbacks.

 The following code listing presents an example of the script block rendered by the current server-side
 PageRequestManager instance:

Rendering Lifecycle Phase

Page ScriptManager UpdatePanel PageRequestManager

<<Response Output Stream>>
HtmlTextWriter

RenderControl ()

RenderControl ()

RenderControl ()

Render ()

Render ()
Render ()

Render ()

RenderChildren ()

RenderChildren ()

VerifyRenderingInServerForm ()
RenderPageRequestManagerScript ()

RenderUpdatePanelIDsFromList ()

GetAsyncPostBackControlIDs ()

GetControlIDsFromList ()

GetPostBackControlIDs ()

GetControlIDsFromList ()

GetAsyncPostBackTimeout ()ClientScriptManager
RegisterStartupScript (“Sys.Application.initialize ()”)

VerifyRenderingInServerForm ()
AddAttribute (“id”, this.ClientID)
RenderBeginTag (“div” or “span”)

RenderEndTag ()

Figure 21-15

c21.indd 1030c21.indd 1030 8/20/07 8:37:22 PM8/20/07 8:37:22 PM

Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering

1031

 <script type=”text/javascript”>
 //<![CDATA[
 Sys.WebForms.PageRequestManager._initialize(‘ScriptManager1’,
 document.getElementById(‘Form1’));
 Sys.WebForms.PageRequestManager.getInstance()._updateControls(
 [‘tUpdatePanel1’, ‘fUpdatePanel2’, ‘tUpdatePanel3’],
 [‘SyncButton1’, ‘SyncButton2’],
 [‘AsyncButton1’, ‘AsyncButton2’]);
 //]]
</script>

 In the next chapter we’ll move on to the client side where the server response, including this script
block, arrives. We’ll study what happens when the this script block invokes the _initialize and
_updateControls methods of the client-side PageRequestManager .

c21.indd 1031c21.indd 1031 8/20/07 8:37:23 PM8/20/07 8:37:23 PM

c21.indd 1032c21.indd 1032 8/20/07 8:37:23 PM8/20/07 8:37:23 PM

 ASP.NET AJAX Client-Side
PageRequestManager

 The last chapter followed the Page object through its life cycle phases to process the first request to
a Web page enabled for partial page rendering. As you saw, the server response to this request
 contains a script block generated by the current server-side PageRequestManager instance. Recall
that this script block takes the following two important actions:

 ❑ Calls the _initialize static method on the client-side PageRequestManager class to
 instantiate and initialize the current client-side PageRequestManager instance

❑ Calls the _updateControls instance method on the current client-side
PageRequestManager instance, passing in four parameters:

 ❑ The first parameter is an array containing one string for each UpdatePanel server
control on the current page. This string consists of two substrings. The first substring
contains the letter t if the ChildrenAsTriggers property of the associated
UpdatePanel server control has been set to true and the letter f otherwise. The
second substring contains the value of the Unique ID property of the associated
UpdatePanel server control.

❑ The second parameter is an array that contains the Unique ID property values of all
server controls on the current page that cause synchronous page postbacks.

❑ The third parameter is an array that contains the Unique ID property values of all
server controls on the current page that cause asynchronous page postbacks.

❑ The fourth parameter is a string that contains the asynchronous postback request
timeout.

 Listing 22-1 presents an example of the script block rendered by the current server-side
 PageRequestManager instance.

c22.indd 1033c22.indd 1033 8/20/07 8:38:07 PM8/20/07 8:38:07 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1034

 Listing 22-1: The Sample Script Block that Arrives on the Client Side as Part of the
Server Response

 <script type=”text/javascript”>
 //<![CDATA[
 Sys.WebForms.PageRequestManager._initialize(‘ScriptManager1’,
 document.getElementById(‘Form1’));
 Sys.WebForms.PageRequestManager.getInstance()._updateControls(
 [‘tUpdatePanel1’, ‘fUpdatePanel2’, ‘tUpdatePanel3’],
 [‘SyncButton1’, ‘SyncButton2’],
 [‘AsyncButton1’, ‘AsyncButton2’], ‘90’);
 //]]
</script>

 In this chapter we’ll move on to the client side, where the server response — including this script block —
arrives. As you can see, this script block automatically invokes the _intialize and _updateControls
methods of the client-side PageRequestManager . Figure 22-1 depicts the instantiation and initialization
of the current PageRequestManager instance. As you can see, this figure diplays the two method calls
I’ve discussed. Note that this figure contains two dashed lines. The top one represents the method calls
triggered by the call into the _initialize method of the PageRequestManager . The bottom one repre-
sents the method calls triggered by the call into the _updateControls method. I’ll discuss these two sets
of triggered method calls in the following sections, and update this figure with new method calls as we
move through the chapter.

PageRequestManager Instantiation/Initialization
PageRequestManager

_initialize(scriptManagerUniqueID, formElement)

_updateControls([…], […], […], asyncPostBackTimeout)

Figure 22-1

 Instantiating and Initializing the Client-Side
PageRequestManager

 Listing 22-2 presents the internal implementation of the _initialize static method of the client-side
 PageRequestManager .

c22.indd 1034c22.indd 1034 8/20/07 8:38:08 PM8/20/07 8:38:08 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1035

 Listing 22-2: The _ initialize Static Method of the PageRequestManager Client Class

 Sys.WebForms.PageRequestManager._initialize =
function Sys$WebForms$PageRequestManager$_initialize(scriptManagerID, formElement)
{
 Sys.WebForms.PageRequestManager._ensureSinglePageRequestManagerInstance();
 Sys.WebForms.PageRequestManager._createPageRequestManagerInstance();
 Sys.WebForms.PageRequestManager._initializePageRequestManagerInstance(
 scriptManagerID, formElement);
}

 Note that this method takes two parameters. The first is a string that contains the value of the Unique ID
property of the current ScriptManager instance; the second references the form HTML element that
contains the current ScriptManager instance.

 This method first calls the _ensureSinglePageRequestManagerInstance static method on the
 PageRequestManager to ensure that the current page contains a single PageRequestManager instance.
As the following code listing shows, _ensureSinglePageRequestManagerInstance calls the
 getInstance static method on the client-side PageRequestManager to check whether the current
page already contains an instance of the client-side PageRequestManager class. If so, it raises an
 exception, because every page can contain only one instance of this class:

 Sys.WebForms.PageRequestManager._ensureSinglePageRequestManagerInstance =
function Sys$WebForms$PageRequestManager$_ ensureSinglePageRequestManagerInstance()
{
 if (Sys.WebForms.PageRequestManager.getInstance())
 throw Error.invalidOperation(Sys.WebForms.Res.PRM_CannotRegisterTwice);
}

 Next, _initialize calls the _createPageRequestManagerInstance static method on the
 PageRequestManager to create a new instance of the PageRequestManager . As the following code
 listing shows, this method instantiates an instance of the client-side PageRequestManager class and
assigns it to the _instance static field of this class:

 Sys.WebForms.PageRequestManager._createPageRequestManagerInstance =
function Sys$WebForms$PageRequestManager$_createPageRequestManagerInstance()
{
 Sys.WebForms.PageRequestManager._instance =
 new Sys.WebForms.PageRequestManager();
}

 Finally, the _initialize method calls the _initializePageRequestManagerInstance static method
to initialize the newly created PageRequestManager instance. As the following code listing shows, this
method calls the _initializeInternal private instance method on the newly instantiated client-side
 PageRequestManager , passing in the value of the Unique ID property of the ScriptManager server
control and the reference to the form HTML element of the current page:

c22.indd 1035c22.indd 1035 8/20/07 8:38:08 PM8/20/07 8:38:08 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1036

 Sys.WebForms.PageRequestManager._initializePageRequestManagerInstance =
function Sys$WebForms$PageRequestManager$_createPageRequestManagerInstance(
 scriptManagerID, formElement)
{
 Sys.WebForms.PageRequestManager.getInstance()._initializeInternal(
 scriptManagerID, formElement);
}

 Figure 22-2 updates Figure 22-1 to add the method calls triggered by the _initialize static method of
the PageRequestManager .

 The get Instance Method of the Client-Side
PageRequestManager

 Listing 22-3 presents the internal implementation of the getInstance static method of the client-side
 PageRequestManager class. As you can see, this method returns the value of the _instance static field
of the PageRequestManager client class.

 If you need to access this instance from your client-side code, call the getInstance static method
on the client-side PageRequestManager class to return a reference to the current client-side
PageRequestManager instance.

Figure 22-2

PageRequestManager Instantiation/Initialization
PageRequestManager

_ensureSinglePageRequestManagerInstance ()

getInstance ()

_createPageRequestManagerInstance ()

_initializePageRequestManagerInstance
(scriptManagerUniqueID, formElement)

_initializeInternal (scriptManagerUniqueID, formElement)

_initialize(scriptManagerUniqueID, formElement)

_updateControls([…], […], […], asyncPostBackTimeout)

c22.indd 1036c22.indd 1036 8/20/07 8:38:08 PM8/20/07 8:38:08 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1037

 Listing 22-3: The get Instance Static Method of the PageRequestManager Client Class

 Sys.WebForms.PageRequestManager.getInstance =
function Sys$WebForms$PageRequestManager$getInstance()
{
 /// <returns type=”Sys.WebForms.PageRequestManager”></returns>
 return Sys.WebForms.PageRequestManager._instance || null;
}

 The Constructor of the Client-Side PageRequestManager
Class

 Listing 22-4 presents the implementation of the constructor of the client-side PageRequestManager
class. As this code listing shows, this class contains the following private fields:

 ❑ _form : This field references the form DOM element associated with the HtmlForm server
 control. Keep in mind that an ASP.NET page may have more than one instance of the <form>
HTML element. However, only one of these <form> HTML elements can have the
 runat=”server” attribute. The ASP.NET framework represents this <form> HTML element
with an instance of the HtmlForm server control. The _form field of the client-side
 PageRequestManager references the <form> HTML element that contains the
 runat=”server” attribute.

❑ _updatePanelIDs : This field is an array that contains the values of the Unique ID properties of
all UpdatePanel server controls on the current page after update.

❑ _updatePanelClientIDs : This field is an array that contains the values of the ClientID
 properties of all UpdatePanel server controls on the current page after update.

❑ _oldUpdatePanelIDs : This field is an array that contains the values of the Unique ID properties
of all UpdatePanel server controls on the current page before update.

❑ _childUpdatePanelIDs : This field is an array that contains the values of the Unique ID
 properties of all child UpdatePanel server controls after update.

❑ _panelsToRefreshIDs : This field is an array that contains the values of the Unique ID properties
of all parent UpdatePanel server controls that need refreshing.

❑ _updatePanelHasChildrenAsTriggers : This field is an array that contains the values of
the Unique ID properties of all UpdatePanel server controls on the current page whose
 ChildrenAsTriggers Boolean property have been set to true .

❑ _asyncPostBackControlIDs : This field is an array that contains the values of the Unique ID
properties of all server controls on the current page that cause asynchronous page postbacks.

❑ _asyncPostBackControlClientIDs : This field is an array that contains the values of the
 ClientID properties of all server controls on the current page that cause asynchronous page
postbacks.

❑ _postBackControlIDs : This field is an array that contains the values of the Unique ID
 properties of all server controls on the current page that cause synchronous page postbacks.

❑ _postBackControlClientIDs : This field is an array that contains the values of the ClientID
properties of all server controls on the current page that cause synchronous page postbacks.

c22.indd 1037c22.indd 1037 8/20/07 8:38:08 PM8/20/07 8:38:08 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1038

❑ _scriptManagerID : This field contains the value of the Unique ID property of the current
 ScriptManager server control.

❑ _pageLoadedHandler : This field references the delegate registered as an event handler for the
 load event of the window object.

❑ _additionalInput : This field contains additional optional information.

❑ _onsubmit : This field references the original onsubmit method of the form DOM element that
the _form field references. As you’ll see later, the client-side PageRequestManager instance
 replaces this method with another method when it needs to make an asynchronous page post-
back to the server. Before replacing this method, the current client-side PageRequestMananger
instance stores the function in the _onsubmit field so it can be used later when the page needs
to make a synchronous page postback.

❑ _onSubmitStatements : This field is an array that contains dynamically added form submit
statements.

❑ * _originalDoPostBack : This field references the _doPostBack JavaScript function that per-
forms a regular synchronous page postback to the server. As you’ll see later, the client-side
 PageRequestManager instance replaces this JavaScript function with the one that performs an
asynchronous page postback to the server when PageRequestManager needs to make an asyn-
chronous postback request. Before replacing the _doPostBack JavaScript function, the current
client-side PageRequestManager instance stores the function in the _originalDoPostBack
field so it can be used later when the page needs to make a synchronous page postback.

❑ _postBackSettings : This field references an object literal with three name/value pairs
 that describe the postback settings for the postback request that the current client-side
 PageRequestManager instance is about to make to the server. The name part of the first name/
value pair is the keyword async , and the value part is a Boolean value that specifies whether
the current postback request is asynchronous. The name part of the second name/value pair
is the keyword panel ID , and the value part is a string that contains the value of the Unique ID
property of the UpdatePanel server control whose trigger triggered the current asynchronous
page postback. The name part of the third name/value pair is the keyword sourceElement ,
and the value part references the DOM element that triggered the asynchronous page postback.

❑ _request : This field references the WebRequest object that represents the current asynchronous
page postback request.

❑ _onFormSubmitHandler : This field references the delegate that represents the _onFormSubmit
method of the current PageRequestManager instance. As you’ll see later, this instance registers
this delegate as an event handler for the submit event of the form DOM element referenced
by the _form field.

❑ _onFormElementClickHandler : This field references the delegate that represents the
_onFormElementClick method of the current PageRequestManager instance. As you’ll see
later, this instance registers this delegate as an event handler for the click event of the form
DOM element referenced by the _form field.

❑ _onWindowUnloadHandler : This field references the delegate that represents the
_onWindowUnload method of the current PageRequestManager instance. As you’ll see
later, this instance registers this delegate as an event handler for the unload event of the form
DOM element referenced by the _form field.

❑ _asyncPostBackTimeout : This field is a string that contains the asynchronous page postback
request timeout.

c22.indd 1038c22.indd 1038 8/20/07 8:38:09 PM8/20/07 8:38:09 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1039

❑ _controlIDToFocus : This field is a string that contains the value of the Unique ID property of
the server control that has the mouse focus.

❑ _scrollPosition : This field references an object literal with two name/value pairs that
 describe the current position of the scroll. The name part of the first name/value pair is the
 keyword x , and the value part is an integer that specifies the x coordinate of the scroll bar. The
name part of the second name/value pair is the keyword y , and the value part is an integer that
specifies the y coordinate of the scroll bar.

❑ _dataItems : This field references a dictionary of data items.

❑ _response : This field references the WebRequestExecutor object responsible for executing the
current asynchronous page postback request.

❑ _processingRequest : This field is a Boolean value that specifies whether the current
 PageRequestManager is processing the server response.

❑ _scriptDisposes : This field references a dictionary of script disposes.

 Listing 22-4: The Constructor of the PageRequestManager Client Class

 Sys.WebForms.PageRequestManager = function Sys$WebForms$PageRequestManager()
{
 this._form = null;
 this._updatePanelIDs = null;
 this._updatePanelClientIDs = null;
 this._oldUpdatePanelIDs = null;
 this._childUpdatePanelIDs = null;
 this._panelsToRefreshIDs = null;
 this._updatePanelHasChildrenAsTriggers = null;
 this._asyncPostBackControlIDs = null;
 this._asyncPostBackControlClientIDs = null;
 this._postBackControlIDs = null;
 this._postBackControlClientIDs = null;
 this._scriptManagerID = null;
 this._pageLoadedHandler = null;
 this._additionalInput = null;
 this._onsubmit = null;
 this._onSubmitStatements = [];
 this._originalDoPostBack = null;
 this._postBackSettings = null;
 this._request = null;
 this._onFormSubmitHandler = null;
 this._onFormElementClickHandler = null;
 this._onWindowUnloadHandler = null;
 this._asyncPostBackTimeout = null;
 this._controlIDToFocus = null;
 this._scrollPosition = null;
 this._dataItems = null;
 this._response = null;
 this._processingRequest = false;
 this._scriptDisposes = {};
}
Sys.WebForms.PageRequestManager.registerClass(‘Sys.WebForms.PageRequestManager’);

c22.indd 1039c22.indd 1039 8/20/07 8:38:09 PM8/20/07 8:38:09 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1040

 The _ initialize Internal Method of the Client-Side
PageRequestManager

 Understanding the internal implementation of the _initializeInternal method of the current
 PageRequestManager instance requires a good understanding of the two common types of page postback.
Therefore, before diving into the implementation of this method, we need to study these two different types.

 The first relies on the Submit button. As you know, when the user clicks the Submit button, the form
DOM element raises the submit event and consequently invokes the onsubmit event handler. If the
 onsubmit event handler does not return false , the browser takes these steps:

 1. Collects the names and values of the form elements.

2. Generates a list of items separated by the & character, where each item contains the name and
value of a form element. Each item consists of two parts separated by the equals sign (=), the
first containing the name of the form element and the second containing the value.

3. Creates an HTTP POST request.

4. Adds the list of items to the body of the request.

5. Sets the request headers, such as Content-Type, Content-Length, Host, etc.

6. Submits the request to the server synchronously.

 The onsubmit event handler normally validates the values of the form elements and returns false to
cancel the form submission if the validation fails.

 The main problem with the first type of page postback is its strict reliance on the Submit button for form
submission. There are times when the form must be submitted via DOM elements other than the Submit
button. For example, you may want the form submission to occur when the user selects an item from a
certain HTML element. This is where the second type of page postback comes into play.

 This type relies on the __doPostBack JavaScript function. The ASP.NET server controls, such as the
 DropDownList , register this JavaScript function as an event handler for one of their events. For example,
the DropDownList server control registers the _doPostBack JavaScript function as event handler for the
 onchange event of the <select> HTML element associated with the server control if the AutoPostBack
property of the server control is set to true .

 Listing 22-5 contains the definition of the _doPostBack JavaScript function. Since this JavaScript func-
tion is a global one, it is automatically considered as a method on the window object. As you can see,
_doPostBack takes two arguments. The first is the value of the Unique ID property of the server control
that caused the postback. For example, in the case of the DropDownList server control, this will be the
value of the Unique ID property of the DropDownList control itself. The second argument is optional. In
the case of the DropDownList server control, this will be the value of the value property of the selected
 <option> element of the <select> element associated with the server control.

 As you can see from Listing 22-5 , the _doPostBack JavaScript function takes the following steps. First, it
invokes the onsubmit event handler. Recall that this event handler normally validates the values of the
form elements and returns false if the validation fails. As Listing 22-5 shows, if the onsubmit event
handler does not return false , the _doPostBack JavaScript function assigns its first parameter to the
 value property of a hidden field named __EVENTTARGET and its second parameter to the value

c22.indd 1040c22.indd 1040 8/20/07 8:38:10 PM8/20/07 8:38:10 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1041

 property of a hidden field named __EVENTARGUMENT . For example, in the case of the DropDownList
server control, the _doPostBack JavaScript function assigns the Unique ID property value of the server
control to the value property of the __EVENTTARGET hidden field and the value of the value property
of the selected option subelement of the select element associated with the server control to the value
property of the __EVENTARGUMENT hidden field.

 theForm.__EVENTTARGET.value = eventTarget;
 theForm.__EVENTARGUMENT.value = eventArgument;

 Finally, the _doPostBack JavaScript function invokes the submit method on the form DOM element to
submit the values of the form elements to the server. When the submit method is invoked, under the
hood, the browser takes these steps:

 1. Collects the names and values of the form elements.

2. Generates a list of items separated by the & character, where each item contains the name and
value of a form element. Each item consists of two parts separated by the equals sign (=), the
first containing the name of the form element and the second containing the value.

3. Creates an HTTP POST request.

4. Adds to the body of the request the list of items shown in Step 2.

5. Sets the request headers, such as Content-Type, Content-Length, Host, etc.

6. Submits the request to the server synchronously.

 Note that the preceding six steps are the same ones the browser takes for the first type of page postback
— that is, the page postback via the Submit button. In other words, both the page postback via the
 Submit button and the page postback via the _doPostBack JavaScript function rely on the browser to
take these steps.

 Listing 22-5: The Standard __ do PostBack JavaScript Function

 <script type=’text/javascript’>
<!--
 var theForm = document.forms[‘Form1’];
 if (!theForm)
 theForm = document.Form1;
 function __doPostBack(eventTarget, eventArgument)
 {
 if (!theForm.onsubmit || (theForm.onsubmit() != false))
 {
 theForm.__EVENTTARGET.value = eventTarget;
 theForm.__EVENTARGUMENT.value = eventArgument;
 theForm.submit();
 }
 }
// -->
</script>

 Both the page postback via the Submit button and page postback via the _doPostBack JavaScript func-
tion suffer from the following fundamental shortcomings:

c22.indd 1041c22.indd 1041 8/20/07 8:38:10 PM8/20/07 8:38:10 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1042

❑ The browser submits the request to the server synchronously. A synchronous request is blocking ,
meaning that the end user cannot interact with the page until the server response arrives. This
dramatically degrades the responsiveness, performance, and usability of a Web application that
relies heavily on normal synchronous page postbacks.

❑ In both types of page postbacks, when the server response finally arrives, the entire page reloads
even though only a small portion of the page requires refreshing. This also dramatically de-
grades the responsiveness, performance, and usability of a graphic-heavy Web page, which
takes a lot of time to re-render.

 As you’ll see in this chapter, the current PageRequestManager instance resolves both of these problems,
as follows:

 ❑ Unlike page postback via the Submit button or the _doPostBack JavaScript function, it does
not rely on the browser’s default synchronous form submission. Instead, the current
 PageRequestManager instance uses the ASP.NET AJAX client-server communication layer
 discussed in previous chapters to make asynchronous page postback requests to the server.

❑ Unlike page postback via the Submit button or the _doPostBack JavaScript function, it does not
rely on the browser’s default rendering mechanism, which re-renders the entire page when the
server response arrives. Instead, the current PageRequestManager instance uses the ASP.NET
AJAX client-side framework to refresh only those parts of the page that need refreshing.

 Now that you have a good understanding of the two main types of page postbacks and their shortcom-
ings, you’re ready to dive into the internal implementation of the _initializeInternal method of the
 PageRequestManager , as shown in Listing 22-6 .

 Listing 22-6: The _ initialize Internal Intance Method of the PageRequestManager
Client Class

 function Sys$WebForms$PageRequestManager$_initializeInternal(scriptManagerID,
 formElement)
{
 this._scriptManagerID = scriptManagerID;
 this._form = formElement;
 this._detachAndStoreOriginalFormOnSubmit();
 this._registerHandlerForFormSubmitEvent ();
 this._detachAndStoreOriginalDoPostBack();
 this._attachNewDoPostBack();
 this._registerHandlerForWindowLoadEvent();
 this._registerHandlerForFormClickEvent();
 this._registerHandlerForWindowUnloadEvent();
 this._storeOriginalFormAction();
}

 As you can see, this method takes two arguments. The first is a string that contains the value of the
 UniqueID property of the ScriptManager server control. The second references the form DOM element
of the current page. The method assigns the following two parameters to the _scriptManagerID and
 _form private fields of the current PageRequestManager instance:

 this._scriptManagerID = scriptManagerID;
this._form = formElement;

c22.indd 1042c22.indd 1042 8/20/07 8:38:10 PM8/20/07 8:38:10 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1043

 Next, the _initializeInternal method calls the _detachAndStoreOriginalFormOnSubmit method
shown in the following code listing. As you can see, this method detaches the onsubmit method from
the form DOM element and stores it in a local field named _onsubmit for future reference:

 function Sys$WebForms$PageRequestManager$_detachAndStoreOriginalFormOnSubmit()
{
 this._onsubmit = this._form.onsubmit;
 this._form.onsubmit = null;
}

 Then the _initializeInternal method calls the _registerHandlerForFormSubmitEvent method
shown in the following code listing. As you can see, this method first creates a delegate that represents
the _onFormSubmit method of the current PageRequestManager instance, and then registers this dele-
gate as an event handler for the submit event of the form element:

 function Sys$WebForms$PageRequestManager$_registerHandlerForFormSubmitEvent ()
{
 this._onFormSubmitHandler = Function.createDelegate(this, this._onFormSubmit);
 Sys.UI.DomEvent.addHandler(this._form, ‘submit’, this._onFormSubmitHandler);
}

 Recall that page postback via the Submit button causes the form DOM element to fire its submit event. Since
the current PageRequestManager instance has registered the _onFormSubmitHandler delegate for this
event, this delegate and consequently the _onFormSubmit method of the current PageRequestManager
instance are automatically invoked. This allows the current PageRequestManager instance to take complete
control over the first type of page postback mechanism before the page is actually posted back to the server.
As you’ll see later, the _onFormSubmit method of the current PageRequestManager instance will first
determine whether the form submission must be done asynchronously. If so, it will bypass the browser’s
default synchronous form submission and use the ASP.NET AJAX client-server communication layer
 discussed in previous chapters to make an asynchronous page postback to the server. If the _onFormSubmit
method of the current PageRequestManager instance comes to the conclusion that the form must be
 submitted synchronously, the method gets out of the way and allows the browser to take over the form sub-
mission and submit the form synchronously.

 Now back to the discussion of the implementation of the _initializeInternal method of the
 PageRequestManager . Next, this method calls the _detachAndStoreOriginalDoPostBack method
shown in the following code listing. As you can see, this method detaches the _doPostBack JavaScript
function shown in Listing 22-5 from the window object and stores it in the _originalDoPostBack field
of the current PageRequestManager instance for future reference:

 function Sys$WebForms$PageRequestManager$_detachAndStoreOriginalDoPostBack()
{
 this._originalDoPostBack = window.__doPostBack;
 window.__doPostBack = null;
}

 The _initializeInternal method then calls the _attachNewDoPostBack method shown in the fol-
lowing code listing. As you can see, this method first creates a delegate that represents the _doPostBack
method of the current PageRequestManager instance and then attaches this method to the window
object as its _doPostBack method:

c22.indd 1043c22.indd 1043 8/20/07 8:38:11 PM8/20/07 8:38:11 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1044

 function Sys$WebForms$PageRequestManager$_attachNewDoPostBack()
{
 window.__doPostBack = Function.createDelegate(this, this._doPostBack);
}

 Recall that the second type of page postback invokes the _doPostBack method of the window object to
submit the form to the server. Since the current PageRequestManager instance has replaced the original
 _doPostBack method (that is, the one shown in Listing 22-5) with the delegate that represents
the _doPostBack method of the current PageRequestManager instance, when a server control such as
 DropDownList calls the _doPostBack method of the window object, this delegate and consequently the
 _doPostBack method of the current PageRequestManager instance will be called instead of the origi-
nal _doPostBack method shown in Listing 22-5 . This allows the current PageRequestManager instance
to take complete control of the second type of page postback mechanism before the page is actually
posted back to the server. As you’ll see later in this chapter, the _doPostBack method of the current
 PageRequestManager instance will first determine whether the form submission must be done asyn-
chronously. If so, it will bypass the browser’s default synchronous form submission and use the ASP.
NET AJAX client-server communication layer discussed in previous chapters to make an asynchronous
page postback to the server. If the _doPostBack method of the current PageRequestManager instance
comes to the conclusion that the form must be submitted synchronously, the method gets out of the way
and allows the browser to take over the form submission and submit the form synchronously.

 Now back to the discussion of the implementation of the _initializeInternal method. Next, this
method calls the _registerHandlerForWindowLoadEvent method shown in the following code listing.
As you can see, this method first creates a delegate that represents the _pageLoadedInitialLoad method
of the current PageRequestManager instance, and then registers this delegate as an event handler for the
 load event of the window object. Therefore, when the window raises its load event, this delegate and conse-
quently the _pageLoadedInitialLoad method of the current PageRequestManager instance are invoked:

 function Sys$WebForms$PageRequestManager$_registerHandlerForWindowLoadEvent()
{
 this._pageLoadedHandler =
 Function.createDelegate(this, this._pageLoadedInitialLoad);
 Sys.UI.DomEvent.addHandler(window, ‘load’, this._pageLoadedHandler);
}

 Next, the _initializeInternal method calls the _registerHandlerFormClickEvent method
shown in the following code listing. As you can see, this method first creates a delegate that represents
the _onFormElementClick method of the current PageRequestManager instance, and then registers
this delegate as an event handler for the click event of the form element:

 function Sys$WebForms$PageRequestManager$_registerHandlerForFormClickEvent()
{
 this._onFormElementClickHandler =
 Function.createDelegate(this, this._onFormElementClick);
 Sys.UI.DomEvent.addHandler(this._form, ‘click’, this._onFormElementClickHandler);
}

 Then the _initializeInternal method calls the _registerHandlerForWindowUnloadEvent
method shown in the following code listing. As you can see, this method first creates a delegate that rep-
resents the _onWindowUnload method of the current PageRequestManager instance, and then registers
this delegate as an event handler for the unload event of the window object:

c22.indd 1044c22.indd 1044 8/20/07 8:38:11 PM8/20/07 8:38:11 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1045

 function Sys$WebForms$PageRequestManager$_registerHandlerForWindowUnloadEvent()
{
 this._onWindowUnloadHandler =
 Function.createDelegate(this, this._onWindowUnload);
 Sys.UI.DomEvent.addHandler(window, ‘unload’, this._onWindowUnloadHandler);
}

 Finally, the method calls the _storeOriginalFormAction method shown in the following code listing.
As you can see, this method stores the value of the action property of the form DOM element in a
 custom property on the form named _initialAction for future reference. As you’ll see later, the
 current PageRequestManager instance uses the initial action value to determine whether a given
request is a cross-page postback.

 function Sys$WebForms$PageRequestManager$_storeOriginalFormAction()
{
 this._form._initialAction = this._form.action;
}

 Figure 22-3 updates Figure 22-2 with the method calls that the _initializeInternal method triggers.
Note that Figure 22-3 inherits the bottom dashed line from Figure 22-2 . Recall that this dashed line repre-
sents the method calls triggered by the call into the _updateControls method.

PageRequestManager Instantiation/Initialization
PageRequestManager

_ensureSinglePageRequestManagerInstance ()

getInstance ()

_createPageRequestManagerInstance ()

_initializePageRequestManagerInstance
(scriptManagerUniqueID, formElement)

_initializeInternal (scriptManagerUniqueID, formElement)

_detachAndStoreOriginalFormOnSubmit ()

_registerHandlerForFormSubmitEvent ()

_detachAndStoreOriginalDoPostBack ()

_attachNewDoPostBack ()

_registerHandlerForWindowLoadEvent ()

_registerHandlerForFormClickEvent ()

_registerHandlerForWindowUnloadEvent ()

_storeOrigianlFormAction ()

_initialize(scriptManagerUniqueID, formElement)

_updateControls([…], […], […], asyncPostBackTimeout)

Figure 22-3

c22.indd 1045c22.indd 1045 8/20/07 8:38:11 PM8/20/07 8:38:11 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1046

 _ update Controls
 Listing 22-7 presents the internal implementation of the _updateControls method of the
 PageRequestManager . This method takes the following four parameters:

❑ updatePanelIDs : This parameter is an array that contains the values of the Unique ID proper-
ties of all the UpdatePanel server controls on the current page.

❑ asyncPostBackControlIDs : This parameter is an array that contains the values of the
 Unique ID properties of all the server controls on the current page that cause asynchronous page
postbacks.

❑ postBackControlIDs : This parameter is an array that contains the values of the Unique ID
properties of all the server controls on the current page that cause synchronous page postbacks.

❑ asyncPostBackTimeout : This parameter is a string that contains the asynchronous page post-
back request timeout.

 Listing 22-7: The _ update Controls Method of the PageRequestManager

 function Sys$WebForms$PageRequestManager$_updateControls(updatePanelIDs,
 asyncPostBackControlIDs,
 postBackControlIDs,
 asyncPostBackTimeout)
{
 if (updatePanelIDs)
 {
 this._updatePanelIDs = new Array(updatePanelIDs.length);
 this._updatePanelClientIDs = new Array(updatePanelIDs.length);
 this._updatePanelHasChildrenAsTriggers = new Array(updatePanelIDs.length);
 for (var i = 0; i < updatePanelIDs.length; i++)
 {
 this._updatePanelHasChildrenAsTriggers[i] =
 (updatePanelIDs[i].charAt(0) === ‘t’);
 this._updatePanelIDs[i] = updatePanelIDs[i].substr(1);
 this._updatePanelClientIDs[i] =
 this._uniqueIDToClientID(updatePanelIDs[i].substr(1));
 }
 this._asyncPostBackTimeout = asyncPostBackTimeout * 1000;
 }

 else
 {
 this._updatePanelIDs = [];
 this._updatePanelClientIDs = [];
 this._updatePanelHasChildrenAsTriggers = [];
 this._asyncPostBackTimeout = 0;
 }
 this._asyncPostBackControlIDs = [];
 this._asyncPostBackControlClientIDs = [];

c22.indd 1046c22.indd 1046 8/20/07 8:38:12 PM8/20/07 8:38:12 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1047

 for (var i = 0; i < asyncPostBackControlIDs.length; i++)
 {
 Array.add(this._asyncPostBackControlIDs, asyncPostBackControlIDs[i]);
 Array.add(this._asyncPostBackControlClientIDs,
 this._uniqueIDToClientID(asyncPostBackControlIDs[i]));
 }
 this._postBackControlIDs = [];
 this._postBackControlClientIDs = [];
 for (var i = 0; i < postBackControlIDs.length; i++)
 {
 Array.add(this._postBackControlIDs, postBackControlIDs [i]);
 Array.add(this._postBackControlClientIDs,
 this._uniqueIDToClientID(postBackControlIDs [i]));
 }
}

 The _updateControls method takes the following steps. First, it instantiates the _updatePanelIDs ,
_updatePanelClientIDs , and _updatePanelHasChildrenAsTriggers array fields of the current
 PageRequestManager instance:

 this._updatePanelIDs = new Array(updatePanelIDs.length);
 this._updatePanelClientIDs = new Array(updatePanelIDs.length);
 this._updatePanelHasChildrenAsTriggers = new Array(updatePanelIDs.length);

 Next, it iterates through the UniqueID property values in the updatePanelIDs parameter and takes the
following actions for each enumerated UniqueID property value. (Keep in mind that this value consists
of two substrings, the first containing the character t or f , and the second containing the actual
 UniqueID property value):

❑ As mentioned, the current PageRequestManager instance contains a private array field named
 _updatePanelIDs that contains the Unique ID property values of all the UpdatePanel server
controls on the current page. The _updateControls method retrieves the second substring of
the enumerated value and adds it to the _updatePanelIDs array:

 this._updatePanelIDs[i] = updatePanelIDs[i].substr(1);

❑ The current PageRequestManager instance also contains a private array field named
_updatePanelClientIDs that contains the ClientID property values of all the
UpdatePanel server controls on the current page. The _updateControls method calls the
 _uniqueIDToClientID method to return the ClientID property value associated
with the UniqueID property value and adds this ClientID property value to the
 _updatePanelClientIDs array:

 this._updatePanelClientIDs[i] = this._uniqueIDToClientID(this._updatePanelIDs[i]);

❑ The current PageRequestManager instance contains a private Boolean array field named
 _updatePanelHasChildrenAsTriggers that contains one Boolean value for each UpdatePanel
server control on the page, which specifies whether its child server controls trigger partial page
updates. The _updateControls method retrieves the first substring of the enumerated value. If
this substring contains the character t , asynchronous updates of the server control are triggered
by the child controls of the UpdatePanel server control whose UniqueID property is given by the
second substring, and the _updateControls method adds the Boolean value of true to the
_updatePanelHasChildrenAsTriggers collection. Otherwise it adds false .

c22.indd 1047c22.indd 1047 8/20/07 8:38:12 PM8/20/07 8:38:12 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1048

 this._updatePanelHasChildrenAsTriggers[i] =
 (updatePanelIDs[i].charAt(0) === ‘t’);

❑ The current PageRequestManager instance also contains an integer field named
_asyncPostBackTimeout that specifies the timeout (in seconds) for all asynchronous page
postback requests. The _updateControls method converts to seconds the value passed into it
as its last parameter, and assigns the value to this field:

 this._asyncPostBackTimeout = asyncPostBackTimeout * 1000;

 Next, the _updateControls method iterates through the Unique ID property values in the
asyncPostBackControlIDs array and takes these actions for each value:

❑ The current PageRequestManager instance contains a private array field named
_asyncPostBackControlIDs that contains the Unique ID property values of all the server
 controls on the current page that trigger asynchronous page postbacks. The _updateControls
method adds the enumerated Unique ID property value to this array field:

 Array.add(this._asyncPostBackControlIDs, asyncPostBackControlIDs[i]);

❑ The current PageRequestManager instance contains a private array field named
_asyncPostBackControlClientIDs that contains the ClientID property values of all
the server controls on the current page that trigger asynchronous page postbacks. The
_updateControls method first calls the _uniqueIDToClientID method to return the
ClientID property value associated with the enumerated Unique ID property value, and then
adds this return value to this array field:

 Array.add(this._asyncPostBackControlClientIDs,
 this._uniqueIDToClientID(asyncPostBackControlIDs[i]));

 Next, the _updateControls method iterates through the Unique ID property values in the
postBackControlIDs array and takes these actions for each value:

❑ The current PageRequestManager instance contains a private array field named
_postBackControlIDs that contains the UniqueID property values of all the server
controls on the current page that trigger synchronous page postbacks. The _updateControls
method adds the enumerated UniqueID property value to this array field:

 Array.add(this._postBackControlIDs, postBackControlIDs[i]);

❑ The current PageRequestManager instance contains a private array field named
_postBackControlClientIDs that contains the ClientID property values of all the server
controls on the current page that trigger asynchronous page postbacks. The _updateControls
method first calls the _uniqueIDToClientID method to return the ClientID property value
associated with the enumerated UniqueID property value, and then adds this return value to
this array field:

 Array.add(this._postBackControlClientIDs,
 this._uniqueIDToClientID(postBackControlIDs[i]));

 As Listing 22-8 shows, the _uniqueIDToClientID method takes an UniqueID value as its argument
and replaces all the dollar signs ($) with the underscore character (_).

c22.indd 1048c22.indd 1048 8/20/07 8:38:12 PM8/20/07 8:38:12 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1049

 The UniqueID and ClientID property values of an ASP.NET server control are read-only, which means
that only the ASP.NET can set their values. The UniqueID property value of a server control is a
string that consists of two substrings separated by the dollar sign ($), the first containing the value of the
 ID property of the server control and the second containing the value of the UniqueID property of the
parent of the server control. The ClientID property value of a server control is a string that consists of
two substrings separated by the underscore character (_), the first containing the value of the ID prop-
erty of the server control and the second containing the value of the ClientID property of the parent of
the server control. As you can see, the only difference between the UniqueID and the ClientID property
values of a server control is the separator. That is why the _uniqueIDToClientID method replaces the
dollar signs with the underscore characters to arrive at the ClientID property value.

 Listing 22-8: The _ unique IDToClientID Method of the PageRequestManager

 function Sys$WebForms$PageRequestManager$_uniqueIDToClientID(uniqueID)
{
 // Convert unique IDs to client IDs by replacing all ‘$’ with ‘_’
 return uniqueID.replace(/\$/g, ‘_’);
}

 Figure 22-4 updates Figure 22-3 with the new method calls.

PageRequestManager Instantiation/Initialization
PageRequestManager

_updatePanelClientIDs _updatePanelIDs _updatePanelHasChildrenAs

_asyncPostBackControlIDs

_postBackControlClientIDs

_asyncPostBackControlClientIDs_asyncPostBackTimeout

_postBackControlIDs

_ensureSinglePageRequestManagerInstance ()

getInstance ()

_createPageRequestManagerInstance ()

_initializePageRequestManagerInstance
(scriptManagerUniqueID, formElement)

_initializeInternal (scriptManagerUniqueID, formElement)

_detachAndStoreOriginalFormOnSubmit ()

_registerHandlerForFormSubmitEvent ()

_detachAndStoreOriginalDoPostBack ()

_attachNewDoPostBack ()

_registerHandlerForWindowLoadEvent ()

_registerHandlerForFormClickEvent ()

_registerHandlerForWindowUnloadEvent ()

_storeOrigianlFormAction ()

_initialize(scriptManagerUniqueID, formElement)

add () add ()
add ()

add ()
add ()

add ()

add ()

add ()

_updateControls([…], […], […], asyncPostBackTimeout)

Figure 22-4

c22.indd 1049c22.indd 1049 8/20/07 8:38:13 PM8/20/07 8:38:13 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1050

 The _ page LoadedInitialLoad Method of the Client-Side
PageRequestManager

 When the current page is finally loaded, the window object raises the load event and calls the
_pageLoadedHandler delegate, which in turn calls the _pageLoadedInitialLoad instance method
of the current client-side PageRequestManager instance, as shown in Listing 22-9 .

 Listing 22-9: The _ page LoadedInitialLoad Method of the PageRequestManager
Client Class

 function Sys$WebForms$PageRequestManager$_pageLoadedInitialLoad(evt)
{
 this._pageLoaded(true);
}

 As you can see, the _pageLoadedInitialLoad method calls the _pageLoaded method of the current
client-side PageRequestManager instance, passing in true as its argument.

 The _ page Loaded Method of the Client-Side
PageRequestManager

 Listing 22-10 presents the internal implementation of the _pageLoaded method of the client-side
 PageRequestManager instance.

 Listing 22-10: The _ page Loaded Method of the PageRequestManager Client Class

 function Sys$WebForms$PageRequestManager$_pageLoaded(initialLoad)
{
 var handler = this._get_eventHandlerList().getHandler(“pageLoaded”);
 if (handler)
 handler(this, this._getPageLoadedEventArgs(initialLoad));

 if (!initialLoad)
 {
 // If this isn’t the first page load (i.e. we are doing an async postback), we
 // need to re-raise the Application’s load event.
 Sys.Application.raiseLoad();
 }
}

 This method first calls the _get_eventHandlerList method to return a reference to the
EventHandlerList object that contains all the event handlers registered for the events of the current
 client-side PageRequestManager instance, and then calls the getHandler method on the
 EventHandlerList to return a reference to the JavaScript function whose invocation automatically

c22.indd 1050c22.indd 1050 8/20/07 8:38:13 PM8/20/07 8:38:13 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1051

invokes all the event handlers registered for the pageLoaded event of the current client-side
 PageRequestManager instance. I’ll discuss this event later in the chapter.

 var handler = this._get_eventHandlerList().getHandler(“pageLoaded”);

 Next, the _pageLoaded method calls the _getPageLoadedEventArgs method to create and return a
 PageLoadedEventArgs object. As you’ll see later, the PageLoadedEventArgs class is the event data
class for the pageLoaded event of the client-side PageRequestManager instance.

 var pageLoadedEventArgs = this._getPageLoadedEventArgs(initialLoad);

 Then it calls the JavaScript function, passing in a reference to the current client-side PageRequestManager
instance and a reference to the PageLoadedEventArgs instance. This JavaScript function in turn calls all
the event handlers registered for the pageLoaded event of the current client-side PageRequestManager
instance, passing in the same two references.

 if (handler)
 handler(this, this._getPageLoadedEventArgs(initialLoad));

 This enables you to perform application-specific tasks by registering an event handler for the
 pageLoaded event of the current PageRequestManager instance.

 Figure 22-5 updates Figure 22-4 with the latest method calls. This wraps up our discussion of the
 instantiation/initialization process of the current client-side PageRequestManager instance. Keep in
mind that this process occurs only for the first request and subsequent normal synchronous page post-
back requests. In other words, it does not occur for subsequent asynchronous page postback requests.

 In summary, the previous chapter followed the first request from the time it arrived in ASP.NET to the
time the server response text, including the PageRequestManager instantiation/initialization script
block — such as the one shown in Listing 22-1 — was sent back to the client. The previous sections of
this chapter then followed this server response text from the time it arrived on the client side to the time
the instantiation and initialization of the current PageRequestManager instance were completed.

 Now the current PageRequestManager instance is sitting there waiting for the first or second type of
page postback to occur. Recall that there are two types of page postbacks, via the Submit button and via
the _doPostBack method of the window object. As we discussed earlier, as soon as the first type of page
postback occurs, the _onFormSubmit method of the current PageRequestManager instance will inter-
cept it before the page is actually posted back to the server; and as soon as the second type of page post-
back occurs, the _doPostBack method of the current PageRequestManager instance will intercept it
before the page is actually posted back to the server. Both the _onFormSubmit and _doPostBack meth-
ods of the current PageRequestManager instance will first determine whether the page postback must
be done asynchronously. If so, both methods bypass the browser’s default synchronous form submission
and use the ASP.NET AJAX client-server communication layer (discussed in previous chapters) to sub-
mit the form asynchronously. If these methods determine that the page postback must be done synchro-
nously, they simply get out of the way and let the browser’s default synchronous form submission take
over and submit the form synchronously.

c22.indd 1051c22.indd 1051 8/20/07 8:38:13 PM8/20/07 8:38:13 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1052

 The page Loaded Event
 The previous sections followed the current client-side PageRequestManager instance through its
 instantiation/initialization life cycle phases. As you can see from Figure 22-5 , the current client-side
 PageRequestManager instance fires its pageLoaded event at the end of its instantiation/initialization
phase to enable you to perform application-specific tasks that must be performed right after the current
client-side PageRequestManager instance is instantiated and initialized.

 The client-side PageRequestManager class uses the standard ASP.NET AJAX event-implementation
pattern to implement its pageLoaded event as follows:

1. The PageRequestManager class defines a collection property of type EventHandlerList to store
all the event handlers registered for the events of the current client-side PageRequestManager
instance.

2. It defines a getter method that returns a reference to this EventHandlerList object:

PageRequestManager Instantiation/Initialization
PageRequestManager

_updatePanelClientIDs _updatePanelIDs _updatePanelHasChildrenAs

_asyncPostBackControlIDs

_postBackControlClientIDs

_asyncPostBackControlClientIDs

window

EventHandlerList

_asyncPostBackTimeout

_postBackControlIDs

_ensureSinglePageRequestManagerInstance ()

getInstance ()

_createPageRequestManagerInstance ()

_initializePageRequestManagerInstance
(scriptManagerUniqueID, formElement)

_initializeInternal (scriptManagerUniqueID, formElement)

_detachAndStoreOriginalFormOnSubmit ()

_registerHandlerForFormSubmitEvent ()

_detachAndStoreOriginalDoPostBack ()

_attachNewDoPostBack ()

_registerHandlerForWindowLoadEvent ()

_registerHandlerForFormClickEvent ()

_registerHandlerForWindowUnloadEvent ()

_storeOrigianlFormAction ()

_pageLoaded ()

_initialize(scriptManagerUniqueID, formElement)

add () add ()
add ()

add ()
add ()

add ()

add ()

add ()
_pageLoadedInitialLoad ()

getHandler (“pageLoaded”)
_getPageLoadedEventArgs ()

_updateControls([…], […], […], asyncPostBackTimeout)

Figure 22-5

c22.indd 1052c22.indd 1052 8/20/07 8:38:13 PM8/20/07 8:38:13 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1053

 function Sys$WebForms$PageRequestManager$_get_eventHandlerList()
{
 if (!this._events)
 this._events = new Sys.EventHandlerList();

 return this._events;
}

3. It defines a method named add_pageLoaded that enables you to register event handlers for the
 pageLoaded event of the current client-side PageRequestManager instance. As the following
code fragment shows, this method first calls the get_eventHandlerList method on the current
 PageRequestManager instance to return a reference to the EventHandlerList object. Then it
calls the addHandler method on this EventHandlerList object to register the specified handler
as an event handler for the pageLoaded event of the current PageRequestManager instance:

 function Sys$WebForms$PageRequestManager$add_pageLoaded(handler)
{
 this._get_eventHandlerList().addHandler(“pageLoaded”, handler);
}

4. It defines a method named remove_pageLoaded that allows you to unregister an event handler
registered for the pageLoaded event of the instance:

 function Sys$WebForms$PageRequestManager$remove_pageLoaded(handler)
{
 this._get_eventHandlerList().removeHandler(“pageLoaded”, handler);
}

5. It defines a method named _pageLoaded that raises the pageLoaded event and consequently
invokes all the event handlers registered for this event, as shown in Listing 22-10 .

 The pageLoaded event, like any other, is associated with an event data class whose instance acts as a
container for the associated event data. The event data class associated with the pageLoaded event is an
ASP.NET AJAX client class named PageLoadedEventArgs . Listing 22-11 presents the internal
 implementation of the PageLoadedEventArgs class.

 Listing 22-11: The Internal Implementation of the Page LoadedEventArgs Class

 Sys.WebForms.PageLoadedEventArgs =
function Sys$WebForms$PageLoadedEventArgs(panelsUpdated, panelsCreated, dataItems)
{
 /// <param name=”panelsUpdated” type=”Array”></param>
 /// <param name=”panelsCreated” type=”Array”></param>
 /// <param name=”dataItems” type=”Object” mayBeNull=”true”></param>

 Sys.WebForms.PageLoadedEventArgs.initializeBase(this);
 this._panelsUpdated = panelsUpdated;
 this._panelsCreated = panelsCreated;
 // Need to use “new Object()” instead of “{}”, since the latter breaks code
 // coverage.
 this._dataItems = dataItems || new Object();
}

(continued)

c22.indd 1053c22.indd 1053 8/20/07 8:38:14 PM8/20/07 8:38:14 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1054

 Listing 22-11 (continued)

function Sys$WebForms$PageLoadedEventArgs$get_dataItems()
{
 /// <value type=”Object”></value>
 return this._dataItems;
}
function Sys$WebForms$PageLoadedEventArgs$get_panelsCreated()
{
 /// <value type=”Array”></value>
 return this._panelsCreated;
}
function Sys$WebForms$PageLoadedEventArgs$get_panelsUpdated()
{
 /// <value type=”Array”></value>
 return this._panelsUpdated;
}

Sys.WebForms.PageLoadedEventArgs.prototype =
{
 get_dataItems: Sys$WebForms$PageLoadedEventArgs$get_dataItems,
 get_panelsCreated: Sys$WebForms$PageLoadedEventArgs$get_panelsCreated,
 get_panelsUpdated: Sys$WebForms$PageLoadedEventArgs$get_panelsUpdated
}
Sys.WebForms.PageLoadedEventArgs.registerClass(‘Sys.WebForms.PageLoadedEventArgs’,
 Sys.EventArgs);

 As you can see, the constructor of the PageLoadedEventArgs class takes three parameters. The first
is an array that contains the list of updated UpdatePanel server controls on the current page, the
 second is an array that contains the list of newly created UpdatePanel server controls, and the last is
optional. The last parameter is null when the pageLoaded event is raised at the end of the
 instantiation/initialization of the current PageRequestManager instance. However, as you’ll see in the
following chapters, the current client-side PageRequestManager instance also raises the pageLoaded
event when it is processing the server response to an asynchronous page postback request where the last
parameter of the constructor of the PageLoadedEventArgs class comes into play.

 As you can see from Listing 22-11 , the constructor of the PageLoadedEventArgs class stores its parame-
ters in private fields named _panelsUpdated , _panelsCreated , and _dataItems . Note that the
 PageLoadedEventArgs class exposes three getters named get_panelsUpdated , get_panelsCreated ,
and get_dataItems , that return these private fields.

 Now let’s revisit Listing 22-10 , as shown again in the following code listing:

 function Sys$WebForms$PageRequestManager$_pageLoaded(initialLoad)
{
 var handler = this._get_eventHandlerList().getHandler(“pageLoaded”);
 if (handler)
 {

 var args = this._getPageLoadedEventArgs(initialLoad));
 handler(this, args);

 }

c22.indd 1054c22.indd 1054 8/20/07 8:38:14 PM8/20/07 8:38:14 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1055

 if (!initialLoad)
 {
 // If this isn’t the first page load (i.e. we are doing an async postback), we
 // need to re-raise the Application’s load event.
 Sys.Application.raiseLoad();
 }
}

 As you can see, for the highlighted portion of the preceding code listing, this method invokes the
_getPageLoadedEventArgs(initialLoad) internal method on the current PageRequestManager
instance to instantiate and return an instance of the PageLoadedEventArgs class, which is then passed into
the event handlers registered for the pageLoaded event of the current PageRequestManager instance.
(I’ll present and discuss the internal implementation of the _getPageLoadedEventArgs method in
 Chapter 28 .)

 Using the page Loaded Event
 As I mentioned earlier, the current client-side PageRequestManager instance fires its pageLoaded event
at the end of its instantiation/initialization process to enable you to perform application-specific tasks
that must be performed right after the current PageRequestManager instance is instantiated and initial-
ized. Follow these steps to ensure that your required application-specific logic is executed right after the
current PageRequestManager instance is instantiated and initialized:

 1. If your required application-specific logic is encapsulated in a method of an ASP.NET AJAX cli-
ent class, invoke the createDelegate static method on the Function to instantiate a delegate
that represents this method. If your required application-specific logic is not already encapsu-
lated in a method of an ASP.NET AJAX client class, write a new JavaScript function that encap-
sulates this logic.

2. Implement a JavaScript function that performs the following tasks:

❑ Invokes the getInstance static method on the client-side PageRequestManager class to
return a reference to the current client-side PageRequestManager instance

❑ Invokes the add_pageLoaded method on the current client-side PageRequestManager
 instance to register the delegate or the JavaScript function from Step 1 as the event handler
for the pageLoaded event of the current client-side PageRequestManager instance

 3. Register the JavaScript function from Step 3 as an event handler for the load event of the
 window object.

 Listing 22-12 contains a page that uses this recipe. If you run this page, you should see the results shown
in Figures 22-6 and 22-7 . As Figure 22-6 shows, this page consists of a parent UpdatePanel server control
that contains two child UpdatePanel server controls: one is added statically and the other is added
dynamically — that is, via code. When you run this page, the page also displays the popup shown in
 Figure 22-7 . As you can see, this popup contains a message that displays, right after the current client-side
 PageRequestManager instance is instantiated and initialized, some of the information that is available to
an event handler registered for the pageLoaded event. What you do with this information is completely
up to you. Your event handler can use it information to perform application-specific tasks that must be
performed right after the current client-side PageRequestManager instance is instantiated and initialized.

c22.indd 1055c22.indd 1055 8/20/07 8:38:14 PM8/20/07 8:38:14 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1056

 Listing 22-12: A Page that Uses the page Loaded Event to Execute
Application-Specific Logic

 <%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Drawing” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<script runat=”server”>
 void Page_Load(object sender, EventArgs e)
 {
 Label parentUpdatePanelLabel =
 (Label)Page.FindControl(“ParentUpdatePanelLabel”);
 parentUpdatePanelLabel.Text = “UpdatePanel refreshed at “ +
 DateTime.Now.ToString();
 Label staticChildUpdatePanelLabel =
 (Label)Page.FindControl(“StaticChildUpdatePanelLabel”);
 staticChildUpdatePanelLabel.Text = “UpdatePanel refreshed at “ +
 DateTime.Now.ToString();
 UpdatePanel dynamicChildUpdatePanel = new UpdatePanel();
 dynamicChildUpdatePanel.ID = “DynamicChildUpdatePanel”;
 Table table = new Table();
 table.BackColor = Color.FromArgb(90, 90, 90);
 table.ForeColor = Color.FromName(“White”);
 TableRow headerRow = new TableRow();
 table.Rows.Add(headerRow);
 TableHeaderCell headerCell = new TableHeaderCell();
 headerCell.Text = “Dynamic Child UpdatePanel Control”;
 headerRow.Cells.Add(headerCell);
 TableRow bodyRow = new TableRow();
 table.Rows.Add(bodyRow);
 TableCell bodyCell = new TableCell();
 bodyRow.Cells.Add(bodyCell);
 Label label = new Label();
 label.ID = “DynamicChildUpdatePanelLabel”;
 label.Text = “UpdatePanel refreshed at “ + DateTime.Now.ToString() +
 “ ”;
 bodyCell.Controls.Add(label);
 Button button = new Button();
 button.Text = “Update”;
 button.ID = “DynamicChildUpdatePanelButton”;
 button.Click += new EventHandler(ClickCallback);
 bodyCell.Controls.Add(button);
 dynamicChildUpdatePanel.ContentTemplateContainer.Controls.Add(table);
 PlaceHolder1.Controls.Add(dynamicChildUpdatePanel);
 }
 void ClickCallback (object sender, EventArgs e)
 {
 Label label = (Label)Page.FindControl(“DynamicChildUpdatePanelLabel”);
 label.Text = “UpdatePanel refreshed at “ + DateTime.Now.ToString() +
 “ ”;
 }
</script>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>

c22.indd 1056c22.indd 1056 8/20/07 8:38:15 PM8/20/07 8:38:15 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1057

 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 window.onload = function ()
 {
 var prm = Sys.WebForms.PageRequestManager.getInstance();
 prm.remove_pageLoaded(pageLoadedHandler);
 prm.add_pageLoaded(pageLoadedHandler);
 }

 function pageLoadedHandler(sender, e)
 {
 var panelsUpdated = e.get_panelsUpdated();
 var panelsCreated = e.get_panelsCreated();
 var dataItems = e.get_dataItems();

 var builder = new Sys.StringBuilder();
 builder.append(“panelsUpdated: “);
 builder.appendLine();
 for (var i in panelsUpdated)
 {
 builder.append(panelsUpdated[i].id);
 builder.appendLine();
 }

 builder.appendLine();
 builder.append(“panelsCreated: “);
 builder.appendLine();
 for (var j in panelsCreated)
 {
 builder.append(panelsCreated[j].id);
 builder.appendLine();
 }
 builder.appendLine();
 builder.append(“_updatePanelIDs: “);
 builder.append(sender._updatePanelIDs);
 builder.appendLine();
 builder.appendLine();
 builder.append(“_updatePanelClientIDs: “);
 builder.append(sender._updatePanelClientIDs);
 builder.appendLine();
 builder.appendLine();
 builder.append(“_updatePanelHasChildrenAsTriggers: “);
 builder.append(sender._updatePanelHasChildrenAsTriggers);
 builder.appendLine();
 builder.appendLine();
 builder.append(“_asyncPostBackTimeout: “);
 builder.append(sender._asyncPostBackTimeout);
 builder.appendLine();
 builder.appendLine();
 builder.append(“_asyncPostBackControlIDs: “);
 builder.append(sender._asyncPostBackControlIDs);
 builder.appendLine();
 builder.appendLine();
 builder.append(“_asyncPostBackControlClientIDs: “);
 builder.append(sender._asyncPostBackControlClientIDs);

(continued)

c22.indd 1057c22.indd 1057 8/20/07 8:38:15 PM8/20/07 8:38:15 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1058

Listing 22-12 (continued)

 builder.appendLine();
 builder.appendLine();
 builder.append(“_postBackControlIDs: “);
 builder.append(sender._postBackControlIDs);
 builder.appendLine();
 builder.appendLine();
 builder.append(“_postBackControlClientIDs: “);
 builder.append(sender._postBackControlClientIDs);
 alert(builder.toString());
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />
 <table cellspacing=”10”>
 <tr>
 <td align=”center” colspan=”2”>
 <asp:UpdatePanel ID=”ParentUpdatePanel” UpdateMode=”Conditional”
 runat=”server”>
 <ContentTemplate>
 <table cellspacing=”20” style=”background-color: #dddddd”>
 <tr>
 <th>
 Parent UpdatePanel Control</th>
 </tr>
 <tr>
 <td>
 <asp:Label ID=”ParentUpdatePanelLabel” runat=”server” />

 <asp:Button ID=”ParentUpdatePanelButton” runat=”server”
 Text=”Update” />
 </td>
 </tr>
 <tr>
 <td style=”width: 100%”>
 <asp:UpdatePanel ID=”StaticChildUpdatePanel” runat=”server”>
 <ContentTemplate>
 <table style=”background-color: #aaaaaa”>
 <tr>
 <th>
 Static Child UpdatePanel Control
 </th>
 </tr>
 <tr>
 <td>
 <asp:Label ID=”StaticChildUpdatePanelLabel”
 runat=”server” />
 <asp:Button ID=”StaticChildUpdatePanelButton”
 runat=”server” Text=”Update” />
 </td>
 </tr>

c22.indd 1058c22.indd 1058 8/20/07 8:38:15 PM8/20/07 8:38:15 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1059

 <tr>
 <td>
 </td>
 </tr>
 </table>
 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger EventName=”Click”
 ControlID=”StaticChildUpdatePanelTrigger” />
 </Triggers>
 </asp:UpdatePanel>
 </td>
 </tr>
 <tr>
 <td style=”width: 100%”>
 <asp:PlaceHolder runat=”server” ID=”PlaceHolder1” />
 </td>
 </tr>
 </table>
 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID=”ParentUpdatePanelTrigger”
 EventName=”Click” />
 </Triggers>
 </asp:UpdatePanel>
 </td>
 </tr>
 <tr>
 <td style=”width:50%”>
 <asp:Button ID=”StaticChildUpdatePanelTrigger” runat=”server”
 Text=”Static Child UpdatePanel Trigger” Width=”100%” />
 </td>
 <td>
 <asp:Button ID=”ParentUpdatePanelTrigger” runat=”server” Text=”Parent
 UpdatePanel Trigger” Width=”100%” />
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

 Now let’s walk through the code shown in Listing 22-12 . As you can see, this page contains a server-side
and a client-side script block. The server-side script block contains the implementation of the Page_Load
method. This method first calls the FindControl method twice on the current Page to return references
to the ParentUpdatePanelLabel and StaticChildUpdatePanelLabel server controls, and then sets
the values of their Text properties to the current time:

 Label parentUpdatePanelLabel = (Label)Page.FindControl(“ParentUpdatePanelLabel”);
parentUpdatePanelLabel.Text = “UpdatePanel refreshed at “ +
 DateTime.Now.ToString();
Label staticChildUpdatePanelLabel =
 (Label)Page.FindControl(“StaticChildUpdatePanelLabel”);
staticChildUpdatePanelLabel.Text = “UpdatePanel refreshed at “ +
 DateTime.Now.ToString();

c22.indd 1059c22.indd 1059 8/20/07 8:38:16 PM8/20/07 8:38:16 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1060

 Next, the Page_Load method instantiates an UpdatePanel server control and sets its ID property value:

 UpdatePanel dynamicChildUpdatePanel = new UpdatePanel();
dynamicChildUpdatePanel.ID = “DynamicChildUpdatePanel”;

 Then the method instantiates a Table server control with the specified background and
foreground colors:

 Table table = new Table();
table.BackColor = Color.FromArgb(90, 90, 90);
table.ForeColor = Color.FromName(“White”);

 Next, it instantiates a TableRow server control to represent the header of the table:

 TableRow headerRow = new TableRow();
 table.Rows.Add(headerRow);
 TableHeaderCell headerCell = new TableHeaderCell();
 headerCell.Text = “Dynamic Child UpdatePanel Control”;
 headerRow.Cells.Add(headerCell);

Figure 22-6

c22.indd 1060c22.indd 1060 8/20/07 8:38:16 PM8/20/07 8:38:16 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1061

 Then it creates another TableRow server control with two cells that contain a Label and a Button server
control, respectively:

 TableRow bodyRow = new TableRow();
 table.Rows.Add(bodyRow);
 TableCell bodyCell = new TableCell();
 bodyRow.Cells.Add(bodyCell);
 Label label = new Label();
 label.ID = “DynamicChildUpdatePanelLabel”;
 label.Text = “UpdatePanel refreshed at “ + DateTime.Now.ToString() +
 “ ”;
 bodyCell.Controls.Add(label);
 Button button = new Button();
 button.Text = “Update”;
 button.ID = “DynamicChildUpdatePanelButton”;
 button.Click += new EventHandler(ClickCallback);
 bodyCell.Controls.Add(button);

Figure 22-7

c22.indd 1061c22.indd 1061 8/20/07 8:38:16 PM8/20/07 8:38:16 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1062

 Note that the ClickCallback method is registered as an event handler for the Click event of the
 Button server control. Next, the Page_Load method adds the Table server control to the Controls
 collection of the ContentTemplateContainer property of the UpdatePanel server control:

 dynamicChildUpdatePanel.ContentTemplateContainer.Controls.Add(table);

 As Listing 22-12 shows, the client-side script block consists of two parts. The first part registers the
 following JavaScript function as an event handler for the load event of the window object:

 window.onload = function ()
 {
 var prm = Sys.WebForms.PageRequestManager.getInstance();
 prm.add_pageLoaded(pageLoadedHandler);
 }

 As you can see from the code fragment, this JavaScript function first calls the getInstance static
method on the client-side PageRequestManager class to return a reference to the current client-side
 PageRequestManager instance:

 var prm = Sys.WebForms.PageRequestManager.getInstance();

 Next, the function invokes the add_pageLoaded method on the current PageRequestManager instance
to register the pageLoadedHandler JavaScript function as an event handler for the pageLoaded event
of the current PageRequestManager instance:

 prm.add_pageLoaded(pageLoadedHandler);

 Now let’s walk through the implementation of the pageLoadedHandler JavaScript function. When the
current client-side PageRequestManager instance invokes this function, it passes two parameters into it.
The first parameter references the current client-side PageRequestManager instance and the second ref-
erences the PageLoadedEventArgs object that contains the event data for the pageLoaded event.

 As Listing 22-12 shows, the pageLoadedHandler method first calls the get_ panelsUpdated
 method on the PageLoadedEventArgs object to return a reference to the array that contains all the
UpdatePanel server controls on the current page that were updated during the instantiation/
initialization phase of the current client-side PageRequestManager instance. Since this phase occurs
when the current page is accessed for the first time, there are no prior UpdatePanel server controls to
update and therefore the call to the get_panelsUpdated method is bound to return an empty array:

 var panelsUpdated = e.get_panelsUpdated();

 Next, the pageLoadedHandler method calls the get_panelsCreated method on the
 PageLoadedEventArgs object to return a reference to the array that contains all the UpdatePanel
server controls that were created and added to the current page during the instantiation/initialization
phase of the current client-side PageRequestManager instance. As I mentioned earlier, because
this phase occurs when the current page is accessed for the first time, all the UpdatePanel server con-
trols on the current page are created and added to the current page, which means that the call into the
get_ panelsCreated method returns an array that contains all the UpdatePanel server controls on
the current page:

 var panelsCreated = e.get_panelsCreated();

c22.indd 1062c22.indd 1062 8/20/07 8:38:17 PM8/20/07 8:38:17 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1063

 Next, the pageLoadedHandler method instantiates a StringBuilder :

 var builder = new Sys.StringBuilder();

 Then it populates the StringBuilder with the UniqueID property values of all the UpdatePanel
server controls in the panelsUpdated array. As I just mentioned, this array is empty:

 builder.append(“panelsUpdated: “);
 builder.appendLine();
 for (var i in panelsUpdated)
 {
 builder.append(panelsUpdated[i].id);
 builder.appendLine();
 }

 Next, it populates the StringBuilder with the UniqueID property values of the all the UpdatePanel
server controls in the panelsCreated array. As I just mentioned, this array contains all the
 UpdatePanel server controls on the current page:

 for (var j in panelsCreated)
 {
 builder.append(panelsCreated[j].id);
 builder.appendLine();
 }

 Then the pageLoadedHandler method adds the content of the _updatePanelIDs field of the
current client-side PageRequestManager instance to the StringBuilder . Recall that the first
parameter (that is, the sender parameter) of the pageLoadedHandler method references the current
client-side PageRequestManager instance. Also recall that the _updatePanelIDs field of the
current PageRequestManager instance contains the comma-separated list of the UniqueID property
values of all the UpdatePanel server controls on the current page, both updated and created:

 builder.appendLine();
 builder.append(“_updatePanelIDs: “);
 builder.append(sender._updatePanelIDs);

 Next, it adds the content of the _updatePanelClientIDs field of the current client-side
 PageRequestManager instance to the StringBuilder . Recall that the _updatePanelClientIDs field
contains the comma-separated list of the ClientID property values of all the UpdatePanel server
 controls on the current page, both updated and created:

 builder.appendLine();
 builder.appendLine();
 builder.append(“_updatePanelClientIDs: “);
 builder.append(sender._updatePanelClientIDs);

 Then it adds the content of the _updatePanelHasChildrenAsTriggers field of the current
client-side PageRequestManager instance to the StringBuilder . Recall that the
_updatePanelHasChildrenAsTriggers field contains the comma-separated list of Boolean
values, one for each UpdatePanel server control in the _updatePanelIDs :

c22.indd 1063c22.indd 1063 8/20/07 8:38:17 PM8/20/07 8:38:17 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1064

 builder.appendLine();
 builder.appendLine();
 builder.append(“_updatePanelHasChildrenAsTriggers: “);
 builder.append(sender._updatePanelHasChildrenAsTriggers);

 Next, the pageLoadedHandler method adds the value of the _asyncPostBackTimeout field of the cur-
rent client-side PageRequestManager instance to the StringBuilder . Recall that this field contains the
asynchronous page postback request timeout:

 builder.appendLine();
 builder.appendLine();
 builder.append(“_asyncPostBackTimeout: “);
 builder.append(sender._asyncPostBackTimeout);

 Next, it adds the content of the _asyncPostBackControlIDs field of the current client-side
 PageRequestManager instance to the StringBuilder . Recall that the _asyncPostBackControlIDs
field contains the comma-separated list of the UniqueID property values of all the server controls on the
current page that cause asynchronous page postbacks:

 builder.appendLine();
 builder.appendLine();
 builder.append(“_asyncPostBackControlIDs: “);
 builder.append(sender._asyncPostBackControlIDs);

 Then it adds the content of the _asyncPostBackControlClientIDs field of the current
client-side PageRequestManager instance to the StringBuilder . Recall that the
_asyncPostBackControlClientIDs field contains the comma-separated list of the ClientID
property values of all the server controls on the current page that cause asynchronous page postbacks:

 builder.appendLine();
 builder.appendLine();
 builder.append(“_asyncPostBackControlClientIDs: “);
 builder.append(sender._asyncPostBackControlClientIDs);

 Next, it adds the content of the _postBackControlIDs field of the current client-side
PageRequestManager instance to the StringBuilder . Recall that the _postBackControlIDs
field contains the comma-separated list of the UniqueID property values of all the server controls
on the current page that cause synchronous page postbacks:

 builder.appendLine();
 builder.appendLine();
 builder.append(“_postBackControlIDs: “);
 builder.append(sender._postBackControlIDs);

 Then it adds the content of the _postBackControlClientIDs field of the current client-side
PageRequestManager instance to the StringBuilder . Recall that the _postBackControlClientIDs
field contains the comma-separated list of the ClientID property values of all the server controls on the
current page that cause synchronous page postbacks:

 builder.appendLine();
 builder.appendLine();
 builder.append(“_postBackControlClientIDs: “);
 builder.append(sender._postBackControlClientIDs);

c22.indd 1064c22.indd 1064 8/20/07 8:38:17 PM8/20/07 8:38:17 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1065

 Finally, the pageLoadedHandler method displays the content of the StringBuilder in a popup,
shown in Figure 22-7 .

 alert(builder.toString());

 As Figure 22-7 shows:

 ❑ The panelsUpdated array is empty as expected.

❑ The panelsCreated array contains all the UpdatePanel server controls on the current page:
 ParentUpdatePanel , StaticChildUpdatePanel , and DynamicChildUpdatePanel , as ex-
pected. As we discussed, when the current page is loaded for the first time, all the UpdatePanel
server controls are created and added to the current page.

❑ The _updatePanelIDs field of the current PageRequestManager instance returns the comma-
separated list of the UniqueID properties of all the UpdatePanel server controls on the current
page: ParentUpdatePanel , StaticChildUpdatePanel , and DynamicChildUpdatePanel .
Note that the UniqueID property values in this example are the same as the ID property values
because none of the UpdatePanel server controls in this example belongs to a parent server
control that implements the INamingContainer interface.

❑ The _updatePanelClientIDs field of the current PageRequestManager instance returns
the comma-separated list of the ClientID properties of all the UpdatePanel server controls
on the current page: ParentUpdatePanel , StaticChildUpdatePanel , and
DynamicChildUpdatePanel . Note that the ClientID property values in this example
are the same as the ID property values because none of the UpdatePanel server controls in this
example belongs to a parent server control that implements the INamingContainer interface.

❑ The _updatePanelHasChildrenAsTriggers field of the current PageRequestManger in-
stance returns the comma-separated list of the Boolean values, one for each UpdatePanel server
control. Because this example contains three UpdatePanel server controls and because the
 ChildrenAsTriggers properties of all three UpdatePanel server controls are set to true by
default, the _updatePanelHasChildrenAsTrigger field contains a comma-separated list of
three true values.

❑ The _asyncPostBackTimeout field of the current PageRequestManager instance returns the
default value, which is 90000 .

❑ The _asyncPostBackControlIDs field of the current PageRequestManager instance returns
the comma-separated list of the UniqueID property values of all asynchronous postback server
controls. This example contains two asynchronous postback Button server controls:
ParentUpdatePanelTrigger and StaticChildUpdatePanelTrigger .

❑ The _asyncPostBackControlClientIDs field of the current PageRequestManager instance
 returns the comma-separated list of the ClientID property values of all asynchronous postback
server controls. This example contains two asynchronous postback Button server controls:
ParentUpdatePanelTrigger and StaticChildUpdatePanelTrigger . Again, because
these two Button server controls do not belong to a server control that implements the
INamingContainer interface, their UniqueID , ClientID , and ID properties have the same values.

 Keep in mind that the arrays returned from the calls into the get_panelsUpdated and
get_panelsCreated methods contain references to the actual updated and created UpdatePanel
server controls. This gives your event handler (registered for the pageLoaded event of the current

c22.indd 1065c22.indd 1065 8/20/07 8:38:18 PM8/20/07 8:38:18 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1066

 PageRequestManager instance) a powerful tool with which to modify the contents of these
UpdatePanel server controls or to enhance their functionality. The next example should give you an
idea of the types of things you could do within your event handler.

 Listing 22-13 contains a page that registers an event handler for the pageLoaded event of the current
 PageRequestManager instance, where it attaches a Mover object to each UpdatePanel server control.
Recall from Chapter 7 that we developed an ASP.NET AJAX component named Mover . When an
instance of this component is attached to a control, the end user can freely move the control.

 As you can see, the page shown in Listing 22-12 contains two UpdatePanel server controls. I’ve
 intentionally kept the contents of these UpdatePanel server controls simple so we can focus on what
matters to our discussions. However, you can make these contents as complex as you want.

 Listing 22-13: A Page that Attaches Movers to UpdatePanel Server Controls

 <%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Drawing” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 window.onload = function ()
 {
 var prm = Sys.WebForms.PageRequestManager.getInstance();
 prm.remove_pageLoaded(pageLoadedHandler);
 prm.add_pageLoaded(pageLoadedHandler);
 }

 function pageLoadedHandler(sender, e)
 {

 var updatePanelMover;
 var updatePanelProvider;
 var addUpdatePanelDelegate;

 var panelsCreated = e.get_panelsCreated();

 for (var j in panelsCreated)
 {
 updatePanelMover = new Delegates.Mover(“container”+j);
 updatePanelProvider = new Delegates.UpdatePanelProvider(panelsCreated[j]);
 addUpdatePanelDelegate = Function.createDelegate(updatePanelProvider,
 updatePanelProvider.addUpdatePanel);
 updatePanelMover.addContent(addUpdatePanelDelegate);
 }
 }
 </script>
</head>

c22.indd 1066c22.indd 1066 8/20/07 8:38:18 PM8/20/07 8:38:18 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1067

<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”>
 <Scripts>
 <asp:ScriptReference Path=”Delegate.js” />
 </Scripts>
 </asp:ScriptManager>
 <asp:UpdatePanel ID=”UpdatePanel1” runat=”server”>
 <ContentTemplate>
 <asp:Image ImageUrl=”~/images.jpg” runat=”server” />
 </ContentTemplate>
 </asp:UpdatePanel>
 <asp:UpdatePanel ID=”UpdatePanel2” runat=”server”>
 <ContentTemplate>
 Wrox Web Site
 </ContentTemplate>
 </asp:UpdatePanel>
 </form>
</body>
</html>

 Now let’s walk through the implementation of the pageLoadedHandler JavaScript function.

 This function invokes the get_panelsCreated method on the PageLoadedEventArgs object to
return a reference to the array that contains all the newly created UpdatePanel server control on the
 current page:

 var panelsCreated = e.get_panelsCreated();

Next, the function iterates through the UpdatePanel server controls in the panelsCreated array and
takes the following steps for each enumerated UpdatePanel control. First it instantiates a Mover object:

 updatePanelMover = new Delegates.Mover(“container”+j);

 Next, it instantiates an UpdatePanelProvder object, passing in the enumerated UpdatePanel server
control as its argument:

 updatePanelProvider = new Delegates.UpdatePanelProvider(panelsCreated[j]);

 Then it calls the createDelegate static method on the Function to create a delegate that represents the
 addUpdatePanel method of the UpdatePanelProvider object:

 addUpdatePanelDelegate = Function.createDelegate(updatePanelProvider,
 updatePanelProvider.addUpdatePanel);

 Finally, it invokes the addContent method on the Mover object, passing in the delegate. Recall from
Chapter 7 that the addContent method automatically invokes this delegate and consequently the
 addUpdatePanel method on the UpdataPanelProvider object.

 updatePanelMover.addContent(addUpdatePanelDelegate);

c22.indd 1067c22.indd 1067 8/20/07 8:38:18 PM8/20/07 8:38:18 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1068

Listing 22-14 presents the content of the Delegates.js JavaScript file. The boldfaced portion of this code
listing contains the code for a new ASP.NET AJAX client class named UpdatePanelProvider.

 Listing 22-14: The Content of the Delegates.js JavaScript File

 Type.registerNamespace(“Delegates”);
Delegates.Mover = function (containerId)
{
 var container = $get(containerId);
 Delegates.Mover.incrementMoversCount();
 if (!container)
 {
 container = document.createElement(“div”);
 this.containerId = container.id = containerId;
 container.style.position = “absolute”;
 document.body.insertBefore(container, document.forms[0]);
 $addHandlers(container, { mousedown: this.mousedowncb }, this);
 }
}

Delegates.Mover.prototype =
{
 addContent : Delegates$Mover$invokeAddContentDelegate,
 mousedowncb : Delegates$Mover$mousedowncb,
 mouseupcb : Delegates$Mover$mouseupcb,
 mousemovecb : Delegates$Mover$mousemovecb
}

Delegates.Mover.incrementMoversCount = function()
{
 if (typeof(this.moversCount) == “undefined”)
 this.moversCount = 0;
 this.moversCount++;
}

Delegates.Mover.get_moversCount = function()
{
 return this.moversCount;
}

function Delegates$Mover$invokeAddContentDelegate(addContentDelegate)
{
 addContentDelegate(this.containerId);
}

function Delegates$Mover$mousedowncb(domEvent)
{
 var container = $get(this.containerId);
 this.oldClientX = domEvent.clientX;
 this.oldClientY = domEvent.clientY;
 var events = {mousemove: this.mousemovecb, mouseup: this.mouseupcb}

c22.indd 1068c22.indd 1068 8/20/07 8:38:19 PM8/20/07 8:38:19 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1069

 $addHandlers(document, events, this);
 container.style.zIndex += Delegates.Mover.get_moversCount();
 domEvent.preventDefault();
}

function Delegates$Mover$mouseupcb(domEvent)
{
 var container = $get(this.containerId);
 $clearHandlers(document);
 container.style.zIndex −= Delegates.Mover.get_moversCount();
 domEvent.preventDefault();
}

function Delegates$Mover$mousemovecb(domEvent)
{
 var container = $get(this.containerId);
 var deltaClientX = domEvent.clientX − this.oldClientX;
 var deltaClientY = domEvent.clientY − this.oldClientY;
 var containerLocation = Sys.UI.DomElement.getLocation(container);
 Sys.UI.DomElement.setLocation(container, containerLocation.x+deltaClientX,
 containerLocation.y+deltaClientY);
 this.oldClientX = domEvent.clientX;
 this.oldClientY = domEvent.clientY;
 domEvent.preventDefault();
}

Delegates.UpdatePanelProvider = function (updatePanel)
{
 this.updatePanel = updatePanel;
}

Delegates.UpdatePanelProvider.prototype =
{
 addUpdatePanel : Delegates$UpdatePanelProvider$addUpdatePanel
}

function Delegates$UpdatePanelProvider$addUpdatePanel(containerId)
{
 var container = $get(containerId);
 container.appendChild(this.updatePanel);
}

Delegates.Mover.registerClass(“Delegates.Mover”);
Delegates.UpdatePanelProvider.registerClass(“Delegates.UpdatePanelProvider”);

if (typeof(Sys) !== ‘undefined’)
 Sys.Application.notifyScriptLoaded();

c22.indd 1069c22.indd 1069 8/20/07 8:38:19 PM8/20/07 8:38:19 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1070

 As you can see, because the PageLoadedEventArgs event data class provides you with references to the
actual updated and created UpdatePanel server controls, you can do really cool things within your
event handler for the pageLoaded event.

 I’ll wrap up this section by drawing your attention to something important in Listings 22-12 and 22-13 .
Note that both code listings perform the registration of the pageLoadedHandler function for the
 pageLoaded event inside an event handler for the load event of the window object, as opposed to the
 pageLoad method. To find out why this is, we need to visit the internal implementation of the Render
method of the ScriptManager server control, as shown in Listing 22-15 .

 Listing 22-15: The Render Method of the Current ScriptManager Server Control

 protected override void Render(HtmlTextWriter writer)
{
 this.PageRequestManager.Render(writer);
 if (!this.IsInAsyncPostBack)
 this.IPage.ClientScript.RegisterStartupScript(typeof(ScriptManager),
 “AppInitialize”,
 “Sys.Application.initialize();\r\n”, true);
 base.Render(writer);
}

 As you can see from the highlighted portions of Listing 22-15 , the Render method of the current
 ScriptManager server control calls the following two methods:

 1. First, it calls the Render method on the current server-side PageRequestManager instance. As
discussed thoroughly in the previous chapter, the Render method of the current server-side
 PageRequestManager instance renders the following script block, which is then sent to the
 requesting browser:

 <script type=”text/javascript”>
 //<![CDATA[
 Sys.WebForms.PageRequestManager._initialize(‘ScriptManager1’,
 document.getElementById(‘Form1’));
 Sys.WebForms.PageRequestManager.getInstance()._updateControls(
 [‘tUpdatePanel1’, ‘fUpdatePanel2’, ‘tUpdatePanel3’],
 [‘SyncButton1’, ‘SyncButton2’],
 [‘AsyncButton1’, ‘AsyncButton2’]);
 //]]
</script>

 As you can see, the script block shown calls the _initialize static method on the
client-side PageRequestManager class to instantiate and to initialize the current client-side
PageRequestManager instance. As discussed thoroughly earlier in this chapter, the
_initialize static method is the one that finally raises the pageLoaded event of the current
client-side PageRequestManager instance.

2. Next, the Render method of the current ScriptManager server control calls the
RegisterStartupScript method on the ClientScript property of the current page to
render the following script block at the bottom of the current page:

c22.indd 1070c22.indd 1070 8/20/07 8:38:19 PM8/20/07 8:38:19 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1071

 <script type=”text/javascript”>
 //<![CDATA[
 Sys.Application.initialize();
 //]]
</script>

 As you can see, the script block calls the initialize method on the Application object that
represents the current ASP.NET AJAX application. As discussed thoroughly in Chapter 8 , the
call into the initialize method finally calls the pageLoad method.

 As you can see, the script block that raises the pageLoaded event of the current client-side
 PageRequestManager instance is rendered before the script block that calls the pageLoad method. That
is why, if you register a JavaScript function as an event handler for the pageLoaded event of the current
client-side PageRequestManager instance inside the pageLoad method, your JavaScript function will
not be invoked when the pageLoaded event is raised at the end of the instantiation/initialization phase.

 Making an Asynchronous Page Postback
 The previous section followed the current client-side PageRequestManager instance through its
instantiation and initialization life cycle phases. As discussed earlier, the current client-side
pageRequestManager instance goes through these life cycle phases only once during its entire lifetime.

 In this section we’ll follow the current client-side PageRequestManager instance through its life cycle
phases to make an asynchronous page postback request to the server. As discussed earlier, ASP.NET
 provides two different mechanisms for triggering a page postback: the Submit button and the
_doPostBack method.

 Assume that a page postback via the _doPostBack method of the window object has just occurred and
that consequently the _doPostBack method of the current PageRequestManager instance has just been
invoked.

 Helper Methods
 The implementation of the _doPostBack method of the PageRequestManager makes use of four other
helper methods of the current PageRequestManager instance. I’ll present and discuss the implementa-
tions of these four helper methods first.

 _ create PostBackSettings
 The PageRequestManager exposes an private method named _createPostBackSettings , as shown
in Listing 22-16 , that takes three parameters: the first is a Boolean value that specifies whether the current
page postback request is asynchronous, the second is a string that contains the value of the UniqueID
property of the UpdatePanel server control whose child server control causes the current postback, and
the third references the DOM element that caused the current postback. This private method creates and
returns an object literal with three name/value pairs. The name part of the first name/value pair is the
keyword async , and the value part contains the value of the first parameter of the method. The name
part of the second name/value pair is the keyword panel ID , and the value part contains the value of the
second parameter of the method. The name part of the third name/value pair is the keyword
 sourceElement , and the value part contains the value of the third parameter of the method.

c22.indd 1071c22.indd 1071 8/20/07 8:38:20 PM8/20/07 8:38:20 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1072

 Listing 22-16: The _ create PostBackSettings Private Method of PageRequestManager

 function Sys$WebForms$PageRequestManager$_createPostBackSettings(async, panelID,
 sourceElement)
{
 return { async: async, panelID: panelID, sourceElement: sourceElement };
}

 _ find NearestElement
 The PageRequestManager exposes a private method named _findNearestElement that takes a
 UniqueID property value and returns a reference to the nearest element. As Listing 22-17 shows, this
method uses the fact that the UniqueID property value of an ASP.NET server control is a string that
 contains one or more substrings separated by the dollar sign ($), each of which contains the UniqueID
property value of an ancestor of the server control. As you can see, the _findNearestElement method
first calls the _uniqueIDToClientID method on the current PageRequestManager instance to return
the ClientID property value associated with the specified UniqueID property value (see Listing 22-10):

 var clientID = this._uniqueIDToClientID(uniqueID);

 Next, the method invokes the getElementById method on the document object to return a reference to
the DOM element with the preceding ClientID property value:

 var element = document.getElementById(clientID);

 If the current document does indeed contain a DOM element with the desired ClientID property
value, the _findNearestElement method simply returns this reference. However, if the current
 document does not contain a DOM element with the specified ClientID property value, the
_findNearestElement method accesses the last substring in the UniqueID property value string
and repeats the previous steps:

 var indexOfLastDollar = uniqueID.lastIndexOf(‘$’);
uniqueID = uniqueID.substring(0, indexOfLastDollar);

 The _findNearestElement method keeps repeating the same steps for each substring of the UniqueID
property value string until it locates the substring or UniqueID property value whose associated DOM
element exists in the current document, or it returns null . (Keep in mind that each substring is itself a
 UniqueID property value.)

 Listing 22-17: The _ find NearestElement Private Method of PageRequestManager

 function Sys$WebForms$PageRequestManager$_findNearestElement(uniqueID)
{
 while (uniqueID.length > 0)
 {
 var clientID = this._uniqueIDToClientID(uniqueID);
 var element = document.getElementById(clientID);
 if (element)
 return element;

c22.indd 1072c22.indd 1072 8/20/07 8:38:20 PM8/20/07 8:38:20 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1073

 var indexOfLastDollar = uniqueID.lastIndexOf(‘$’);
 if (indexOfLastDollar === -1)
 return null;

 uniqueID = uniqueID.substring(0, indexOfLastDollar);
 }
 return null;
}

 _ matches ParentIDInList
 The current PageRequestManager instance features an internal method named _matchesParentIDInList
that takes two parameters. The first is a string that contains a ClientID property value and the second is an
array of ClientID property values. As you can see from Listing 22-18 , this method searches the array for the
 ClientID property value of the parent server control of the server control whose ClientID property value
is given by the first parameter. The method return true if the search succeeds and false otherwise.

 Listing 22-18: The _ matches ParentIDInList Method of PageRequestManager

 function Sys$WebForms$PageRequestManager$_matchesParentIDInList(clientID,
 parentClientIDList)
{
 for (var i = 0; i < parentClientIDList.length; i++)
 {
 if (clientID.startsWith(parentClientIDList[i] + “_”)) return true;
 }
 return false;
}

 _ get PostBackSettings
 The _getPostBackSettings method of the PageRequestManager takes two parameters, as shown in
Listing 22-19 . The second parameter is a UniqueID property value of the server control that caused the
current postback. The first parameter references the server control whose UniqueID property value best
matches this UniqueID property value. This method has two main responsibilities:

 ❑ Determine whether the current postback is asynchronous

❑ Determine whether the server control that the second parameter references resides inside an
 UpdatePanel server control whose ChildrenAsTriggers property is set to true

 The _getPostBackSettings method walks up the DOM hierarchy of the server control that the first
parameter references and takes the following steps for each server control in this DOM hierarchy:

 ❑ If the server control resides in an UpdatePanel server control whose ChildrenAsTriggers
property is set to true , the _getPostBackSettings method creates an object literal whose:

 ❑ async property is set to true to specify that the current postback is asynchronous

c22.indd 1073c22.indd 1073 8/20/07 8:38:20 PM8/20/07 8:38:20 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1074

 When a server control that resides in an UpdatePanel server control whose ChildrenAsTriggers
property is set to true causes a page postback, the current PageRequestManager instance treats the
page postback as asynchronous page postback regardless of whether or not the server control has been
explicitly registered as a trigger for asynchronous page postback.

 ❑ panelID property is set to a string that contains two substrings separated by the | character,
where the first substring contains the UniqueID property value of the UpdatePanel server
control and the second contains the UniqueID property value of the server control. As you’ll
see later, the presence of the UniqueID property value of this UpdatePanel server control
signals the server that this UpdatePanel server control must be updated.

 When a server control that resides in an UpdatePanel server control whose ChildrenAsTriggers
property is set to true causes a page postback, it automatically triggers the update of its parent
 UpdatePanel server control.

❑ sourceElement property contains a reference to the server control.

 ❑ If the _asyncPostBackControlIDs collection contains the UniqueID property value of the
server control or one of its ancestor server controls, but the server control does not reside in an
 UpdatePanel server control whose ChildrenAsTrigger property is set to true , the
_ getPostBackSettings method creates an object literal whose:

 ❑ async property is set to true to specify that the current postback is asynchronous.

 When a server control whose UniqueID property value belongs to the _asyncPostBackControlIDs
collection of the current PageRequestManager instance causes a page postback, the current
 PageRequestManager instance treats the page postback as asynchronous.

❑ panelID property is set to a string that contains two substrings separated by the | character
where the first substring contains the UniqueID property value of the ScriptManager
server control and the second contains the UniqueID property value of the server control.

❑ sourceElement property contains a reference to the server control.

 ❑ If the _postBackControlIDs collection contains the UniqueID property value of the server
control or one of its ancestor server controls, the _getPostBackSettings method creates an
object literal whose:

 ❑ async property is set to false to specify that the current postback is a regular synchro-
nous postback. This instructs the current PageRequestManager instance that the responsi-
bility of posting the current page back to the server must be delegated to the browser to
allow the browser to perform a regular page postback to the server.

❑ panelID property is set to null.

❑ sourceElement is set to null.

 When a server control whose UniqueID property value belongs to the _postBackControlIDs
 collection of the current PageRequestManager instance causes a page postback, the current
 PageRequestManager instance doesn’t get involved in the form submission.

c22.indd 1074c22.indd 1074 8/20/07 8:38:21 PM8/20/07 8:38:21 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1075

 Listing 22-19: The _ get PostBackSettings Method of the PageRequestManager

 function Sys$WebForms$PageRequestManager$_getPostBackSettings(element,
 elementUniqueID)
{
 var originalElement = element;
 // Keep track of whether we have an AsyncPostBackControl but still
 // want to see if we’re inside an UpdatePanel anyway.
 var proposedSettings = null;
 // Walk up DOM hierarchy to find out the nearest container of
 // the element that caused the postback.
 while (element)
 {
 if (element.id)
 {
 // First try an exact match for async postback, regular postback,
 // or UpdatePanel
 if (!proposedSettings &&
 Array.contains(this._asyncPostBackControlClientIDs, element.id))
 {
 // The element explicitly causes an async postback
 proposedSettings = this._createPostBackSettings(true,
 this._scriptManagerID + ‘|’ + elementUniqueID,
 originalElement);
 }

 else
 {
 if (!proposedSettings &&
 Array.contains(this._postBackControlClientIDs, element.id))
 {
 // The element explicitly doesn’t cause an async postback
 return this._createPostBackSettings(false, null, null);
 }

 else
 {
 var indexOfPanel = Array.indexOf(this._updatePanelClientIDs, element.id);
 if (indexOfPanel !== -1)
 {
 // The element causes an async postback because it is inside
 // an UpdatePanel
 if (this._updatePanelHasChildrenAsTriggers[indexOfPanel])
 {
 // If it was in an UpdatePanel and the panel has
 // ChildrenAsTriggers=true, then
 // we do an async postback and refresh the given panel
 // Although we do the search by looking at ClientIDs, we end
 // up sending a UniqueID back to the server so that we can
 // call FindControl() with it.
 return this._createPostBackSettings(true,
 this._updatePanelIDs[indexOfPanel] + ‘|’ + elementUniqueID,
 originalElement);
 }

(continued)

c22.indd 1075c22.indd 1075 8/20/07 8:38:21 PM8/20/07 8:38:21 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1076

 Listing 22-19 (continued)

 else
 {
 // The element was inside an UpdatePanel so we do an async postback,
 // but because it has ChildrenAsTriggers=false we don’t update
 // this panel.
 return this._createPostBackSettings(true,
 this._scriptManagerID + ‘|’ + elementUniqueID,
 originalElement);
 }
 }
 }
 }
 // Then try near matches
 if (!proposedSettings &&
 this._matchesParentIDInList(element.id,
 this._asyncPostBackControlClientIDs))
 {
 // The element explicitly causes an async postback
 proposedSettings = this._createPostBackSettings(true,
 this._scriptManagerID + ‘|’ + elementUniqueID,
 originalElement);
 }

 else
 {
 if (!proposedSettings &&
 this._matchesParentIDInList(element.id,
 this._postBackControlClientIDs))
 {
 // The element explicitly doesn’t cause an async postback
 return this._createPostBackSettings(false, null, null);
 }
 }
 }
 element = element.parentNode;
 }
 // If we have proposed settings that means we found a match for an
 // AsyncPostBackControl but were still searching for an UpdatePanel.
 // If we got here that means we didn’t find the UpdatePanel so we
 // just fall back to the original AsyncPostBackControl settings that
 // we created.
 if (!proposedSettings)
 {
 // The element doesn’t cause an async postback
 return this._createPostBackSettings(false, null, null);
 }

 else
 return proposedSettings;
}

c22.indd 1076c22.indd 1076 8/20/07 8:38:21 PM8/20/07 8:38:21 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1077

 _ do PostBack
 Now back to the main topic of discussion: the implementation of the _doPostBack method of the
 current PageRequestManager instance. As discussed earlier, this method is invoked when a page
 postback occurs via the _doPostBack method of the window object. An example of such a page postback
is the one that occurs when an end user selects a new item from a DropDownList server control whose
 AutoPostBack property has been set to true .

 Listing 22-20 presents the internal implementation of the _doPostBack method of the current
 PageRequestManager instance. This method takes the same two parameters that the original
_doPostBack method takes. The first is the value of the UniqueID property of the server control that
caused the page postback. For example, in the case of the DropDownList server control whose
AutoPostBack property is set to true , the first parameter is the value of the UniqueID property of the
 DropDownList control. The second parameter is optional. For example, in the case of the DropDownList
server control whose AutoPostBack property is set to true , the second parameter is the selected value
of the server control.

 Listing 22-20: The _ do PostBack Method of the PageRequestManager

 function Sys$WebForms$PageRequestManager$_doPostBack(eventTarget, eventArgument)
{
 this._additionalInput = null;
 var form = this._form;

 if (form.action !== form._initialAction)
 {
 // Allow the default form submit to take place. Since the current
 // form action is different from the initial one, it’s a cross-page postback.
 this._postBackSettings = this._createPostBackSettings(false, null, null);
 }

 else
 {
 // If it’s not a cross-page post, see if we can find the DOM element
 // that caused the postback
 var clientID = this._uniqueIDToClientID(eventTarget);
 var postBackElement = document.getElementById(clientID);
 if (!postBackElement)
 {
 // If the control has no matching DOM element we look for an exact
 // match from RegisterAsyncPostBackControl or RegisterPostBackControl.
 // If we can’t find anything about it then we do a search based on
 // naming containers to still try and find a match.
 if (Array.contains(this._asyncPostBackControlIDs, eventTarget))
 {
 // Exact match for async postback
 this._postBackSettings = this._createPostBackSettings(true,
 this._scriptManagerID + ‘|’ + eventTarget, null);
 }

 else
 {
 if (Array.contains(this._postBackControlIDs, eventTarget))

(continued)

c22.indd 1077c22.indd 1077 8/20/07 8:38:22 PM8/20/07 8:38:22 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1078

 Listing 22-20 (continued)

 {
 // Exact match for regular postback
 this._postBackSettings = this._createPostBackSettings(false, null, null);
 }

 else
 {
 // Find nearest element based on UniqueID in case the element calling
 // __doPostBack doesn’t have an ID. GridView does this for its Update
 // button and without this we can’t do async postbacks.
 var nearestUniqueIDMatch = this._findNearestElement(eventTarget);
 if (nearestUniqueIDMatch)
 {
 // We found a related parent element, so walk up the DOM to find out
 // what kind of postback we should do.
 this._postBackSettings =
 this._getPostBackSettings(nearestUniqueIDMatch, eventTarget);
 }

 else
 {
 // Can’t find any DOM element at all related to the eventTarget,
 // so we just give up and do a regular postback.
 this._postBackSettings = this._createPostBackSettings(false, null,
 null);
 }
 }
 }
 }
 else
 {
 // The element was found, so walk up the DOM to find out what kind
 // of postback we should do.
 this._postBackSettings = this._getPostBackSettings(postBackElement,
 eventTarget);
 }
 }
 if (!this._postBackSettings.async)
 {
 // Temporarily restore the form’s onsubmit handler expando while calling
 // the original ASP.NET 2.0 __doPostBack() function.
 form.onsubmit = this._onsubmit;
 this._originalDoPostBack(eventTarget, eventArgument);
 form.onsubmit = null;
 return;
 }
 form.__EVENTTARGET.value = eventTarget;
 form.__EVENTARGUMENT.value = eventArgument;
 this._onFormSubmit();
}

 As Listing 22-20 shows, the _doPostBack method first checks whether the current value of
the action property of the form is different from its original value. Recall from Listing 22-5 that the
_initializeInternal method of the current PageRequestManager instance stores the original

c22.indd 1078c22.indd 1078 8/20/07 8:38:22 PM8/20/07 8:38:22 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1079

 action value in a custom property on the form named _initialAction . If the current action value is
different from the original action value, this indicates that the current postback is a cross-page post-
back. Therefore, the _doPostBack method calls the _createPostBackSettings method on the current
 PageRequestManager instance to create a postback settings — an object literal with async property
value of false — to indicate that the current postback is not asynchronous. (Recall from Listing 22-16
that the _createPostBackSettings method creates an object literal, known as postback settings, with
three properties named async , panelID , and sourceElement .)

 if (form.action !== form._initialAction)
 this._postBackSettings = this._createPostBackSettings(false, null, null);

 If the current form action value is the same as the original form action value, the _doPostBack
method calls the _uniqueIDToClientID method on the current PageRequestManager instance, pass-
ing in its first parameter. Recall that the first parameter is a string that contains the UniqueID property
value of the server control that caused the current page postback. Also recall from Listing 22-8 that the
_uniqueIDToClientID method simply returns the ClientID property value of the server control with
the specified UniqueID property value.:

 var clientID = this._uniqueIDToClientID(eventTarget);

 The _doPostBack method then calls the getElementById method on the document object, passing in
the ClientID property value to return a reference to the DOM element that caused the current page
postback.

 var postBackElement = document.getElementById(clientID);

 If the getElementById method does not return null , the _doPostBack method calls the
_getPostBackSettings method discussed earlier to create the appropriate postback settings object:

 this._postBackSettings = this._getPostBackSettings(postBackElement, eventTarget);

 If the getElementById method does return null , the _doPostBack method takes the following steps to
get a reference to the DOM element that caused the current page postback:

 ❑ If the _asyncPostBackControlIDs collection of the current PageRequestManager instance
contains the UniqueID property value of the server control that caused the current postback, the
 _doPostBack method creates an object literal whose:

 ❑ async property is set to true to specify that the current postback is asynchronous

❑ panelID property is set to a string that contains two substrings separated by the | charac-
ter, where the first substring contains the UniqueID property value of the ScriptManager
server control and the second contains the UniqueID property value of the server control
that caused the current page postback

❑ sourceElement property is set to null:

 if (Array.contains(this._asyncPostBackControlIDs, eventTarget))
 {
 // Exact match for async postback
 this._postBackSettings = this._createPostBackSettings(true,
 this._scriptManagerID + ‘|’ + eventTarget, null);
 }

c22.indd 1079c22.indd 1079 8/20/07 8:38:22 PM8/20/07 8:38:22 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1080

 ❑ If the _postBackControlIDs collection of the current PageRequestManager instance contains
the UniqueID property value of the server control that caused the current postback, the
_doPostBack method creates an object literal whose

 ❑ async property is set to false to specify that the current postback is a regular synchro-
nous postback. This instructs the current PageRequestManager instance that the responsi-
bility of posting the current page back to the server must be delegated to the browser to
allow the browser to perform a regular page postback to the server.

 ❑ panelID property is set to null .

❑ sourceElement is set to null :

 if (Array.contains(this._postBackControlIDs, eventTarget))
 {
 // Exact match for regular postback
 this._postBackSettings = this._createPostBackSettings(false, null, null);
 }

 ❑ If neither the _asyncPostBackControlIDs nor the _postBackControlIDs collections of the
current PageRequestManager instance contains the UniqueID property value of the server con-
trol that caused the current postback, the _doPostBack method calls the _findNearestElement
method on the current PageRequestManager instance to return a reference to the DOM element
that best matches the specified UniqueID property:

 var nearestUniqueIDMatch = this._findNearestElement(eventTarget);

 ❑ If it finds such an element on the current page, it calls the _getPostBackSettings method on
the current PageRequestManager instance to return the appropriate postback settings object, as
discussed earlier:

 if (nearestUniqueIDMatch)
 {
 // We found a related parent element, so walk up the DOM to find out
 // what kind of postback we should do.
 this._postBackSettings =
 this._getPostBackSettings(nearestUniqueIDMatch, eventTarget);
 }

 ❑ If it doesn’t find such an element on the current page, it gives up the search for the element with
the specified UniqueID and creates a postback settings object whose:

 ❑ async property is set to false to specify that the current postback is a regular synchro-
nous postback. This instructs the current PageRequestManager instance that the responsi-
bility of posting the current page back to the server must be delegated to the browser to
allow the browser to perform a regular page postback to the server.

❑ panelID property is set to null .

❑ sourceElement is set to null :

c22.indd 1080c22.indd 1080 8/20/07 8:38:23 PM8/20/07 8:38:23 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1081

 else
 {
 // Can’t find any DOM element at all related to the eventTarget,
 // so we just give up and do a regular postback.
 this._postBackSettings = this._createPostBackSettings(false, null,
 null);
 }

 Next, the _doPostBack method checks whether the async property of the postback settings object is set.
If not, this is an indication that the current page postback is not asynchronous, and consequently the
_doPostBack method first assigns the _onsubmit method of the current PageRequestManager
instance as the onsubmit method on the form element. Recall that the _onsubmit method references
the original value of the onsubmit property of the form. Next, the _doPostBack method of the
current PageRequestManager instance invokes the _originalDoPostBack method of the current
PageRequestManager instance. Recall that the _originalDoPostBack method references the
ASP.NET 2.0 standard __doPostBack global JavaScript function, which performs normal synchronous
page postbacks to the server:

 if (!this._postBackSettings.async)
 {
 // Temporarily restore the form’s onsubmit handler expando while calling
 // the original ASP.NET 2.0 __doPostBack() function.
 form.onsubmit = this._onsubmit;
 this._originalDoPostBack(eventTarget, eventArgument);
 form.onsubmit = null;
 return;
 }

 If the async property of the postback settings object has been set, this is an indication that the current
page postback is asynchronous page and consequently that the _doPostBack method of the current
 PageRequestManager instance first stores the UniqueID property value of the server control that
caused the current postback in a hidden field named __EVENTTARGET :

 form.__EVENTTARGET.value = eventTarget;

 Next, it stores the optional event argument parameter in a hidden field named __EVENTARGUMENT :

 form.__EVENTARGUMENT.value = eventArgument;

 Finally, it invokes the _onFormSubmit method on the current PageRequestManager instance to submit
the form to the server. As you’ll see in the next section, the _onFormSubmit method uses the ASP.NET
AJAX client-server communication layer to post the page back to the server asynchronously:

 this._onFormSubmit();

 _ on FormSubmit
 As we discussed earlier, the ASP.NET framework provides an ASP.NET page with two types of post-
backs: through the Submit button and through the ASP.NET 2.0 standard __doPostBack global
JavaScript function. As you can see, both approaches end up calling the _onFormSubmit method of the
current PageRequestManager instance. Listing 22-21 presents the internal implementation of the
_onFormSubmit method of the PageRequestManager .

c22.indd 1081c22.indd 1081 8/20/07 8:38:23 PM8/20/07 8:38:23 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1082

 Listing 22-21: The _ on FormSubmit Method of the Client-Side PageRequestManager
Instance

 function Sys$WebForms$PageRequestManager$_onFormSubmit(evt)
{
 var continueSubmit = true;
 if (this._onsubmit)
 continueSubmit = this._onsubmit();
 if (continueSubmit)
 {
 for (var i = 0; i < this._onSubmitStatements.length; i++)
 {
 if (!this._onSubmitStatements[i]())
 {
 continueSubmit = false;
 break;
 }
 }
 }
 if (!continueSubmit)
 {
 if (evt)
 evt.preventDefault();

 return;
 }
 var form = this._form;
 if (form.action !== form._initialAction)
 return;
 if (!this._postBackSettings.async)
 return;
 var formBody = new Sys.StringBuilder();
 formBody.append(this._scriptManagerID + ‘=’ +
 this._postBackSettings.panelID + ‘&’);
 var count = form.elements.length;
 for (var i = 0; i < count; i++)
 {
 var element = form.elements[i];
 var name = element.name;
 if (typeof(name) === “undefined” || (name === null) || (name.length === 0))
 continue;
 var tagName = element.tagName;
 if (tagName === ‘INPUT’)
 {
 var type = element.type;
 if ((type === ‘text’) ||
 (type === ‘password’) ||
 (type === ‘hidden’) ||
 (((type === ‘checkbox’) || (type === ‘radio’)) && element.checked))
 {
 formBody.append(name);
 formBody.append(‘=’);

c22.indd 1082c22.indd 1082 8/20/07 8:38:23 PM8/20/07 8:38:23 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1083

 formBody.append(encodeURIComponent(element.value));
 formBody.append(‘&’);
 }
 }

 else if (tagName === ‘SELECT’)
 {
 var optionCount = element.options.length;
 for (var j = 0; j < optionCount; j++)
 {
 var option = element.options[j];
 if (option.selected)
 {
 formBody.append(name);
 formBody.append(‘=’);
 formBody.append(encodeURIComponent(option.value));
 formBody.append(‘&’);
 }
 }
 }

 else if (tagName === ‘TEXTAREA’)
 {
 formBody.append(name);
 formBody.append(‘=’);
 formBody.append(encodeURIComponent(element.value));
 formBody.append(‘&’);
 }
 }
 if (this._additionalInput)
 {
 formBody.append(this._additionalInput);
 this._additionalInput = null;
 }
 var request = new Sys.Net.WebRequest();
 request.set_url(form.action);
 request.get_headers()[‘X-MicrosoftAjax’] = ‘Delta=true’;
 request.get_headers()[‘Cache-Control’] = ‘no-cache’;
 request.set_timeout(this._asyncPostBackTimeout);
 request.add_completed(Function.createDelegate(this,
 this._onFormSubmitCompleted));
 request.set_body(formBody.toString());
 var handler = this._get_eventHandlerList().getHandler(“initializeRequest”);
 if (handler)
 {
 var eventArgs = new Sys.WebForms.InitializeRequestEventArgs(request,
 this._postBackSettings.sourceElement);
 handler(this, eventArgs);
 continueSubmit = !eventArgs.get_cancel();
 }

(continued)

c22.indd 1083c22.indd 1083 8/20/07 8:38:23 PM8/20/07 8:38:23 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1084

 Listing 22-21 (continued)

 if (!continueSubmit)
 {
 if (evt)
 evt.preventDefault();
 return;
 }
 this._scrollPosition = this._getScrollPosition();
 this.abortPostBack();
 handler = this._get_eventHandlerList().getHandler(“beginRequest”);
 if (handler)
 {
 var eventArgs = new Sys.WebForms.BeginRequestEventArgs(request,
 this._postBackSettings.sourceElement);
 handler(this, eventArgs);
 }
 this._request = request;
 request.invoke();
 if (evt)
 evt.preventDefault();
}

 As you can see, this method takes the following steps. First, it calls the _onsubmit method on the cur-
rent PageRequestManager instance. Recall from Listing 22-5 that the _initializeInternal method
assigned the original value of the onsubmit property of the window object to the _onsubmit property of
the current PageRequestManager instance. The original onsubmit method is normally where the val-
ues of the form elements are validated. This method returns false if the data validation fails:

 if (this._onsubmit)
 continueSubmit = this._onsubmit();

 If the call into the original onsubmit method returns true — that is, if the data validation succeeds —
the _onFormSubmit method iterates through the JavaScript statements in the _onSubmitStatements
array and executes each statement. As you’ll see later, the _onSubmitStatements array contains the
dynamically added form onsubmit statements:

 for (var i = 0; i < this._onSubmitStatements.length; i++)
 {
 if (!this._onSubmitStatements[i]())
 {
 continueSubmit = false;
 break;
 }
 }

 If either the original onsubmit method or one of the dynamically added form onsubmit statements
returns false , the _onFormSubmit method cancels the form submission by invoking the
 preventDefault method on the DomEvent object that represents the current event:

 evt.preventDefault();

c22.indd 1084c22.indd 1084 8/20/07 8:38:24 PM8/20/07 8:38:24 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1085

 Next, the _onFormSubmit method compares the current value of the action property of the form with
its original value. If these two values are different, this is an indication that the current form is being
posted back to a different page and consequently that the current request is a cross-page postback. As
such, the _onFormSubmit method simply returns. Recall that the _onFormSubmit method is the event
handler registered for the submit event of the form. The form submission proceeds as normal if all the
event handlers registered for the submit event either return true or don’t return a value.

 As you can see, the asynchronous page postback mechanism of the ASP.NET AJAX client-side frame-
work does not apply to cross-page postback requests. This means that these requests proceed as usual
with no intervention from the ASP.NET AJAX framework:

 var form = this._form;
 if (form.action !== form._initialAction)
 return;

 Next, the _onFormSubmit method checks whether the current request is an asynchronous page post-
back. If not, it simply returns, which means that the form submission proceeds as usual: the page is
 synchronously posted back to the server and the entire page is re-rendered when the server response
arrives:

 if (!this._postBackSettings.async)
 return;

 As you can see, the ASP.NET AJAX client-side framework falls back to the normal page postback for
synchronous requests.

 If the current request is neither a cross-page nor a normal synchronous page postback, the
_onSubmitForm method takes complete control over the submission of the values of the form
elements, bypassing the normal form submission mechanism and taking the following steps.

 First it creates a StringBuilder to accumulate the strings that will constitute the body of the asynchro-
nous Web request being made to the server, where each string will contain the value of a form element.
Therefore, each string consists of two parts separated by an equals sign (=), the first part being a string
that normally contains the value of the name HTML attribute of the form element and the second part
being a string that contains the value of the form element. Keep in mind that every server control
 renders its UniqueID property value as the value of the name HTML attribute of its associated HTML
element. For example, the DropDownList server control renders its UniqueID property value as the
value of the name HTML attribute of its associated <select> HTML element:

 var formBody = new Sys.StringBuilder();

 The first part of the first string contains the value of the UniqueID property of the current
 ScriptManager server control and the second part of the first string contains the value of the panelID
property of the postback settings object:

 formBody.append(this._scriptManagerID + ‘=’ +
 this._postBackSettings.panelID + ‘&’);

c22.indd 1085c22.indd 1085 8/20/07 8:38:24 PM8/20/07 8:38:24 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1086

 Next, the _onFormSubmit method iterates through the form elements and takes the following steps for
each enumerated element. If the element is a text , password , hidden , checkbox , or radio input form
element, the _onFormSubmit method appends a string that consists of two parts: the first contains the
name of the element and the second contains its value:

 if (tagName === ‘INPUT’)
 {
 var type = element.type;
 if ((type === ‘text’) ||
 (type === ‘password’) ||
 (type === ‘hidden’) ||
 (((type === ‘checkbox’) || (type === ‘radio’)) && element.checked))
 {
 formBody.append(name);
 formBody.append(‘=’);
 formBody.append(encodeURIComponent(element.value));
 formBody.append(‘&’);
 }
 }

 If the enumerated form element is a select input element, the _onFormSubmit method iterates through
the options collection of the element and creates one string for each selected option, the first part of the
string containing the name of the select element and the second part containing the option value:

 else if (tagName === ‘SELECT’)
 {
 var optionCount = element.options.length;
 for (var j = 0; j < optionCount; j++)
 {
 var option = element.options[j];
 if (option.selected)
 {
 formBody.append(name);
 formBody.append(‘=’);
 formBody.append(encodeURIComponent(option.value));
 formBody.append(‘&’);
 }
 }
 }

 If the form input element is a textarea , the _onFormSubmit method appends a string that consists of
two parts, the first containing the name of the element and the second part containing its value:

 else if (tagName === ‘TEXTAREA’)
 {
 formBody.append(name);
 formBody.append(‘=’);
 formBody.append(encodeURIComponent(element.value));
 formBody.append(‘&’);
 }
 }

 If there’s additional information that needs to be sent to the server, the _onSubmitForm method appends
this information as well:

c22.indd 1086c22.indd 1086 8/20/07 8:38:24 PM8/20/07 8:38:24 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1087

 if (this._additionalInput)
 {
 formBody.append(this._additionalInput);
 this._additionalInput = null;
 }

 So far, you’ve populated the StringBuilder object with a bunch of strings, each of which contains the
value of a specific input form element. Next, the _onSubmitForm method creates a WebRequest object
to represent the current asynchronous Web request:

 var request = new Sys.Net.WebRequest();

 Next, it specifies the target URL for the current request:

 request.set_url(form.action);

 Then it adds a header named ‘X-MicrosoftAjax’ and sets its value to ‘Delta=true’ to signal the
server-side PageRequestManager instance that the current request is an asynchronous page postback:

 request.get_headers()[‘X-MicrosoftAjax’] = ‘Delta=true’;

 Next, the _onFormSubmit method adds a header named ‘Cache-Control’ and sets its value to
‘no-cache’ to signal the server that it mustn’t cache the response, because the current request is an
 asynchronous page postback:

 request.get_headers()[‘Cache-Control’] = ‘no-cache’;

 Next, it specifies the request timeout. If the server response does not arrive within the specified time, the
 WebRequest will abort the current request:

 request.set_timeout(this._asyncPostBackTimeout);

 Then it calls the createDelegate static method on the Function to create a delegate that represents the
 _onFormSubmitCompleted method of the current PageRequestManager instance and registers this
delegate as an event handler for the completed event of the WebRequest object. This object will
 automatically call this delegate and consequently the _onFormSumitCompleted method when the
server response finally arrives:

 request.add_completed(Function.createDelegate(this, this._onFormSubmitCompleted));

 Next, the _onFormSubmit method populates the body of the current request with the content of the
 StringBuilder object. Recall that this object accumulated the strings that contain the values of the form
elements. In other words, the values of the form elements will be sent to the server in the body of the
request:

 request.set_body(formBody.toString());

 Next, the _onFormSubmit method calls the getHandler method on the EventHandlerList object that
contains all the event handlers registered for the events of the current PageRequestManager instance, in
order to return a reference to a JavaScript function whose invocation automatically invokes all the event
handlers registered for the initializeRequest event of the current PageRequestManager instance:

c22.indd 1087c22.indd 1087 8/20/07 8:38:25 PM8/20/07 8:38:25 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1088

 var handler = this._get_eventHandlerList().getHandler(“initializeRequest”);

 Then the _onFormSubmit method creates an instance of an ASP.NET AJAX class named
 InitializeRequestEventArgs , passing in a reference to the WebRequest object that represents the
current request and the DOM element that caused the postback. As you’ll see later in this chapter,
 InitializeRequestEventArgs is the event data class for the initializeRequest event of the
 current PageRequestManager instance:

 var eventArgs = new Sys.WebForms.InitializeRequestEventArgs(request,
 this._postBackSettings.sourceElement);

 Then, it invokes the previously mentioned JavaScript function, passing in a reference to the current
 PageRequestManager and InitializeRequestEventArgs instances. Invoking this JavaScript
 function automatically invokes the event handlers registered for the initializeRequest event of the
current PageRequestManager instance, passing in the same two references — that is, a reference to
the current PageRequestManager instance and a reference to the InitializeRequestEventArgs
instance:

 handler(this, eventArgs);

 If you register an event handler for the initializeRequest event of the current
 PageRequestManager instance, your event handler will receive the two references previously
 mentioned. Your handler can then use these two references to get the complete information about the
current request and use this information to determine whether the execution of the current request will
violate application-specific business rules. If so, your event handler must call the set_cancel method
on the InitializeRequestEventArgs object to ask the current PageRequestManager instance
to cancel the current request.

 Next, the _onSubmitForm method checks whether any of the event handlers has requested the
 cancellation of the current request:

 continueSubmit = !eventArgs.get_cancel();

 If so, the method invokes the preventDefault method on the DomEvent object that represents the
 current submit event to abort the form submission:

 if (!continueSubmit)
 {
 if (evt)
 evt.preventDefault();
 return;
 }

 Next, the _onFormSubmit method stores the current scroll position in a field named _scrollPosition
for future use. As you’ll see later, when the server response finally arrives, the current
PageRequestManager instance will compare the new scroll position with the old one to determine
whether the scroll position has changed:

 this._scrollPosition = this._getScrollPosition();

c22.indd 1088c22.indd 1088 8/20/07 8:38:25 PM8/20/07 8:38:25 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1089

 Then the _onFormSubmit method calls the abortPostBack method on the current PageRequestManager
instance to abort any ongoing requests. This ensures two things. First, only the latest request takes effect.
Second, you don’t exhaust the browser’s two-connections-per-server limit:

 this.abortPostBack();

 Then the _onFormSubmit method calls the getHandler method on the EventHandlerList that
 contains all the event handlers registered for the events of the current PageRequestManager instance, in
order to return a reference to the JavaScript function whose invocation automatically invokes all the
event handlers registered for the beginRequest event of the current PageRequestManager instance:

 handler = this._get_eventHandlerList().getHandler(“beginRequest”);

 Next, it creates an instance of the BeginRequestEventArgs class, passing in a reference to the
 WebRequest object that represents the current request and a reference to the DOM element that causes
the current form submission. As you’ll see later in this chapter, BeginRequestEventArgs is the event
data class for the beginRequest event of the PageRequestManager :

 var eventArgs = new Sys.WebForms.BeginRequestEventArgs(request,
 this._postBackSettings.sourceElement);

 Then it invokes the previously mentioned JavaScript function, and consequently invokes the event handlers
registered for the beginRequest event passing in a reference to the current PageRequestManager instance
and a reference to the BeginRequestEventArgs class:

 handler(this, eventArgs);

 If you register an event handler for the beginRequest event of the current PageRequestManager
instance, your event handler will receive the two references previously mentioned. Your handler can
then use these two references to get the complete information about the current request and use this
 information to perform application-specific request-beginning tasks.

 Next, for future use, the _onSubmitForm method stores the reference to the WebRequest object that repre-
sents the current request in a private field of the current PageRequestManager instance named _request :

 this._request = request;

 Then, to submit the request to the server, the method calls the invoke method on the WebRequest object
that represents the current request:

 request.invoke();

 Finally, the method calls the preventDefault method on the DomEvent object that represents the
 current submit event of the form, in order to prevent the form from performing a regular synchronous
page postback to the server:

 evt.preventDefault();

 Figure 22-8 contains a diagram that shows all the method calls involved in making an asynchronous
page postback request.

c22.indd 1089c22.indd 1089 8/20/07 8:38:25 PM8/20/07 8:38:25 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1090

 The initialize Request Event
 As you can see from Figure 22-8 , the current client-side PageRequestManager instance fires its
 initializeRequest event right after completing the instantiation and initialization of the WebRequest
object that represents the current asynchronous page postback request. This enables you to do the
following:

 ❑ Perform application-specific tasks that must be performed right after the WebRequest object is
instantiated and initialized.

❑ Run application-specific validation logic to determine whether the current form submission
 violates any application-specific rules. If so, you can have the current PageRequestManager
 instance abort the request.

PageRequestManager (Making Asynchronous Page Postback Request)

form

_onSubmitStatements

PageRequestManager

EventHandlerList

<<formBody>>
StringBuilder

InitializeRequestEvent

WebRequest

inputElements []

selectElements []

textareaElements []

BeginRequestEventArgs

_onSubmitStatements [i]

set_url (form.action)

get_headers () [‘X-MicrosoftAjax’] = ‘Delta=true’

get_headers () [‘Cache-Control’] = ‘no-cache’

set_timeout (_asyncPostBackTimeout)

set_body (formBody.toString())

add_completed (Function.createDelegate (prm, prm., onFormSubmitCompleted))

_onsubmit

handler (this.eventArgs)

_getScrollPosition ()

abortPostBack ()

handler (this.eventArgs)

append (_scriptManagerID + ‘=’ +_postBackSettings.panelID + ‘&’)

append (inputElements[i].name + ‘=’ + inputElements[i].value + ‘&’)

append (selectElements[i].name + ‘=’ + selectElements[i].options[j].value + ‘&’)

append (textareaElements[i].name + ‘=’ + textareaElements[i].value + ‘&’)

append (_additionalInput)

toString ()

handler = gethandler (“initializeRequest”)

eventArgs = new InitializeRequestEventArgs (request, _postBackSettings.sourceElement)

handler = getHandler (“beginRequest”)

invoke ()

eventArgs = new BeginRequestEventArgs (request, _postBackSettings.sourceElement)

get_cancel ()

Figure 22-8

c22.indd 1090c22.indd 1090 8/20/07 8:38:26 PM8/20/07 8:38:26 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1091

 The client-side PageRequestManager class uses the standard ASP.NET AJAX event implementation
 pattern to implement its initializeRequest event as follows:

 1. The class defines a method named add_initializeRequest that enables you to register
event handlers for the initializeRequest event of the current client-side
PageRequestManager instance. As the following code fragment shows, this method first
calls the get_eventHandlerList method on the current PageRequestManager instance to
 return a reference to the EventHandlerList object that contains all the event handlers
 registered for the events of the current PageRequestManager instance. Then the
add_initializeRequest method calls the addHandler method on this EventHandlerList
object to register the specified handler as an event handler for the initializeRequest event
of the current PageRequestManager instance:

 function Sys$WebForms$PageRequestManager$add_initializeRequest(handler)
{
 this._get_eventHandlerList().addHandler(“initializeRequest”, handler);
}

 2. The class defines a method named remove_initializeRequest that enables you to unregister
an event handler registered for the initializeRequest event of the instance:

 function Sys$WebForms$PageRequestManager$remove_initializeRequest(handler)
{
 this._get_eventHandlerList().removeHandler(“initializeRequest”, handler);
}

 The initializeRequest event, like any other, is associated with an event data class whose instance
acts as a container for the associated event data. The event data class associated with the
 initializeRequest event is an ASP.NET AJAX client class named InitializeRequestEventArgs .
Listing 22-22 presents the internal implementation of the InitializeRequestEventArgs class.

 Listing 22-22: The InitializeRequestEventArgs Class

 Sys.WebForms.InitializeRequestEventArgs =
function Sys$WebForms$InitializeRequestEventArgs(request, postBackElement)
{
 /// <param name=”request” type=”Sys.Net.WebRequest”></param>
 /// <param name=”postBackElement” domElement=”true”></param>

 Sys.WebForms.InitializeRequestEventArgs.initializeBase(this);
 this._request = request;
 this._postBackElement = postBackElement;
}
function Sys$WebForms$InitializeRequestEventArgs$get_postBackElement()
{
 /// <value domElement=”true”></value>
 return this._postBackElement;
}

(continued)

c22.indd 1091c22.indd 1091 8/20/07 8:38:26 PM8/20/07 8:38:26 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1092

 Listing 22-22 (continued)

function Sys$WebForms$InitializeRequestEventArgs$get_request()
{
 /// <value type=”Sys.Net.WebRequest”></value>
 return this._request;
}
Sys.WebForms.InitializeRequestEventArgs.prototype =
{
 get_postBackElement: Sys$WebForms$InitializeRequestEventArgs$get_postBackElement,
 get_request: Sys$WebForms$InitializeRequestEventArgs$get_request
}
Sys.WebForms.InitializeRequestEventArgs.registerClass(
 ‘Sys.WebForms.InitializeRequestEventArgs’,
 Sys.CancelEventArgs);

 As you can see, the constructor of the InitializeRequestEventArgs event data class takes two
parameters, the first referencing the WebRequest object that represents the current asynchronous page
postback request being made, and the second referencing the DOM element that caused the current
asynchronous page postback. This constructor assigns these parameters to two internal fields named
_request and _postBackElement :

 this._request = request;
 this._postBackElement = postBackElement;

 Note that the InitializeRequestEventArgs class exposes two getters named get_request and
get_postBackElement that return references to these two fields.

 As Listing 22-22 shows, the InitializeRequestEventArgs class derives from the CancelEventArgs
base class:

 Sys.WebForms.InitializeRequestEventArgs.registerClass(
 ‘Sys.WebForms.InitializeRequestEventArgs’,
 Sys.CancelEventArgs);

 Because of this, the InitializeRequestEventArgs class inherits the get_cancel and set_cancel
methods from the CancelEventArgs base class. As you’ll see later, an event handler registered for the
 initializeRequest event of the current PageRequestManager instance can call the set_cancel
method, passing in true as its argument to request the current PageRequestManager instance to cancel
the request.

 Using the initialize Request Event
 Listing 22-23 contains a page that handles the initializeRequest event of the current
PageRequestManager instance. If you run this page you should see the result shown in Figure 22-6 .
Now, if you click on the Parent UpdatePanel Trigger button shown in Figure 22-6 , you should get the
popup shown in Figure 22-9 .

c22.indd 1092c22.indd 1092 8/20/07 8:38:26 PM8/20/07 8:38:26 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1093

 Listing 22-23: A Page that Uses the initialize Request Event

 <%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Drawing” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<script runat=”server”>
 void Page_Load(object sender, EventArgs e)
 {
 Label parentUpdatePanelLabel =
 (Label)Page.FindControl(“ParentUpdatePanelLabel”);
 parentUpdatePanelLabel.Text = “UpdatePanel refreshed at “ +
 DateTime.Now.ToString();
 Label staticChildUpdatePanelLabel =
 (Label)Page.FindControl(“StaticChildUpdatePanelLabel”);
 staticChildUpdatePanelLabel.Text = “UpdatePanel refreshed at “ +
 DateTime.Now.ToString();
 UpdatePanel dynamicChildUpdatePanel = new UpdatePanel();
 dynamicChildUpdatePanel.ID = “DynamicChildUpdatePanel”;
 Table table = new Table();
 table.BackColor = Color.FromArgb(90, 90, 90);
 table.ForeColor = Color.FromName(“White”);
 TableRow headerRow = new TableRow();
 table.Rows.Add(headerRow);
 TableHeaderCell headerCell = new TableHeaderCell();
 headerCell.Text = “Dynamic Child UpdatePanel Control”;
 headerRow.Cells.Add(headerCell);
 TableRow bodyRow = new TableRow();
 table.Rows.Add(bodyRow);
 TableCell bodyCell = new TableCell();
 bodyRow.Cells.Add(bodyCell);
 Label label = new Label();
 label.ID = “DynamicChildUpdatePanelLabel”;
 label.Text = “UpdatePanel refreshed at “ + DateTime.Now.ToString() +
 “ ”;
 bodyCell.Controls.Add(label);
 Button button = new Button();
 button.Text = “Update”;
 button.ID = “DynamicChildUpdatePanelButton”;
 button.Click += new EventHandler(button_Click);
 bodyCell.Controls.Add(button);
 dynamicChildUpdatePanel.ContentTemplateContainer.Controls.Add(table);
 PlaceHolder1.Controls.Add(dynamicChildUpdatePanel);
 }
 void button_Click(object sender, EventArgs e)
 {
 Label label = (Label)Page.FindControl(“DynamicChildUpdatePanelLabel”);
 label.Text = “UpdatePanel refreshed at “ + DateTime.Now.ToString() +
 “ ”;
 }
</script>

(continued)

c22.indd 1093c22.indd 1093 8/20/07 8:38:26 PM8/20/07 8:38:26 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1094

 Listing 22-23 (continued)

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function pageLoad()
 {
 var prm = Sys.WebForms.PageRequestManager.getInstance();
 prm.remove_initializeRequest(initializeRequestHandler);
 prm.add_initializeRequest(initializeRequestHandler);
 }

 function initializeRequestHandler(sender, e)
 {
 var request = e.get_request();
 var postBackElement = e.get_postBackElement();

 var builder = new Sys.StringBuilder();

 builder.append(“Postback Element: “);
 builder.append(postBackElement.id);
 builder.appendLine();
 builder.appendLine();

 builder.append(“Request Target URL: “);
 builder.appendLine();
 builder.append(request.get_url());
 builder.appendLine();
 builder.appendLine();

 builder.append(“Request Headers: “);
 builder.appendLine();
 var headers = request.get_headers();
 var headerValue;
 for (var headerName in headers)
 {
 builder.append(headerName);
 builder.append(“ = ‘”);
 headerValue = headers[headerName];
 builder.append(headerValue);
 builder.append(“’”);
 builder.appendLine();
 }

 builder.appendLine();
 builder.append(“Request Timeout: “);
 builder.append(request.get_timeout());
 builder.appendLine();
 builder.appendLine();

 builder.append(“Request Body: “);
 builder.appendLine();
 builder.append(request.get_body());

c22.indd 1094c22.indd 1094 8/20/07 8:38:27 PM8/20/07 8:38:27 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1095

 builder.appendLine();
 alert(builder.toString());
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />
 <table cellspacing=”10”>
 <tr>
 <td align=”center” colspan=”2”>
 <asp:UpdatePanel ID=”ParentUpdatePanel” UpdateMode=”Conditional”
 runat=”server”>
 <ContentTemplate>
 <table cellspacing=”20” style=”background-color: #dddddd”>
 <tr>
 <th>
 Parent UpdatePanel Control</th>
 </tr>
 <tr>
 <td>
 <asp:Label ID=”ParentUpdatePanelLabel” runat=”server” />

 <asp:Button ID=”ParentUpdatePanelButton” runat=”server”
 Text=”Update” />
 </td>
 </tr>
 <tr>
 <td style=”width: 100%”>
 <asp:UpdatePanel ID=”StaticChildUpdatePanel” runat=”server”>
 <ContentTemplate>
 <table style=”background-color: #aaaaaa”>
 <tr>
 <th>
 Static Child UpdatePanel Control</th>
 </tr>
 <tr>
 <td>
 <asp:Label ID=”StaticChildUpdatePanelLabel”
 runat=”server” />
 <asp:Button ID=”StaticChildUpdatePanelButton”
 runat=”server” Text=”Update” />
 </td>
 </tr>
 <tr>
 <td>
 </td>
 </tr>
 </table>
 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger
 ControlID=”StaticChildUpdatePanelTrigger”
 EventName=”Click” />
 </Triggers>

(continued)

c22.indd 1095c22.indd 1095 8/20/07 8:38:27 PM8/20/07 8:38:27 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1096

 Listing 22-23 (continued)

 </asp:UpdatePanel>
 </td>
 </tr>
 <tr>
 <td style=”width: 100%”>
 <asp:PlaceHolder runat=”server” ID=”PlaceHolder1” />
 </td>
 </tr>
 </table>
 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID=”ParentUpdatePanelTrigger”
 EventName=”Click” />
 </Triggers>
 </asp:UpdatePanel>
 </td>
 </tr>
 <tr>
 <td style=”width:50%”>
 <asp:Button ID=”StaticChildUpdatePanelTrigger” runat=”server”
 Text=”Static Child UpdatePanel Trigger” Width=”100%” />
 </td>
 <td>
 <asp:Button ID=”ParentUpdatePanelTrigger” runat=”server”
 Text=”Parent UpdatePanel Trigger” Width=”100%” />
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

 Now let’s walk through the pageLoad method shown in Listing 22-23 .

 function pageLoad()
 {
 var prm = Sys.WebForms.PageRequestManager.getInstance();
 prm.remove_initializeRequest(initializeRequestHandler);
 prm.add_initializeRequest(initializeRequestHandler);
 }

 As you can see, this method first calls the getInstance static method on the PageRequestManager
class to return a reference to the current PageRequestManager instance:

 var prm = Sys.WebForms.PageRequestManager.getInstance();

 Next, it calls the add_initializeRequest method on the current PageRequestManager instance to
register the initializeRequestHandler JavaScript function as an event handler for the
 initializeRequest event of the current PageRequestManager instance:

 prm.add_initializeRequest(initializeRequestHandler);

c22.indd 1096c22.indd 1096 8/20/07 8:38:27 PM8/20/07 8:38:27 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1097

 Next I’ll walk you through the implementation of the initializeRequestHandler JavaScript function.
Note that this method takes two parameters, the first referencing the current PageRequestManager
instance, and the second referencing the InitializeRequestEventArgs object that contains the event
data for the initializeRequest event.

 As you can see from Listing 22-23 , this initializeRequestHandler function first invokes the
 get_request method on the InitializeRequestEventArgs object to return a reference to
the WebRequest object that represents the current asynchronous page postback request being made
to the server:

 var request = e.get_request();

 Next, it invokes the get_postBackElement method on the InitializeRequestEventArgs object to
return a reference to the DOM element that caused the current page postback:

 var postBackElement = e.get_postBackElement();

Figure 22-9

c22.indd 1097c22.indd 1097 8/20/07 8:38:28 PM8/20/07 8:38:28 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1098

 Then it instantiates a StringBuilder :

 var builder = new Sys.StringBuilder();

 Next, the initializeRequestHandler function appends a string that contains the value of the id
HTML attribute of the DOM element that caused the current page postback to the StringBuilder :

 builder.append(“Postback Element: “);
 builder.append(postBackElement.id);
 builder.appendLine();
 builder.appendLine();

 Then it invokes the get_url method on the WebRequest object that represents the current request to
return a string that contains the target URL and appends a string that contains this target URL to the
 StringBuilder :

 builder.append(“Request Target URL: “);
 builder.appendLine();
 builder.append(request.get_url());
 builder.appendLine();
 builder.appendLine();

 Next, it invokes the get_headers method on the WebRequest object to return a dictionary that contains
the names and values of the headers of the current request:

 builder.append(“Request Headers: “);
 builder.appendLine();
 var headers = request.get_headers();

 Then the initializeRequestHandler function iterates through the items in the dictionary and adds to
the StringBuilder a string for each item that contains the name and value of the associated header:

 var headerValue;
 for (var headerName in headers)
 {
 builder.append(headerName);
 builder.append(“ = ‘”);
 headerValue = headers[headerName];
 builder.append(headerValue);
 builder.append(“’”);
 builder.appendLine();
 }

 Next, it invokes the get_timeout method on the WebRequest object to return the request timeout
value, and appends a string that contains this value to the StringBuilder :

 builder.appendLine();
 builder.append(“Request Timeout: “);
 builder.append(request.get_timeout());
 builder.appendLine();
 builder.appendLine();

c22.indd 1098c22.indd 1098 8/20/07 8:38:28 PM8/20/07 8:38:28 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1099

 Then it calls the get_body method on the WebRequest object to return a string that contains the body of
the current request and appends that string to the StringBuilder :

 builder.append(“Request Body: “);
 builder.appendLine();
 builder.append(request.get_body());
 builder.appendLine();

 Finally, it calls the alert function to display a popup that contains the content of the StringBuilder :

 alert(builder.toString());

 One of the great things about the initializeRequest event is that it is cancelable. This enables you to
register a callback for this event whereby you can run application-specific validation code to determine
whether the current request should be aborted. If so, your callback can invoke the set_cancel method
on the InitializeRequestEventArgs object, passing in true as its argument, to have the current
 PageRequestManager instance abort the current request.

 The begin Request Event
 As you can see from Figure 22-8 , the current client-side PageRequestManager instance fires its
 beginRequest event right before it calls the invoke method on the WebRequest object that represents
the current asynchronous page postback request to begin the request, to enable you to perform
 application-specific tasks that must be performed right before the request is made to the server.

 The client-side PageRequestManager class uses the standard ASP.NET AJAX event-implementation
pattern to implement its beginRequest event, as follows:

 1. PageRequestManager defines a method named add_beginRequest that enables you to regis-
ter event handlers for the beginRequest event of the current client-side PageRequestManager
 instance. As the following code fragment shows, this method first calls the
get_eventHandlerList method on the current PageRequestManager instance to return
a reference to the EventHandlerList object that contains all the event handlers registered for
the events of the current PageRequestManager instance. Then it calls the addHandler method
on this EventHandlerList object to register the specified handler as event handler for the
 beginRequest event of the current PageRequestManager instance:

 function Sys$WebForms$PageRequestManager$add_beginRequest(handler)
{
 this._get_eventHandlerList().addHandler(“beginRequest”, handler);
}

 2. PageRequestManager defines a method named remove_beginRequest that enables you to
unregister an event handler registered for the beginRequest event of the instance:

 function Sys$WebForms$PageRequestManager$remove_beginRequest(handler)
{
 this._get_eventHandlerList().removeHandler(“beginRequest”, handler);
}

c22.indd 1099c22.indd 1099 8/20/07 8:38:28 PM8/20/07 8:38:28 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1100

 The beginRequest event, like any other, is associated with an event data class whose instance acts as a
container for the associated event data. The event data class associated with the beginRequest event is
an ASP.NET AJAX client class named beginRequestEventArgs . Listing 22-24 presents the internal
implementation of the beginRequestEventArgs class.

 As you can see, the constructor of the beginRequestEventArgs event data class takes two parameters,
the first referencing the WebRequest object that represents the current asynchronous page postback
request being made, and the second referencing the DOM element that caused the current asynchronous
page postback. This constructor assigns these parameters to two internal fields named _request and
 _postBackElement :

 this._request = request;
 this._postBackElement = postBackElement;

 Note that the beginRequestEventArgs class exposes two getters named get_request and
get_ postBackElement that return references to these two fields.

 Listing 22-24: The begin RequestEventArgs Class

 Sys.WebForms.BeginRequestEventArgs =
function Sys$WebForms$BeginRequestEventArgs(request, postBackElement)
{
 /// <param name=”request” type=”Sys.Net.WebRequest”></param>
 /// <param name=”postBackElement” domElement=”true”></param>
 Sys.WebForms.BeginRequestEventArgs.initializeBase(this);
 this._request = request;
 this._postBackElement = postBackElement;
}
function Sys$WebForms$BeginRequestEventArgs$get_postBackElement()
{
 /// <value domElement=”true”></value>
 return this._postBackElement;
}
function Sys$WebForms$BeginRequestEventArgs$get_request()
{
 /// <value type=”Sys.Net.WebRequest”></value>
 return this._request;
}
Sys.WebForms.BeginRequestEventArgs.prototype =
{
 get_postBackElement: Sys$WebForms$BeginRequestEventArgs$get_postBackElement,
 get_request: Sys$WebForms$BeginRequestEventArgs$get_request
}
Sys.WebForms.BeginRequestEventArgs.registerClass(
 ‘Sys.WebForms.BeginRequestEventArgs’, Sys.EventArgs);

c22.indd 1100c22.indd 1100 8/20/07 8:38:29 PM8/20/07 8:38:29 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1101

 Using the begin Request Event
 Listing 22-25 contains a page that uses the beginRequest event. If you run this page, you’ll see the
result shown in Figure 22-10 . If you click the Update button, you’ll see the result shown in Figure 22-11 .
As you can see, Figure 22-11 displays the latest two refresh times. This very simple example will teach
you an important technique that you can use in your own applications to perform complex tasks.

 Listing 22-25: A Page that Uses the begin Request Event

 <%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Drawing” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<script runat=”server”>
 void Page_Load(object sender, EventArgs e)
 {
 if (Request.Form[“OldTime”] != null)
 info.Text = “UpdatePanel refreshed at “ + Request.Form[“OldTime”];
 Label updatePanelLabel = (Label)Page.FindControl(“UpdatePanelLabel”);
 updatePanelLabel.Text = “UpdatePanel refreshed at “ + DateTime.Now.ToString();
 }
</script>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function pageLoad()
 {
 var prm = Sys.WebForms.PageRequestManager.getInstance();
 prm.remove_beginRequest(beginRequestHandler);
 prm.add_beginRequest(beginRequestHandler);
 }

 function beginRequestHandler(sender, e)
 {
 var request = e.get_request();
 var postBackElement = e.get_postBackElement();
 var body = request.get_body();
 var updatePanelLabel = $get(“UpdatePanelLabel”);
 var oldTime = updatePanelLabel.innerText.slice(25);

 var body2 = body.concat(“&OldTime=”+oldTime);
 request.set_body(body2);
 }
 </script>
</head>

(continued)

c22.indd 1101c22.indd 1101 8/20/07 8:38:29 PM8/20/07 8:38:29 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1102

Listing 22-25 (continued)

<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />
 <asp:UpdatePanel ID=”UpdatePanel” runat=”server”>
 <ContentTemplate>
 <table cellspacing=”20” style=”background-color: #dddddd”>
 <tr>
 <td>
 <asp:Label ID=”UpdatePanelLabel” runat=”server”/>

 <asp:Button ID=”UpdatePanelButton” runat=”server” Text=”Update” />
 </td>
 </tr>
 <tr>
 <td>
 <asp:Label runat=”server” ID=”info” />
 </td>
 </tr>
 </table>
 </ContentTemplate>
 </asp:UpdatePanel>
 </form>
</body>
</html>

 Next, we’ll walk through the implementation of this page, beginning with the pageLoad function:

 function pageLoad()
 {
 var prm = Sys.WebForms.PageRequestManager.getInstance();
 prm.remove_beginRequest(beginRequestHandler);
 prm.add_beginRequest(beginRequestHandler);
 }

Figure 22-10

c22.indd 1102c22.indd 1102 8/20/07 8:38:29 PM8/20/07 8:38:29 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1103

 As you can see, this function first invokes the getInstance static method on the PageRequestManager
class to return a reference to the current PageRequestManager instance:

 var prm = Sys.WebForms.PageRequestManager.getInstance();

 Next, it calls the add_beginRequest method on the current PageRequestManager instance to register
the beginRequestHandler JavaScript function as an event handler for the beginRequest event of the
current PageRequestManager instance:

 prm.add_beginRequest(beginRequestHandler);

 Now let’s walk through the implementation of the beginRequestHandler function:

 function beginRequestHandler(sender, e)
 {
 var request = e.get_request();
 var body = request.get_body();
 var updatePanelLabel = $get(“UpdatePanelLabel”);
 var oldTime = updatePanelLabel.innerText.slice(25);

 var body2 = body.concat(“&OldTime=”+oldTime);
 request.set_body(body2);
 }

 This function begins by calling the get_request method on the BeginRequestEventArgs object to
return a reference to the WebRequest object that represents the current request. Recall that when the
 current PageRequestManager instance invokes the beginRequestHandler function, it passes the
 BeingRequestEventArgs object containing the event data as the second parameter of this function.

 var request = e.get_request();

 Next, the beginRequestHandler function calls the get_body method on the WebRequest object to
return a string that contains the body of the current request:

 var body = request.get_body();

Figure 22-11

c22.indd 1103c22.indd 1103 8/20/07 8:38:29 PM8/20/07 8:38:29 PM

Chapter 22: ASP .NET AJAX Client-Side PageRequestManager

1104

 Then it calls the $get global JavaScript function to return a reference to the UpdatePanelLabel DOM
element:

 var updatePanelLabel = $get(“UpdatePanelLabel”);

 Next, it extracts the old time from the innerText property of the UpdatePanelLabel DOM element.
Twenty-five is the number of characters in the string UpdatePanel refreshed at, which precedes
the time:

 var oldTime = updatePanelLabel.innerText.slice(25);

 Then it concatenates a string with the format &name=value , where the name part will be used on the
server side to access the value part. As you can see, the name part contains the string OldTime (you can
use any string value you wish as long as it is different from the values of the name parts of other
name/value pairs in the body of request) and the value part contains the old time:

 var body2 = body.concat(“&OldTime=”+oldTime);

 Finally, it calls the set_body method on the WebRequest object to set the body of the request to the
new value:

 request.set_body(body2);

 As you can see from Listing 22-25 , when the current asynchronous page postback request arrives on the
server side, the Page_Load method is invoked:

 void Page_Load(object sender, EventArgs e)
 {
 if (Request.Form[“OldTime”] != null)
 info.Text = “UpdatePanel refreshed at “ + Request.Form[“OldTime”];
 Label updatePanelLabel = (Label)Page.FindControl(“UpdatePanelLabel”);
 updatePanelLabel.Text = “UpdatePanel refreshed at “ + DateTime.Now.ToString();
 }

 As you can see, this method uses the string OldTime as an index into the Form collection of the Request
object to return the old time, which is then displayed in an ASP.NET Label server control.

 Summary
 This chapter followed the current client-side PageRequestManager instance as it made an asynchronous
page postback to the server. The next chapter will move on to the server side, where we will follow this
asynchronous page postback request from the time it arrives in ASP.NET to the time the server response
text is finally sent back to the client.

c22.indd 1104c22.indd 1104 8/20/07 8:38:30 PM8/20/07 8:38:30 PM

 Asynchronous Partial Page
Rendering: Server Side

Processing
 The previous chapter followed the current client-side PageRequestManager instance as it made
an asynchronous page postback or partial-page-rendering request to the server. This chapter will
move on to the server side to follow the asynchronous page postback request from the time it
arrives in ASP.NET to the time the final response text is sent back to the server.

 Chapter 21 followed the Page object as it went through its life cycle phases to process the first
request made to a Web page enabled for partial page rendering. Since the first request wasn’t a
postback, the Page object skipped the postback-related life cycle phases when it was processing
the first request. This chapter, on the other hand, follows the current Page object as it goes through
its life cycle phases to process an asynchronous page postback request to the same page that the
first request downloaded. Since an asynchronous page postback is a postback request, the current
 Page will go through both postback and non-postback life cycle phases, shown in Listing 21-1 and
 Figure 21-2 .

 Since the non-postback life cycle phases were discussed thoroughly in Chapter 21 , I’ll discuss only
the postback-related life cycle phases in this chapter.

 RetrievePostData
 This is the life cycle phase in which the Page object populates an internal collection of type
 NameValueCollection named _requestValueCollection with the posted data, as shown in
Listing 23-1 . As such, this phase makes sense for postback requests — whether synchronous or
asynchronous.

c23.indd 1105c23.indd 1105 8/20/07 8:41:21 PM8/20/07 8:41:21 PM

Chapter 23: Asynchronous Partial Page Rendering

1106

 Listing 23-1: The RetrievePostData Method of the Page Object

 private void RetrievePostData()
{
 if (this._request.HttpVerb == HttpVerb.POST && this._request.HasForm)
 this._requestValueCollection = this._request.Form;
 else if (this._request.HasQueryString)
 this._requestValueCollection = this._request.QueryString;
}

 Depending on the HTTP verb used to make a request, the clients of a page will use one of the following
two approaches to submit data to the server.

 If the HTTP POST verb is used to make a request, the clients of the page include the data in the body of
the request. The data consists of a list of data items separated by the & character, each of which consists
of two parts separated by the equals sign (=). The first part of each data item helps the server determine
what type of information the item contains. The second part of each data item contains the actual data or
information being submitted. As an example, consider the ASP.NET page shown in Listing 23-2 . As you
can see, this page contains a TextBox and a DropDownList server control.

 Every ASP.NET server control inherits a property named UniqueID from the Control base class. The
value of this property is automatically set by ASP.NET when the page containing the server control is
accessed. This value is a string that contains one or more substrings separated by the dollar sign, of
which the first substring contains the value of the ID property of the control and the subsequent sub-
strings contain the values of the UniqueID properties of those parent controls of the control that imple-
ment the INamingContainer interface. In the case of Listing 23-2 , none of the parent controls of the
 TextBox and DropDownList server controls (other than the Page itself whose UniqueID property
returns an empty string) implements this interface, which means that ASP.NET sets the values of the
 UniqueID properties of these two server controls to the respective values of their ID properties.

 You may be wondering what the significance of the UniqueID property of a server control is. As the
name suggests, this property uniquely identifies the server control among other server controls on the
current page.

 Listing 23-2: A Page that Contains a TextBox and a DropDownList Server Control

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:TextBox runat=”server” ID=”TextBox1” />
 <asp:DropDownList runat=”server” ID=”DropDownList1”>
 <asp:ListItem Text=”Text1” Value=”Value1” />
 <asp:ListItem Text=”Text2” Value=”Value2” />
 <asp:ListItem Text=”Text3” Value=”Value3” />
 </asp:DropDownList>

c23.indd 1106c23.indd 1106 8/20/07 8:41:22 PM8/20/07 8:41:22 PM

Chapter 23: Asynchronous Partial Page Rendering

1107

 <asp:Button runat=”server” Text=”Submit” />
 </form>
</body>
</html>

 When the browser accesses this page, it receives the HTML markup text shown in Listing 23-3 . Each
server control renders the value of its UnqiueID property as the value of the name attribute of the HTML
element that represents the control. Therefore, the TextBox and DropDownList server controls render
the values of their UniqueID properties as the values of the name attributes of the input and select
HTML elements, respectively, as shown in the boldface portions of the following code listing:

 <input name=”TextBox1” type=”text” id=”TextBox1” />
 <select name=”DropDownList1” id=”DropDownList1”>
 <option value=”Value1”>Text1</option>
 <option value=”Value2”>Text2</option>
 <option value=”Value3”>Text3</option>
 </select>

 Listing 23-3: The HTML Markup Text Sent to the Client

 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Untitled Page </title>
</head>
<body>
 <form name=”form1” method=”post” action=”Default7.aspx” id=”form2”>
 <div>
 <input type=”hidden” name=”__VIEWSTATE” id=”__VIEWSTATE”
 value=”/wEPDwUKMTAxNzk2MjY2OWRkxj+0HeO0c5N0xVutp03x6OdaSpw=” />
 </div>
 <input name=”TextBox1” type=”text” id=”TextBox1” />
 <select name=”DropDownList1” id=”DropDownList1”>
 <option value=”Value1”>Text1</option>
 <option value=”Value2”>Text2</option>
 <option value=”Value3”>Text3</option>
 </select>
 <input type=”submit” name=”ctl02” value=”Submit” />
 </form>
</body>
</html>

 Now imagine that the end user enters the string MyText into the text field, selects the Text2 option from
the select element, and clicks the Submit button. The browser retrieves the following information:

❑ The value of the name HTML attribute of the text field — that is, the string “TextBox1” . Recall
that this value is the value of the UniqueID property of the TextBox server control.

❑ The value of the name HTML attribute of the select HTML element — that is, the string
 “DropDownList1” . Recall that this value is that of the UniqueID property of the DropDownList
server control.

c23.indd 1107c23.indd 1107 8/20/07 8:41:22 PM8/20/07 8:41:22 PM

Chapter 23: Asynchronous Partial Page Rendering

1108

❑ The string that the end user has entered into the text field — that is, the string MyText .

❑ The value of the value HTML attribute of the selected option of the select HTML element —
that is, the string “Value2” .

 Therefore, the data that the browser needs to send to the server consists of two data items. The first con-
tains the string that the end user has entered into the text field, and the second contains the value of the
 value HTML attribute of the selected option of the select HTML element:

 TextBox1=MyText&DropDownList1=Value2

 As you can see, each data item consists of two parts. The first part is the value of the UniqueID property
of the server control and the second part is the value associated with the server control. The UniqueID
property values allow ASP.NET to determine which data item is associated with which server control.

 So far, I’ve covered the case in which the client uses the HTTP POST verb to make its request to the
server. The second scenario is when the client uses the HTTP GET verb. This scenario often involves
e-commerce Web applications. For example, consider a page that displays the list of product names to
the end users. When a user selects a product to see more details about it, the primary key values of the
product and its distributor are passed as a query string to the server:

 http://www.mysite.com/Product.aspx?ProductID=2&DistributorID=3

 As you can see, the query string consists of a list of data items separated by the ampersand character,
each of which consists of two parts separated by the equals sign.

 ASP.NET represents each request with an instance of a class named HttpReques t, which exposes two
collection properties of type NameValueCollection named Form and QueryString . ASP.NET auto-
matically populates the Form collection with the posted data if the request was made using the HTTP
POST verb; otherwise it populates the QueryString collection with the posted data.

 Keep in mind that we’re following the current Page through its life cycle phases to process the asynchro-
nous page postback method that the current client-side PageRequestManager instance has made to the
server. As we just discussed, the clients of a page have two options when it comes to submitting data to
the server. Which option did the current client-side PageRequestManager instance use to submit its
data to the server? The answer lies in Listing 22-22 . Recall that this code listing presents the internal
implementation of the _onFormSubmit method of the current client-side PageRequestManager
instance. As we discussed in the previous chapter, this method is automatically invoked when a page
postback occurs, allowing the current client-side PageRequestManager instance to intercept
the page postback before the page is actually posted back to the server. The current client-side
 PageRequestManager instance then determines whether the page must be posted back asynchronously.
If so, it takes over the form submission, bypassing the browser’s default synchronous form submission.

 As Listing 22-22 shows, the current client-side PageRequestManager instance iterates through all the
input form elements on the current page, generates for each input form element one string that consists
of two substrings separated by the equals sign (the first substring containing the value of the name
HTML attribute of the form element and the second containing the value of the form element), and
finally packs all these strings into a single string using the & character as the separator. Recall from
 Listing 22-22 that the current client-side PageRequestManager instance adds this string to the body of

c23.indd 1108c23.indd 1108 8/20/07 8:41:22 PM8/20/07 8:41:22 PM

Chapter 23: Asynchronous Partial Page Rendering

1109

the request being made to the server. As you can see, the current client-side PageRequestManager
instance submits its data to the server via the body of an HTTP POST request.

 Now back to the implementation of the RetrievePostData method of the Page object, as shown in
Listing 23-1 . Recall that the Page object calls this method when it enters the Retrieve Post Data life cycle
phase. As this code listing shows, this method simply stores the content of the Form or QueryString
collection of the HttpRequest object that represents the current request in an internal collection named
 _requestValueCollection . This collection contains one name/value pair for each posted data item.
Recall that each posted data item consists of two parts separated by the equals sign. The name part of
each name/value pair in this collection contains the first part of the data item and the value part contains
the second part of the data item. This means that the first part of the data item can be used as an index
into the collection to access the second part of the data item. For example, in the case of the examples dis-
cussed earlier, the following items are true:

 ❑ The UniqueID property value of the TextBox server control can be used as an index into the
_requestValueCollection to access the text that the end user has entered into the text field:

 string text1 = this._requestValueCollection[“TextBox1”];

 ❑ The UniqueID property value of the DropDownList server control can be used as an index into
the _requestValueCollection to access the value of the value HTML attribute of the
 selected option of the select HTML element associated with the server control:

 string text1 = this._requestValueCollection[“DropDownList1”];

 ❑ The string “ProductID” can be used as an index into the _requestValueCollection to access
the primary key value of the product:

 string text1 = this._requestValueCollection[“ProductID”];

 ❑ The string “DistributorID” can be used as an index into the _requestValueCollection to
access the primary key value of the distributor:

 string text1 = this._requestValueCollection[“DistributorID”];

 Since the current Page is processing the asynchronous request shown in Listing 22-22 , the
_requestValueCollection of the current Page contains all the name/value pairs that Listing 22-22
stuffed into the body of the request.

 LoadScrollPosition
 This is the life cycle phase in which the Page object retrieves the scroll x and y positions from the
_requestValueCollection and assigns them to the _scrollPositionX and _scrollPositionY
fields, respectively, as shown in Listing 23-4 . As you’ll see later, the Page object uses these two fields to
set the scroll position in the response text before submitting the response back to the client. This life cycle
phase takes effect only if the MaintainScrollPositionOnPostBack property of the Page object has
been set to true . As the name suggests, this property instructs the Page to maintain the scroll position
on page postbacks — be they synchronous or asynchronous.

c23.indd 1109c23.indd 1109 8/20/07 8:41:23 PM8/20/07 8:41:23 PM

Chapter 23: Asynchronous Partial Page Rendering

1110

 Listing 23-4: The LoadScrollPosition Method of the Page Object

 Private void LoadScrollPosition()
{
 if (this._requestValueCollection != null)
 {
 string text1 = this._requestValueCollection[“__SCROLLPOSITIONX”];
 if ((text1 != null) && !int.TryParse(text1, out this._scrollPositionX))
 this._scrollPositionX = 0;
 string text2 = this._requestValueCollection[“__SCROLLPOSITIONY”];
 if ((text2 != null) && !int.TryParse(text2, out this._scrollPositionY))
 this._scrollPositionY = 0;
 }
}

 Since the current Page is processing the asynchronous request made by the current client-side
 PageRequestManager instance, and since the _requestValueCollection contains only the name/
value pairs that the current client-side PageRequestManager instance stuffed into the body of the
request, you may be wondering where the scroll x and y values come from. The answer lies in
Listing 22-22 itself, which is partially repeated in the following code listing.

 Recall that this code listing contains the code for the _onFormSubmit method of the current client-side
 PageRequestManager instance. As discussed earlier, this method is automatically invoked when a post-
back occurs. As the highlighted portions of the following code listing show, the current client-side
 PageRequestManager instance iterates through all the input form elements on the page, including the
hidden fields named __SCROLLPOSITIONX and __SCROLLPOSITIONY , and forms for each input form
element one string that consists of two substrings, the first containing the value of the name HTML
 attribute of the input form element (in this case, these values are __SCROLLPOSITIONX and
__SCROLLPOSITIONY) and the second containing the value of the value HTML attribute of the input
form element (in this case, these values are the scroll x and y positions).

 As the boldface portion of the following code listing shows, the current client-side PageRequestManager
instance stores the current scroll x and y positions in an internal field named _scrollPostion before it
submits the request to the server. As you’ll see later, when the server response arrives, the current
 client-side PageRequestManager instance retrieves the new scroll x and y positions from the response
and compares them with the old values stored in the _scrollPosition field to determine whether the
scroll x and y positions have indeed changed.

 function Sys$WebForms$PageRequestManager$_onFormSubmit(evt)
{
 . . .
 if (tagName === ‘INPUT’)
 {
 var type = element.type;
 if ((type === ‘text’) ||
 (type === ‘password’) ||

 (type === ‘hidden’) ||

 (((type === ‘checkbox’) || (type === ‘radio’)) && element.checked))
 {

 formBody.append(name);
 formBody.append(‘=’);

c23.indd 1110c23.indd 1110 8/20/07 8:41:23 PM8/20/07 8:41:23 PM

Chapter 23: Asynchronous Partial Page Rendering

1111

 formBody.append(encodeURIComponent(element.value));
 formBody.append(‘&’);

 }
 }
 . . .
 }
 . . .
 this._scrollPosition = this._getScrollPosition();
 . . .
}

 InitRecursive
 I covered the non-postback-related parts of the InitRecursive life cycle phase of the Page object
in Chapter 21 ; therefore I’ll just cover the postback-related parts of this phase in this section. Recall from
Chapter 21 that the OnInit method of the current ScriptManager instance is automatically invoked
when the current Page enters its Init phase. Listing 23-5 presents the ScriptManager class’s internal
implementation of the OnInit method, which it inherits from the Control base class. I discussed all the
parts of Listing 23-6 in Chapter 21 except for the highlighted portion, which is applicable only to post-
back requests. As you can see, this portion calls the IsAsyncPostBackRequest static method on the
server-side PageRequestManager , passing in the NameValueCollection that contains the names and
values of the request headers. The main responsibility of this method is to determine whether the current
request is an asynchronous page postback.

 Listing 23-5: The OnInit Method of the ScriptManager Class

 protected override void OnInit(EventArgs e)
{
 base.OnInit(e);
 if (ScriptManager.GetCurrent(this.Page) != null)
 throw new InvalidOperationException(“OnlyOneScriptManager”);
 this.IPage.Items[typeof(ScriptManager)] = this;
 this.IPage.PreRenderComplete += new EventHandler(this.OnPagePreRenderComplete);

 if (this.IPage.IsPostBack)
 this._isInAsyncPostBack =
 PageRequestManager.IsAsyncPostBackRequest(this.IPage.Request.Headers);

 this.PageRequestManager.OnInit();
}

 The IsAsyncPostBackRequest Method of the
PageRequestManager

 Listing 23-6 presents the internal implementation of this method. As you can see, the
 IsAsyncPostBackRequest method first calls the GetValues method on the NameValueCollection
that contains the names and values of the request headers, in order to access all the values of the request
header named “X-MicrosoftAjax” :

 string[] textArray1 = headers.GetValues(“X-MicrosoftAjax”);

c23.indd 1111c23.indd 1111 8/20/07 8:41:23 PM8/20/07 8:41:23 PM

Chapter 23: Asynchronous Partial Page Rendering

1112

 Then it iterates through these values searching for a value that contains the string “Delta=true” . If it
finds a value that contains this string, it returns true to signal its caller that the current request is an
asynchronous page postback.

 Listing 22-22 contains the client-side code that made the current asynchronous page postback. The fol-
lowing code listing repeats a portion of Listing 22-22 . As the highlighted portion of the following code
shows, the current client-side PageRequestManager instance added the “Delta=true” header value to
a custom request header named “X-MicrosoftAjax” to signal the server-side PageRequestManager
instance that the current request is an asynchronous page postback.

 function Sys$WebForms$PageRequestManager$_onFormSubmit(evt)
{
 . . .
 var request = new Sys.Net.WebRequest();
 request.set_url(form.action);

 request.get_headers()[‘X-MicrosoftAjax’] = ‘Delta=true’;

 request.get_headers()[‘Cache-Control’] = ‘no-cache’;
 . . .
}

 Listing 23-6: The IsAsyncPostBackRequest Static Method of the PageRequestManager
Class

 internal static bool IsAsyncPostBackRequest(NameValueCollection headers)
{
 string[] textArray1 = headers.GetValues(“X-MicrosoftAjax”);
 if (textArray1 != null)
 {
 for (int num1 = 0; num1 < textArray1.Length; num1++)
 {
 string[] textArray2 = textArray1[num1].Split(new char[] { ‘,’ });
 for (int num2 = 0; num2 < textArray2.Length; num2++)
 {
 if (textArray2[num2].Trim() == “Delta=true”)
 return true;
 }
 }
 }
 return false;
}

 The OnInit Method of PageRequestManager
 Recall from Chapter 21 that the OnInit method of the current server-side PageRequestManager
instance is automatically invoked when the Page object enters its Init life cycle phase. Listing 23-7 pres-
ents the internal implementation of the OnInit method of the server-side PageRequestManager . I cov-
ered all the parts of this method in Chapter 21 , except for the highlighted portion, because this portion is
run only when the current request is an asynchronous page postback. As you can see, this portion simply
registers the OnPageError method of the current server-side PageRequestManager instance as an event
handler for the Error event of the current Page object.

c23.indd 1112c23.indd 1112 8/20/07 8:41:23 PM8/20/07 8:41:23 PM

Chapter 23: Asynchronous Partial Page Rendering

1113

 Listing 23-7: The OnInit Method of the PageRequestManager Class

 internal void OnInit()
{
 . . .

 if (this._owner.IsInAsyncPostBack)
 this._owner.IPage.Error += new EventHandler(this.OnPageError);

}

 Load Post Data
 Currently we’re at the Load Post Data life cycle phase, in which the ProcessRequest method (see
 Listing 21-1) invokes the ProcessPostData method of the current Page , passing in two parameters. The
first parameter is the _requestValueCollection field of the current Page . Recall that this field is a col-
lection of type NameValueCollection that contains one name/value pair for each posted data item, the
name part containing the UniqueID property value of a server control and the value part containing
the value associated with that server control. For example, the name part of the name/value pair associ-
ated with a TextBox server control contains the value of the UniqueID property of the TextBox control,
and the value part contains the text that the end user has entered into the text field.

 As Listing 21-1 shows, the ProcessRequest method of the current Page passes true as the second argu-
ment of the ProcessPostData method to instruct this method that the Page is currently in a pre-Load life
cycle phase. As you’ll see later, the same ProcessPostData method will also be called after the Load
life cycle phase. The second Boolean argument allows this method to distinguish between these two calls.

 Listing 23-8 presents the internal implementation of the ProcessPostData method of the Page .

 Listing 23-8: The ProcessPostData Method of the Page Object

 private void ProcessPostData(NameValueCollection postData, bool fBeforeLoad)
{
 if (this._changedPostDataConsumers == null)
 this._changedPostDataConsumers = new ArrayList();
 foreach (string text1 in postData)
 {
 if (!Page.IsSystemPostField(text1))
 {
 Control control1 = this.FindControl(text1);
 if (control1 == null)
 {
 if (fBeforeLoad)
 {
 if (this._leftoverPostData == null)
 this._leftoverPostData = new NameValueCollection();
 this._leftoverPostData.Add(text1, null);
 }
 }
 else
 {
 IPostBackDataHandler handler1 = control1 as IPostBackDataHandler;

(continued)

c23.indd 1113c23.indd 1113 8/20/07 8:41:24 PM8/20/07 8:41:24 PM

Chapter 23: Asynchronous Partial Page Rendering

1114

 Listing 23-8 (continued)

 if (handler1 == null)
 {
 if (control1 as IPostBackEventHandler != null)
 this.RegisterRequiresRaiseEvent(control1.PostBackEventHandler);
 }
 else
 {
 if (handler1.LoadPostData(text1, this._requestValueCollection))
 this._changedPostDataConsumers.Add(control1);

 if (this._controlsRequiringPostBack != null)
 this._controlsRequiringPostBack.Remove(text1);
 }
 }
 }
 }
 ArrayList list1 = null;
 if (this._controlsRequiringPostBack != null)
 {
 foreach (string text2 in this._controlsRequiringPostBack)
 {
 Control control2 = this.FindControl(text2);
 if (control2 != null)
 {
 IPostBackDataHandler handler2 = control2 as IPostBackDataHandler;
 if (handler2.LoadPostData(text2, this._requestValueCollection))
 this._changedPostDataConsumers.Add(control2);
 }
 else if (fBeforeLoad)
 {
 if (list1 == null)
 list1 = new ArrayList();
 list1.Add(text2);
 }
 }
 this._controlsRequiringPostBack = list1;
 }
}

 This method first instantiates an ArrayList field named _changePostDataConsumers , if it hasn’t
already been instantiated. You’ll see the significance of this field later.

 if (this._changedPostDataConsumers == null)
 this._changedPostDataConsumers = new ArrayList();

 Next, it iterates through the name/value pairs in the NameValueCollection passed into it as its first
argument, and takes the following actions for each enumerated name/value pair if the name part of the
pair does not contain the name attribute value of one of the standard hidden fields such as __VIEWSTATE
(the name/value pairs associated with standard hidden fields will be processed later):

 ❑ The ProcessPostData method calls the FindControl method on the current Page object to
 return a reference to the server control whose UniqueID property value is given by the name
part of the enumerated name/value pair:

c23.indd 1114c23.indd 1114 8/20/07 8:41:24 PM8/20/07 8:41:24 PM

Chapter 23: Asynchronous Partial Page Rendering

1115

 Control control1 = this.FindControl(text1);

❑ If the current Page does not contain a server control with this UniqueID property value, this
 indicates that the server control has been dynamically added to the Page during the Page ’s
Load life cycle phase. For example, the page developers could add server controls to the current
 Page within the Page_Load method, which is invoked when the Page enters its Load life cycle
phase. Since we’re currently at the Load Post Data life cycle phase, which occurs before the Load
life cycle phase (see Figure 21-2), the ProcessPostData method does not process the enumer-
ated name/value pair and instead stores the value of the name part of the pair in a collection
named _leftOverPostData so that this name/value pair can be processed after the Load life
cycle phase — that is, after the associated server control is added to the current Page :

 if (this._leftoverPostData == null)
 this._leftoverPostData = new NameValueCollection();
 this._leftoverPostData.Add(text1, null);

❑ If the current Page contains a server control whose UniqueID property value is given by the
name part of the enumerated name/value pair, the ProcessPostData method takes the follow-
ing steps to process the enumerated name/value pair. First, it checks whether the server control
implements the IPostBackDataEventHandler interface:

 ❑ If not, it checks whether the server control implements the IPostBackEventHandler
 interface. If so, it calls the RegisterRequiresRaiseEvent method of the current Page ,
passing in the server control. This method stores this server control in an internal field for
future reference. As you’ll see later, when the current Page enters its RaisePostBackEvent
life cycle phase, it will automatically call the RaisePostBackEvent method of this server
control. In general, controls that implement the IPostBackEventHandler interface raise
postback events.

 IPostBackDataHandler handler1 = control1 as IPostBackDataHandler;
 if (handler1 == null)
 {
 if (control1 as IPostBackEventHandler != null)
 this.RegisterRequiresRaiseEvent((IPostBackEventHandler)control1);
 }

 ❑ If so, it calls the LoadPostData method on the associated server control, passing in two
parameters. The first parameter is the name part of the enumerated name/value pair, and
the second parameter is the _requestValueCollection field. Recall that this field con-
tains all the name/value pairs (or data items) that the client has posted back to the server.

❑ It is the responsibility of the LoadPostData method of the server control to use its first
 parameter as an index into the second parameter to retrieve the value of the value part of
the associated name/value pair (or data item). For example, the LoadPostData method
of an ASP.NET TextBox server control uses its UniqueID property value as an index into
the _requestValueCollection to retrieve the text that the end user has entered into the
text field. This method then compares this text with the value of the Text property
of the TextBox control. If these two values are different, the end user has changed the
 original value of the text field. As a result, the LoadPostData method returns true to
 signal the ProcessPostData method that its value has changed and that therefore its
 RaisePostDataChangedEvent method must be invoked when the current Page enters its
 RaisePostDataChangedEvent life cycle phase (see Figure 21-2).

c23.indd 1115c23.indd 1115 8/20/07 8:41:24 PM8/20/07 8:41:24 PM

Chapter 23: Asynchronous Partial Page Rendering

1116

❑ Note that if the LoadPostData method returns true , the ProcessPostData method adds
the server control to an internal collection named _changedPostDataConsumers . As you’ll
see later, when the current Page object enters its RaisePostDataChangedEvent life cycle
phase, it will iterate through the server controls in the _changedPostDataConsumers
 collection and invoke their RaisePostDataChangedEvent methods.

 if (handler1.LoadPostData(text1, this._requestValueCollection))
 this._changedPostDataConsumers.Add(control1);

❑ Finally, the ProcessPostData method removes the current UniqueID property value
from the _controlsRequiringPostBack collection. This collection maintains the
 UniqueID property values of those server controls whose RaisePostBackEvent methods
must be called when the current Page enters the RaisePostBackEvent life cycle phase.

 this._controlsRequiringPostBack.Remove(text1);

 Next, the ProcessPostData method iterates through the items in the _controlsRequiringPostBack
collection. Recall that this collection contains the UniqueID property values of those server
 controls whose RaisePostBackEvent method must be invoked when the current Page enters the
 RaisePostBackEvent life cycle phase. The ProcessPostData method takes the following actions for
each enumerated UniqueID property value in this collection:

 ❑ First, it calls the FindControl method on the current Page to return a reference to the server
control with the enumerated UniqueID property value:

 Control control2 = this.FindControl(text2);

❑ If the current Page object contains a server control with the enumerated UniqueID property value,
the ProcessPostData method calls the LoadPostData method on the server control, and if this
method returns true , it adds the server control to the _changedPostDataConsumers collection:

 if (control2 != null)
 {
 IPostBackDataHandler handler2 = control2 as IPostBackDataHandler;
 if (handler2.LoadPostData(text2, this._requestValueCollection))
 this._changedPostDataConsumers.Add(control2);
 }

❑ If the current page does not contain a server control with the enumerated UniqueID property
value, the ProcessPostData method adds the server control to a local array, which is finally
added to the _controlsRequiringPostBack collection:

 else if (fBeforeLoad)
 {
 if (list1 == null)
 list1 = new ArrayList();
 list1.Add(text2);
 }
 }
 this._controlsRequiringPostBack = list1;

c23.indd 1116c23.indd 1116 8/20/07 8:41:25 PM8/20/07 8:41:25 PM

Chapter 23: Asynchronous Partial Page Rendering

1117

 UpdatePanel
 As these discussions show, the Load Post Data life cycle phase of the current Page object is applicable
only to those server controls that implement the IPostBackDataHandler interface. Since the current
implementation of the UpdatePanel server control does not implement this interface, none of the
 UpdatePanel server controls on the current Page will participate in the current Page ’s Load Post Data
life cycle phase. However, you can write a custom UpdatePanel server control that inherits the
 UpdatePanel server control and implements the IPostBackDataHandler interface. If you do so, the
current Page object will automatically call the LoadPostData method of your custom UpdatePanel
server control, and if your implementation of this method returns true , the current Page object will also
automatically call the RaisePostDataChangedEvent method of your custom control.

 ScriptManager
 As the boldface portion of Listing 23-9 shows, the ScriptManager implements the
IPostBackDataHandler interface. As I already mentioned, this interface exposes two methods
named LoadPostData and RaisePostDataChangedEvent .

 Listing 23-9: The Declaration of the ScriptManager Class

 [ParseChildren(true), DefaultProperty(“Scripts”), NonVisualControl,
PersistChildren(false)]
public class ScriptManager : Control, IPostBackDataHandler , IControl,
 IClientUrlResolver, IScriptManagerInternal
{
 protected virtual bool LoadPostData(string postDataKey,
 NameValueCollection postCollection)
 {
 this.PageRequestManager.LoadPostData(postDataKey, postCollection);
 return false;
 }
 protected virtual void RaisePostDataChangedEvent()
 {
 }
}

 Since the ScriptManager server control implements the IPostBackDataHandler interface, when the
current Page enters its Load Post Data life cycle phase, it automatically calls the LoadPostData method
on the current ScriptManager server control, passing in two parameters. The first parameter is a string
that contains the UniqueID property value of the current ScriptManager server control, and the second
is the NameValueCollection that contains all the name/value pairs that the current ASP.NET AJAX
 client-side PageRequestManager instance has posted back to the server.

 As Listing 23-9 shows, the LoadPostData method of the ScriptManager delegates to the LoadPostData
method of the current server-side PageRequestManager instance. Note that the LoadPostData method
of the current ScriptManager instance passes the same two parameters that were passed into it into the
 LoadPostData method of the current server-side PageRequestManager instance.

c23.indd 1117c23.indd 1117 8/20/07 8:41:25 PM8/20/07 8:41:25 PM

Chapter 23: Asynchronous Partial Page Rendering

1118

 The LoadPostData Method of PageRequestManager
 Listing 23-10 presents the internal implementation of the LoadPostData method of the server-side
 PageRequestManager . Recall that when the LoadPostData method of the current ScriptManager
server control calls the LoadPostData method of the current server-side PageRequestManager
instance, it passes two parameters into it. The first parameter is a string that contains the value of the
 UniqueID property of the current ScriptManager server control. The second parameter is the
 NameValueCollection that contains all the name/value pairs (each pair represents a posted data item)
that the current client-side PageRequestManager instance has posted back to the server.

 Recall that Listing 22-22 presents the internal implementation of the _onFormSubmit method of the
 current client-side PageRequestManager instance. This method is where the current client-side
 PageRequestManager instance posts all its name/value pairs back to the server asynchronously. The
following code listing repeats a portion of Listing 22-22 :

 function Sys$WebForms$PageRequestManager$_onFormSubmit(evt)
{
 . . .
 var formBody = new Sys.StringBuilder();

 formBody.append(this._scriptManagerID + ‘=’ +
 this._postBackSettings.panelID + ‘&’);

 . .
}

 As the highlighted portion of this code listing shows, the current client-side PageRequestManager
instance posts a name/value pair whose name part contains the UniqueID property value of the current
 ScriptManager server control, and whose value part contains the value of the panelID property of the
postback settings JavaScript object.

 Recall that Listing 22-22 shows where the value of the panelID property of the postback settings JavaScript
object is set. This code listing contains the implementation of the _getPostBackSettings method of the
current client-side PageRequestManager instance. As discussed in Chapter 22 , this method uses the fol-
lowing logic to set the value of the panelID property of the postback settings JavaScript object:

 ❑ If the server control that caused the current page postback resides in an UpdatePanel server
control whose ChildrenAsTriggers property is set to true , the _getPostBackSettings
method sets the value of the panelID property to a string that contains two substrings sepa-
rated by the pipe character (|), of which the first substring contains the UniqueID property
value of the UpdatePanel server control, and the second the UniqueID property value of the
server control that caused the current page postback. As you’ll see shortly, the presence of the
 UniqueID property value of this UpdatePanel server control signals the current server-side
 PageRequestManager instance that this UpdatePanel server control must be updated.

 When a page postback is caused by a server control that resides in an UpdatePanel server control
whose ChildrenAsTriggers property is set to true , it automatically triggers the update of its par-
ent UpdatePanel server control.

❑ If the _asyncPostBackControlIDs collection of the current client-side PageRequestManager
instance contains the UniqueID property value of the server control that caused the current

c23.indd 1118c23.indd 1118 8/20/07 8:41:25 PM8/20/07 8:41:25 PM

Chapter 23: Asynchronous Partial Page Rendering

1119

page postback, or one of its ancestor server controls, but the server control itself does not reside
in an UpdatePanel server control whose ChildrenAsTrigger property is set to true ,
_getPostBackSettings sets the value of the panelID property to a string that contains two
substrings separated by the | character: the first substring contains the UniqueID property
value of the ScriptManager server control, and the second substring contains the UniqueID
property value of the server control that caused the current page postback.

 Keep this logic in mind as we’re walking through the implementation of the LoadPostData method of
the server-side PageReqeustManager . As you can see from Listing 23-10 , this method first uses its first
parameter, which is nothing but the UniqueID property value of the current ScriptManager server
 control, as an index into the NameValueCollection to return the associated posted string value data.

 string text1 = postCollection[postDataKey];

 This string value consists of up to two substrings separated by the | character. As we discussed earlier,
the second substring is the UniqueID property value of the server control that caused the current page
postback. The LoadPostData method assigns this substring to the _asyncPostBackSourceElementID
field for future reference.

 As we also discussed earlier, the first substring contains the value of the UniqueID property of either the
 ScriptManager server control or the UpdatePanel control whose content must be updated. If the sub-
string does not contain the value of the UniqueID property of the ScriptManager server control — that
is, if it contains the value of the UniqueID property of a specific UpdatePanel server control — the
 LoadPostData method assigns this substring to the _updatePanelRequestUpdate field:

 this._updatePanelRequiresUpdate = text2;

 Next, the LoadPostData method iterates through all the UpdatePanel server controls on the current
page and calls their Initialize methods. The server-side PageRequestManager maintains references
to all the UpdatePanel server controls on the page in an internal collection named _allUpdatePanels .
(The Initialize method of the UpdatePanel server control was thoroughly discussed in Chapter 21 .)

 if ((this._allUpdatePanels != null) && (this._allUpdatePanels.Count != 0))
 {
 List<UpdatePanel>.Enumerator enumerator1 =
 this._allUpdatePanels.GetEnumerator();
 while (enumerator1.MoveNext())
 {
 enumerator1.Current.Initialize();
 }
 }

 Finally, the LoadPostData method sets an internal flag named _panelsInitialized to signal that all
 UpdatePanel controls on the page have been initialized:

 this._panelsInitialized = true;

c23.indd 1119c23.indd 1119 8/20/07 8:41:26 PM8/20/07 8:41:26 PM

Chapter 23: Asynchronous Partial Page Rendering

1120

 Listing 23-10: The LoadPostData Method of the PageRequestManager

 internal void LoadPostData(string postDataKey, NameValueCollection postCollection)
{
 string postData = postCollection[postDataKey];
 if (postData != null)
 {
 int separatorIndex = postData.IndexOf(‘|’);
 this._asyncPostBackSourceElementID = postData.Substring(separatorIndex + 1);
 string text = postData.Substring(0, separatorIndex);

 if (text != this._owner.UniqueID)
 this._updatePanelRequiresUpdate = text;
 }
 if ((this._allUpdatePanels != null) && (this._allUpdatePanels.Count != 0))
 {
 List<UpdatePanel>.Enumerator enumerator1 =
 this._allUpdatePanels.GetEnumerator();
 while (enumerator1.MoveNext())
 {
 enumerator1.Current.Initialize();
 }
 }
 this._panelsInitialized = true;
}

 Figure 23-1 contains all the method calls that occur when the current Page object enters its Load Post
Data life cycle phase.

LoadPostData

Page ScriptManager UpdatePanelPageRequestManage

LoadPostData (postdataKey, postCollection)

Initialize ()
LoadPostData (postdataKey, postCollection)

Figure 23-1

 The Raise Post Data Changed Event
 When the Page object enters its Raise Post Data Changed Event phase (see Figure 21-2), it calls the
RaisePostDataChangedEvent methods of those server controls that meet the following two requirements:

 ❑ They implement the IPostBackDataHandler interface.

❑ Their implementation of the LoadPostData method returns true .

c23.indd 1120c23.indd 1120 8/20/07 8:41:26 PM8/20/07 8:41:26 PM

Chapter 23: Asynchronous Partial Page Rendering

1121

 The ScriptManager server control meets the first requirement. However, it does not meet the second
requirement because its LoadPostData method returns false, as shown in Listing 23-9 . Therefore, the
 RaisePostDataChangedEvent method of the ScriptManager server control is never invoked. As the
following code listing shows, this method does not do anything anyway:

 protected virtual void RaisePostDataChangedEvent()
{
}

 That said, you can implement a custom ScriptManager that extends the functionality of the
ScriptManager server control, where its implementation of the LoadPostData method returns true,
to have the Page object invoke its RaisePostDataChangedEvent . Your custom ScriptManager
 control’s implementation of this method can then take the appropriate actions in response.

 PreRender
 The PreRender life cycle phase of the Page was thoroughly discussed in Chapter 21 . In this section, I’ll
focus only on the postback-related topics that weren’t covered in Chapter 21 . As we discussed in Chapter
 21 , the OnPreRender method of the current ScriptManager server control is automatically invoked
when the current page enters its PreRender life cycle phase.

 Listing 23-11 presents the internal implementation of the OnPreRender method of the ScriptManager
server control. This method checks whether the current request is an asynchronous page postback. If so,
it delegates to the OnPreRender method of the server-side PageRequestManager . This applies to the
current request because the current request is indeed an asynchronous page postback.

 Listing 23-11: The OnPreRender Method of the ScriptManager

 protected override void OnPreRender(EventArgs e)
{
 base.OnPreRender(e);
 if (this.IsInAsyncPostBack)
 this.PageRequestManager.OnPreRender();
}

 The OnPreRender Method of PageRequestManager
 Listing 23-12 presents the implementation of the OnPreRender method of the server-side
 PageRequestManager . The Page object, like any other server control, inherits a method named
 SetRenderMethodDelegate from the Control base class. This method registers a delegate of
type RenderMethod that represents another method. In the case of Listing 23-12 , the
SetRenderMethodDelegate method registers a delegate that represents the RenderPageCallback
method of the server-side PageRequestManager .

 As you’ll see later in this chapter, when the server control on which the SetRenderMethodDelegate
method was invoked enters its rendering phase, in which its RenderChildren method is invoked, the
 RenderChildren method invokes the RenderMethod delegate, and consequently the method that the
delegate represents, bypassing the normal rendering logic that renders the child controls of the server
control.

c23.indd 1121c23.indd 1121 8/20/07 8:41:26 PM8/20/07 8:41:26 PM

Chapter 23: Asynchronous Partial Page Rendering

1122

 In the case of Listing 23-12 , when the Page server control enters its rendering phase in which its
 RenderChildren method is called, the RenderChildren method will invoke the delegate that repre-
sents the RenderPageCallback method of the PageRequestManager , bypassing the normal rendering
logic that renders the server controls in the Controls collection of the Page . This allows the server-side
 PageRequestManager to take complete control of the rendering of the server controls in the Controls
collection of the Page object when the current request is an asynchronous page postback.

 Listing 23-12: The OnPreRender Method of the PageRequestManager

 internal void OnPreRender()
{
 RenderMethod renderMethod = new RenderMethod(this.RenderPageCallback);
 this._owner.IPage.SetRenderMethodDelegate(renderMethod);
}

 Rendering
 In this section, we’ll see what happens when the Page enters its rendering life cycle phase, in which the
 Render method of the Page is invoked. The Page inherits the Render method from the Control base
class. Listing 23-13 presents the implementation of the Render method of the Control base class.

 Listing 23-13: The Render Method of the Control Base Class

 protected internal override void Render(HtmlTextWriter writer)
{
 this.RenderChildren(writer);
}

 As you can see, the Render method of the Control base class simply calls the RenderChildren method
shown in Listing 23-14 . Recall from Listing 23-12 that the OnPreRender method of the server-side
 PageRequestManager created a RenderMethod delegate that represents the RenderPageCallback
method of the server-side PageRequestManager and invoked the SetRenderMethodDelegate method
on the Page object , passing in this RenderMethod delegate.

 Every server control, including the Page object, inherits the RenderChildren method shown in
Listing 23-14 from the Control base class. As you can see, the RenderChildren method of a server
 control first calls the GetRenderMethod to return a reference to the RenderMethod delegate registered
with the server control, if any. In the case of the Page server control, since the current request is an
 asynchronous page postback, the GetRenderMethod returns a reference to the RenderMethod delegate
that represents the PageRenderCallback method of the PageRequestManager .

 As Listing 23-14 shows, the RenderChildren method of a server control bypasses the normal rendering
logic of the server control’s child controls if a RenderMethod delegate has been registered with the
server control. As the boldface portion of Listing 23-14 shows, the normal rendering logic of the server
control’s child controls simply iterates through the child controls in the server control’s Controls
 collection and invokes the RenderControl method on each enumerated child control.

 In the case of the Page server control, if the current request is an asynchronous page postback, the
RenderChildren method invokes the registered RenderMethod delegate, which in turn invokes the

c23.indd 1122c23.indd 1122 8/20/07 8:41:27 PM8/20/07 8:41:27 PM

Chapter 23: Asynchronous Partial Page Rendering

1123

 PageRenderCallback method of the server-side PageRequestManager . The end result of all this is
that the server-side PageRequestManager takes complete control over what gets rendered when the
current request is an asynchronous page postback.

 Listing 23-14: The RenderChildren Method of the Control Base Class

 protected internal virtual void RenderChildren(HtmlTextWriter writer)
{
 RenderMethod renderMethod = this.GetRenderMethod();
 if (renderMethod != null)
 {
 writer.BeginRender();
 renderMethod(writer, this);
 writer.EndRender();
 }
 else if (this.Controls != null)
 {
 foreach (Control control in this.Controls)
 {
 control.RenderControl(writer);
 }
 }
}

 The Encode Method of PageRequestManager
 Since the implementation of the RenderPageCallback method makes use of another method of
 PageRequestManager named EncodeString , I’ll discuss the implementation of this method first.

 Listing 23-15 presents the internal implementation of the EncodeString method of the server-side
 PageRequestManager . This method takes four parameters as follows, encodes the values of its second
through fourth parameters into a string, and writes this encoded string into the TextWriter object refer-
enced by its first parameter.

❑ writer : This parameter references the TextWriter instance in which the encoded string is
stored. This is normally an HtmlTextWriter instance that wraps the response output stream.

❑ type : This parameter is a string that specifies the type of information that the encoded string
contains. As you’ll see later, the current client-side PageRequestManager instance will use
this string to determine what type of information it is dealing with. For example, if the encoded
string contains the value of a hidden field, the server-side PageRequestManager instance uses
the string “hiddenField” as the type to tell the current client-side PageRequestManager in-
stance that the encoded string contains the name and value of a hidden field.

❑ id : As you’ll see later, if the encoded string contains the value associated with a server control,
this optional parameter contains the value of the ClientID property of the server control.

❑ content : This parameter contains the actual value being encoded.

 As Listing 23-15 shows, the EncodeString method generates a string that contains four substrings sepa-
rated by the | character, where the second, third, and fourth substrings contain the second and third
parameters, and the encoded form of the fourth parameter, of the EncodeString method.

c23.indd 1123c23.indd 1123 8/20/07 8:41:27 PM8/20/07 8:41:27 PM

Chapter 23: Asynchronous Partial Page Rendering

1124

 Listing 23-15: The EncodeString Method of PageRequestManager

 internal static void EncodeString(TextWriter writer, string type, string id,
 string content)
{
 int num1 = 0;
 for (int num2 = 0; num2 < content.Length; num2++)
 {
 if (content[num2] == ‘\x00ff’)
 num1++;

 else if (content[num2] == ‘\0’)
 num1 += 2;
 }
 writer.Write((content.Length + num1).ToString());
 writer.Write(‘|’);
 writer.Write(type);
 writer.Write(‘|’);
 writer.Write(id);
 writer.Write(‘|’);
 int num3 = 0;
 char[] chArray1 = content.ToCharArray();
 for (int num4 = 0; num4 < chArray1.Length; num4++)
 {
 if (chArray1[num4] == ‘\x00ff’)
 {
 writer.Write(chArray1, num3, num4 - num3);
 writer.Write(“\x00ff\x00ff”);
 num3 = num4 + 1;
 }
 else if (chArray1[num4] == ‘\0’)
 {
 writer.Write(chArray1, num3, num4 - num3);
 writer.Write(“\\\x00ff\\”);
 num3 = num4 + 1;
 }
 }
 writer.Write(chArray1, num3, chArray1.Length - num3);
 writer.Write(‘|’);
}

 The RenderPageCallback Method of PageRequestManager
 Now back to the implementation of the RenderPageCallback method of the server-side
PageRequestManager , as shown in Listing 23-16 . As you can see, this method takes two arguments.
The first references the HtmlTextWriter instance that wraps the response output stream, which means
that anything that this method writes into this HtmlTextWriter instance will be automatically written
into the response output stream. The second argument references the Page object. The main
 responsibility of this method is to render the Page object and its contents to the specified
HtmlTextWriter instance and consequently to the response output stream.

 As you can see, the RenderPageCallback method first calls the ProcessUpdatePanels method on
the current server-side PageRequestManager instance. As you’ll see later in this chapter, the main

c23.indd 1124c23.indd 1124 8/20/07 8:41:28 PM8/20/07 8:41:28 PM

Chapter 23: Asynchronous Partial Page Rendering

1125

 responsibility of this method is to determine which UpdatePanel server controls on the current page
must be updated.

 this.ProcessUpdatePanels();

 The RenderPageCallback method then sets the ContentType property of the ASP.NET Response
object to text/plain to inform the current client-side PageRequestManager instance that the body of
the response contains plain text:

 IHttpResponse response1 = this._owner.IPage.Response;
 response1.ContentType = “text/plain”;

 Next, it calls the SetNoServerCaching on the ASP.NET Cache object to turn off server-side output
caching for the current response, because the current request is an asynchronous page postback, which
only updates specific portions of the page — that is, the portions encapsulated in the UpdatePanel
server controls. If the output caching were allowed, the next synchronous request for the page would be
served from the cache and consequently the client would get HTML that contains only portions of the
original page:

 response1.Cache.SetNoServerCaching();

 Next, the RenderPageCallback method creates a delegate of type RenderMethod that represents the
 RenderFormCallback method of the server-side PageRequestManager :

 RenderMethod renderMethod = new RenderMethod(this.RenderFormCallback);

 Then it calls the SetRenderMethodDelegate method on the HtmlForm server control that represents
the <form runat=”server”> HTML element of the current page to register the RenderMethod dele-
gate with the HtmlForm server control. As we discussed earlier, the HtmlForm server control, like any
other, inherits the SetRenderMethodDelegate method from the Control base class. When the
 HtmlForm server control enters its rendering phase, in which its RenderChildren method is invoked,
the RenderChildren method will call the delegate and consequently the RenderFormCallback method
that the delegate represents, bypassing the normal rendering logic of the HtmlForm server control’s child
controls. Recall that this normal logic simply iterates through all the visible child controls of the
 HtmlForm server control and calls the RenderControl method on each child control to render the
 control, which means that the normal rendering logic renders all the visible child controls of the form.
Obviously, the normal rendering logic makes sense only in a normal page postback. In an asynchronous
partial page rendering, on the other hand, only the portions of the page contained within specified
 UpdatePanel server controls must be rendered; the rest of the page must be left alone.

 IHtmlForm form1 = this._owner.IPage.Form;
 form1.SetRenderMethodDelegate(renderMethod);

 Next, for future use, the RenderPageCallback method stores a reference to the HtmlTextWriter object
passed into it as its first argument, in an internal field named _updatePanelWriter . Recall that this
 HtmlTextWriter object wraps the response output stream. Because of this, anything written into this
object will automatically be written into the response output stream and sent to the client as part of the
server response.

 this._updatePanelWriter = writer;

c23.indd 1125c23.indd 1125 8/20/07 8:41:28 PM8/20/07 8:41:28 PM

Chapter 23: Asynchronous Partial Page Rendering

1126

 Then the method instantiates an instance of an internal StringWriter subclass named
 ParserStringWriter . A string writer is a stream that contains an internal string in which it
 accumulates the information written into the stream.

 PageRequestManager.ParserStringWriter writer1 =
 new PageRequestManager.ParserStringWriter();

 Next, the RenderPageCallback method instantiates an instance of an internal HtmlTextWriter sub-
class named ParserHtmlTextWriter that wraps the ParserStringWriter instance. Note the differ-
ence between the ParserHtmlTextWriter instance and the HtmlTextWriter instance stored in the
 _updatePanelWriter field. While the former wraps the ParserStringWriter , the latter wraps the
response output stream. This means that anything written into the former will be automatically written
into the ParserStringWriter , which is nothing but a string writer, and anything written into the latter
will be automatically written into the response output stream, which is sent back to the client. In other
words, what’s written into the ParserHtmlTextWriter instance remains in the server memory for the
duration of the current request, while what’s written into the HtmlTextWriter instance stored in the
 _updatePanelWriter field is sent to the client.

 PageRequestManager.ParserHtmlTextWriter writer2 =
 new PageRequestManager.ParserHtmlTextWriter(writer1);
 writer1.ParseWrites = true;

 Then the RenderPageCallback method calls the RenderControl method on the HtmlForm server con-
trol to render the control and its child controls into the ParserHtmlTextWriter instance. Since the
 RenderControl method renders the HtmlForm server control and its child controls into an in-memory
stream, as opposed to the response output stream, what gets rendered remains in memory, allowing the
 RenderPageCallback method to decide which part of this rendered HTML markup must be sent to
the client.

 form1.RenderControl(writer2);
 writer1.ParseWrites = false;

 The HtmlForm server control may contain hidden fields. When the RenderControl method of the
 HtmlForm server control renders these hidden fields into the ParserHtmlTextWriter instance, this
instance stores these hidden fields in a collection named HiddenFields . This collection contains one
 KeyValuePair object for each hidden field: the name part of the pair contains the name of the hidden
field and the value part contains the value.

 The RenderPageCallback method iterates through the KeyValuePair objects in this collection and
takes the following steps for each enumerated pair. First, it checks whether the enumerated pair
 represents a standard hidden field. If so, it calls the EncodeString static method on the
 PageRequestManager class.

 As we discussed earlier, the EncodeString method first creates an encoded string that consists of three
main substrings separated by the | character — “hiddentField”|pair1.Key.ToString()|pair1
.Value.ToString() — in which the Key and Value properties of the KeyValuePair object contain the
name and value of the hidden field, respectively. Next, the EncodeString method writes this encoded
string into the HtmlTextWriter object that wraps the response output stream.

c23.indd 1126c23.indd 1126 8/20/07 8:41:28 PM8/20/07 8:41:28 PM

Chapter 23: Asynchronous Partial Page Rendering

1127

 foreach (KeyValuePair<string, string> pair1 in writer1.HiddenFields)
 {
 if (PageRequestManager.IsBuiltInHiddenField(pair1.Key))
 PageRequestManager.EncodeString(writer, “hiddenField”, pair1.Key,
 pair1.Value);
 }

 Next, the RenderPageCallback method calls the EncodeString method eight more times to write the
following encoded strings to the response output stream:

 ❑ “asyncPostBackControlIDs”|””|this.GetAsycnPostBackControlIDs(false) : The first
part of this encoded string tells the current client-side PageRequestMananger instance that this
string contains the list of the UniqueID property values of all server controls on the current page
that cause asynchronous page postbacks:

 PageRequestManager.EncodeString(writer, “asyncPostBackControlIDs”, string.Empty,
 this.GetAsyncPostBackControlIDs(false));

 ❑ “postBackControlIDs”|””|this.GetPostBackControlIDs(false) : The first part of this
encoded string tells the current client-side PageRequestMananger instance that this string con-
tains the list of the UniqueID property values of all server controls on the current page that
cause synchronous page postbacks:

 PageRequestManager.EncodeString(writer, “postBackControlIDs”, string.Empty,
 this.GetPostBackControlIDs(false));

 ❑ “updatePanelIDs”|””|this.GetAllUpdatePanelIDs() : The first part of this encoded
string tells the current client-side PageRequestMananger instance that this string contains the
list of the UniqueID property values of all UpdatePanel server controls on the current page:

 PageRequestManager.EncodeString(writer, “updatePanelIDs”, string.Empty,
 this.GetAllUpdatePanelIDs());

❑ “childUpdatePanelIDs”|””|this.GetChildUpdatePanelIDs() : The first part of this
 encoded string tells the current client-side PageRequestMananger instance that this string
 contains the list of the UniqueID property values of all UpdatePanel server controls on the
 current page that reside inside another UpdatePanel server control:

 PageRequestManager.EncodeString(writer, “childUpdatePanelIDs”, string.Empty,
 this.GetChildUpdatePanelIDs());

 ❑ “panelsToRefreshIDs”|””|this.GetRefreshingUpdatePanelIDs() : The first part of this
encoded string tells the current client-side PageRequestMananger instance that this string con-
tains the list of the UniqueID property values of all UpdatePanel server controls on the current
page that need refreshing:

 PageRequestManager.EncodeString(writer, “panelsToRefreshIDs”, string.Empty,
 this.GetRefreshingUpdatePanelIDs());

c23.indd 1127c23.indd 1127 8/20/07 8:41:29 PM8/20/07 8:41:29 PM

Chapter 23: Asynchronous Partial Page Rendering

1128

 ❑ “asyncPostBackTimeout”|””|this._owner.AsyncPostBackTimeout.ToString() : The
first part of this encoded string tells the current client-side PageRequestMananger instance that
this string contains the value of the asynchronous page postback timeout:

 PageRequestManager.EncodeString(writer, “asyncPostBackTimeout”, string.Empty,
 this._owner.AsyncPostBackTimeout.ToString());

 ❑ “formAction”|””|writer2.FormAction : The first part of this encoded string tells the
current client-side PageRequestMananger instance that this string contains the value of the
form action:

 if (writer2.FormAction != null)
 PageRequestManager.EncodeString(writer, “formAction”, string.Empty,
 writer2.FormAction);

 ❑ “pageTitle”|””|this._owner.IPage.Title : The first part of this encoded string tells the
current client-side PageRequestMananger instance that this string contains the value of
the page title:

 if (this._owner.IPage.Header != null)
 {
 string text1 = this._owner.IPage.Title;
 if (!string.IsNullOrEmpty(text1))
 PageRequestManager.EncodeString(writer, “pageTitle”, string.Empty, text1);
 }

 Next, the RenderPageCallback method calls the RenderDataItems method on the current server-side
 PageRequestManager instance to render the data items into the server output stream:

 this.RenderDataItems(writer);

 Then the method calls the ProcessScriptRegistration method on the current server-side
 PageRequestManager instance to render all the required client scripts:

 this.ProcessScriptRegistration(writer);

 Finally, the RenderPageCallback method calls the ProcessFocus method on the current server-side
 PageRequestManager instance to give the mouse focus to the appropriate server control.

 this.ProcessFocus(writer);

 Listing 23-16: The RenderPageCallback Method of the PageRequestManager

 private void RenderPageCallback(HtmlTextWriter writer, Control pageControl)
{
 this.ProcessUpdatePanels();
 IHttpResponse response1 = this._owner.IPage.Response;
 response1.ContentType = “text/plain”;
 response1.Cache.SetNoServerCaching();
 IHtmlForm form1 = this._owner.IPage.Form;
 form1.SetRenderMethodDelegate(new RenderMethod(this.RenderFormCallback));

c23.indd 1128c23.indd 1128 8/20/07 8:41:29 PM8/20/07 8:41:29 PM

Chapter 23: Asynchronous Partial Page Rendering

1129

 this._updatePanelWriter = writer;
 PageRequestManager.ParserStringWriter writer1 =
 new PageRequestManager.ParserStringWriter();
 PageRequestManager.ParserHtmlTextWriter writer2 =
 new PageRequestManager.ParserHtmlTextWriter(writer1);
 writer1.ParseWrites = true;
 form1.RenderControl(writer2);
 writer1.ParseWrites = false;
 foreach (KeyValuePair<string, string> pair1 in writer1.HiddenFields)
 {
 if (PageRequestManager.IsBuiltInHiddenField(pair1.Key))
 PageRequestManager.EncodeString(writer, “hiddenField”, pair1.Key,
 pair1.Value);
 }
 PageRequestManager.EncodeString(writer, “asyncPostBackControlIDs”, string.Empty,
 this.GetAsyncPostBackControlIDs(false));
 PageRequestManager.EncodeString(writer, “postBackControlIDs”, string.Empty,
 this.GetPostBackControlIDs(false));
 PageRequestManager.EncodeString(writer, “updatePanelIDs”, string.Empty,
 this.GetAllUpdatePanelIDs());
 PageRequestManager.EncodeString(writer, “childUpdatePanelIDs”, string.Empty,
 this.GetChildUpdatePanelIDs());
 PageRequestManager.EncodeString(writer, “panelsToRefreshIDs”, string.Empty,
 this.GetRefreshingUpdatePanelIDs());
 PageRequestManager.EncodeString(writer, “asyncPostBackTimeout”, string.Empty,
 this._owner.AsyncPostBackTimeout.ToString());
 if (writer2.FormAction != null)
 PageRequestManager.EncodeString(writer, “formAction”, string.Empty,
 writer2.FormAction);
 if (this._owner.IPage.Header != null)
 {
 string text1 = this._owner.IPage.Title;
 if (!string.IsNullOrEmpty(text1))
 PageRequestManager.EncodeString(writer, “pageTitle”, string.Empty, text1);
 }
 this.RenderDataItems(writer);
 this.ProcessScriptRegistration(writer);
 this.ProcessFocus(writer);
}

 The ProcessUpdatePanels Method of PageRequestManager
 As we discussed, the current page consists of a bunch of UpdatePanel server controls, each of which
designates a particular region of the page as a partially updatable region. When an asynchronous page
postback request arrives — that is, when a request for a partial page rendering arrives, how does the
page know which UpdatePanel server controls need updating or refreshing? An UpdatePanel server
control needs updating if it meets one or more of the following requirements:

 ❑ The first substring of the string that the LoadPostData method retrieves from the post
 collection contains the value of the UniqueID property of the UpdatePanel server control.
 (Recall from Listing 23-10 that the LoadPostData method assigns this substring to the
_updatePanelRequestUpdate field.) As we discussed earlier in this chapter, this scenario

c23.indd 1129c23.indd 1129 8/20/07 8:41:29 PM8/20/07 8:41:29 PM

Chapter 23: Asynchronous Partial Page Rendering

1130

 occurs when the server control that caused the current asynchronous page postback resides
 inside an UpdatePanel server control whose ChildrenAsTriggers property is set to true .

❑ The UpdateMode property of the UpdatePanel server control is set to Always .

❑ The Update method of the UpdataPanel server control is explicitly invoked. As you can see
from Listing 23-17 , this method simply sets the internal Boolean _explicitUpdate field of
the UpdatePanel server control on which the method is invoked to true , to specify that this
 UpdatePanel server control must be updated.

 Use the Update method to imperatively force an UpdatePanel server control to refresh regardless of
what triggered the current asynchronous page postback.

 If you call the Update method on an UpdatePanel server control whose UpdateMode property is set
to Always , the method will raise an invalid operation exception.

 ❑ The second substring of the string that the LoadPostData method retrieves from the post
collection contains the value of the UniqueID property of the associated server control of
one of the triggers in the Triggers collection of the UpdatePanel server control.
Recall from Listing 23-10 that the LoadPostData method assigns this substring to the
 _asyncPostBackSourceElementID field.

❑ The UpdatePanel server control is a child of an UpdatePanel server control that needs updating.

 As you can see, the update of an UpdatePanel server control automatically triggers the updates of all its
descendant UpdatePanel server controls. However, the update of an UpdatePanel server control does
not automatically trigger the updates of its ancestor UpdatePanel server controls. If you want to force
the ancestor UpdatePanel server controls to update as well, you must take one of these extra steps.

 ❑ Set the UpdateMode properties of the ancestor UpdatePanel server controls to Always .

❑ Add the triggers that trigger the update of a child UpdatePanel server control to the Triggers
collections of the ancestor UpdatePanel server controls.

❑ Imperatively call the Update methods of the ancestor UpdatePanel server controls.

 Listing 23-17: The Update Method of the UpdatePanel Server Control

 public void Update()
{
 if (this.UpdateMode == UpdatePanelUpdateMode.Always)
 throw new InvalidOperationException(“UpdateConditional”);

 if (this._asyncPostBackModeInitialized)
 throw new InvalidOperationException(“UpdateTooLate”);
 this._explicitUpdate = true;
}

 As you saw back in Listing 23-16 , the RenderPageCallback method of the current server-side
 PageRequestManager instance calls the ProcessUpdatePanels method on the current server-
side PageRequestManager instance to determine which UpdatePanel server controls on the current
page must be updated. Recall that the current server-side PageRequestManager instance maintains
the list of all UpdatePanel server controls on the current page in an internal collection named
 _allUpdatePanels .

c23.indd 1130c23.indd 1130 8/20/07 8:41:29 PM8/20/07 8:41:29 PM

Chapter 23: Asynchronous Partial Page Rendering

1131

 As you can see from Listing 23-18 , the ProcessUpdatePanels method iterates through the UpdatePanel
server controls in this collection and takes the following steps for each enumerated UpdatePanel server
control to determine whether the control needs refreshing. (Note that this method sets a local Boolean
variable named updatePanelNeedsToUpdate to specify whether the enumerated UpdatePanel server
control needs updating.)

 Listing 23-18: The ProcessUpdatePanels Method of the PageRequestManager

 private void ProcessUpdatePanels()
{
 if (this._allUpdatePanels != null)
 {
 this._updatePanelsToRefresh =
 new List<UpdatePanel>(this._allUpdatePanels.Count);
 this._childUpdatePanelsToRefresh =
 new List<UpdatePanel>(this._allUpdatePanels.Count);
 HtmlForm form1 = this._owner.Page.Form;
 for (int num1 = 0; num1 < this._allUpdatePanels.Count; num1++)
 {
 UpdatePanel panel1 = this._allUpdatePanels[num1];
 bool updatePanelNeedsToUpdate = false;
 if ((this._updatePanelRequiresUpdate != null) &&
 string.Equals(panel1.UniqueID, this._updatePanelRequiresUpdate))
 updatePanelNeedsToUpdate = true;
 else
 updatePanelNeedsToUpdate = panel1.RequiresUpdate;
 Control control1 = panel1.Parent;
 while (control1 != form1)
 {
 UpdatePanel panel2 = control1 as UpdatePanel;
 if ((panel2 != null) &&
 (this._updatePanelsToRefresh.Contains(panel2) ||
 this._childUpdatePanelsToRefresh.Contains(panel2)))
 {
 updatePanelNeedsToUpdate = false;
 this._childUpdatePanelsToRefresh.Add(panel1);
 break;
 }
 control1 = control1.Parent;
 if (control1 == null)
 {
 updatePanelNeedsToUpdate = false;
 break;
 }
 }
 if (updatePanelNeedsToUpdate)
 {
 panel1.SetAsyncPostBackMode(true);
 this._updatePanelsToRefresh.Add(panel1);
 }
 else
 panel1.SetAsyncPostBackMode(false);
 }
 }
}

c23.indd 1131c23.indd 1131 8/20/07 8:41:30 PM8/20/07 8:41:30 PM

Chapter 23: Asynchronous Partial Page Rendering

1132

 The ProcessUpdatePanels method first checks whether the _updatePanelRequiresUpdate field of
the current server-side PageRequestManager instance contains the UniqueID property value of the
enumerated UpdatePanel server control. Recall from Listing 23-10 that the LoadPostData method of
the current server-side PageRequestManager instance retrieves from the posted data the UniqueID
property value of the UpdatePanel server control that requires refreshing (if any) and stores the value in
the _updatePanelRequestUpdate field of the current server-side PageRequestManager instance.

 if ((this._updatePanelRequiresUpdate != null) &&
 string.Equals(panel1.UniqueID, this._updatePanelRequiresUpdate))
 updatePanelNeedsToUpdate = true;

 If this check fails — that is, if the _updatePanelRequiresUpdate field does not contain the UniqueID
property value of the enumerated UpdatePanel server control — the ProcessUpdatePanels method
sets the value of the updatePanelNeedsToUpdate Boolean variable to the value of the RequiresUpdate
property of the enumerated UpdatePanel server control.

 else
 updatePanelNeedsToUpdate = panel1.RequiresUpdate;

 Next, I’ll digress from our discussion of the implementation of the ProcessUpdatePanels method to
discuss the implementation of the RequiresUpdate property of the UpdatePanel server control.

 As Listing 23-19 shows, the RequiresUpdate property returns true if:

 ❑ The _explicitUpdate field of the UpdatePanel server control is set to true . Recall from List-
ing 23-17 that the value of this field is set to true only when you explicitly invoke the Update
method of the UpdatePanel server control from within your code.

❑ The UpdateMode property of the UpdatePanel server control is set to Always .

❑ The HasTriggered method of the Triggers collection of the UpdatePanel server control returns
 true . As Listing 23-20 shows, the HasTriggered method of this collection returns true if the
 HasTriggered method of at least one of its UpdatePanelTrigger objects returns true . (I dis-
cussed the HasTriggered method of the AsyncPostBackTrigger class in Chapter 21 .)

 Listing 23-19: The RequiresUpdate Method of the UpdatePanel Server Control

 protected internal virtual bool RequiresUpdate
{
 get
 {
 if (this._explicitUpdate || (this.UpdateMode == UpdatePanelUpdateMode.Always))
 return true;

 if ((this._triggers != null) && (this._triggers.Count != 0))
 return this._triggers.HasTriggered();

 return false;
 }
}

c23.indd 1132c23.indd 1132 8/20/07 8:41:30 PM8/20/07 8:41:30 PM

Chapter 23: Asynchronous Partial Page Rendering

1133

 Listing 23-20: The HasTriggered Method of the UpdatePanelTriggerCollection Class

 internal bool HasTriggered()
{
 using (IEnumerator<UpdatePanelTrigger> enumerator1 = base.GetEnumerator())
 {
 while (enumerator1.MoveNext())
 {
 if (enumerator1.Current.HasTriggered())
 return true;
 }
 }
 return false;
}

 Now back to the implementation of the ProcessUpdatePanels method shown in Listing 23-21 . So far,
you’ve learned that this method sets the value of the updatePanelNeedsToUpdate variable to true if the
 _updatePanelRequiresUpdate field contains the UniqueID property of the enumerated UpdatePanel
server control, or if the RequiresUpdate property of the enumerated UpdatePanel server control returns
 true . As the name suggests, the updatePanelNeedsToUpdate variable specifies whether the enumer-
ated UpdatePanel server control needs to update.

 Next, the ProcessUpdatePanels method walks up the control hierarchy of the enumerated
 UpdatePanel server control to determine whether it resides inside another UpdatePanel server control.
If so, it checks whether the _updatePanelsToRefresh or _childUpdatePanelsToRefresh collection
of the current server-side PageRequestManager instance already contains the container UpdatePanel
server control. If so, this indicates that the container UpdatePanel server control of the enumerated
 UpdatePanel server control needs to update. Since updating the container UpdatePanel server control
automatically updates all its content, including the enumerated UpdatePanel server control, the
 ProcessUpdatePanels method first sets the updatePanelNeedsToUpdate local Boolean variable
to false to signal that the enumerated UpdatePanel server control mustn’t be added to the
_updatePanelsToRefresh collection. This avoids duplicate updates. The ProcessUpdatePanels
method then adds the enumerated UpdatePanel server control to the _childUpdatePanelsToRefresh
collection.

 while (control1 != form1)
 {
 UpdatePanel panel2 = control1 as UpdatePanel;
 if ((panel2 != null) &&
 (this._updatePanelsToRefresh.Contains(panel2) ||
 this._childUpdatePanelsToRefresh.Contains(panel2)))
 {
 updatePanelNeedsToUpdate = false;
 this._childUpdatePanelsToRefresh.Add(panel1);
 break;
 }
 control1 = control1.Parent;
 if (control1 == null)
 {
 updatePanelNeedsToUpdate = false;
 break;
 }
 }

c23.indd 1133c23.indd 1133 8/20/07 8:41:30 PM8/20/07 8:41:30 PM

Chapter 23: Asynchronous Partial Page Rendering

1134

 Finally, the ProcessUpdatePanels method checks whether the updatePanelNeedsToUpdate variable
is set to true . If so, it first calls the SetAsyncPostBackMode method on the enumerated UpdatePanel
server control and then adds the control to the _updatePanelsToRefresh collection of the current
server-side PageRequestManager instance. As Listing 23-21 shows, the SetAsyncPostBackMode
method sets an internal flag of the specified UpdatePanel server control, named _asyncPostBackMode ,
to true .

 if (updatePanelNeedsToUpdate)
 {
 panel1.SetAsyncPostBackMode(true);
 this._updatePanelsToRefresh.Add(panel1);
 }

 Recall from Listing 21-31 that the markup text that makes up an UpdatePanel server
control consists of two main parts. The first part is a div or span HTML element. The
second is the rest of the markup text that makes up the UpdatePanel server control.
The first part is known as the containing or outermost HTML element because it contains
or encapsulates the second part. The second part is known as content because it is con-
tained or enclosed within the opening and closing tags of the containing or outermost
HTML element.

 As you’ll see later in this chapter, the current server-side PageRequestManager
 instance renders the content of an UpdatePanel server control that needs updating
into a string, which is then sent back to the current client-side PageRequestManager
instance for processing.

 As you’ll see in the next chapter, the current client-side PageRequestManager instance
simply assigns the string that contains the content of the UpdatePanel server control
to the innerHTML property of the containing or outermost HTML element of the
 UpdatePanel server control. This means that the original content of the UpdatePanel
server control is completely wiped out and replaced with the new content. This has an
important consequence when the UpdatePanel server control contains child
 UpdatePanel server controls, because updating the UpdatePanel server control
 deletes the current child UpdatePanel server controls and replaces them with brand-
new child UpdatePanel server controls, even though the new child UpdatePanel
server controls have the same UniqueID and ClientID property values as the
deleted ones.

 Therefore, as far as the current client-side PageRequestManager instance is concerned,
when an UpdatePanel server control updates, its child UpdatePanel server controls
do not . Instead they are completely deleted from the current page and replaced with
brand-new child UpdatePanel server controls with the same UniqueID and ClientID
property values as the deleted ones.

 So far, we’ve assumed that the new content simply deleted the old child UpdatePanel
server controls and replaced them with the brand-new child UpdatePanel server controls
with the same UniqueID and ClientID property values as the deleted ones. However, it
is quite possible that the new content may also include new child UpdatePanel server
controls that are not replacing the old ones. It is also quite possible that some of the old
child UpdatePanel server controls are indeed deleted from the new content, which
means that the new content may have fewer child server controls than the old.

c23.indd 1134c23.indd 1134 8/20/07 8:41:31 PM8/20/07 8:41:31 PM

Chapter 23: Asynchronous Partial Page Rendering

1135

 If the updatePanelNeedsToUpdate variable is set to false , the ProcessUpdatePanels method
calls the SetAsyncPostBackMode method on the enumerated UpdatePanel server control to set its
_asyncPostBackMode field to false.

 else
 panel1.SetAsyncPostBackMode(false);

 As you’ll see later, when the UpdatePanel server control enters its rendering phase, it checks the value
of its _asyncPostBackMode field to determine how to render its content.

 Listing 23-21: The SetAsyncPostBackMode Method of the UpdatePanel

 internal void SetAsyncPostBackMode(bool asyncPostBackMode)
{
 if (this._asyncPostBackModeInitialized)
 throw new InvalidOperationException(“SetPartialRenderingModeCalledOnce”);
 this._asyncPostBackMode = asyncPostBackMode;
 this._asyncPostBackModeInitialized = true;
}

 RenderControl Method of HtmlForm
 Recall from Listing 23-16 that the RenderPageCallback method creates a delegate of type
 RenderMethod that represents the RenderFormCallback method of the current server-side
 PageRequestManager instance and calls the SetRenderMethodDelegate method on the HtmlForm
server control that represents the <form runat=”server”> HTML element of the current page to
 register this RenderMethod delegate with the HtmlForm server control.

 Also recall from Listing 23-16 that the RenderPageCallback method calls the RenderControl method
on the HtmlForm server control to have this server control render itself to the ParserHtmlTextWriter
instance passed into the RenderControl method as its argument. Listing 23-22 presents the internal
implementation of the RenderControl method of the HtmlForm server control. As you can see,
this method calls the RenderControl method of the Control base class, which in turn calls the Render
method of the Control base class. As Listing 23-13 shows, the Render method of the Control base class
calls the RenderChildren method.

 Listing 23-22: The RenderControl Method of the HtmlForm Server Control

 public override void RenderControl(HtmlTextWriter writer)
{
 if (base.DesignMode)
 base.RenderChildren(writer);

 else
 base.RenderControl(writer);
}

 Listing 23-23 presents the internal implementation of the RenderChildren method of the HtmlForm
server control. This method first invokes the OnFormRender method on the Page :

 this.Page.OnFormRender();

c23.indd 1135c23.indd 1135 8/20/07 8:41:31 PM8/20/07 8:41:31 PM

Chapter 23: Asynchronous Partial Page Rendering

1136

 Next, it calls the BeginFormRender method on the Page :

 this.Page.BeginFormRender(writer, this.UniqueID);

 Then it calls the RenderChildren method of the Control base class:

 base.RenderChildren(writer);

 Next, the RenderChildren method calls the EndFormRender method on the Page :

 this.Page.EndFormRender(writer, this.UniqueID);

 Finally, it calls the OnFormPostRender method on the Page :

 this.Page.OnFormPostRender();

 Listing 23-23: The RenderChildren Method of the HtmlForm Server Control

 protected internal override void RenderChildren(HtmlTextWriter writer)
{
 if (this.Page != null)
 {
 this.Page.OnFormRender();
 this.Page.BeginFormRender(writer, this.UniqueID);
 }
 base.RenderChildren(writer);
 if (this.Page!= null)
 {
 this.Page.EndFormRender(writer, this.UniqueID);
 this.Page.OnFormPostRender();
 }
}

 The RenderChildren method of the Control base class (see Listing 23-14) calls the GetRenderMethod
to return a reference to the RenderMethod delegate that represents the RenderFormCallback method
and calls this delegate, and consequently the RenderFormCallback method, bypassing the normal
 rendering logic of the child controls of the HtmlForm server control. Recall that this normal logic simply
iterates through the child controls in the Controls collection of the HtmlForm server control and calls
the RenderControl method on each child control, as shown in the boldface portion of Listing 23-14 .

 The RenderFormCallback Method of PageRequestManager
 Listing 23-24 presents the internal implementation of the RenderFormCallback method of the server-
side PageRequestManager . Recall that the ProcessUpdatePanels method populates an internal
 collection named _updatePanelsToRefresh with all the UpdatePanel server controls that need
refreshing. The RenderFormCallback method iterates through the UpdatePanel server controls in this
collection and calls the RenderControl method on each enumerated UpdatePanel server control to have
the control render itself into the HtmlTextWriter object that the _updatePanelWriter field references.
Recall from Listing 23-16 that the RenderPageCallback method of the PageRequestManager
stores a reference to the HtmlTextWriter object that wraps the response output stream in the
_updatePanelWriter field. Therefore, the RenderControl method of the enumerated UpdatePanel

c23.indd 1136c23.indd 1136 8/20/07 8:41:32 PM8/20/07 8:41:32 PM

Chapter 23: Asynchronous Partial Page Rendering

1137

server control ends up rendering itself into the response output stream. The response output stream is
the stream that contains the response text that is sent back to the requesting browser.

 As you can see, the RenderFormCallback method renders the UpdatePanels in the
_updatePanelsToRefresh collection only. In other words, none of the other server controls on the
 current page is rendered when the current request is an asynchronous page postback. The other server
controls go through all their life cycle phases as usual, except for the rendering phase. This phase is what
makes an asynchronous page postback request different from a synchronous page postback request.
While the HTML markup contained in the response output stream in the case of a synchronous page
postback contains HTML markup text from all visible server controls on the current page, the HTML
markup text contained in the response output stream in the case of an asynchronous page postback
 contains HTML markup text only from the visible UpdatePanel server controls in the
_updatePanelsToRefresh collection.

 Listing 23-24: The RenderFormCallback Method of the PageRequestManager

 private void RenderFormCallback(HtmlTextWriter writer, Control containerControl)
{
 PageRequestManager.ParserStringWriter writer1 =
 writer.InnerWriter as PageRequestManager.ParserStringWriter;
 writer1.ParseWrites = false;
 if (this._updatePanelsToRefresh != null)
 {
 foreach (UpdatePanel panel1 in this._updatePanelsToRefresh)
 {
 if (panel1.Visible)
 panel1.RenderControl(this._updatePanelWriter);
 }
 }
 writer1.ParseWrites = true;
}

 The RenderControl Method of the UpdatePanel
 The UpdatePanel server control inherits the RenderControl method from the Control base class. The
base class’s implementation of the RenderControl method calls the Render method shown in Listing
 23-25 . As you can see, this method calls the VerifyRenderingInServerForm method on the Page
object to raise an exception if the UpdatePanel server control is not inside a <form runat=”server”>
element:

 this.IPage.VerifyRenderingInServerForm(this);

 Next, it calls the Render method of its base class, which in turn calls the RenderChildren method.

 Listing 23-25: The Render Method of the UpdatePanel

 protected override void Render(HtmlTextWriter writer)
{
 this.IPage.VerifyRenderingInServerForm(this);
 base.Render(writer);
}

c23.indd 1137c23.indd 1137 8/20/07 8:41:32 PM8/20/07 8:41:32 PM

Chapter 23: Asynchronous Partial Page Rendering

1138

 Listing 23-26 presents the implementation of the RenderChildren method of the UpatePanel server
control. This method checks whether the UpdatePanel control is in asynchronous postback mode.
Recall from Listing 23-21 that the ProcessUpdatePanels method calls the SetAsyncPostBackMode
method on each UpdatePanel server control in the _allUpdatePanels collection of the current server-
side PageRequestManager instance to set the value of the _asyncPostBackMode field of the
UpdatePanel server control to specify whether the UpdatePanel server control must be rendered in
asynchronous postback mode.

 As Listing 23-26 shows, the RenderChildren method of an UpdatePanel server control instantiates an
 HtmlTextWriter instance when the control is in asynchronous postback mode :

 HtmlTextWriter writer1 = new HtmlTextWriter(new StringWriter());

 Next, it calls the RenderChildren method of its base class — that is, the Control base class — passing
in the HtmlTextWriter instance. Recall from Listing 23-14 that the RenderChildren method of the
 Control base class iterates through the child controls in the Controls collection and invokes the
 RenderControl method on each child control to have the child control render itself into the preceding
 HtmlTextWriter instance. In other words, this HtmlTextWriter instance accumulates the HTML
markup text generated by the server controls and HTML enclosed within the opening and closing tags of
the <ContentTemplate> child element of the <UpdatePanel> tag.

 base.RenderChildren(writer1);

 Finally, the RenderChildren method of the UpdatePanel control calls the EncodeString static
method on the server-side PageRequestManager class, passing in four parameters: the first references
the HtmlTextWriter instance that wraps the response output stream, the second is the string
“updatePanel” , the third contains the value of the ClientID property of the UpdatePanel server con-
trol, and the last is a string that contains all the HTML markup of the child controls of the UpdatePanel
server control. The main responsibility of the EncodeString method is to encode the last three
 parameters into a string and render the string into the HtmlTextWriter object that the first parameter
references — that is, the HtmlTextWriter instance that wraps the response output stream.

 Listing 23-26: The RenderChildren Method of the UpdatePanel

 protected override void RenderChildren(HtmlTextWriter writer)
{
 if (this._asyncPostBackMode)
 {
 if (this._rendered)
 return;
 HtmlTextWriter writer1 = new HtmlTextWriter(new StringWriter());
 base.RenderChildren(writer1);
 PageRequestManager.EncodeString(writer, “updatePanel”, this.ClientID,
 writer1.InnerWriter.ToString());
 }
 else
 {
 writer.AddAttribute(HtmlTextWriterAttribute.Id, this.ClientID);

c23.indd 1138c23.indd 1138 8/20/07 8:41:32 PM8/20/07 8:41:32 PM

Chapter 23: Asynchronous Partial Page Rendering

1139

 if (this.RenderMode == UpdatePanelRenderMode.Block)
 writer.RenderBeginTag(HtmlTextWriterTag.Div);
 else
 writer.RenderBeginTag(HtmlTextWriterTag.Span);
 base.RenderChildren(writer);
 writer.RenderEndTag();
 }
 this._rendered = true;
}

 The GetAsyncPostBackControlIDs Method of the Server-Side PageRequestManager
 Listing 23-27 presents the implementation of the GetAsyncPostBackControlIDs method of the
 PageRequestManager . As you can see, this method simply delegates to the GetControlIDsFromList
method, passing in the _asyncPostBackControls collection. Recall that the PageRequestManager
server class features a private collection named _asyncPostBackControl that contains all the server
controls that cause asynchronous page postbacks.

 Listing 23-27: The GetAsyncPostBackControlIDs Method of the PageRequestManager

 private string GetAsyncPostBackControlIDs(bool includeQuotes)
{
 return PageRequestManager.GetControlIDsFromList(this._asyncPostBackControls,
 includeQuotes);
}

 The GetControlIDsFromList Method of the Server-Side PageRequestManager
 Listing 23-28 contains the code for the GetControlIDsFromList method of the server-side
 PageRequestManager . This method takes a List<Control> collection that contains a list of server
 controls. The main responsibility of this method is to return a comma-separated list of strings, each of
which contains the UniqueID property value of a server control in the List<Control> collection. Note
that this method takes a second Boolean argument that specifies whether these UniqueID property
 values must be rendered in quotes.

 Listing 23-28: The GetControlIDsFromList Method of the PageRequestManager

 private static string GetControlIDsFromList(List<Control> list, bool includeQuotes)
{
 if ((list == null) || (list.Count <= 0))
 return string.Empty;

 StringBuilder builder1 = new StringBuilder();
 bool flag1 = true;
 for (int num1 = 0; num1 < list.Count; num1++)
 {
 if (list[num1].Visible)
 {
 if (!flag1)
 builder1.Append(“,”);

(continued)

c23.indd 1139c23.indd 1139 8/20/07 8:41:33 PM8/20/07 8:41:33 PM

Chapter 23: Asynchronous Partial Page Rendering

1140

 Listing 23-28 (continued)

 flag1 = false;
 if (includeQuotes)
 builder1.Append(“’”);

 builder1.Append(list[num1].UniqueID);
 if (includeQuotes)
 builder1.Append(“’”);
 }
 }
 return builder1.ToString();
}

 The GetPostBackControlIDs Method of the Server-Side PageRequestManager
 Listing 23-29 presents the implementation of the GetPostBackControlIDs method of the server-side
 PageRequestManager . As you can see, this method simply delegates to the GetControlIDsFromList
method, passing in the _postBackControls collection. Recall that the PageRequestManager features a
private collection field named _postBackControls that contains all the server controls on the current
page that cause synchronous page postbacks.

 Listing 23-29: The GetPostBackControlIDs Method of the PageRequestManager

 private string GetPostBackControlIDs(bool includeQuotes)
{
 return PageRequestManager.GetControlIDsFromList(this._postBackControls,
 includeQuotes);
}

 GetAllUpdatePanelIDs
 Recall from Listing 23-16 that the RenderPageCallback method of the server-side PageRequestManager
calls the GetAllUpdatePanelIDs method to return a comma-separated list of strings that contain the
 values of the UniqueID properties of all the UpdatePanel server controls on the current page:

 PageRequestManager.EncodeString(writer, “updatePanelIDs”, string.Empty,
 this.GetAllUpdatePanelIDs());

 Listing 23-30 presents the internal implementation of the GetAllUpdatePanelIDs method. As you can
see, this method simply delegates to the GetUpdatePanelIDsFromList static method of the server-side
 PageRequestManager .

 Listing 23-30: The GetAllUpdatePanelIDs Method of the PageRequestManager

 private string GetAllUpdatePanelIDs()
{
 return PageRequestManager.GetUpdatePanelIDsFromList(this._allUpdatePanels, true);
}

c23.indd 1140c23.indd 1140 8/20/07 8:41:33 PM8/20/07 8:41:33 PM

Chapter 23: Asynchronous Partial Page Rendering

1141

 GetUpdatePanelIDsFromList
 This method takes two arguments. The first argument is a List<UpdatePanel> collection of
 UpdatePanel server controls. The main responsibility of this method is to create and return a string that
contains a comma-separated list of substrings, each of which consists of up to two parts. The first part of
the each substring is optional and consists of the letter f or t . The second part contains the UniqueID
property value of an UpdatePanel server control in the List<UpdatePanel> collection. Note that the
 GetUpdatePanelIDsFromList method takes a second Boolean argument that specifies whether each
substring must contain the first part — that is, the letter f or t .

 As you can see from Listing 23-31 , the GetUpdatePanelIDsFromList method instantiates a
 StringBuilder , iterates through the UpdatePanel server controls in the List<UpdatePanel>
 collection, and appends a substring to the StringBuilder for each UpdatePanel server control. Note
that the content of the first part of this substring depends on the value of the ChildrenAsTriggers
property of the associated UpdatePanel server control. If this property is set to true , the first part of the
substring contains the letter t . Otherwise the first part of the substring contains the letter f .

 Listing 23-31: The GetUpdatePanelIDsFromList Static Method of the
PageRequestManager

 private static string GetUpdatePanelIDsFromList(List<UpdatePanel> list,
 bool includeChildrenAsTriggersPrefix)
{
 if ((list == null) || (list.Count <= 0))
 return string.Empty;

 StringBuilder builder1 = new StringBuilder();
 bool flag1 = true;
 for (int num1 = 0; num1 < list.Count; num1++)
 {
 if (list[num1].Visible)
 {
 if (!flag1)
 builder1.Append(‘,’);

 flag1 = false;
 if (includeChildrenAsTriggersPrefix)
 builder1.Append(list[num1].ChildrenAsTriggers ? ‘t’ : ‘f’);

 builder1.Append(list[num1].UniqueID);
 }
 }
 return builder1.ToString();
}

 GetChildUpdatePanelIDs
 Recall from Listing 23-16 that the RenderPageCallback method of the server-side PageRequestManager
calls the GetChildUpdatePanelIDs method to return a comma-separated list of strings that contain the
values of the UniqueID properties of all the child UpdatePanel server controls on the current page:

 PageRequestManager.EncodeString(writer, “childUpdatePanelIDs”, string.Empty,
 this.GetChildUpdatePanelIDs());

c23.indd 1141c23.indd 1141 8/20/07 8:41:33 PM8/20/07 8:41:33 PM

Chapter 23: Asynchronous Partial Page Rendering

1142

 As Listing 23-32 shows, the GetChildUpdatePanelIDs method simply delegates to the
GetUpdatePanelIDsFromList static method of the server-side PageRequestManager , passing in
the _childUpdatePanelsToRefresh collection of the current server-side PageRequestManager
instance. Recall that this collection contains all the child UpdatePanel server controls on the current
page that need refreshing.

 Listing 23-32: The GetChildUpdatePanelIDs Method of the PageRequestManager

 private string GetChildUpdatePanelIDs()
{
 return PageRequestManager.GetUpdatePanelIDsFromList(
 this._childUpdatePanelsToRefresh, false);
}

 GetRefreshingUpdatePanelIDs
 Recall from Listing 23-16 that the RenderPageCallback method of the server-side PageRequestManager
calls the GetRefreshingUpdatePanelIDs method to return a comma-separated list of strings that con-
tain the values of the UniqueID properties of all the UpdatePanel server controls on the current page that
need refreshing and updating:

 PageRequestManager.EncodeString(writer, “panelsToRefreshIDs”, string.Empty,
 this.GetRefreshingUpdatePanelIDs());

 As you can see from Listing 23-33 , the GetRefreshingUpdatePanelIDs method simply delegates to
the GetUpdatePanelIDsFromList static method of the server-side PageRequestManager , passing
in the _updatePanelsToRefresh collection of the current server-side PageRequestManager instance.
Recall that this collection contains all the UpdatePanel server controls on the current page that need
refreshing.

 Listing 23-33: The GetRefreshingUpdatePanelIDs Method of the PageRequestManager

 private string GetRefreshingUpdatePanelIDs()
{
 return PageRequestManager.GetUpdatePanelIDsFromList(
 this._updatePanelsToRefresh, false);
}

 The RenderDataItems Method of PageRequestManager
 Recall from Listing 23-16 that the RenderPageCallback method of the current server-side
 PageRequestManager instance calls the RenderDataItems method on the current
server-side PageRequestManager instance to render data items. The current server-side
 PageRequestManager instance maintains all data items in an internal collection named
 _scriptDataItems . Each data item in this collection is represented by an instance of an internal
class named ScriptDataItem , which exposes three important properties. The first property is a
Boolean property named IsJsonSerialized , which specifies whether the data item is in JSON format.
The second property is of type Control , which references the server control associated with the data
item. The third property is of type string , and contains the actual data item.

c23.indd 1142c23.indd 1142 8/20/07 8:41:33 PM8/20/07 8:41:33 PM

Chapter 23: Asynchronous Partial Page Rendering

1143

 As you can see from Listing 23-34 , the RenderDataItems method of the current server-side
PageRequestManager instance invokes the EncodeString static method on the server-
side PageRequestManager for each ScriptDataItem object in the _scriptDataItems collection.
As we discussed earlier, the EncodeString method takes four parameters. The first references the
 HtmlTextWriter object that wraps the response output stream. The second is a string that specifies the
type of data item being encoded, which is “dataItemJson” if the data item is in JSON format, and
 “dataItem otherwise. The third parameter is the ClientID property value of the server control associ-
ated with the data item. The last parameter is the string that contains the data item itself.

 Currently the ASP.NET AJAX Timer is the only client-side component that makes use of data items.
However, you can use data items in your own ASP.NET AJAX custom components. The only restric-
tion that the ASP.NET AJAX framework puts on the data item is that it must be a string. However, it
does not put any restriction on the content and the format of the content of this string. You can pack
anything you want to in any format you wish in this string. For example, the string could contain an
XML document.

 Listing 23-34: The RenderDataItems Method of PageRequestManager

 private void RenderDataItems(HtmlTextWriter writer)
{
 if (this._scriptDataItems != null)
 {
 foreach (PageRequestManager.ScriptDataItem item1 in this._scriptDataItems)
 {
 PageRequestManager.EncodeString(writer,
 item1.IsJsonSerialized ? “dataItemJson” : “dataItem”,
 item1.Control.ClientID, item1.DataItem);
 }
 }
}

 As I mentioned earlier, the current server-side PageRequestManager instance maintains all data items
in an internal collection named _scriptDataItems . Since the current server-side PageRequestManager
instance is not public and consequently cannot be accessed from your code, you may be wondering how
you can add new data items to the _scriptDataItems collection.

 The current ScriptManager server control exposes a method named RegisterDataItem that takes two
parameters. The first references the server control associated with the data item and the second is a
string that contains the actual data item.

 Take the following steps to register a new data item. First, call the GetCurrent static method on the
 ScriptManager to return a reference to the current ScriptManager server control. Next, call the
 RegisterDataItem instance method on the current ScriptManager server control, passing in two
parameters. The first parameter must reference the server control associated with the data item being
registered. The second must be a string that contains the actual data item being registered.

 Listing 23-35 presents the internal implementation of the RegisterDataItem static method of the
 ScriptManager server control. As you can see, this method delegates the responsibility of registering
the specified data item associated with the specified server control to the RegisterDataItem method
of the current server-side PageRequestManager instance.

c23.indd 1143c23.indd 1143 8/20/07 8:41:34 PM8/20/07 8:41:34 PM

Chapter 23: Asynchronous Partial Page Rendering

1144

 Note that the current ScriptManager server control comes with two overloads of the RegisterDataItem
method. Under the hood, one overload delegates to the other. If your data item is not in JSON format, use
the overload that takes two parameters. Otherwise, use the second overload.

 Listing 23-35: The RegisterDataItem Method of ScriptManager

 public void RegisterDataItem(Control control, string dataItem)
{
 this.RegisterDataItem(control, dataItem, false);
}
public void RegisterDataItem(Control control, string dataItem,
 bool isJsonSerialized)
{
 this.PageRequestManager.RegisterDataItem(control, dataItem, isJsonSerialized);
}

 Listing 23-36 presents the internal implementation of the RegisterDataItem method of the current
server-side PageRequestManager instance. Note that this method raises an argument-null exception if
the data item is not associated with a server control:

 if (control == null)
 throw new ArgumentNullException(“control”);

 Also note that this method raises an invalid operation exception if the current request is not an
 asynchronous page post-back:

 if (!this._owner.IsInAsyncPostBack)
 throw new InvalidOperationException(“RegisterDataItemInNonAsyncRequest”);

 The RegisterDataItem method instantiates the _scriptDataItems collection if it hasn’t already been
instantiated:

 if (this._scriptDataItems == null)
 this._scriptDataItems = new ScriptDataItemCollection();

 Note that the method raises an argument exception if the _scriptDataItems collection already
 contains the same server control. In other words, you can register one data item for each server control.
This is not a real restriction because the string that contains the data item can contain anything you want
to, in any format you wish, as long as you do the data item registration in one shot. In other words, you
cannot divide your data into multiple data items and register each data item separately.

 else if (this._scriptDataItems.ContainsControl(control))
 throw new ArgumentException(“RegisterDataItemTwice”);

 Next, the RegisterDataItem method instantiates a ScriptDataItem instance that contains the refer-
ence to the server control associated with the data item, the string that contains the data item, and the
Boolean value that specifies whether the data item is in JSON format:

 ScriptDataItem scriptDataItem =
 new ScriptDataItem(control, dataItem, isJsonSerialized);

 Finally, the method adds this ScriptDataItem object to the _scriptDataItems collection of the
 current server-side PageRequestManager instance:

c23.indd 1144c23.indd 1144 8/20/07 8:41:34 PM8/20/07 8:41:34 PM

Chapter 23: Asynchronous Partial Page Rendering

1145

 this._scriptDataItems.Add(scriptDataItem);

 Listing 23-36: The RegisterDataItem Method of PageRequestManager

 public void RegisterDataItem(Control control, string dataItem,
 bool isJsonSerialized)
{
 if (control == null)
 throw new ArgumentNullException(“control”);

 if (!this._owner.IsInAsyncPostBack)
 throw new InvalidOperationException(“RegisterDataItemInNonAsyncRequest”);

 if (this._scriptDataItems == null)
 this._scriptDataItems = new ScriptDataItemCollection();
 else if (this._scriptDataItems.ContainsControl(control))
 throw new ArgumentException(“RegisterDataItemTwice”);
 ScriptDataItem scriptDataItem =
 new ScriptDataItem(control, dataItem, isJsonSerialized);
 this._scriptDataItems.Add(scriptDataItem);
}

 Listing 23-37 presents the internal implementation of the ScriptDataItem class, just in case you’re
wondering what this class looks like. As you can see, it is nothing but a bag of properties.

 Listing 23-37: The ScriptDataItem Class

 private sealed class ScriptDataItem
{
 // Methods
 public ScriptDataItem(Control control, string dataItem, bool isJsonSerialized)
 {
 this._control = control;
 this._dataItem = (dataItem == null) ? string.Empty : dataItem;
 this._isJsonSerialized = isJsonSerialized;
 }
 // Properties
 public Control Control
 {
 get { return this._control; }
 }
 public string DataItem
 {
 get { return this._dataItem; }
 }
 public bool IsJsonSerialized
 {
 get { return this._isJsonSerialized; }
 }
 // Fields
 private Control _control;
 private string _dataItem;
 private bool _isJsonSerialized;
}

c23.indd 1145c23.indd 1145 8/20/07 8:41:34 PM8/20/07 8:41:34 PM

Chapter 23: Asynchronous Partial Page Rendering

1146

 As Listing 23-36 shows, before adding the specified data item associated with the specified server control
to the _scriptDataItems collection, the RegisterDataItem method of the current server-side
 PageRequestManager instance invokes the ContainsControl method on the _scriptDataItems
 collection to check whether the collection already contains the same server control. If so, it raises an
exception, because you cannot register more that one data item per server control.

 Listing 23-38 presents the internal implementation of the ScriptDataItemCollection class. Keep in
mind that the _scriptDataItems collection is of type ScriptDataItemCollection . As you can see,
the ScriptDataItemCollection simply extends the List<ScriptDataItem> to add support for the
 ContainsControl method. Note that the ContainsControl method simply searches through the
 ScriptDataItem objects in the collection for a ScriptDataItem object associated with the specified
server control. If the search fails, it returns false to inform its caller that the collection does not contain
a data item associated with the specified server control. Otherwise, it returns true .

 Listing 23-38: The ScriptDataItemCollection Class

 private sealed class ScriptDataItemCollection : List<ScriptDataItem>
{
 public bool ContainsControl(Control control)
 {
 using(List<ScriptDataItem>.Enumerator enumerator1 = base.GetEnumerator())
 {
 while (enumerator1.MoveNext())
 {
 if (enumerator1.Current.Control == control)
 return true;
 }
 }

 return false;
 }
}

 The ProcessScriptRegistration Method of the PageRequestManager
 Recall from Listing 23-16 that the RenderPageCallback method of the current server-side
 PageRequestManager instance calls the ProcessScriptRegistration method on the current
server-side PageRequestManager instance to register the required client scripts. Listing 23-39 presents
the internal implementation of the ProcessScriptRegistration method.

 As you can see, this method delegates the responsibility of registering the specified client scripts to the
appropriate methods of the ScriptRegistration property of the current ScriptManager server
 control. Keep in mind that the _owner field of the current server-side PageRequestManager instance
references the current ScriptManager server control. The ScriptRegistration property of the
 ScriptManager server control is of type ScriptRegistrationManager , which is an internal class that
manages the registration and rendering of the client scripts when the current request is an asynchronous
page postback.

c23.indd 1146c23.indd 1146 8/20/07 8:41:35 PM8/20/07 8:41:35 PM

Chapter 23: Asynchronous Partial Page Rendering

1147

 As you can see from Listing 23-39 , the ProcessScriptRegistration method passes the same
 two parameters to all the methods of the ScriptRegistrationManager class that it invokes. The
first parameter references the _updatePanelsToRefresh collection of the current server-side
 PageRequestManager and the second references the HtmlTextWriter object that wraps the response
output stream. Recall that the _updatePanelsToRefresh collection contains all the UpdatePanels
server controls on the current page that need refreshing.

 Listing 23-39: The ProcessScriptRegistration Method of the PageRequestManager

 private void ProcessScriptRegistration(HtmlTextWriter writer)
{
 this._owner.ScriptRegistration.RenderActiveArrayDeclarations(
 this._updatePanelsToRefresh, writer);
 this._owner.ScriptRegistration.RenderActiveScripts(
 this._updatePanelsToRefresh, writer);
 this._owner.ScriptRegistration.RenderActiveSubmitStatements(
 this._updatePanelsToRefresh, writer);
 this._owner.ScriptRegistration.RenderActiveExpandos(
 this._updatePanelsToRefresh, writer);
 this._owner.ScriptRegistration.RenderActiveHiddenFields(
 this._updatePanelsToRefresh, writer);
 this._owner.ScriptRegistration.RenderActiveScriptDisposes(
 this._updatePanelsToRefresh, writer);
}

 The ScriptRegistrationManager Class
 As we discussed in the previous sections, the ScriptRegistrationManager is an internal ASP.NET
responsible for registering and rendering the required client scripts when the current request is an
 asynchronous page postback.

 The current ScriptRegistrationManager instance contains the collections shown in Listing 23-40 .

 Listing 23-40: The Internal Collections of the Current ScriptRegistrationManager
Instance

 Dictionary<Control, List<ScriptArrayEntry>> ScriptArrays { get; }
Dictionary<Control, List<ScriptBlockEntry>> ScriptBlocks { get; }
List<ScriptDisposeEntry> ScriptDisposes { get; }
Dictionary<Control, List<ScriptExpandoEntry>> ScriptExpandos { get; }
Dictionary<Control, List<ScriptHiddenFieldEntry>> ScriptHiddenFields {get;}
Dictionary<Control, List<ScriptBlockEntry>> ScriptStartupBlocks { get; }
Dictionary<Control, List<ScriptSubmitStatementEntry>> ScriptSubmitStatements {get;}

 Here is what each collection contains:

 ❑ ScriptArrays : This dictionary contains one List<ScriptArrayEntry> for each server
 control, where the List<ScriptArrayEntry> collection contains all the ScriptArrayEntry

c23.indd 1147c23.indd 1147 8/20/07 8:41:35 PM8/20/07 8:41:35 PM

Chapter 23: Asynchronous Partial Page Rendering

1148

objects associated with the server control. As the following code listing shows, each
 ScriptArrayEntry represents a JavaScript array with a specified name and value:

 private sealed class ScriptArrayEntry
{
 public ScriptArrayEntry(string arrayName, string arrayValue)
 {
 this._arrayName = arrayName;
 this._arrayValue = arrayValue;
 }
 public string ArrayName { get { return this._arrayName; } }
 public string ArrayValue { get { return this.ArrayValue; } }
 private string _arrayName;
 private string _arrayValue;
}

 ❑ ScriptBlocks : This dictionary contains one List<ScriptBlockEntry> for each server
 control, where the List<ScriptBlockEntry> collection contains all the ScriptBlockEntry
objects associated with the server control. As the following code listing shows, each
ScriptBlockEntry represents a JavaScript script block with the specified Type and key , where
the Type and key together form a unique identifier under which the script block is registered.
Note that the ScriptBlockEntry exposes two constructors. The first is used to instantiate a
 ScriptBlockEntry object that represents a JavaScript include block. Because of this, the third
argument of this constructor is a string that contains the include path. The second constructor
is used to instantiate a ScriptBlockEntry object that represents a JavaScript script block.
 Because of this, the third and fourth arguments of this constructor are a string that contain the
script block and a Boolean value that specifies whether the script block contains the script tags,
respectively.

 private sealed class ScriptBlockEntry
{
 public ScriptBlockEntry(Type type, string key, string includePath)
 {
 this._type = type;
 this._key = key;
 this._includePath = includePath;
 }
 public ScriptBlockEntry(Type type, string key, string script, bool addScriptTags)
 {
 this._type = type;
 this._key = key;
 this._script = script;
 this._addScriptTags = addScriptTags;
 }
 public bool AddScriptTags { get {return this._addScriptTags; } }
 public string IncludePath { get { return this._includePath; } }
 public string Key { get { return this._key; } }
 public string Script { get {return this._script; } }
 public Type Type { get {return this._type; } }

c23.indd 1148c23.indd 1148 8/20/07 8:41:35 PM8/20/07 8:41:35 PM

Chapter 23: Asynchronous Partial Page Rendering

1149

 private bool _addScriptTags;
 private string _includePath;
 private string _key;
 private string _script;
 private Type _type;
}

 ❑ ScriptDisposes : This List<ScriptDisposeEntry> collection contains a bunch of
 ScriptDisposeEntry objects, each of which represents a JavaScript script that will be
 executed when a specified UpdatePanel server control is disposed of.

 private sealed class ScriptDisposeEntry
{
 public ScriptDisposeEntry(string disposeScript, UpdatePanel parentUpdatePanel)
 {
 this._disposeScript = disposeScript;
 this._parentUpdatePanel = parentUpdatePanel;
 }
 public string DisposeScript { get { return this._disposeScript; } }
 public UpdatePanel ParentUpdatePanel { get {return this._parentUpdatePanel; } }
 private string _disposeScript;
 private UpdatePanel _parentUpdatePanel;
}

 ❑ ScriptExpandos : This dictionary contains one List<ScriptExpandoEntry> for each
 server control, where the List<ScriptExpandoEntry> collection contains all the
ScriptExpandoEntry objects associated with the server control. As the following code list-
ing shows, each ScriptExpandoEntry represents, with a specified name and value, an
 expando attribute of a control with a specified ID:

 private sealed class ScriptExpandoEntry
{
 public ScriptExpandoEntry(string controlId, string attributeName,
 string attributeValue)
 {
 this._controlId = controlId;
 this._attributeName = attributeName;
 this._attributeValue = attributeValue;
 }
 public string AttributeName { get {return this._attributeName; } }
 public string AttributeValue { get {return this._attributeValue; } }
 public string ControlId { get {return this._controlId; } }
 private string _attributeName;
 private string _attributeValue;
 private string _controlId;
}

c23.indd 1149c23.indd 1149 8/20/07 8:41:36 PM8/20/07 8:41:36 PM

Chapter 23: Asynchronous Partial Page Rendering

1150

 ❑ ScriptHiddenFields : This dictionary contains one List<ScriptHiddenFieldEntry> for
each server control, where the List<ScriptHiddenFieldEntry> collection contains all the
 ScriptHiddenFieldEntry objects associated with the server control. As the following code
listing shows, each ScriptHiddenFieldEntry represents a hidden field with a specified name
and initial value:

 private sealed class ScriptHiddenFieldEntry
{
 public ScriptHiddenFieldEntry(string hiddenFieldName,
 string hiddenFieldInitialValue)
 {
 this._hiddenFieldName = hiddenFieldName;
 this._hiddenFieldInitialValue = hiddenFieldInitialValue;
 }
 public string HiddenFieldInitialValue{get{return this._hiddenFieldInitialValue;}}
 public string HiddenFieldName { get {return this._hiddenFieldName; } }
 private string _hiddenFieldInitialValue;
 private string _hiddenFieldName;
}

 ❑ ScriptStartupBlocks : This dictionary contains one List<ScriptBlockEntry> for
each server control, where the List<ScriptBlockEntry> collection contains all the
 ScriptBlockEntry objects associated with the server control.

❑ ScriptSubmitStatements : This dictionary contains one List<ScriptSubmitStatementEntry>
for each server control, where the List<ScriptSubmitStatementEntry> collection contains all
the ScriptSubmitStatementEntry objects associated with the server control. As the following
code listing shows, each ScriptSubmitStatementEntry represents a submit script, which will be
executed when the submit event of the current form is fired:

 private sealed class ScriptSubmitStatementEntry
{
 public ScriptSubmitStatementEntry(Type type, string key, string script)
 {
 this._type = type;
 this._key = key;
 this._script = script;
 }
 public string Key { get {return this._key; } }
 public string Script { get {return this._script; } }
 public Type Type { get {return this._type; } }
 private string _key;
 private string _script;
 private Type _type;
}

 The current ScriptRegistrationManager instance exposes the static methods shown in Listing 23-41
that can be used to add script entries into its ScriptArrays , ScriptBlocks , ScriptDisposes ,
 ScriptExpandos , ScriptHiddenFields , ScriptStartupBlocks , and ScriptSubmitStatements
collections.

c23.indd 1150c23.indd 1150 8/20/07 8:41:36 PM8/20/07 8:41:36 PM

Chapter 23: Asynchronous Partial Page Rendering

1151

 Listing 23-41: The Script Registration Methods of the ScriptRegistrationManager

 public static void RegisterArrayDeclaration(Control control, string arrayName,
 string arrayValue)
{
 . . .
 ScriptManager manager1 = ScriptManager.GetCurrent(control.Page);
 if (manager1.IsInAsyncPostBack)
 {
 ScriptArrayEntry entry1 = new ScriptArrayEntry(arrayName, arrayValue);
 List<ScriptArrayEntry> list1 = this.ScriptArrays.TryGetValue(control,
 out (List<ScriptArrayEntry>)list1);
 if (!list1)
 {
 list1 = new List<ScriptArrayEntry>();
 this.ScriptArrays[control] = (List<ScriptArrayEntry>)list1;
 }
 list1.Add(entry1);
 }
}
public static void RegisterClientScriptBlock(Control control, Type type,
 string key, string script,
 bool addScriptTags)
{
 . . .
 ScriptManager manager1 = ScriptManager.GetCurrent(control.Page);
 if (manager1.IsInAsyncPostBack)
 {
 ScriptBlockEntry entry1 =
 new ScriptBlockEntry(type, key, script, addScriptTags);
 List<ScriptBlockEntry> list1 = this.ScriptBlocks.TryGetValue(control,
 out (List<ScriptBlockEntry>)list1);
 if (!list1)
 {
 list1 = new List<ScriptBlockEntry>();
 this.ScriptBlocks[control] = (List<ScriptBlockEntry>)list1;
 }
 list1.Add(entry1);
 }
}
public static void RegisterClientScriptInclude(Control control, Type type,
 string key, string url)
{
 . . .
 ScriptManager manager1 = ScriptManager.GetCurrent(control.Page);
 if (manager1.IsInAsyncPostBack)
 {
 ScriptBlockEntry entry1 = new ScriptBlockEntry(type, key, includePath);
 List<ScriptBlockEntry> list1 = this.ScriptBlocks.TryGetValue(control,
 out (List<ScriptBlockEntry>)list1);
 if (!list1)
 {
 list1 = new List<ScriptBlockEntry>();
 this.ScriptBlocks[control] = (List<ScriptBlockEntry>)list1;
 }

(continued)

c23.indd 1151c23.indd 1151 8/20/07 8:41:36 PM8/20/07 8:41:36 PM

Chapter 23: Asynchronous Partial Page Rendering

1152

 Listing 23-41 (continued)

 list1.Add(entry1);
 }
}
public static void RegisterClientScriptResource(Control control, Type type,
 string resourceName)
{
 . . .
 ScriptManager manager1 = ScriptManager.GetCurrent(control.Page);
 string includePath = manager1.GetScriptResourceUrl(resourceName, type.Assembly);
 ScriptBlockEntry entry1 = new ScriptBlockEntry(type, key, includePath);
 List<ScriptBlockEntry> list1 = this.ScriptBlocks.TryGetValue(control,
 out (List<ScriptBlockEntry>)list1);
 if (!list1)
 {
 list1 = new List<ScriptBlockEntry>();
 this.ScriptBlocks[control] = (List<ScriptBlockEntry>)list1;
 }
 list1.Add(entry1);
}
public static void RegisterExpandoAttribute(Control control, string controlId,
 string attributeName,
 string attributeValue, bool encode)
{
 . . .
 ScriptManager manager1 = ScriptManager.GetCurrent(control.Page);
 if (manager1.IsInAsyncPostBack)
 {
 if (encode)
 attributeValue = JavaScriptString.QuoteString(attributeValue);

 ScriptExpandoEntry entry1 =
 new ScriptExpandoEntry(controlId, attributeName, attributeValue);
 List<ScriptExpandoEntry> list1 = this.ScriptExpandos.TryGetValue(control,
 out (List<ScriptExpandoEntry>)list1);
 if (!list1)
 {
 list1 = new List<ScriptExpandoEntry>();
 this.ScriptExpandos[control] = (List<ScriptExpandoEntry>)list1;
 }
 list1.Add(entry1);
 }
}
public static void RegisterHiddenField(Control control, string hiddenFieldName,
 string hiddenFieldInitialValue)
{
 . . .
 ScriptManager manager1 = ScriptManager.GetCurrent(control.Page);
 if (manager1.IsInAsyncPostBack)
 {
 manager1.ScriptRegistration.RegisterHiddenFieldInternal(control,
 hiddenFieldName, hiddenFieldInitialValue);

c23.indd 1152c23.indd 1152 8/20/07 8:41:36 PM8/20/07 8:41:36 PM

Chapter 23: Asynchronous Partial Page Rendering

1153

 ScriptHiddenFieldEntry entry1 =
 new ScriptHiddenFieldEntry(hiddenFieldName, hiddenFieldInitialValue);
 List<ScriptHiddenFieldEntry> list1 =
 this.ScriptHiddenFields.TryGetValue(control,
 out (List<ScriptHiddenFieldEntry>)list1);
 if (!list1)
 {
 list1 = new List<ScriptHiddenFieldEntry>();
 this.ScriptHiddenFields[control] = (List<ScriptHiddenFieldEntry>)list1;
 }
 list1.Add(entry1);
 }
}
public static void RegisterOnSubmitStatement(Control control, Type type,
 string key, string script)
{
 . . .
 ScriptManager manager1 = ScriptManager.GetCurrent(control.Page);
 if (manager1.IsInAsyncPostBack)
 {
 manager1.ScriptRegistration.RegisterOnSubmitStatementInternal(control, type,
 key, script);
 ScriptSubmitStatementEntry entry1 =
 new ScriptSubmitStatementEntry(type, key, script);
 List<ScriptSubmitStatementEntry> list1 =
 this.ScriptSubmitStatements.TryGetValue(control,
 out (List<ScriptSubmitStatementEntry>)list1);
 if (!list1)
 {
 list1 = new List<ScriptSubmitStatementEntry>();
 this.ScriptSubmitStatements[control] =
 (List<ScriptSubmitStatementEntry>)list1;
 }
 list1.Add(entry1);
 }
}
public static void RegisterStartupScript(Control control, Type type, string key,
 string script, bool addScriptTags)
{
 . . .
 ScriptManager manager1 = ScriptManager.GetCurrent(control.Page);
 if (manager1.IsInAsyncPostBack)
 {
 manager1.ScriptRegistration.RegisterStartupScriptInternal(control, type, key,
 script, addScriptTags);
 ScriptBlockEntry entry1 =
 new ScriptBlockEntry(type, key, script, addScriptTags);
 List<ScriptBlockEntry> list1 =
 this.ScriptStartupBlocks.TryGetValue(control,
 out (List<ScriptBlockEntry>)list1);

(continued)

c23.indd 1153c23.indd 1153 8/20/07 8:41:37 PM8/20/07 8:41:37 PM

Chapter 23: Asynchronous Partial Page Rendering

1154

 Listing 23-41 (continued)

 if (!list1)
 {
 list1 = new List<ScriptBlockEntry>();
 this.ScriptStartupBlocks[control] = (List<ScriptBlockEntry>)list1;
 }
 list1.Add(entry1);
 }
}
internal void RegisterDispose(Control control, string disposeScript)
{
 Control control1 = control.Parent;
 UpdatePanel panel1 = null;
 while (control1 != null)
 {
 panel1 = control1 as UpdatePanel;
 if (panel1 != null)
 break;
 control1 = control1.Parent;
 }
 if (panel1 != null)
 {
 if (this._scriptManager.IsInAsyncPostBack)
 {
 ScriptDisposeEntry entry = new ScriptDisposeEntry(disposeScript, panel1);
 this.ScriptDisposes.Add(entry);
 }
 else
 {
 JavaScriptSerializer serializer1 = new JavaScriptSerializer();
 StringBuilder builder1 = new StringBuilder(0x100);
 Builder1.Append(“var prm = Sys.WebForms.PageRequestManager.getInstance();”);
 builder1.Append(“prm._registerDisposeScript(“);
 serializer1.Serialize(panel1.ClientID, builder1);
 builder1.Append(“, “);
 serializer1.Serialize(disposeScript, builder1);
 builder1.AppendLine(“);”);
 ScriptRegistrationManager.RegisterStartupScript(
 control,
 typeof(ScriptRegistrationManager),
 this._scriptManager.CreateUniqueScriptKey(),
 builder1.ToString(),
 true);
 }
 }
}

 Since the current ScriptRegistrationManager instance is internal to the ASP.NET framework, you
may be wondering how you can add script entries to these collections. The current ScriptManager

c23.indd 1154c23.indd 1154 8/20/07 8:41:37 PM8/20/07 8:41:37 PM

Chapter 23: Asynchronous Partial Page Rendering

1155

server control exposes the public static methods shown in Listing 23-42 , which under the hood delegate
to the methods of the current ScriptRegistrationMananger instance shown in Listing 23-41 .

 Listing 23-42: The Public Static Registration Methods of the ScriptManager
Server Control

 public static void RegisterArrayDeclaration(Control control, string arrayName,
 string arrayValue)
{
 ScriptRegistrationManager.RegisterArrayDeclaration(control, arrayName,
 arrayValue);
}
public static void RegisterArrayDeclaration(Page page, string arrayName,
 string arrayValue)
{
 ScriptRegistrationManager.RegisterArrayDeclaration(page, arrayName, arrayValue);
}
public static void RegisterClientScriptBlock(Control control, Type type,
 string key, string script,
 bool addScriptTags)
{
 ScriptRegistrationManager.RegisterClientScriptBlock(control, type, key, script,
 addScriptTags);
}
public static void RegisterClientScriptBlock(Page page, Type type, string key,
 string script, bool addScriptTags)
{
 ScriptRegistrationManager.RegisterClientScriptBlock(page, type, key, script,
 addScriptTags);
}
public static void RegisterClientScriptInclude(Control control, Type type,
 string key, string url)
{
 ScriptRegistrationManager.RegisterClientScriptInclude(control, type, key, url);
}
public static void RegisterClientScriptInclude(Page page, Type type, string key,
 string url)
{
 ScriptRegistrationManager.RegisterClientScriptInclude(page, type, key, url);
}
public static void RegisterClientScriptResource(Control control, Type type,
 string resourceName)
{
 ScriptRegistrationManager.RegisterClientScriptResource(control, type,
 resourceName);
}

(continued)

c23.indd 1155c23.indd 1155 8/20/07 8:41:37 PM8/20/07 8:41:37 PM

Chapter 23: Asynchronous Partial Page Rendering

1156

 Listing 23-42 (continued)

public static void RegisterClientScriptResource(Page page, Type type,
 string resourceName)
{
 ScriptRegistrationManager.RegisterClientScriptResource(page, type, resourceName);
}
public static void RegisterExpandoAttribute(Control control, string controlId,
 string attributeName,
 string attributeValue, bool encode)
{
 ScriptRegistrationManager.RegisterExpandoAttribute(control, controlId,
 attributeName, attributeValue,
 encode);
}
public void RegisterExtenderControl<TExtenderControl>(
 TExtenderControl extenderControl, Control targetControl) where TExtenderControl :
 Control, IExtenderControl
{
 this.ScriptControlManager.RegisterExtenderControl<TExtenderControl>(
 extenderControl, targetControl);
}
public static void RegisterHiddenField(Control control, string hiddenFieldName,
 string hiddenFieldInitialValue)
{
 ScriptRegistrationManager.RegisterHiddenField(control, hiddenFieldName,
 hiddenFieldInitialValue);
}
public static void RegisterHiddenField(Page page, string hiddenFieldName,
 string hiddenFieldInitialValue)
{
 ScriptRegistrationManager.RegisterHiddenField(page, hiddenFieldName,
 hiddenFieldInitialValue);
}
public static void RegisterOnSubmitStatement(Control control, Type type,
 string key, string script)
{
 ScriptRegistrationManager.RegisterOnSubmitStatement(control, type, key, script);
}
public static void RegisterOnSubmitStatement(Page page, Type type, string key,
 string script)
{
 ScriptRegistrationManager.RegisterOnSubmitStatement(page, type, key, script);
}
public static void RegisterStartupScript(Control control, Type type, string key,
 string script, bool addScriptTags)
{
 ScriptRegistrationManager.RegisterStartupScript(control, type, key, script,
 addScriptTags);
}

c23.indd 1156c23.indd 1156 8/20/07 8:41:37 PM8/20/07 8:41:37 PM

Chapter 23: Asynchronous Partial Page Rendering

1157

public static void RegisterStartupScript(Page page, Type type, string key,
 string script, bool addScriptTags)
{
 ScriptRegistrationManager.RegisterStartupScript(page, type, key, script,
 addScriptTags);
}
public void RegisterDispose(Control control, string disposeScript)
{
 this.ScriptRegistration.RegisterDispose(control, disposeScript);
}

 As Listing 23-39 shows, when the current Page enters its rendering phase, the
ProcessScriptRegistration method of the current server-side PageRequestManager instance is
invoked, by means of which the methods of the current ScriptRegistrationManager instance
shown in Listing 23-43 are called to render the script entries in the ScriptArrays , ScriptBlocks ,
 ScriptDisposes , ScriptExpandos , ScriptHiddenFields , ScriptStartupBlocks , and
 ScriptSubmitStatements collections.

 Listing 23-43: The Script-Rendering Methods of the ScriptRegistrationMananger

 public void RenderActiveArrayDeclarations(List<UpdatePanel> updatePanels,
 HtmlTextWriter writer)
{
 List<ScriptArrayEntry> list1 = new List<ScriptArrayEntry>();
 foreach (KeyValuePair<Control, List<ScriptArrayEntry>> pair1 in
 this.ScriptArrays)
 {
 foreach (UpdatePanel panel1 in updatePanels)
 {
 if (this.IsControlRegistrationActive(panel1, pair1.Key, true))
 {
 foreach (ScriptArrayEntry entry1 in pair1.Value)
 {
 if (!list1.Contains(entry1))
 list1.Add(entry1);
 }
 }
 }
 }
 foreach (ScriptArrayEntry entry3 in list1)
 {
 PageRequestManager.EncodeString(writer, “arrayDeclaration”,
 entry3.ArrayName, entry3.ArrayValue);
 }
}

(continued)

c23.indd 1157c23.indd 1157 8/20/07 8:41:38 PM8/20/07 8:41:38 PM

Chapter 23: Asynchronous Partial Page Rendering

1158

 Listing 23-43 (continued)

public void RenderActiveExpandos(List<UpdatePanel> updatePanels,
 HtmlTextWriter writer)
{
 List<ScriptExpandoEntry> list1 = new List<ScriptExpandoEntry>();
 using (Dictionary<Control, List<ScriptExpandoEntry>>.Enumerator enumerator1 =
 this.ScriptExpandos.GetEnumerator())
 {
 while (enumerator1.MoveNext())
 {
 KeyValuePair<Control, List<ScriptExpandoEntry>> pair1 = enumerator1.Current;
 foreach (UpdatePanel panel1 in updatePanels)
 {
 if (this.IsControlRegistrationActive(panel1, pair1.Key, false))
 {
 foreach (ScriptExpandoEntry entry1 in pair1.Value)
 {
 if (!list1.Contains(entry1))
 list1.Add(entry1);
 }
 }
 }
 }
 }
 foreach (ScriptExpandoEntry entry2 in list1)
 {
 string id = “document.getElementById(‘” +
 entry2.ControlId + “’)[‘” + entry2.AttributeName + “’]”;
 string content = “null”;
 if (entry2.AttributeValue != null)
 content = “’” + entry2.AttributeValue + “’”;
 PageRequestManager.EncodeString(writer, “expando”, id, content);
 }
}
public void RenderActiveHiddenFields(List<UpdatePanel> updatePanels,
 HtmlTextWriter writer)
{
 List<ScriptHiddenFieldEntry> list1 = new List<ScriptHiddenFieldEntry>();
 foreach (KeyValuePair<Control, List<ScriptHiddenFieldEntry>> pair1 in
 this.ScriptHiddenFields)
 {
 foreach (UpdatePanel panel1 in updatePanels)
 {
 if (this.IsControlRegistrationActive(panel1, pair1.Key, true))
 {
 foreach (ScriptHiddenFieldEntry entry1 in pair1.Value)
 {

c23.indd 1158c23.indd 1158 8/20/07 8:41:38 PM8/20/07 8:41:38 PM

Chapter 23: Asynchronous Partial Page Rendering

1159

 if (!list1.Contains(entry1))
 list1.Add(entry1);
 }
 }
 }
 }
 foreach (ScriptHiddenFieldEntry entry3 in list1)
 {
 PageRequestManager.EncodeString(writer, “hiddenField”, entry3.HiddenFieldName,
 entry3.HiddenFieldInitialValue);
 }
}
public void RenderActiveScriptDisposes(List<UpdatePanel> updatePanels,
 HtmlTextWriter writer)
{
 List<ScriptDisposeEntry> list1 = new List<ScriptDisposeEntry>();
 using(List<ScriptDisposeEntry>.Enumerator enumerator1 =
 this.ScriptDisposes.GetEnumerator())
 {
 while (enumerator1.MoveNext())
 {
 ScriptDisposeEntry entry1 = enumerator1.Current;
 foreach (UpdatePanel panel1 in updatePanels)
 {
 if (this.IsControlRegistrationActive(panel1,
 entry1.ParentUpdatePanel, false))
 list1.Add(entry1);
 }
 }
 }
 foreach (ScriptDisposeEntry entry2 in list1)
 {
 PageRequestManager.EncodeString(writer, “scriptDispose”,
 entry2.ParentUpdatePanel.ClientID,
 entry2.DisposeScript);
 }
}
public void RenderActiveScripts(List<UpdatePanel> updatePanels,
 HtmlTextWriter writer)
{
 this.RenderActiveScriptBlocks(updatePanels, writer, this.ScriptBlocks);
 this.RenderActiveScriptBlocks(updatePanels, writer, this.ScriptStartupBlocks);
}

(continued)

c23.indd 1159c23.indd 1159 8/20/07 8:41:38 PM8/20/07 8:41:38 PM

Chapter 23: Asynchronous Partial Page Rendering

1160

 Listing 23-43 (continued)

public void RenderActiveSubmitStatements(List<UpdatePanel> updatePanels,
 HtmlTextWriter writer)
{
 List<ScriptSubmitStatementEntry> list1 = new List<ScriptSubmitStatementEntry>();
 foreach (KeyValuePair<Control, List<ScriptSubmitStatementEntry>> pair1 in
 this.ScriptSubmitStatements)
 {
 foreach (UpdatePanel panel1 in updatePanels)
 {
 if (this.IsControlRegistrationActive(panel1, pair1.Key, true))
 {
 foreach (ScriptSubmitStatementEntry entry1 in pair1.Value)
 {
 if (!list1.Contains(entry1))
 list1.Add(entry1);
 }
 }
 }
 }
 foreach (ScriptSubmitStatementEntry entry3 in list1)
 {
 PageRequestManager.EncodeString(writer, “onSubmit”, null, entry3.Script);
 }
}

 ProcessFocus
 The current ScriptManager server control exposes two overloads of a method named SetFocus that
you can call from within your code to set the focus to a particular server control. Listing 23-44 presents
the internal implementation of these two overloads. The first takes the ClientID property value of the
server control to which the focus is being set. The second takes the reference to the actual server control
to which the focus is being set.

 As you can see from Listing 23-44 , both overloads delegate to the associated overload of the SetFocus
method of the current server-side PageRequestManager instance.

 Listing 23-44: The Internal Implementations of the SetFocus Overloads of the Current
ScriptManager Server Control

 public void SetFocus(string clientID)
{
 this.PageRequestManager.SetFocus(clientID);
}
public void SetFocus(Control control)
{
 this.PageRequestManager.SetFocus(control);
}

 Listing 23-45 presents the internal implementations of the two overloads of the SetFocus method of the
current server-side PageRequestManager instance. As you can see, each overload checks whether
the current request is an asynchronous page postback request and whether the ClientSupportsFocus

c23.indd 1160c23.indd 1160 8/20/07 8:41:38 PM8/20/07 8:41:38 PM

Chapter 23: Asynchronous Partial Page Rendering

1161

property of the current server side PageRequestMananger instance is set to true . If these things are
true, the overloads assign their input parameters to the _focusedControl and focusedControlID
properties, respectively, of the current server-side PageRequestManager instance. Note that both over-
loads set the _requiresFocusScript field of the current server-side PageRequestManager instance
to true .

 Listing 23-45: The Focus-Related Methods of the PageRequestManager

 public void SetFocus(Control control)
{
 this._owner.IPage.SetFocus(control);
 if (this._owner.IsInAsyncPostBack && this.ClientSupportsFocus)
 {
 this._focusedControl = control;
 this._focusedControlID = null;
 this._requireFocusScript = true;
 }
}
public void SetFocus(string clientID)
{
 this._owner.IPage.SetFocus(clientID);
 if (this._owner.IsInAsyncPostBack && this.ClientSupportsFocus)
 {
 this._focusedControlID = clientID.Trim();
 this._focusedControl = null;
 this._requireFocusScript = true;
 }
}

 As Listing 23-39 shows, when the current Page finally enters its rendering phase, the ProcessFocus
method of the current server-side PageRequestManager instance is invoked. As Listing 23-46 shows,
this method checks whether the _requiresFocusScript field is set to true . If so, it takes the following
steps. First, it evaluates the ClientID property value of the server control that must gain the focus:

 string focusedControlID = string.Empty;
 if (!string.IsNullOrEmpty(this._focusedControlID))
 focusedControlID = this._focusedControlID;
 else if ((this._focusedControl != null) && this._focusedControl.Visible)
 focusedControlID = this._focusedControl.ClientID;

 Next, it calls the GetScriptResouseUrl method on the current ScriptManager server control to return
the URL to the Focus.js JavaScript file. This file contains all the focus-related client scripts:

 string scriptPath = this._owner.GetScriptResourceUrl(“Focus.js”,
 typeof(HtmlForm).Assembly);

 Next, it invokes the EncodeString static method on the server-side PageRequestManager to write a
string that consists of four substrings into the response output stream. The first substring specifies the
length of the last substring. The second substring is the string “scriptBlock”, to signal the current
 client-side PageRequestManager instance that the encoded string contains a script block. The third
 substring is the string “ScriptPath” , to signal the current client-side PageRequestManager instance
that the encoded string contains the URL of a JavaScript file. The fourth substring is a string that contains
the actual URL for the JavaScript file.

c23.indd 1161c23.indd 1161 8/20/07 8:41:38 PM8/20/07 8:41:38 PM

Chapter 23: Asynchronous Partial Page Rendering

1162

 PageRequestManager.EncodeString(writer, “scriptBlock”, “ScriptPath”,
 scriptPath);

 Next, the ProcessFocus method invokes the EncodeString static method once more on the server-side
 PageRequestManager to write a string that consists of four substrings into the response output stream.
The first substring specifies the length of the last substring. The second substring is the string “focus” ,
to signal the current client-side PageRequestManager instance that the encoded string contains the
 ClientID property value of the server control that must have the focus. The third substring is an empty
string. The fourth substring is a string that contains the actual ClientID property value.

 PageRequestManager.EncodeString(writer, “focus”, string.Empty,
 focusedControlID);

 Listing 23-46: The ProcessFocus Method of PageRequestMananger

 private void ProcessFocus(HtmlTextWriter writer)
{
 if (this._requireFocusScript)
 {
 string focusedControlID = string.Empty;
 if (!string.IsNullOrEmpty(this._focusedControlID))
 focusedControlID = this._focusedControlID;
 else if ((this._focusedControl != null) && this._focusedControl.Visible)
 focusedControlID = this._focusedControl.ClientID;
 if (focusedControlID.Length > 0)
 {
 string scriptPath = this._owner.GetScriptResourceUrl(“Focus.js”,
 typeof(HtmlForm).Assembly);
 PageRequestManager.EncodeString(writer, “scriptBlock”, “ScriptPath”,
 scriptPath);
 PageRequestManager.EncodeString(writer, “focus”, string.Empty,
 focusedControlID);
 }
 }
}

 Server Response
 Keep in mind that we have been following the current Page as it goes through its life cycle phases to
process the asynchronous page postback request that the current client-side PageRequestMananger
instance made to the server. The end result of this request-processing activity is the server response text,
which is sent back to the current client-side PageRequestMananger instance.

 As you saw in the previous sections, the current Page delegates the responsibility of generating the server
response text to the RenderPageCallback method of the current server-side PageRequestManager
instance (see Listing 23-16). Listing 23-47 repeats Listing 23-16 .

c23.indd 1162c23.indd 1162 8/20/07 8:41:39 PM8/20/07 8:41:39 PM

Chapter 23: Asynchronous Partial Page Rendering

1163

 Listing 23-47: The RenderPageCallback Method of the Current Server-Side
PageRequestManager Instance

 private void RenderPageCallback(HtmlTextWriter writer, Control pageControl)
{
 this.ProcessUpdatePanels();
 IHttpResponse response1 = this._owner.IPage.Response;
 response1.ContentType = “text/plain”;
 response1.Cache.SetNoServerCaching();
 IHtmlForm form1 = this._owner.IPage.Form;
 form1.SetRenderMethodDelegate(new RenderMethod(this.RenderFormCallback));
 this._updatePanelWriter = writer;
 PageRequestManager.ParserStringWriter writer1 =
 new PageRequestManager.ParserStringWriter();
 PageRequestManager.ParserHtmlTextWriter writer2 =
 new PageRequestManager.ParserHtmlTextWriter(writer1);
 writer1.ParseWrites = true;
 form1.RenderControl(writer2);
 writer1.ParseWrites = false;
 foreach (KeyValuePair<string, string> pair1 in writer1.HiddenFields)
 {
 if (PageRequestManager.IsBuiltInHiddenField(pair1.Key))

 PageRequestManager.EncodeString(writer, “hiddenField”, pair1.Key,
 pair1.Value);

 }

 PageRequestManager.EncodeString(writer, “asyncPostBackControlIDs”, string.Empty,
 this.GetAsyncPostBackControlIDs(false));
 PageRequestManager.EncodeString(writer, “postBackControlIDs”, string.Empty,
 this.GetPostBackControlIDs(false));
 PageRequestManager.EncodeString(writer, “updatePanelIDs”, string.Empty,
 this.GetAllUpdatePanelIDs());
 PageRequestManager.EncodeString(writer, “childUpdatePanelIDs”, string.Empty,
 this.GetChildUpdatePanelIDs());
 PageRequestManager.EncodeString(writer, “panelsToRefreshIDs”, string.Empty,
 this.GetRefreshingUpdatePanelIDs());
 PageRequestManager.EncodeString(writer, “asyncPostBackTimeout”, string.Empty,
 this._owner.AsyncPostBackTimeout.ToString());

 if (writer2.FormAction != null)

 PageRequestManager.EncodeString(writer, “formAction”, string.Empty,
 writer2.FormAction);

 if (this._owner.IPage.Header != null)
 {
 string text1 = this._owner.IPage.Title;
 if (!string.IsNullOrEmpty(text1))

 PageRequestManager.EncodeString(writer, “pageTitle”, string.Empty, text1);

 }
 this.RenderDataItems(writer);
 this.ProcessScriptRegistration(writer);
 this.ProcessFocus(writer);
}

c23.indd 1163c23.indd 1163 8/20/07 8:41:39 PM8/20/07 8:41:39 PM

Chapter 23: Asynchronous Partial Page Rendering

1164

 The highlighted portions of Listing 23-47 present the calls into the EncodeString static method of the
server-side PageRequestManager . Each call into this method generates an encoded string and writes
the string into the response output stream. Each encoded string is in the format
 length|type|id|content| . As you can see, each string consists of four parts separated by the pipe
character. The first part specifies the length of the content. The second part is a string that tells the cur-
rent client-side PageRequestMananger what type of information the encoded string contains. The third
part is an optional string that contains the ClientID property value of the server control associated with
the encoded string. The last part is the actual encoded information.

 As you can see, the final response text is a string that consists of a bunch of substrings of the format
 length|type|id|content| . The highlighted portions of Listing 23-47 are the only calls into the
 EncodeString method. The boldface method calls in Listing 23-47 — that is, RenderFormCallback ,
 RenderDataItems , ProcessScriptRegistration , and ProcessFocus calls — trigger more calls into
the EncodeString static method as follows.

 The highlighted portion of Listing 23-48 presents the EncodeString method call triggered by the call
into the RenderFormCallback method. Recall that the call into the RenderFormCallback method trig-
gers the call into the RenderChildren method of the UpdatePanel server control, which in turn triggers
the call into the EncodeString method. As we discussed earlier, this call into the EncodeString method
renders the content of the UpdatePanel server control into the response output stream. There will be one
call into the EncodeString method for each UpdatePanel server control that needs updating.

 Listing 23-48: The EncodeString Method Call Triggered by the RenderChildren Method
of the UpdatePanel Server Control

 protected override void RenderChildren(HtmlTextWriter writer)
{
 if (this._asyncPostBackMode)
 {
 . . .
 HtmlTextWriter writer1 = new HtmlTextWriter(new StringWriter());
 base.RenderChildren(writer1);

 PageRequestManager.EncodeString(writer, “updatePanel”, this.ClientID,
 writer1.InnerWriter.ToString());

 }
 . . .
}

 The highlighted portion of Listing 23-49 presents the EncodeString method call triggered by the call
into the RenderDataItems method. As you can see, there will be one EncodeString method call for
each data item in the ScriptDataItem collection of the current PageRequestManager instance.

c23.indd 1164c23.indd 1164 8/20/07 8:41:39 PM8/20/07 8:41:39 PM

Chapter 23: Asynchronous Partial Page Rendering

1165

 Listing 23-49: The RenderDataItems Method of the Server-Side PageRequestManager

 private void RenderDataItems(HtmlTextWriter writer)
{
 if (this._scriptDataItems != null)
 {
 foreach (PageRequestManager.ScriptDataItem item1 in this._scriptDataItems)
 {

 PageRequestManager.EncodeString(writer,
 item1.IsJsonSerialized ? “dataItemJson” : “dataItem”,
 item1.Control.ClientID, item1.DataItem);

 }
 }
}

 The highlighted portions of Listing 23-50 present the EncodeString method calls triggered by the call
into the ProcessScriptRegistration method of the server-side PageRequestMananger .

 Listing 23-50: The Method Calls into the EncodeString Method Triggered by the
ProcessScriptRegistration Method

 public void RenderActiveArrayDeclarations(List<UpdatePanel> updatePanels,
 HtmlTextWriter writer)
{
 List<ScriptArrayEntry> list1 = new List<ScriptArrayEntry>();
 . . .
 foreach (ScriptArrayEntry entry3 in list1)
 {

 PageRequestManager.EncodeString(writer, “arrayDeclaration”,
 entry3.ArrayName, entry3.ArrayValue);

 }
}
public void RenderActiveExpandos(List<UpdatePanel> updatePanels,
 HtmlTextWriter writer)
{
 List<ScriptExpandoEntry> list1 = new List<ScriptExpandoEntry>();
 . . .
 foreach (ScriptExpandoEntry entry2 in list1)
 {
 string id = “document.getElementById(‘” +
 entry2.ControlId + “’)[‘” + entry2.AttributeName + “’]”;
 string content = “null”;
 if (entry2.AttributeValue != null)
 content = “’” + entry2.AttributeValue + “’”;

 PageRequestManager.EncodeString(writer, “expando”, id, content);

 }
}

(continued)

c23.indd 1165c23.indd 1165 8/20/07 8:41:40 PM8/20/07 8:41:40 PM

Chapter 23: Asynchronous Partial Page Rendering

1166

 Listing 23-50 (continued)

public void RenderActiveHiddenFields(List<UpdatePanel> updatePanels,
 HtmlTextWriter writer)
{
 List<ScriptHiddenFieldEntry> list1 = new List<ScriptHiddenFieldEntry>();
 . . .
 foreach (ScriptHiddenFieldEntry entry3 in list1)
 {

 PageRequestManager.EncodeString(writer, “hiddenField”, entry3.HiddenFieldName,
 entry3.HiddenFieldInitialValue);

 }
}
public void RenderActiveScriptDisposes(List<UpdatePanel> updatePanels,
 HtmlTextWriter writer)
{
 List<ScriptDisposeEntry> list1 = new List<ScriptDisposeEntry>();
 . . .
 foreach (ScriptDisposeEntry entry2 in list1)
 {

 PageRequestManager.EncodeString(writer, “scriptDispose”,
 entry2.ParentUpdatePanel.ClientID,
 entry2.DisposeScript);

 }
}
public void RenderActiveSubmitStatements(List<UpdatePanel> updatePanels,
 HtmlTextWriter writer)
{
 List<ScriptSubmitStatementEntry> list1 = new List<ScriptSubmitStatementEntry>();
 . . .
 foreach (ScriptSubmitStatementEntry entry3 in list1)
 {

 PageRequestManager.EncodeString(writer, “onSubmit”, null, entry3.Script);

 }
}

 The highlighted portions of Listing 23-51 present the EncodeString method calls triggered by the call
into the ProcessFocus method.

c23.indd 1166c23.indd 1166 8/20/07 8:41:40 PM8/20/07 8:41:40 PM

Chapter 23: Asynchronous Partial Page Rendering

1167

 Listing 23-51: The EncodeString Method Calls Triggered by the ProcessFocus Method
of the PageRequestManager

 private void ProcessFocus(HtmlTextWriter writer)
{
 if (this._requireFocusScript)
 {
 . . .
 if (focusedControlID.Length > 0)
 {
 string scriptPath = this._owner.GetScriptResourceUrl(“Focus.js”,
 typeof(HtmlForm).Assembly);

 PageRequestManager.EncodeString(writer, “scriptBlock”, “ScriptPath”,
 scriptPath);
 PageRequestManager.EncodeString(writer, “focus”, string.Empty,
 focusedControlID);

 }
 }
}

 Listing 23-52 puts together all the EncodeString method calls triggered by the call into the
RenderPageCallback method of the current server-side PageRequestMananger instance.

 Listing 23-52: All EncodeString Method Calls Triggered by the RenderPageCallback
Method

 private void RenderPageCallback(HtmlTextWriter writer, Control pageControl)
{
 IHttpResponse response1 = this._owner.IPage.Response;
 response1.ContentType = “text/plain”;
 response1.Cache.SetNoServerCaching();
 foreach (UpdatePanel updatePanel in this._updatePanelsToRefresh)
 {
 . . .
 HtmlTextWriter writer2 = new HtmlTextWriter(new StringWriter());
 base.RenderChildren(writer2);

 PageRequestManager.EncodeString(writer, “updatePanel”, updatePanel.ClientID,
 Writer2.InnerWriter.ToString());

 }
 foreach (KeyValuePair<string, string> pair1 in writer1.HiddenFields)
 {
 if (PageRequestManager.IsBuiltInHiddenField(pair1.Key))

 PageRequestManager.EncodeString(writer, “hiddenField”, pair1.Key,
 pair1.Value);

 }

(continued)

c23.indd 1167c23.indd 1167 8/20/07 8:41:40 PM8/20/07 8:41:40 PM

Chapter 23: Asynchronous Partial Page Rendering

1168

 Listing 23-52 (continued)

 PageRequestManager.EncodeString(writer, “asyncPostBackControlIDs”, string.Empty,
 this.GetAsyncPostBackControlIDs(false));
 PageRequestManager.EncodeString(writer, “postBackControlIDs”, string.Empty,
 this.GetPostBackControlIDs(false));
 PageRequestManager.EncodeString(writer, “updatePanelIDs”, string.Empty,
 this.GetAllUpdatePanelIDs());
 PageRequestManager.EncodeString(writer, “childUpdatePanelIDs”, string.Empty,
 this.GetChildUpdatePanelIDs());
 PageRequestManager.EncodeString(writer, “panelsToRefreshIDs”, string.Empty,
 this.GetRefreshingUpdatePanelIDs());
 PageRequestManager.EncodeString(writer, “asyncPostBackTimeout”, string.Empty,
 this._owner.AsyncPostBackTimeout.ToString());

 if (writer2.FormAction != null)

 PageRequestManager.EncodeString(writer, “formAction”, string.Empty,
 writer2.FormAction);

 if (this._owner.IPage.Header != null)
 {
 string text1 = this._owner.IPage.Title;
 if (!string.IsNullOrEmpty(text1))

 PageRequestManager.EncodeString(writer, “pageTitle”, string.Empty, text1);

 }
 foreach (PageRequestManager.ScriptDataItem item1 in this._scriptDataItems)
 {

 PageRequestManager.EncodeString(writer,
 item1.IsJsonSerialized ? “dataItemJson” : “dataItem”,
 item1.Control.ClientID, item1.DataItem);

 }
 foreach (ScriptArrayEntry entry3 in list1)
 {

 PageRequestManager.EncodeString(writer, “arrayDeclaration”,
 entry3.ArrayName, entry3.ArrayValue);

 }
 foreach (ScriptExpandoEntry entry2 in list2)
 {
 string id = “document.getElementById(‘” +
 entry2.ControlId + “’)[‘” + entry2.AttributeName + “’]”;
 string content = “null”;
 if (entry2.AttributeValue != null)
 content = “’” + entry2.AttributeValue + “’”;

 PageRequestManager.EncodeString(writer, “expando”, id, content);

 }
 foreach (ScriptHiddenFieldEntry entry3 in list3)
 {

 PageRequestManager.EncodeString(writer, “hiddenField”, entry3.HiddenFieldName,
 entry3.HiddenFieldInitialValue);

 }

c23.indd 1168c23.indd 1168 8/20/07 8:41:40 PM8/20/07 8:41:40 PM

Chapter 23: Asynchronous Partial Page Rendering

1169

 foreach (ScriptDisposeEntry entry2 in list4)
 {

 PageRequestManager.EncodeString(writer, “scriptDispose”,
 entry2.ParentUpdatePanel.ClientID,
 entry2.DisposeScript);

 }
 foreach (ScriptSubmitStatementEntry entry3 in list5)
 {

 PageRequestManager.EncodeString(writer, “onSubmit”, null, entry3.Script);

 }
 string scriptPath = this._owner.GetScriptResourceUrl(“Focus.js”,
 typeof(HtmlForm).Assembly);

 PageRequestManager.EncodeString(writer, “scriptBlock”, “ScriptPath”,
 scriptPath);
 PageRequestManager.EncodeString(writer, “focus”, string.Empty,
 focusedControlID);

}

 Just by looking at the EncodeString calls shown in the highlighted portions of Listing 23-52 , and
 considering the fact that each EncodeString call generates a string of the format
 length|type|id|content , can you guess what the final server response text sent to the current
client-side PageRequestManagner instance looks like?

 Listing 23-53 presents a page that shows you the actual server response text sent to the current
client-side PageRequestManager instance. If you access this page, you should get the result shown in
Figure 23-2 . As you can see, this page consists of two text fields and a button. Now enter some text into
the text fields and click the button. You should see the actual server response text on a popup like the
one shown in Figure 23-3 .

 Listing 23-53: A Page that Shows What the Server Response Text Looks Like

<%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function requestCompleted(sender, args)
 {
 var reply = sender.get_responseData();
 alert(reply);
 }

(continued)

c23.indd 1169c23.indd 1169 8/20/07 8:41:41 PM8/20/07 8:41:41 PM

Chapter 23: Asynchronous Partial Page Rendering

1170

 Listing 23-53 (continued)

 function beginRequestHandler(sender, args)
 {
 var request = args.get_request();
 request.add_completed(requestCompleted);
 }

 function pageLoad()
 {
 var prm = Sys.WebForms.PageRequestManager.getInstance();
 prm.add_beginRequest(beginRequestHandler);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />
 <asp:UpdatePanel ID=”UpdatePanel1” runat=”server”>
 <ContentTemplate>
 <table>
 <tr>
 <td>
 First Name:</td>
 <td>
 <asp:TextBox ID=”TextBox1” runat=”server”></asp:TextBox></td>
 </tr>
 <tr>
 <td>
 Last Name:</td>
 <td>
 <asp:TextBox ID=”TextBox2” runat=”server”></asp:TextBox></td>
 </tr>
 <tr>
 <td colspan=”2”>
 <asp:Button ID=”Button1” runat=”server” Text=”Submit” /></td>
 </tr>
 </table>
 </ContentTemplate>
 </asp:UpdatePanel>
 <div id=”info”>
 </div>
 <div>
 </div>
 </form>
</body>
</html>

c23.indd 1170c23.indd 1170 8/20/07 8:41:41 PM8/20/07 8:41:41 PM

Chapter 23: Asynchronous Partial Page Rendering

1171

Figure 23-2

Figure 23-3

c23.indd 1171c23.indd 1171 8/20/07 8:41:41 PM8/20/07 8:41:41 PM

Chapter 23: Asynchronous Partial Page Rendering

1172

 As shown in these images, the server response text is a string that consists of a bunch of substrings with
the format length|type|id|content , where the length part specifies the number of characters in the
content part of the substring, the type part specifies the type of information stored in the content part
of the substring, the id part specifies the ClientID property value of the server control associated with
the information stored in the content part of the substring, and finally the content part contains the
actual information or data being sent to the current client-side PageRequestManager instance.

 The server response text shown in Figure 23-3 consists of 11 substrings as follows:

 Here is the first substring:

 586|updatePanel|UpdatePanel1|
 <table>
 <tr>
 <td>
 First Name:</td>
 <td>
 <input name=”TextBox1” type=”text” value=”Shahram” id=”TextBox1”
 /></td>
 </tr>
 <tr>
 <td>
 Last Name:</td>
 <td>
 <input name=”TextBox2” type=”text” value=”Khosravi” id=”TextBox2”
 /></td>
 </tr>
 <tr>
 <td colspan=”2” align=”center”>
 <input type=”submit” name=”Button1” value=”Submit” id=”Button1”
 /></td>
 </tr>
 </table>
|

 The first substring is the one the EncodeString method call shown in Listing 23-52 generates and
 renders into the response output stream:

 PageRequestManager.EncodeString(writer, “updatePanel”, this.ClientID,
 writer1.InnerWriter.ToString());

 As you can see, the first substring consists of the following four parts:

 ❑ 586 : This first part of the substring tells the current client-side PageRequestManager that the
fourth part of the substring contains 586 characters (with spaces).

❑ updatePanel : This second part of the substring tells the current client-side PageRequestManager
that the fourth part of the substring contains the HTML markup text enclosed within the
UpdatePanel server control whose UniqueID property value is given by the third part of
the substring.

c23.indd 1172c23.indd 1172 8/20/07 8:41:41 PM8/20/07 8:41:41 PM

Chapter 23: Asynchronous Partial Page Rendering

1173

❑ UpdatePanel1 : The third part of the substring tells the current client-side PageRequestManager
that the HTML markup text contained in the fourth part of the string belongs to the
UpdatePanel server control with the UniqueID property value of UpdatePanel1 .

❑ The fourth part of the substring provides the current client-side PageRequestManager instance
with the HTML markup text of the UpdatePanel server control with the UniqueID property
value of UpdatePanel1 . Recall from Listing 23-48 that the RenderChildren method of the
UpdatePanel server control generates this HTML markup text.

 Here is the second substring:

 52|hiddenField|__VIEWSTATE|/wEPDwULLTIxMjYzMDU2NzJkZJ0ptWJFvcbB8l53OBKz9PRMaPrd|

 This is the substring that the first EncodeString method call shown in Listing 23-52 generates and ren-
ders into the response output stream:

 PageRequestManager.EncodeString(writer, “hiddenField”, pair1.Key,
 pair1.Value);

 As you can see, the second substring consists of the following four parts:

 ❑ 52 : This first part of the substring tells the client-side PageRequestManager instance that the
fourth part of this substring contains 52 characters (with spaces).

❑ hiddenField : This second part of the substring tells the client-side PageRequestManager
 instance that this substring contains the name and value of a hidden field.

❑ __VIEWSTATE : This third part of the substring tells the client-side PageRequestManager
 instance that the name of this hidden field is __VIEWSTATE .

❑ The fourth part of the substring tells the client-side PageRequestManager instance that the
value of this hidden field is as follows:

 /wEPDwULLTIxMjYzMDU2NzJkZJ0ptWJFvcbB8l53OBKz9PRMaPrd

 Here is the third substring:

 64|hiddenField|__EVENTVALIDATION|/wEWBAKj4cTUAgLs0bLrBgLs0fbZDAKM54rGBv6aI9H0
 BYIx273PdOWCCpAOOHzF|

 This is the substring that the first EncodeString method call shown in Listing 23-52 generates and ren-
ders into the response output stream:

 PageRequestManager.EncodeString(writer, “hiddenField”, pair1.Key,
 pair1.Value);

 As you can see, the third substring consists of the following four parts:

 ❑ 64 : This first part of the substring tells the client-side PageRequestManager instance that the
fourth part of this substring contains 64 characters (with spaces).

❑ hiddenField : This second part of the substring tells the client-side PageRequestManager
 instance that this substring contains the name and value of a hidden field.

c23.indd 1173c23.indd 1173 8/20/07 8:41:42 PM8/20/07 8:41:42 PM

Chapter 23: Asynchronous Partial Page Rendering

1174

❑ __EVENTVALIDATION : This third part of the substring tells the client-side PageRequestManager
instance that the name of this hidden field is __EVENTVALIDATION .

❑ The fourth part of the substring tells the client-side PageRequestManager instance that the
value of this hidden field is as follows:

 /wEWBAKj4cTUAgLs0bLrBgLs0fbZDAKM54rGBv6aI9H0BYIx273PdOWCCpAOOHzF

 Here is the fourth substring:

 0|asyncPostBackControlIDs|||

 This is the substring that the following EncodeString method call in Listing 23-52 generates and
 renders into the response output stream:

 PageRequestManager.EncodeString(writer, “asyncPostBackControlIDs”, string.Empty,
 this.GetAsyncPostBackControlIDs(false));

 As you can see, the fourth substring consists of the following four parts:

 ❑ 0 : This first part of the substring tells the client-side PageRequestManager instance that the
fourth part of this substring contains zero characters.

❑ asyncPostBackControlIDs : This second part of the substring tells the client-side
 PageRequestManager instance that the fourth part of this substring contains the comma-
 separated list of the UniqueID property values of all the server controls on the current page
that cause asynchronous page postbacks. Since our example does not contain any server control
causing asynchronous page postbacks, this list is empty.

❑ Since the third part of this substring does not play any role in this case, it is an empty string.

❑ Since the current example does not contain any server controls causing asynchronous page post-
backs, the fourth part of this substring is an empty string.

 Here is the fifth substring:

 0|postBackControlIDs|||

 This is the substring that the following EncodeString method call in Listing 23-52 generates and ren-
ders into the response output stream:

 PageRequestManager.EncodeString(writer, “postBackControlIDs”, string.Empty,
 this.GetPostBackControlIDs(false));

 As you can see, the fifth substring consists of the following four parts:

 ❑ a : This first part of the substring tells the client-side PageRequestManager instance that the
fourth part of this substring contains zero characters.

❑ postBackControlIDs : This second part of the substring tells the client-side PageRequestManager
instance that the fourth part of this substring contains the comma-separated list of the UniqueID
property values of all the server controls on the current page that cause synchronous page

c23.indd 1174c23.indd 1174 8/20/07 8:41:42 PM8/20/07 8:41:42 PM

Chapter 23: Asynchronous Partial Page Rendering

1175

 postbacks. Since our example does not contain any server control causing synchronous page
 postbacks, this list is empty.

❑ Since the third part of this substring does not play any role in this case, it is an empty string,

❑ Since the current example does not contain any server controls causing synchronous page
 postbacks, the fourth part of the substring is an empty string.

 Here is the sixth substring:

 13|updatePanelIDs||tUpdatePanel1|

 This is the substring that the following EncodeString method call in Listing 23-52 generates and
 renders into the response output stream:

 PageRequestManager.EncodeString(writer, “updatePanelIDs”, string.Empty,
 this.GetAllUpdatePanelIDs());

 As you can see, the sixth substring consists of the following four parts:

 ❑ 13 : This first part of the substring tells the client-side PageRequestManager instance that the
fourth part of this substring contains 13 characters.

❑ updatePanelIDs : This second part of the substring tells the client-side PageRequestManager
instance that the fourth part of this substring contains the comma-separated list of the UniqueID
property values of all the UpdatePanel server controls on the current page.

❑ Since the third part of this substring does not play any role in this case, it is an empty string.

❑ tUpdatePanel1 : This fourth part of the substring provides the current client-side
 PageRequestManager instance with the comma-separated list of all the UpdatePanel server
controls on the current page. Since our example includes a single UpdatePanel server control,
this list has a single member. Note that the member consists of two parts, where the first part
contains the letter t , which tells the current client-side PageRequestMananger instance that the
 ChildrenAsTriggers property of this UpdatePanel server control has been set to true , and
the second part contains the UniqueID property value of the UpdatePanel server control.

 Here is the seventh substring:

 0|childUpdatePanelIDs|||

 This is the substring that the following EncodeString method call in Listing 23-52 generates and
 renders into the response output stream:

 PageRequestManager.EncodeString(writer, “childUpdatePanelIDs”, string.Empty,
 this.GetChildUpdatePanelIDs());

c23.indd 1175c23.indd 1175 8/20/07 8:41:42 PM8/20/07 8:41:42 PM

Chapter 23: Asynchronous Partial Page Rendering

1176

 As you can see, the seventh substring consists of the following four parts:

 ❑ 0 : This first part of the substring tells the client-side PageRequestManager instance that the
fourth part of this substring contains zero characters.

❑ childUpdatePanelIDs : This second part of the substring tells the client-side
PageRequestManager instance that the fourth part of this substring contains the comma-
 separated list of the UniqueID property values of all the child UpdatePanel server controls
on the current page.

❑ Since the third part of this substring does not play any role in this case, it is an empty string.

❑ Since the current example does not contain any child UpdatePanel server controls, the fourth
part of the substring is an empty string.

 Here is the eighth substring:

 12|panelsToRefreshIDs||UpdatePanel1|

 This is the substring that the following EncodeString method call in Listing 23-52 generates and
 renders into the response output stream:

 PageRequestManager.EncodeString(writer, “panelsToRefreshIDs”, string.Empty,
 this.GetRefreshingUpdatePanelIDs());

 As you can see, the eighth substring consists of the following four parts:

 ❑ 12 : This first part of the substring tells the client-side PageRequestManager instance that the
fourth part of this substring contains 12 characters.

❑ panelsToRefreshIDs : This second part of the substring tells the client-side PageRequestManager
instance that the fourth part of this substring contains the comma-separated list of the UniqueID
property values of all the UpdatePanel server control on the current page that need refreshing.

❑ Since the third part of the substring does not play any role in this case, it is an empty string.

❑ UpdatePanel1 : This fourth part of the substring provides the current client-side
 PageRequestManager instance with the comma-separated list of all the UpdatePanel
 server controls on the current page that need refreshing. Since our example includes a single
 UpdatePanel server control, this list has a single member.

 Here is the ninth substring:

 2|asyncPostBackTimeout||90|

 This is the substring that the following EncodeString method call in Listing 23-52 generates and ren-
ders into the response output stream:

 PageRequestManager.EncodeString(writer, “asyncPostBackTimeout”, string.Empty,
 this._owner.AsyncPostBackTimeout.ToString());

c23.indd 1176c23.indd 1176 8/20/07 8:41:43 PM8/20/07 8:41:43 PM

Chapter 23: Asynchronous Partial Page Rendering

1177

 As you can see, the ninth substring consists of the following four parts:

 ❑ 2 : This first part of the substring tells the client-side PageRequestManager instance that the
fourth part of this substring contains two characters.

❑ asyncPostBackTimeout : This second part of the substring tells the client-side
 PageRequestManager instance that the fourth part of this substring contains the asynchro-
nous page postback timeout value.

❑ Since the third part of this substring does not play any role in this case, it is an empty string.

❑ 90 : This fourth part of the substring tells the current client-side PageRequestManager instance
that the asynchronous page postback timeout value is 90 .

 Here is the tenth substring:

 12|formAction||Default.aspx|

 The tenth substring is the substring that the following EncodeString method call in Listing 23-52 gener-
ates and renders into the response output stream:

 PageRequestManager.EncodeString(writer, “formAction”, string.Empty,
 writer2.FormAction);

 As you can see, the tenth substring consists of the following four parts:

 ❑ 12 : This first part of the substring tells the client-side PageRequestManager instance that the
fourth part of this substring contains 12 characters.

❑ formAction : This second part of the substring tells the client-side PageRequestManager
instance that the fourth part of this substring contains the form action.

❑ Since the third part of this substring does not play any role in this case, it is an empty string.

❑ Default.aspx : This fourth part of the substring tells the current client-side PageRequestManager
instance that the form action for the current page is Default.aspx .

 Here is the eleventh substring:

 13|pageTitle||Untitled Page

 This is the substring that the following EncodeString method call in Listing 23-52 generates and ren-
ders into the response output stream:

 PageRequestManager.EncodeString(writer, “pageTitle”, string.Empty, text1);

 As you can see, the eleventh substring consists of the following four parts:

 ❑ 13 : This first part of the substring tells the client-side PageRequestManager instance that the
fourth part of this substring contains 13 characters.

❑ pageTitle : This second part of the substring tells the client-side PageRequestManager
 instance that the fourth part of this substring contains the page title.

c23.indd 1177c23.indd 1177 8/20/07 8:41:43 PM8/20/07 8:41:43 PM

Chapter 23: Asynchronous Partial Page Rendering

1178

❑ Since the third part of this substring does not play any role in this case, it is an empty string.

❑ Untitled Page : This fourth part of the substring tells the current client-side
 PageRequestManager instance that the page title is “Untitled Page.”

 Summary
 This chapter followed the Page through its life cycle phases to process the asynchronous page postback
request made by the current client-side PageRequestMananger instance. We followed the request from
the time it arrived in the ASP.NET to the time the server response text was finally sent back to the client.

 The next chapter will move on to the client side, where this server response text arrives, and follow the
client-side PageRequestManager instance through its life cycle phases to process the server response.

c23.indd 1178c23.indd 1178 8/20/07 8:41:43 PM8/20/07 8:41:43 PM

 Asynchronous Partial Page
Rendering: Client-Side

Processing
 The previous chapter followed the Page through its life cycle phases to process the asynchronous
page postback request made by the current client-side PageRequestMananger instance. We
 followed the request from the time it arrived in ASP.NET to the time the server response text was
finally sent back to the client.

 This chapter will move on to the client side, where this server response text arrives, and follow the
client-side PageRequestManager instance through its life cycle phases to process the server
response.

 Arrival of the Server Response Text
 Recall from Listing 22-22 that the _onFormSubmit method of the current client-side
 PageRequestManager instance is where the current client-side PageRequestManager instance
made its asynchronous page postback to the server. Listing 24-1 presents a portion of the
 _onFormSubmit method. As the highlighted portion of this code listing shows, the current
client-side PageRequestManager instance registers its _onFormSubmitCompleted method as
an event handler for the completed event of the WebRequest object that represents the current
request.

 request.add_completed(Function.createDelegate(this,
 this._onFormSubmitCompleted));

 As the name suggests, the WebRequest object fires its completed event when the current request
is finally completed.

c24.indd 1179c24.indd 1179 8/20/07 8:47:44 PM8/20/07 8:47:44 PM

Chapter 24: Asynchronous Partial Page Rendering

1180

 Listing 24-1: The _onFormSubmit Method of the Client-Side PageRequestManager
Instance

 function Sys$WebForms$PageRequestManager$_onFormSubmit(evt)
{
 . . .
 var formBody = new Sys.StringBuilder();
 formBody.append(this._scriptManagerID + ‘=’ +
 this._postBackSettings.panelID + ‘&’);
 var count = form.elements.length;
 for (var i = 0; i < count; i++)
 {
 . . .
 }
 . . .
 var request = new Sys.Net.WebRequest();
 request.set_url(form.action);
 request.get_headers()[‘X-MicrosoftAjax’] = ‘Delta=true’;
 request.get_headers()[‘Cache-Control’] = ‘no-cache’;
 request.set_timeout(this._asyncPostBackTimeout);

 request.add_completed(Function.createDelegate(this,
 this._onFormSubmitCompleted));

 request.set_body(formBody.toString());
 . . .
 this._request = request;
 request.invoke();
 . . .
}

 Recall from Listing 12-41 of Chapter 12 that when the request is finally completed, the
_onReadyStateChange method of the current XMLHttpExecutor is invoked, as shown again in
 Listing 24-2 . As you can see from the highlighted portion of this code listing, the _onReadyStateChange
method invokes the completed method on the WebRequest object that represents the current request.

 Listing 24-2: The _onReadyStateChange Method

 this._onReadyStateChange = function ()
 {
 if (_this._xmlHttpRequest.readyState === 4 /*complete*/)
 {
 _this._clearTimer();
 _this._responseAvailable = true;

 _this._webRequest.completed(Sys.EventArgs.Empty);

 if (_this._xmlHttpRequest != null)
 {
 _this._xmlHttpRequest.onreadystatechange = Function.emptyMethod;
 _this._xmlHttpRequest = null;
 }
 }
 }

c24.indd 1180c24.indd 1180 8/20/07 8:47:45 PM8/20/07 8:47:45 PM

Chapter 24: Asynchronous Partial Page Rendering

1181

 Recall from Listing 12-11 of Chapter 12 that the completed method of the WebRequest object in turn
calls the event handlers registered for the completed event of the WebRequest object, as shown again in
the highlighted portion of Listing 24-3 .

 Listing 24-3: The Completed Method

 function SysNetWebRequest$completed(eventArgs)
{
 var handler = Sys.Net.WebRequestManager._get_eventHandlerList().getHandler(
 “completedRequest”);
 if (handler)
 handler(this._executor, eventArgs);

 handler = this._get_eventHandlerList().getHandler(“completed”);
 if (handler)
 handler(this._executor , eventArgs);

}

 As the boldface portion of Listing 24-3 shows, when the completed method of the WebRequest
object invokes the event handlers registered for its completed event, it passes a reference to the
 WebRequestExecutor object responsible for executing the current request. This means that the first
parameter of the _onFormSubmitCompleted method of the current client-side PageRequestManager
instance references this WebResquestExecutor object. You’ll see the internal implementation of the
_onFormSubmitCompleted method later in the chapter.

 As I mentioned earlier, our goal in this chapter is to follow the current PageRequestMananger instance
through its life cycle phases to process the server response. Since the current PageRequestManager
instance’s life cycle is rather complex and involves a lot of method calls, I’ve captured almost all of them
in a two-part diagram shown in Figures 24-1 and 24-2 to make it easier for you to follow our discussions.
The vertical axis in this two-part diagram measures increasing time (early on the top, late on the bottom).

 Keep this two-part diagram in mind as you’re reading through this chapter. Also keep in mind where we
are on this diagram at every stage of the current PageRequestManager instance’s life cycle.

 As you can see from Listing 24-3 , the _onFormSubmitCompleted method of the current
 PageRequestManager instance sets the _processingRequest field on the current client-
side PageRequestManager instance to true to signal that the request is now being processed:

 this._processingRequest = true;

 Just because the WebRequest object has fired the completed event and consequently called the
_onFormSubmitCompleted method does not mean that everything went fine and the server response
has arrived. The WebRequest object fires the completed event for a number of reasons. Therefore, the
_onFormSubmitCompleted method takes the following steps to determine why the completed event
was raised. First, it calls the get_timedOut method on the WebRequestExecutor object to return a

c24.indd 1181c24.indd 1181 8/20/07 8:47:45 PM8/20/07 8:47:45 PM

Chapter 24: Asynchronous Partial Page Rendering

1182

Boolean value that specifies whether the completed event was raised because of a timeout. If so, it calls
the _endPostBack method on the current PageRequestManager instance to end the ongoing asynchro-
nous postback request and returns the following:

 if (sender.get_timedOut())
 {
 this._endPostBack(this._createPageRequestManagerTimeoutError(), sender);
 return;
 }

 Next, it calls the get_aborted method on the WebRequestExecutor to return a Boolean value that
specifies whether the completed event was raised because the request aborted. If so, it calls the
_endPostBack method on the current PageRequestManager instance to end the ongoing request
and returns this:

 if (sender.get_aborted())
 {
 this._endPostBack(null, sender);
 return;
 }

 Next, the _onFormSubmitCompleted method calls the get_webRequest method on the
 WebRequestExecutor to return a reference to the WebRequest object that represents the request that
the WebRequestExecutor executed. It then compares this with the WebRequest object that the
_request property of the current PageRequestManager instance references. (As the boldface portion

PageRequestManager (Processing Server Response) - First Part

PageRequestManager

_childUpdatePanelIDs _panelsToRefreshIDs

WebRequestExecutor

EventHandlerList

_endPostBack ()

_onFormSubmitCompleted ()

_endPostBack ()

get_timedOut ()

get_aborted ()

get_statusCode ()

_endPostBack ()

get_responseData ()

_endPostBack ()

add (dataItem)

getHandler (‘‘pageLoading’’)

_endPostBack ()

innerHTML=htmlMarkup

_updateControls (updatePanelIDs, asyncPostBackControlIDs,
 postBackControlIDs, asyncPostBackTimeout)

_endPostBack ()

_updatePanel (updatePanelID, htmlMarkup)

get_webRequest ()

add(updatePanelID)

window

_dataItems

eval (_scriptDisposes[updatePanelID])

_destroyTree (updatePanel ID)

add(updatePanelID)

upadatePanelDOMElement

Time Axis

_endPostBack is invoked when get_timedOut returns true

_endPostBack is invoked when get_aborted returns true

_endPostBack is invoked when get_statusCode does not returns 200

_endPostBack is invoked when the response text contains an error
or unrecognized type

_endPostBack is invoked if _panelsToRefreshIDs contains the
UniqueID of a non-existent UpdatePanel

_endPostBack is invoked if the UpdatePanel control whose content
being updated is non-existent

Figure 24-1

c24.indd 1182c24.indd 1182 8/20/07 8:47:45 PM8/20/07 8:47:45 PM

Chapter 24: Asynchronous Partial Page Rendering

1183

of Listing 24-1 shows, the current PageRequestManager instance assigns the WebRequest object to
an internal field named _request before it executes the request.) If these two WebRequest objects
are different, the completed event was raised for a different request and consequently the
_onFormSubmitCompleted method simply returns this:

 if (!this._request || sender.get_webRequest() !== this._request)
 return;

 As you can see, if an application makes several overlapping asynchronous page postback requests to the
server, the last request wins.

 Next, the _onFormSubmitCompleted method calls the get_statusCode method on the
 WebRequestExecutor object to return an integer that contains the response status code. If this code
is not 200 , it is an indication that a server error occurred, and consequently the method calls the
_endPostBack method on the current PageRequestManager instance to end the current request and
returns this:

 if (sender.get_statusCode() !== 200)
 {
 this._endPostBack(
 this._createPageRequestManagerServerError(sender.get_statusCode()), sender);
 return;
 }

PageRequestManager

_scriptDisposes
[updatePanelID] _registerDisposeScript (updatePanelID, disposeScript)

add (disposeScript)

_loadScriptsInternal ()
nextScript=dequeue ()

WebForm AutoFocus (controlIDToFocus)

scrollTo (_scrollPosition.x,_scrollPosition.y)

document

hiddenField=createElement (‘input’)

document

existingScripts=getElementsByTagName (‘SCRIPT’)

_ScriptLoader
readLoadedScripts ()

_getInstance ()

queueScriptBlock (arrayScript)

queueScriptBlock (expandoScript)

queueScriptReference (scriptUrl)

add (arrayScript)

add (expandoScript)

add (scriptUrl)

add (scriptAttributes)

add (onSubmitStatementScript)

queueCustomScriptTag (scriptAttributes)

queueScriptBlock (onSubmitStatementScript)

_pageLoaded ()

scriptElement=_createScriptElement (nextScript)

getHandler (‘‘pageLoaded’’)

_endPostBack ()

loadScripts ()

_referencedScripts

_scriptsToLoadadd(existingScripts)

_ScriptLoaderTask

new Sys. ScriptLoaderTask(scriptElement,_scriptLoadedDelegate)

execute ()
appendChild (scriptElement)

scriptsLoadComplete ()

EventHandlerList

headElement

Time Axis

_form

window

appendChild (hiddenField)

PageRequestManager (Processing Server Response) - Second Part

Figure 24-2

c24.indd 1183c24.indd 1183 8/20/07 8:47:46 PM8/20/07 8:47:46 PM

Chapter 24: Asynchronous Partial Page Rendering

1184

 Next, the _onFormSubmitCompleted method calls the get_responseData method on the
 WebRequestExecutor object to return the string that contains the server response:

 var reply = sender.get_responseData();

 Recall from Listing 23-52 that the server response text is a string that contains a bunch of substrings in
the format length|type|id|content , where:

 ❑ The length part tells the current client-side PageRequestManager instance how many
 characters there are in the content part of the substring.

❑ The type part tells the current client-side PageRequestManager instance what type of
 information the content part contains.

❑ The optional id part specifies the ClientID property value of the server control associated with
the information contained in the content part.

❑ The content part contains the actual information that the current server-side
 PageRequestManager instance has sent to the current client-side PageRequestManager
instance.

 Listing 24-4 contains an example of a server response text that the current server-side PageRequestManager
instance sends to the current client-side PageRequestManager instance. Keep this code listing in mind as
we’re walking through the implementation of the _onFormSubmitCompleted method. The main
 responsibility of this method is to parse a response text similar to Listing 24-4 .

 Listing 24-4: An Example of a Server Response Text that the Current Client-Side
PageRequestManager Might Receive

 586|updatePanel|UpdatePanel1|
 <table>
 <tr>
 <td>
 First Name:</td>
 <td>
 <input name=”TextBox1” type=”text” value=”Shahram” id=”TextBox1”
 /></td>
 </tr>
 <tr>
 <td>
 Last Name:</td>
 <td>
 <input name=”TextBox2” type=”text” value=”Khosravi” id=”TextBox2”
 /></td>
 </tr>
 <tr>
 <td colspan=”2” align=”center”>
 <input type=”submit” name=”Button1” value=”Submit” id=”Button1”
 /></td>
 </tr>
 </table>

c24.indd 1184c24.indd 1184 8/20/07 8:47:46 PM8/20/07 8:47:46 PM

Chapter 24: Asynchronous Partial Page Rendering

1185

|52|hiddenField|__VIEWSTATE|/wEPDwULLTIxMjYzMDU2NzJkZJ0ptWJFvcbB8l53OBKz9PRMaPrd|64
|hiddenField|__EVENTVALIDATION|/wEWBAKj4cTUAgLs0bLrBgLs0fbZDAKM54rGBv6aI9H0BYIx273P
dOWCCpAOOHzF|0|asyncPostBackControlIDs|||0|postBackControlIDs|||13|updatePanelIDs||
tUpdatePanel1|0|childUpdatePanelIDs|||12|panelsToRefreshIDs||UpdatePanel1|2|asyncPo
stBackTimeout||90|12|formAction||Default.aspx|13|pageTitle||Untitled Page

 The _onFormSubmitCompleted method recursively takes the following steps to parse each substring in
the server response string:

 ❑ It accesses the index of the first delimiter | character of the substring:

 delimiterIndex = reply.indexOf(‘|’, replyIndex);

 ❑ If the substring does not contain this delimiter, the _onFormSubmitCompleted method calls
 another method named _findText , stores the return value of this method in a local field named
 parserErrorDetails , and exits the while loop that loops through the substrings in the server
response string. In other words, it does not attempt to parse the rest of the server response
string. There is no point in processing an erroneous server response. As you’ll see shortly, the
first statement after this while loop checks whether the value of the parserErrorDetails
field is set. If so, it takes the appropriate action to end the current request.

 if (delimiterIndex === -1)
 {
 parserErrorDetails = this._findText(reply, replyIndex);
 break;
 }

 ❑ The following code listing presents the implementation of the _findText method:

 function Sys$WebForms$PageRequestManager$_findText(text, location)
{
 var startIndex = Math.max(0, location - 20);
 var endIndex = Math.min(text.length, location + 20);
 return text.substring(startIndex, endIndex);
}

 ❑ The _onFormSubmitCompleted method parses the first part (that is, the length part) of the
substring:

 len = parseInt(reply.substring(replyIndex, delimiterIndex), 10);
 replyIndex = delimiterIndex + 1;

 ❑ It accesses the index of the second delimiter:

 delimiterIndex = reply.indexOf(delimitByLengthDelimiter, replyIndex);

 ❑ If the substring does not contain this delimiter, the _onFormSubmitCompleted method calls the
 _findText method, stores the return value of this method in the parserErrorDetails local
field, and exits the while loop, as discussed earlier.

c24.indd 1185c24.indd 1185 8/20/07 8:47:46 PM8/20/07 8:47:46 PM

Chapter 24: Asynchronous Partial Page Rendering

1186

 if (delimiterIndex === -1)
 {
 parserErrorDetails = this._findText(reply, replyIndex);
 break;
 }

 ❑ The _onFormSubmitCompleted method parses the second part (that is, the type part) of the
substring:

 type = reply.substring(replyIndex, delimiterIndex);
 replyIndex = delimiterIndex + 1;

 ❑ It accesses the index of the third delimiter | :

 delimiterIndex = reply.indexOf(delimitByLengthDelimiter, replyIndex);

 ❑ If the substring does not contain this delimiter, the _onFormSubmitCompleted method calls the
 _findText method, stores the return value of this method in the parserErrorDetails local
field, and exits the while loop, as discussed earlier.

 if (delimiterIndex === -1)
 {
 parserErrorDetails = this._findText(reply, replyIndex);
 break;
 }

 ❑ The _onFormSubmitCompleted method parses the third part (that is, the id part) of the
substring:

 id = reply.substring(replyIndex, delimiterIndex);
 replyIndex = delimiterIndex + 1;

 ❑ Recall that the len local field contains the length of the content part of the substring.
_onFormSubmitCompleted first checks whether the index of the expected last character of the
content part of the substring is a value that exceeds the length of the substring. If so, this is an
indication that the server response has problems and consequently _onFormSubmitCompleted
takes the same steps discussed earlier and exits the while loop.

 if ((replyIndex + len) >= reply.length)
 {
 parserErrorDetails = this._findText(reply, reply.length);
 break;
 }

 ❑ The _onFormSubmitCompleted method accesses the fourth part (that is, the content part) of
the substring. (Note that the length of the fourth part is given by the first part of the
 length|type|id|content format.)

 content = this._decodeString(reply.substr(replyIndex, len));
 replyIndex += len;

c24.indd 1186c24.indd 1186 8/20/07 8:47:47 PM8/20/07 8:47:47 PM

Chapter 24: Asynchronous Partial Page Rendering

1187

❑ Next, _onFormSubmitCompleted checks whether the last character of the substring is the
 delimiter character (|). If not, this is an indication that the server response has problems and
consequently _onFormSubmitCompleted method takes the same steps discussed earlier
 and exits the while loop.

 if (reply.charAt(replyIndex) !== delimitByLengthDelimiter)
 {
 parserErrorDetails = this._findText(reply, replyIndex);
 break;
 }

 ❑ The _onFormSubmitCompleted method creates an object literal with three name/value
pairs. The name part of the first pair is the word type and its value part is the second part of the
substring (that is, the type part). The name part of the second name/value pair is the word id
and its value part is the third part of the substring (that is, the id part). The name part of the
third name/value pair is the word content and its value part is the fourth part of the substring
(that is, the content part).

 var obj = {type: type, id: id, content: content};

 ❑ The _onFormSubmitCompleted method stores the above object literal in a local array named
 delta .

 Array.add(delta, obj);

 As you can see, the _onSubmitFormCompleted method parses each substring (in the
 length|type|id|content format) into an object literal and stores the object in a local array
named delta .

 After existing the while loop, the _onSubmitFormCompleted method first checks whether the value of
the parseErrorDetails local field is set. If so, this is an indication that the server response had some
problems and consequently _onSubmitFormCompleted invokes the _endPostBack method to end the
current asynchronous page postback request.

 if (parserErrorDetails)
{
 this._endPostBack(this._createPageRequestManagerParserError(
 String.format(Sys.WebForms.Res.PRM_ParserErrorDetails,
 parserErrorDetails)), sender);
 return;
}

 Next, the method iterates through the object literals in the delta array and checks the value of the type
property of each enumerated object (recall that the value associated with the type property of the object
contains the second part of the length|type|id|content format):

 ❑ If the type is the string “updatePanel” , the _onFormSubmitCompleted method adds the
 enumerated object to a local array named updatePanelNodes . The value of the id property of
this object is a string that contains the value of the UniqueID property of an UpdatePanel

c24.indd 1187c24.indd 1187 8/20/07 8:47:47 PM8/20/07 8:47:47 PM

Chapter 24: Asynchronous Partial Page Rendering

1188

server control. The value of the content property of this object is a string that contains the
markup text for this UpdatePanel server control.

 case “updatePanel”:
 Array.add(updatePanelNodes, deltaNode);
 break;

 ❑ If the type is the string “hiddenField” , the _onFormSubmitCompleted method adds the
 enumerated object to a local array named hiddenFieldNodes . The value of the id property of
this object is a string that contains the name of the hidden field and the value of the content
property is a string that contains the value of the hidden field.

 case “hiddenField”:
 Array.add(hiddenFieldNodes, deltaNode);
 break;

 ❑ If the type is the string “arrayDeclaration” , the _onFormSubmitCompleted method adds
the enumerated object to a local array named arrayDeclarationNodes . This object describes
an array declaration in which the value of the id property of the object is a string that contains
the name of the JavaScript array. The value of the content property of this object is a string that
contains the value being added to the array.

 case “arrayDeclaration”:
 Array.add(arrayDeclarationNodes, deltaNode);
 break;

 ❑ If the type is the string “scriptBlock” , the _onFormSubmitCompleted method adds the
 enumerated object to a local array named scriptBlockNodes . This object describes a script
block in which the value of the id property of the object is one of the following string values:
 “ScriptContentNoTags” , “ScriptContentWithTags” , or “ScriptPath”, and in which the
value of the content property is a string that contains the associated script block:

 case “scriptBlock”:
 Array.add(scriptBlockNodes, deltaNode);
 break;

 ❑ If the type is the string “expando” , the _onFormSubmitCompleted method adds the
 enumerated object to a local array named expandoNodes . This object describes an expando
 attribute in which the value of the id property of the object is a string that contains the name of
the expando attribute, and the value of the content property is a string that contains the value
of the expando attribute.

 case “expando”:
 Array.add(expandoNodes, deltaNode);
 break;

 ❑ If the type is the string “onSubmit” , the _onFormSubmitCompleted method adds the enumer-
ated object to a local array named onSubmitNodes . This object describes a dynamically added
form onsubmit statement in which the value of the id property of the object is an empty string
and the value of the content property of the object is a string that contains the dynamically
added form onsubmit statement.

c24.indd 1188c24.indd 1188 8/20/07 8:47:47 PM8/20/07 8:47:47 PM

Chapter 24: Asynchronous Partial Page Rendering

1189

 case “onSubmit”:
 Array.add(onSubmitNodes, deltaNode);
 break;

 ❑ If the type is the string “asyncPostBackControlIDs” , the _onFormSubmitCompleted
method assigns the enumerated object to a local field named asyncPostBackControlIDsNode .
This object describes all the server controls on the page that cause asynchronous page postbacks.
The value of the id property of this object is an empty string, and the value of the content
property is a string that contains a comma-separated list of substrings, each substring containing
the value of the UniqueID property of a server control that causes an asynchronous page
postback.

 case “asyncPostBackControlIDs”:
 asyncPostBackControlIDsNode = deltaNode;
 break;

 ❑ If the type is the string “postBackControlIDs” , the _onFormSubmitCompleted method
 assigns the enumerated object to a local field named postBackControlIDsNode . This object
 describes all the server controls on the page that cause normal synchronous page postbacks. The
value of the id property of this object is an empty string, and the value of the content property
is a string that contains a comma-separated list of substrings, each substring containing the
value of the UniqueID property of a server control that causes a synchronous page postback.

 case “postBackControlIDs”:
 postBackControlIDsNode = deltaNode;
 break;

 ❑ If the type is the string “updatePanelIDs” , the _onFormSubmitCompleted method assigns
the enumerated object to a local field named updatePanelIDsNode . This object describes all the
 UpdatePanel server controls on the current page. The value of the id property of this object is
an empty string, and the value of the content property is a string that contains a comma-
 separated list of substrings, each substring containing the value of the UniqueID property of an
 UpdatePanel server control.

 case “updatePanelIDs”:
 updatePanelIDsNode = deltaNode;
 break;

 ❑ If the type is the string “asyncPostBackTimeout” , the _onFormSubmitCompleted method
assigns the enumerated object to a local field named asyncPostBackTimeoutNode . This object
describes timeout value for asynchronous page postbacks. The value of the id property of this
object is an empty string, and the value of the content property is a string that contains the
value of the asynchronous page postback timeout:

 case “asyncPostBackTimeout”:
 asyncPostBackTimeoutNode = deltaNode;
 break;

c24.indd 1189c24.indd 1189 8/20/07 8:47:48 PM8/20/07 8:47:48 PM

Chapter 24: Asynchronous Partial Page Rendering

1190

❑ If the type is the string “childUpdatePanelIDs” , the _onFormSubmitCompleted method
 assigns the enumerated object to a local field named childUpdatePanelIDsNode . This object
describes all the child UpdatePanel server controls on the current page that need updating
 because their parent UpdatePanel server controls need updating. The value of the id property
of this object is an empty string, and the value of the content property is a string that contains a
comma-separated list of substrings, each substring containing the value of the UniqueID
 property of a child UpdatePanel server control.

 case “childUpdatePanelIDs”:
 childUpdatePanelIDsNode = deltaNode;
 break;

 ❑ If the type is the string “panelsToRefreshIDs” , the _onFormSubmitCompleted method
 assigns the enumerated object to a local field named panelsToRefreshNode . This object
 describes all the UpdatePanel server controls on the current page that need updating. The
value of the id property of this object is an empty string, and the value of the content property
is a string that contains a comma-separated list of substrings, each substring containing the
value of the UniqueID property of an UpdatePanel server control.

 case “panelsToRefreshIDs”:
 panelsToRefreshNode = deltaNode;
 break;

 ❑ If the type is the string “formAction” , the _onFormSubmitCompleted method assigns the
enumerated object to a local field named formActionNode . This object describes the current
form action. The value of the id property of this object is an empty string, and the value of the
 content property is a string that contains the value of the action property of the form.

 case “formAction”:
 formActionNode = deltaNode;
 break;

 ❑ If the type is the string “dataItem” , the _onFormSubmitCompleted method adds the enumer-
ated object to a local array named dataItemNodes . This object describes a data item associated
with a server control. The value of the id property of the object is the value of the ClientID
property of the server control, and the value of the content property is a string that contains
the string representation of the data item. For example, this string representation could be an
XML representation of the data item.

 case “dataItem”:
 Array.add(dataItemNodes, deltaNode);
 break;

 ❑ If the type is the string “dataItemJson” , the _onFormSubmitCompleted method adds the
enumerated object to a local array named dataItemJsonNodes . This object describes a data
item associated with a server control. The value of the id property of the object is the value of
the ClientID property of the server control, and the value of the content property is a string
that contains the JSON representation of the data item.

 case “dataItemJson”:
 Array.add(dataItemJsonNodes, deltaNode);
 break;

c24.indd 1190c24.indd 1190 8/20/07 8:47:48 PM8/20/07 8:47:48 PM

Chapter 24: Asynchronous Partial Page Rendering

1191

 ❑ If the type is the string “scriptDispose” , the _onFormSubmitCompleted method adds the
enumerated object to a local array named scriptDisposeNodes . This object describes a script
that contains a call into a dispose method associated with an UpdatePanel server control. The
value of the id property of the object is the value of the ClientID property of the UpdatePanel
server control, and the value of the content property is a string that contains the calls into the
 dispose method.

 case “scriptDispose”:
 Array.add(scriptDisposeNodes, deltaNode);
 break;

 ❑ The following code fragment shows an example of the value of the content property. This
 example registers the $find(‘UpdatePanel1’).dispose(); script for the UpdatePanel
server control whose ClientID property has the value of “UpdatePanel1” :

 Sys.WebForms.PageRequestManager.getInstance()._registerDisposeScript(“UpdatePanel1”
 ,”$find(‘UpdatePanel1’).dispose();”);

 ❑ If the type is the string “pageRedirect” , the _onFormSubmitCompleted method assigns the
value of the content property of the enumerated object to the href property of the location
property of the window object. As you can see, the value of the content property of this object is
a string that contains the URL to which the current window will be redirected:

 case “pageRedirect”:
 window.location.href = deltaNode.content;
 return;

 ❑ If the type is the string “error” , the enumerated object describes a server error: the value of the
 id property of the object is a string that contains the number associated with the error, and the
value of the content property of the object is a string that contains the error message. As you
can see, the _onFormSubmitCompleted method calls the _endPostBack method on the current
 PageRequestManager instance to end the current request:

 case “error”:
 this._endPostBack(this._createPageRequestManagerServerError(
 Number.parseInvariant(deltaNode.id), deltaNode.content), sender);
 return;

 ❑ If the type is the string “pageTitle” , the enumerated object describes the title of the current
page: the value of the content property of the object is a string that contains the new title of
the page. Because of this, the _onFormSubmitCompleted method assigns the value of the
 content property to the title property of the document object.

 case “pageTitle”:
 document.title = deltaNode.content;
 break;

c24.indd 1191c24.indd 1191 8/20/07 8:47:48 PM8/20/07 8:47:48 PM

Chapter 24: Asynchronous Partial Page Rendering

1192

 ❑ If the type is the string “focus” , the enumerated object describes the HTML element that must
have the focus. The value of the id property of this object is an empty string, and the value of
the content property is a string that contains the value of the ClientID property of the server
control that must have the focus. As you can see, the _onFormSubmitCompleted method
 assigns the value of the content property of the object to the _controlIDToFocus field of the
current PageRequestManager instance:

 case “focus”:
 this._controlIDToFocus = deltaNode.content;
 break;

 ❑ If the type is none of the preceding strings, the _onFormSubmitCompleted method calls the
_endPostBack method on the current PageRequestManager instance to end the current post-
back request:

 default:
 this._endPostBack(this._createPageRequestManagerParserError(
 String.format(Sys.WebForms.Res.PRM_UnknownToken, deltaNode.type)), sender);
 return;

 Next, the _onFormSubmitCompleted method stores the contents of the _updatePanelIDs array in the
 _oldUpdatePanelIDs array field of the current PageRequestManager instance:

 this._oldUpdatePanelIDs = this._updatePanelIDs;

 Then the method uses the childUpdatePanelIDsNode to populate the _childUpdatePanelIDs array
of the current PageRequestManager instance. Keep in mind that this array contains the value of the
 UniqueID properties of the UpdatePanel server controls that need updating because their parent
 UpdatePanel server control needs updating:

 var childUpdatePanelIDsString = childUpdatePanelIDsNode.content;
 this._childUpdatePanelIDs =
 childUpdatePanelIDsString.length ? childUpdatePanelIDsString.split(‘,’) : [];

 Next, the method uses the panelsToRefreshNode to populate the _panelsToRefreshIDs array of the
current PageRequestManager instance. Keep in mind that this array contains the value of the UniqueID
properties of the UpdatePanel server controls that need updating:

 this._panelsToRefreshIDs = this._splitNodeIntoArray(panelsToRefreshNode);

 Next the method iterates through the UniqueID property values in the _panelsToRefreshIDs array,
passes each enumerated value into the _uniqueIDToClientID method to return the value of its
 associated ClientID property, and finally calls the getElementById method, passing in this ClientID
property value to check whether the current page contains an UpdatePanel server control with the
specified UniqueID and ClientID property values. If not, it calls the _endPostBack method to end the
current request:

c24.indd 1192c24.indd 1192 8/20/07 8:47:49 PM8/20/07 8:47:49 PM

Chapter 24: Asynchronous Partial Page Rendering

1193

 for (i = 0; i < this._panelsToRefreshIDs.length; i++)
 {
 var panelClientID = this._uniqueIDToClientID(this._panelsToRefreshIDs[i]);
 if (!document.getElementById(panelClientID))
 {
 this._endPostBack(Error.invalidOperation(
 String.format(Sys.WebForms.Res.PRM_MissingPanel, panelClientID)), sender);
 return;
 }
 }

 Next, the _onFormSubmitCompleted method calls the _splitNodeIntoArray method of the
 PageRequestManager three times to convert asyncPostBackControlIDsNode ,
 postBackControlIDsNode , and updatePanelIDsNode into arrays:

 var asyncPostBackControlIDsArray =
 this._splitNodeIntoArray(asyncPostBackControlIDsNode);
 var postBackControlIDsArray = this._splitNodeIntoArray(postBackControlIDsNode);
 var updatePanelIDsArray = this._splitNodeIntoArray(updatePanelIDsNode);
 var asyncPostBackTimeout = asyncPostBackTimeoutNode.content;

 Next, it calls the _updateControls method on the current PageRequestManager instance, passing in
the following parameters:

 ❑ updatePanelIDsArray : This parameter is an array that contains the values of the UniqueID
properties of all UpdatePanel server controls on the current page after the update. I say “after
the update” because this array has just arrived from the server. Because of this, the content
of the _updatePanelIDs array of the current PageRequestManager instance could be out of
date: the server code may have added a new UpdatePanel server control or deleted an existing
 UpdatePanel server control.

❑ asyncPostBackControlIDsArray : This parameter is an array that contains the values of the
 UniqueID properties of all the server controls on the current page that cause asynchronous page
postbacks.

❑ postBackControlIDsArray : This parameter is an array that contains the values of the
 UniqueID properties of all the server controls on the current page that cause normal
 synchronous page postbacks.

❑ asyncPostBackTimeout : This parameter is a string that contains the timeout value for
 asynchronous page postbacks:

 this._updateControls(updatePanelIDsArray, asyncPostBackControlIDsArray,
 postBackControlIDsArray, asyncPostBackTimeout);

 I thoroughly discussed the _updateControls method of the PageRequestManager in Chapter 22 .

 Next, the _onFormSubmitCompleted method iterates through the objects in the dataItemNodes array
(recall that this array contains all the objects that represent data items) and uses the value of the id
 property of each enumerated object as an index into the _dataItems collection of the current

c24.indd 1193c24.indd 1193 8/20/07 8:47:49 PM8/20/07 8:47:49 PM

Chapter 24: Asynchronous Partial Page Rendering

1194

 PageRequestManager instance to store the value of the content property of the enumerated object into
the collection. Recall that the value of the content property of the enumerated object is a string that
 contains the string representation of the data item associated with the server control whose UniqueID
property value is given by the value of the id property of the enumerated object. In other words, each
item in the _dataItems collection of the current PageRequestManager instance contains the string
 representation of a data item associated with a server control that has a specified UniqueID
property value:

 this._dataItems = {};
 for (i = 0; i < dataItemNodes.length; i++)
 {
 var dataItemNode = dataItemNodes[i];
 this._dataItems[dataItemNode.id] = dataItemNode.content;
 }

 Next, the _onFormSubmitCompleted method iterates through the objects in the dataItemJsonNodes
array (recall that this array contains all the objects that represent JSON data items) and uses the value of
the id property of each enumerated object as an index into the _dataItems collection of the current
 PageRequestManager instance to store the value of the content property of the enumerated object into
the collection. Recall that the value of the content property of the enumerated object is a string that
 contains the JSON representation of the data item associated with the server control whose UniqueID
property value is given by the value of the id property of the enumerated object:

 for (i = 0; i < dataItemJsonNodes.length; i++)
 {
 var dataItemJsonNode = dataItemJsonNodes[i];
 this._dataItems[dataItemJsonNode.id] = eval(dataItemJsonNode.content);
 }

 Next, the _onFormSubmitCompleted method calls the get_eventHandlerList method on the current
 PageRequestManager instance to return a reference to the EventHandlerList that contains all the
event handlers registered for the events of the PageRequestManager instance. Then it calls the
 getHandler method on this EventHandlerList to return a reference to a JavaScript function whose
invocation automatically invokes all the event handlers registered for the pageLoading event of the
 current PageRequestManager instance:

 var handler = this._get_eventHandlerList().getHandler(“pageLoading”);

 Next, it calls the _getPageLoadingEventArgs method on the current PageRequestManager instance to
instantiate and return a PageLoadingEventArgs object. As you’ll see later, the PageLoadingEventArgs
is the event data class for the pageLoading event of the PageRequestManager class:

 var Sys.WebForms.PageLoadingEventArgs args = this._getPageLoadingEventArgs();

 Then it calls the previously mentioned JavaScript function and consequently all the event handlers
 registered for the pageLoading event of the current PageRequestManager instance, passing in a
 reference to the current PageRequestManager instance and the PageLoadingEventArgs object:

 handler(this, args);

c24.indd 1194c24.indd 1194 8/20/07 8:47:49 PM8/20/07 8:47:49 PM

Chapter 24: Asynchronous Partial Page Rendering

1195

 If you register an event handler for the pageLoading event of the current PageRequestManager
instance, your event handler will receive the previously mentioned two references. Your handler can
then use these two references to get the complete information about the current request and use this
 information to perform application-specific page-loading tasks.

 Next, the _onFormSubmitCompleted method checks whether the formActionNode local variable is
 null . Recall that this variable references the object that describes the action property of the current
form. If the variable is not null , the method assigns the value of the content property of this object to
the action property of the form. You may be wondering why an asynchronous page postback may end
up changing the action property of the current form. This normally happens when cookieless sessions
are used, in which the session ID is embedded in the target URL, which changes the action value:

 if (formActionNode)
 this._form.action = formActionNode.content;

 Next, the method iterates through the objects in the updatePanelNodes array (recall that each object in
this array describes an UpdatePanel server control that needs updating) and takes the following steps
for each enumerated object. First, it calls the getElementById method on the document object, passing
in the value of the id property of the enumerated object. Recall that the value of this property is a string
that contains the value of the ClientID property of the UpdatePanel server control that the object
describes. Therefore, the getElementById method returns a reference to the DOM element associated
with the UpdatePanel server control:

 var deltaUpdatePanel = updatePanelNodes[i];
 var updatePanelElement = document.getElementById(deltaUpdatePanel.id);

 If the current page does not contain a DOM element associated with the UpdatePanel
server control, the _onFormSubmitCompleted method calls the _endPostBack method on the
current PageRequestManager instance to end the current request:

 if (!updatePanelElement)
 {
 this._endPostBack(Error.invalidOperation(
 String.format(Sys.WebForms.Res.PRM_MissingPanel, deltaPanelID)), sender);
 return;
 }

 Next, the method calls the _updatePanel method on the current PageRequestManager instance,
 passing in a reference to the DOM element that represents the UpdatePanel server control and the value
of the content property of the enumerated object. Recall that the value of this property is a string that
contains the markup text for the UpdatePanel server control. As you’ll see later, the _updatePanel
server control updates the content of the specified UpatePanel server control with the specified HTML
markup text.

 this._updatePanel(updatePanelElement, deltaUpdatePanel.content);

 Next, the method iterates through the objects in the scriptDisposeNodes array. Recall that the value
of the content property of each object in this array contains a script that disposes the server control
whose ClientID property value is given by the value of the id property of the object. The
_onFormSubmitCompleted method calls the _registerDisposeScript method on the current
 PageRequestManager instance, passing in the values of the id and content properties of the

c24.indd 1195c24.indd 1195 8/20/07 8:47:50 PM8/20/07 8:47:50 PM

Chapter 24: Asynchronous Partial Page Rendering

1196

enumerated object. As you’ll see later, the _registerDisposeScript method of the current
 PageRequestManager instances registers the specified dispose script for the specified UpdatePanel
server control:

 for (i = 0; i < scriptDisposeNodes.length; i++)
 {
 var disposePanelId = scriptDisposeNodes[i].id;
 var disposeScript = scriptDisposeNodes[i].content;
 this._registerDisposeScript(disposePanelId, disposeScript);
 }

 Next, the method iterates through the objects in the hiddenFieldNodes array. Recall that each object in
this array describes a hidden field for which the value of the id property of the object contains the value
of the id HTML attribute of the hidden field, and the value of the content property of the object con-
tains the value that must be stored in the hidden field. The _onFormSubmitCompleted method takes the
following steps for each enumerated object. First, it calls the getElementById method on the document
object to check whether the current page already contains a hidden field with the specified id HTML
attribute value.

 var hiddenFieldElement = document.getElementById(hiddenFieldNodes[i].id);

 If so, it simply stores the value of the content property of the enumerated object in the existing
hidden field:

 hiddenFieldElement.value = value;

 If not, it takes the following steps to create a new hidden field. First, it calls the createElement method
on the document object to create a new input HTML element:

 hiddenFieldElement = document.createElement(‘input’);

 Then it assigns the value of the id property of the enumerated object to the id property of the newly
instantiated input HTML element:

 hiddenFieldElement.id = hiddenFieldNodes[i].id;

 Next, the _onFormSubmitCompleted method assigns the value of the id property of the enumerated
object to the name property of the newly instantiated input HTML element:

 hiddenFieldElement.name = hiddenFieldNodes[i].id;

 Next, it sets the type property of the newly instantiated input HTML element to hidden :

 hiddenFieldElement.type = ‘hidden’;

 Finally, it calls the appendChild method on the form element to append the newly instantiated hidden
field as the child of the form element:

 this._form.appendChild(hiddenFieldElement);

c24.indd 1196c24.indd 1196 8/20/07 8:47:50 PM8/20/07 8:47:50 PM

Chapter 24: Asynchronous Partial Page Rendering

1197

 Next, the _onFormSubmitCompleted method iterates through the objects in the arrayDeclarationNodes
array. Recall that each object in this array represents an array declaration for which the value of the id
 property of the object contains the name of the array being declared, and the value of the content property
of the object contains the value being stored in the array. As you can see, the method takes the following
steps for each object in the arrayDeclarationNodes array. First, it creates a string that contains a call into
the _addArrayElement static method of the PageRequestManager class, passing in the values of the
id and content properties of the object as the arguments of the method. Next, it adds this string to
 a local string named arrayScript that accumulates all the strings associated with the objects in the
 arrayDeclarationNodes array:

 var arrayScript = ‘’;
 for (i = 0; i < arrayDeclarationNodes.length; i++)
 {
 arrayScript += “Sys.WebForms.PageRequestManager._addArrayElement(‘” +
 arrayDeclarationNodes[i].id + “’, “ +
 arrayDeclarationNodes[i].content + “);\r\n”;
 }

 Next, the _onFormSubmitCompleted method iterates through the objects in the expandoNodes array.
Recall that each object in this array describes an expando attribute for which the values of the id and
 content properties of the object contain the name and value, respectively of the expando attribute. As
you can see, the _onFormSubmitCompleted method forms a string for each object that consists of two
substrings separated by the equals sign, these substrings containing the name and value, respectively, of
the associated expando attribute. Note that the expandoScript string accumulates all these strings.

 var expandoScript = ‘’;
 for (i = 0; i < expandoNodes.length; i++)
 {
 var propertyReference = expandoNodes[i].id;
 var propertyValue = expandoNodes[i].content;
 expandoScript += propertyReference + “ = “ + propertyValue + “\r\n”;
 }

 As you can see, the server response to an asynchronous page postback may contain scripts. The current
page may also contain scripts. Therefore, you need a way to avoid duplicate scripts. The ASP.NET AJAX
client-side framework comes with an internal class named _ScriptLoader that provides the current
 PageRequestManager instance with script-loading services. The _onFormSubmitCompleted method of
the current PageRequestManager instance, shown in Listing 24-5 , uses these services to avoid loading
duplicate scripts as follows:

 ❑ The method begins by calling the readLoadedScripts static method on the _ScriptLoader
class. As you’ll see later, this static method populates an internal static collection named
_referencedScripts with the values of the src HTML attributes of all the script HTML
 elements that currently exist on the current page. I say currently because the server response to
the current asynchronous page postback request may contain references to script files that the
existing script HTML elements on the current page may or may not reference.

 Sys._ScriptLoader.readLoadedScripts();

c24.indd 1197c24.indd 1197 8/20/07 8:47:50 PM8/20/07 8:47:50 PM

Chapter 24: Asynchronous Partial Page Rendering

1198

 ❑ The method then calls the getInstance static method of the _ScriptLoader class to access the
current _ScriptLoader instance. Each page can have only one instance of the _ScriptLoader
class. As you’ll see later, the getInstance method checks whether an internal static field named
 _instance references an instance of the _ScriptLoader class. If so, it simply returns this
 reference. If not, it creates and returns a new instance of the _ScriptLoader class and stores
this instance in this internal field for future use. This ensures that the current page always uses
the same instance of the _ScriptLoader class.

 var scriptLoader = Sys._ScriptLoader.getInstance();

 ❑ Next, the method calls the queueScriptBlock method on the current _ScriptLoader instance
to queue the script contained in the arrayScript string. Recall that the arrayScript string
contains the script that declares one or more JavaScript arrays. The current page may or may not
contain the same ones.

❑ As you’ll see later, the queueScriptBlock method simply adds the specified script to an inter-
nal collection named _scriptsToLoad :

 if (arrayScript.length)
 scriptLoader.queueScriptBlock(arrayScript);

 ❑ Next, the method calls the queueScriptBlock method on the current _ScriptLoader instance
to queue the script contained in the expandoScript string. Recall that the expandoScript
string contains the script that defines one or more expando attributes:

 if (expandoScript.length)
 scriptLoader.queueScriptBlock(expandoScript);

 ❑ Then the method iterates through the objects in the scriptBlockNodes array and takes the
 following steps for each enumerated object:

 ❑ If the value of the id property of the object is the string “ScriptContentNoTags” , this
is an indication that the value of the content property of the object contains a script
block. Therefore, the method calls the queueScriptBlock method on the current
_ScriptLoader instance to queue this script block:

 case “ScriptContentNoTags”:
 scriptLoader.queueScriptBlock(scriptBlockNodes[i].content);
 break;

 ❑ If the value of the id property of the object is the string “ScriptContentWithTags” , this
is an indication that the value of the content property of the object does not contain a
script block. Instead it contains the JSON representation of the attributes of a script HTML
element. You can think of this JSON representation as the serialized form of these attri-
butes. It contains one name/value pair for each attribute, where the name part of the pair
is a string that contains the name of the attribute, and the value part is a string that con-
tains the value of the attribute. Keep in mind that some of these attributes may be custom
attributes.

c24.indd 1198c24.indd 1198 8/20/07 8:47:51 PM8/20/07 8:47:51 PM

Chapter 24: Asynchronous Partial Page Rendering

1199

❑ The _onFormSubmitCompleted method first checks whether this JSON representation
contains a name/value pair for the src HTML attribute. If so, it uses the name part of this
pair — that is, the keyword src — to access the value part of the pair — that is, the URL of
the referenced script file — and calls the isScriptLoaded static method on the
_ScriptLoader class to check whether the internal _referencedScripts collection
 contains an entry for this URL. (Recall that this collection contains the URLs of all the
 currently referenced script files.) If so, the _onFormSubmitCompleted method skips the
enumerated object. If not, it calls the queueCustomScriptTag method on the current
_ScriptLoader instance, passing in the JSON representation of the script attributes. As
you’ll see later, this method simply adds this JSON representation to an internal collection
named _scriptsToLoad . This collection contains one object for each script file that needs
to be loaded, and describes the HTML standard and custom script attributes.

 case “ScriptContentWithTags”:
 var scriptTagAttributes;
 eval(“scriptTagAttributes = “ + scriptBlockNodes[i].content);
 if (scriptTagAttributes.src &&
 Sys._ScriptLoader.isScriptLoaded(scriptTagAttributes.src))
 continue;
 scriptLoader.queueCustomScriptTag(scriptTagAttributes);
 break;

 ❑ If the value of the id property of the object is the string “ScriptPath” , this is an
 indication that the value of the content property of the object does not contain a script
block. Instead it contains the URL of a script file. The _onFormSubmitCompleted method
first calls the isScriptLoaded static method on the _ScriptLoader class to check
whether the internal _referencedScripts collection contains an entry for this URL. If
so, it simply skips the enumerated object because the associated script has already
been loaded.

 If not, it calls the queueScriptReference method on the current _ScriptLoader
 instance, passing in the value of the content property of the enumerated object — that is,
the URL. As you’ll see later, this method creates an object with a single name/value pair
and adds the object to the internal _scriptsToLoad collection. The name part of this
name/value pair is the keyword src and the value part is the URL.

❑ Keep in mind that _scriptsToLoad is a collection of objects in which each object
 describes the HTML standard and custom script attributes associated with a particular
script file. To put it differently, this collection contains information about the script files
that need to be downloaded from the server.

 case “ScriptPath”:
 if (Sys._ScriptLoader.isScriptLoaded(scriptBlockNodes[i].content))
 continue;
 scriptLoader.queueScriptReference(scriptBlockNodes[i].content);
 break;

 ❑ Next, the _onFormSubmitCompleted method iterates through the objects in the onSubmitNodes
array. Recall that each object in this array describes a dynamically added form onsubmit state-
ment for which the value of the id property of the object is an empty string and the value of the
 content property is a string that contains the dynamically added form onsubmit statement.

c24.indd 1199c24.indd 1199 8/20/07 8:47:51 PM8/20/07 8:47:51 PM

Chapter 24: Asynchronous Partial Page Rendering

1200

❑ The _onFormSubmitCompleted method creates a local string named onSubmitStatementScript
that contains a script that adds a dynamically generated JavaScript function to the
_onSubmitStatements collection of the current PageRequestManager instance. Note that
the method iterates through the objects in the onSubmitNodes collection and adds the value
of the content property of each enumerated object to the body of this dynamically generated
 JavaScript function.

 var onSubmitStatementScript = ‘’;
 for (var i = 0; i < onSubmitNodes.length; i++)
 {
 if (i === 0)
 onSubmitStatementScript = ‘Array.add(Sys.WebForms.PageRequestManager
 .getInstance()._onSubmitStatements, function() {\r\n’;
 onSubmitStatementScript += onSubmitNodes[i].content + “\r\n”;
 }

 ❑ Next, the method calls the queueScriptBlock method on the current _ScriptLoader instance
that is passing in the local onSubmitStatementScript string. As you’ll see later, the
 queueScriptBlock method creates a object with a single name/value pair and adds the object
to the internal _scriptsToLoad collection of the current _ScriptLoader instance. The name
part of this name/value pair is the keyword text and the value part contains the content of the
 onSubmitStatementScript string.

 if (onSubmitStatementScript.length)
 {
 onSubmitStatementScript += “\r\nreturn true;\r\n});\r\n”;
 scriptLoader.queueScriptBlock(onSubmitStatementScript);
 }

 ❑ Next, the _onFormSubmitCompleted method stores the reference to the WebRequestExecutor
object responsible for executing the current request in the _response field of the current
 PageRequestManager instance:

 this._response = sender;

 ❑ Next, the _onFormSubmitCompleted method calls the createDelegate static method on the
function to create a delegate that represents the _scriptsLoadComplete method of the current
 PageRequestManager instance:

 var scriptLoadCompleteDelegate = Function.createDelegate(this,
 this._scriptsLoadComplete);

 ❑ Finally, the _onFormSubmitCompleted method calls the loadScripts method on the current
_ScriptLoader instance, passing in the delegate. As you’ll see later, this method will load the
scripts in the _scriptsToLoad collection:

 scriptLoader.loadScripts(0, scriptLoadCompleteDelegate, null, null);

c24.indd 1200c24.indd 1200 8/20/07 8:47:51 PM8/20/07 8:47:51 PM

Chapter 24: Asynchronous Partial Page Rendering

1201

 Listing 24-5 : The _onFormSubmitCompleted Method of the PageRequestManager

 function Sys$WebForms$PageRequestManager$_onFormSubmitCompleted(sender, eventArgs)
{
 this._processingRequest = true;
 var delimitByLengthDelimiter = ‘|’;

 if (sender.get_timedOut())
 {
 this._endPostBack(this._createPageRequestManagerTimeoutError(), sender);
 return;
 }
 if (sender.get_aborted())
 {
 this._endPostBack(null, sender);
 return;
 }
 if (!this._request || sender.get_webRequest() !== this._request)
 return;
 var errorMessage;
 var delta = [];
 if (sender.get_statusCode() !== 200)
 {
 this._endPostBack(
 this._createPageRequestManagerServerError(sender.get_statusCode()), sender);
 return;
 }
 var reply = sender.get_responseData();
 var delimiterIndex, len, type, id, content;
 var replyIndex = 0;
 var parserErrorDetails = null;
 while (replyIndex < reply.length)
 {
 delimiterIndex = reply.indexOf(delimitByLengthDelimiter, replyIndex);
 if (delimiterIndex === -1)
 {
 parserErrorDetails = this._findText(reply, replyIndex);
 break;
 }

 len = parseInt(reply.substring(replyIndex, delimiterIndex), 10);
 if ((len % 1) !== 0)
 {
 parserErrorDetails = this._findText(reply, replyIndex);
 break;
 }
 replyIndex = delimiterIndex + 1;
 delimiterIndex = reply.indexOf(delimitByLengthDelimiter, replyIndex);

(continued)

c24.indd 1201c24.indd 1201 8/20/07 8:47:51 PM8/20/07 8:47:51 PM

Chapter 24: Asynchronous Partial Page Rendering

1202

 Listing 24-5 (continued)

 if (delimiterIndex === -1)
 {
 parserErrorDetails = this._findText(reply, replyIndex);
 break;
 }
 type = reply.substring(replyIndex, delimiterIndex);
 replyIndex = delimiterIndex + 1;
 delimiterIndex = reply.indexOf(delimitByLengthDelimiter, replyIndex);
 if (delimiterIndex === -1)
 {
 parserErrorDetails = this._findText(reply, replyIndex);
 break;
 }
 id = reply.substring(replyIndex, delimiterIndex);
 replyIndex = delimiterIndex + 1;
 if ((replyIndex + len) >= reply.length)
 {
 parserErrorDetails = this._findText(reply, reply.length);
 break;
 }
 content = this._decodeString(reply.substr(replyIndex, len));
 replyIndex += len;
 if (reply.charAt(replyIndex) !== delimitByLengthDelimiter)
 {
 parserErrorDetails = this._findText(reply, replyIndex);
 break;
 }
 replyIndex++;
 var obj = {type: type, id: id, content: content};
 Array.add(delta, obj);
 }
 if (parserErrorDetails)
 {
 this._endPostBack(this._createPageRequestManagerParserError(
 String.format(Sys.WebForms.Res.PRM_ParserErrorDetails,
 parserErrorDetails)), sender);
 return;
 }
 var updatePanelNodes = [];
 var hiddenFieldNodes = [];
 var arrayDeclarationNodes = [];
 var scriptBlockNodes = [];
 var expandoNodes = [];
 var onSubmitNodes = [];
 var dataItemNodes = [];
 var dataItemJsonNodes = [];
 var scriptDisposeNodes = [];
 var asyncPostBackControlIDsNode, postBackControlIDsNode,
 updatePanelIDsNode, asyncPostBackTimeoutNode,
 childUpdatePanelIDsNode, panelsToRefreshNode, formActionNode;

c24.indd 1202c24.indd 1202 8/20/07 8:47:52 PM8/20/07 8:47:52 PM

Chapter 24: Asynchronous Partial Page Rendering

1203

 for (var i = 0; i < delta.length; i++)
 {
 var deltaNode = delta[i];
 switch (deltaNode.type)
 {
 case “updatePanel”:
 Array.add(updatePanelNodes, deltaNode);
 break;
 case “hiddenField”:
 Array.add(hiddenFieldNodes, deltaNode);
 break;
 case “arrayDeclaration”:
 Array.add(arrayDeclarationNodes, deltaNode);
 break;
 case “scriptBlock”:
 Array.add(scriptBlockNodes, deltaNode);
 break;
 case “expando”:
 Array.add(expandoNodes, deltaNode);
 break;
 case “onSubmit”:
 Array.add(onSubmitNodes, deltaNode);
 break;
 case “asyncPostBackControlIDs”:
 asyncPostBackControlIDsNode = deltaNode;
 break;
 case “postBackControlIDs”:
 postBackControlIDsNode = deltaNode;
 break;
 case “updatePanelIDs”:
 updatePanelIDsNode = deltaNode;
 break;
 case “asyncPostBackTimeout”:
 asyncPostBackTimeoutNode = deltaNode;
 break;
 case “childUpdatePanelIDs”:
 childUpdatePanelIDsNode = deltaNode;
 break;
 case “panelsToRefreshIDs”:
 panelsToRefreshNode = deltaNode;
 break;
 case “formAction”:
 formActionNode = deltaNode;
 break;
 case “dataItem”:
 Array.add(dataItemNodes, deltaNode);
 break;
 case “dataItemJson”:
 Array.add(dataItemJsonNodes, deltaNode);
 break;
 case “scriptDispose”:
 Array.add(scriptDisposeNodes, deltaNode);
 break;

(continued)

c24.indd 1203c24.indd 1203 8/20/07 8:47:52 PM8/20/07 8:47:52 PM

Chapter 24: Asynchronous Partial Page Rendering

1204

 Listing 24-5 (continued)

 case “pageRedirect”:
 window.location.href = deltaNode.content;
 return;
 case “error”:
 this._endPostBack(this._createPageRequestManagerServerError(
 Number.parseInvariant(deltaNode.id), deltaNode.content), sender);
 return;
 case “pageTitle”:
 document.title = deltaNode.content;
 break;
 case “focus”:
 this._controlIDToFocus = deltaNode.content;
 break;
 default:
 this._endPostBack(this._createPageRequestManagerParserError(
 String.format(Sys.WebForms.Res.PRM_UnknownToken, deltaNode.type)), sender);
 return;
 }
 }
 var i;
 if (asyncPostBackControlIDsNode && postBackControlIDsNode &&
 updatePanelIDsNode && panelsToRefreshNode &&
 asyncPostBackTimeoutNode && childUpdatePanelIDsNode)
 {
 this._oldUpdatePanelIDs = this._updatePanelIDs;
 var childUpdatePanelIDsString = childUpdatePanelIDsNode.content;
 this._childUpdatePanelIDs =
 childUpdatePanelIDsString.length ? childUpdatePanelIDsString.split(‘,’) : [];
 var asyncPostBackControlIDsArray =
 this._splitNodeIntoArray(asyncPostBackControlIDsNode);
 var postBackControlIDsArray = this._splitNodeIntoArray(postBackControlIDsNode);
 var updatePanelIDsArray = this._splitNodeIntoArray(updatePanelIDsNode);
 this._panelsToRefreshIDs = this._splitNodeIntoArray(panelsToRefreshNode);
 for (i = 0; i < this._panelsToRefreshIDs.length; i++)
 {
 var panelClientID = this._uniqueIDToClientID(this._panelsToRefreshIDs[i]);
 if (!document.getElementById(panelClientID))
 {
 this._endPostBack(Error.invalidOperation(
 String.format(Sys.WebForms.Res.PRM_MissingPanel, panelClientID)), sender);
 return;
 }
 }
 var asyncPostBackTimeout = asyncPostBackTimeoutNode.content;
 this._updateControls(updatePanelIDsArray, asyncPostBackControlIDsArray,
 postBackControlIDsArray, asyncPostBackTimeout);
 }

c24.indd 1204c24.indd 1204 8/20/07 8:47:52 PM8/20/07 8:47:52 PM

Chapter 24: Asynchronous Partial Page Rendering

1205

 this._dataItems = {};
 for (i = 0; i < dataItemNodes.length; i++)
 {
 var dataItemNode = dataItemNodes[i];
 this._dataItems[dataItemNode.id] = dataItemNode.content;
 }

 for (i = 0; i < dataItemJsonNodes.length; i++)
 {
 var dataItemJsonNode = dataItemJsonNodes[i];
 this._dataItems[dataItemJsonNode.id] = eval(dataItemJsonNode.content);
 }
 var handler = this._get_eventHandlerList().getHandler(“pageLoading”);
 if (handler)
 handler(this, this._getPageLoadingEventArgs());
 if (formActionNode)
 {
 this._form.action = formActionNode.content;
 this._form._initialAction = this._form.action;
 }
 for (i = 0; i < updatePanelNodes.length; i++)
 {
 var deltaUpdatePanel = updatePanelNodes[i];
 var deltaPanelID = deltaUpdatePanel.id;
 var deltaPanelRendering = deltaUpdatePanel.content;
 var updatePanelElement = document.getElementById(deltaPanelID);
 if (!updatePanelElement)
 {
 this._endPostBack(Error.invalidOperation(
 String.format(Sys.WebForms.Res.PRM_MissingPanel, deltaPanelID)), sender);
 return;
 }
 this._updatePanel(updatePanelElement, deltaPanelRendering);
 }
 for (i = 0; i < scriptDisposeNodes.length; i++)
 {
 var disposePanelId = scriptDisposeNodes[i].id;
 var disposeScript = scriptDisposeNodes[i].content;
 this._registerDisposeScript(disposePanelId, disposeScript);
 }
 for (i = 0; i < hiddenFieldNodes.length; i++)
 {
 var id = hiddenFieldNodes[i].id;
 var value = hiddenFieldNodes[i].content;
 var hiddenFieldElement = document.getElementById(id);
 if (!hiddenFieldElement)
 {
 hiddenFieldElement = document.createElement(‘input’);
 hiddenFieldElement.id = id;
 hiddenFieldElement.name = id;
 hiddenFieldElement.type = ‘hidden’;
 this._form.appendChild(hiddenFieldElement);
 }
 hiddenFieldElement.value = value;
 }

(continued)

c24.indd 1205c24.indd 1205 8/20/07 8:47:53 PM8/20/07 8:47:53 PM

Chapter 24: Asynchronous Partial Page Rendering

1206

 Listing 24-5 (continued)

 var arrayScript = ‘’;
 for (i = 0; i < arrayDeclarationNodes.length; i++)
 {
 arrayScript += “Sys.WebForms.PageRequestManager._addArrayElement(‘” +
 arrayDeclarationNodes[i].id + “’, “ +
 arrayDeclarationNodes[i].content + “);\r\n”;
 }
 var expandoScript = ‘’;
 for (i = 0; i < expandoNodes.length; i++)
 {
 var propertyReference = expandoNodes[i].id;
 var propertyValue = expandoNodes[i].content;
 expandoScript += propertyReference + “ = “ + propertyValue + “\r\n”;
 }
 Sys._ScriptLoader.readLoadedScripts();
 Sys.Application.beginCreateComponents();
 var scriptLoader = Sys._ScriptLoader.getInstance();
 if (arrayScript.length)
 scriptLoader.queueScriptBlock(arrayScript);

 if (expandoScript.length)
 scriptLoader.queueScriptBlock(expandoScript);
 for (i = 0; i < scriptBlockNodes.length; i++)
 {
 var scriptBlockType = scriptBlockNodes[i].id;
 switch (scriptBlockType)
 {
 case “ScriptContentNoTags”:
 scriptLoader.queueScriptBlock(scriptBlockNodes[i].content);
 break;
 case “ScriptContentWithTags”:
 var scriptTagAttributes;
 eval(“scriptTagAttributes = “ + scriptBlockNodes[i].content);
 if (scriptTagAttributes.src &&
 Sys._ScriptLoader.isScriptLoaded(scriptTagAttributes.src))
 continue;
 scriptLoader.queueCustomScriptTag(scriptTagAttributes);
 break;
 case “ScriptPath”:
 if (Sys._ScriptLoader.isScriptLoaded(scriptBlockNodes[i].content))
 continue;
 scriptLoader.queueScriptReference(scriptBlockNodes[i].content);
 break;
 }
 }

c24.indd 1206c24.indd 1206 8/20/07 8:47:53 PM8/20/07 8:47:53 PM

Chapter 24: Asynchronous Partial Page Rendering

1207

 var onSubmitStatementScript = ‘’;
 for (var i = 0; i < onSubmitNodes.length; i++)
 {
 if (i === 0)
 onSubmitStatementScript =
‘Array.add(Sys.WebForms.PageRequestManager.getInstance()._onSubmitStatements,
function() {\r\n’;
 onSubmitStatementScript += onSubmitNodes[i].content + “\r\n”;
 }

 if (onSubmitStatementScript.length)
 {
 onSubmitStatementScript += “\r\nreturn true;\r\n});\r\n”;
 scriptLoader.queueScriptBlock(onSubmitStatementScript);
 }
 this._response = sender;
 scriptLoader.loadScripts(0,
 Function.createDelegate(this, this._scriptsLoadComplete), null, null);
}

 The _updatePanel Method
of PageRequestManager

 Recall from Listing 24-5 that the _onFormSubmitCompleted method of the current PageRequestManager
instance invokes the _updatePanel method on itself, passing in two parameters, the first of which refer-
ences an UpdatePanel server control that needs refreshing and the second of which is a string that
 contains the new HTML markup text for this UpdatePanel server control. The main responsibility of the
_updatePanel method is to the update the content of the specified UpdatePanel server control with
the specified HTML markup text.

 As Listing 24-6 shows, this method searches through the _scriptDisposes dictionary of the current
 PageRequestManager instance for the collection or array that contains all the script disposes associated
with the specified UpdatePanel server control. If it finds such a collection, it iterates through the script
disposes in this collection and calls the eval JavaScript function on each script dispose to execute the
script. This will allow these script disposes to release the resources that the UpdatePanel server control
and its constituent client components are holding before the server control and its content are disposed
of. It is necessary to release these resources because the UpdatePanel server control and its content is
about to reload or refresh.

 var disposeScripts = this._scriptDisposes[updatePanelID];
 for (var i = 0; i < disposeScripts.length; i++)
 {
 eval(disposeScripts[i]);
 }

c24.indd 1207c24.indd 1207 8/20/07 8:47:53 PM8/20/07 8:47:53 PM

Chapter 24: Asynchronous Partial Page Rendering

1208

 Recall from Listing 23-41 that you can use the RegisterDispose public method of the current
 ScriptManager server control to register dispose scripts for a specified child server control of a
 specified UpdatePanel server control on the current page. Recall that the RegisterDispose
method takes two parameters. The first references the child server control for which the dispose script is
being registered; the second is a string that contains the actual dispose script being registered.

 Next, the _onFormSubmitCompleted method deletes the collection from the _scriptDisposes
dictionary.

 delete this._scriptDisposes[updatePanelID];

 Next, it invokes the _destroyTree method on the current PageRequestManager instance, passing
in the reference to the specified UpdatePanel server control to delete the DOM hierarchy associated
with the server control and its content:

 this._destroyTree(updatePanelElement);

 Finally, it assigns the string that contains the updated HTML markup text to the innerHTML property of
the specified UpdatePanel server control:

 updatePanelElement.innerHTML = rendering;

 Listing 24-6 : The _updatePanel Method of the PageRequestManager

 function Sys$WebForms$PageRequestManager$_updatePanel(updatePanelElement,
 rendering)
{
 for (var updatePanelID in this._scriptDisposes)
 {
 var runDisposeScripts = false;
 var element = document.getElementById(updatePanelID);
 while (element)
 {
 if (element === updatePanelElement)
 {
 runDisposeScripts = true;
 break;
 }
 element = element.parentNode;
 }

 if (runDisposeScripts)
 {
 var disposeScripts = this._scriptDisposes[updatePanelID];
 for (var i = 0; i < disposeScripts.length; i++)
 {
 eval(disposeScripts[i]);
 }
 delete this._scriptDisposes[updatePanelID];
 }
 }
 this._destroyTree(updatePanelElement);
 updatePanelElement.innerHTML = rendering;
}

c24.indd 1208c24.indd 1208 8/20/07 8:47:53 PM8/20/07 8:47:53 PM

Chapter 24: Asynchronous Partial Page Rendering

1209

 The registerDisposeScript Method
of PageRequestManager

 Recall from Listing 24-5 that the _onFormSubmitCompleted method of the current PageRequestManager
instance iterates through a local collection named scriptDisposeNodes , as shown again in the following
code listing:

 for (i = 0; i < scriptDisposeNodes.length; i++)
 {
 var disposePanelId = scriptDisposeNodes[i].id;
 var disposeScript = scriptDisposeNodes[i].content;
 this._registerDisposeScript(disposePanelId, disposeScript);
 }

 As discussed earlier, the scriptDisposeNodes is a collection of objects, each of which describes a dis-
pose script. Recall that the value of the id property of each object is a string that contains the ClientID
property value of the UpdatePanel server control for which the dispose script is being registered, and
that the value of the content property of this object is a string that contains the actual dispose script
being registered. As the preceding code listing shows, the _onFormSubmitCompleted method calls the
 _registerDisposeScript method on the current PageRequestManager instance to register the
 specified dispose script for the UpdatePanel server control with the specified ClientID property value.

 Listing 24-7 presents the internal implementation of the _registerDisposeScript method. As you
can see, this method first uses the ClientID property value as an index into the _scriptDisposes
 collection to return the array that holds all the dispose scripts registered for the UpdatePanel server
control that has the specified ClientID property value. (Recall that the _scriptDisposes collection
of the current PageRequestManager instance maintains one array for each server control.) Next, the
_registerDisposeScript method adds the specified dispose script to the associated array.

 Listing 24-7 : The _registerDisposeScript Method of the PageRequestManager

 function Sys$WebForms$PageRequestManager$_registerDisposeScript(panelID,
 disposeScript)
{
 if (!this._scriptDisposes[panelID])
 this._scriptDisposes[panelID] = [disposeScript];

 else
 Array.add(this._scriptDisposes[panelID], disposeScript);
}

 _destroyTree
 Recall from Listing 24-6 that the _updatePanel method of the current PageRequestManager instance
invokes the _destroyTree method on the current PageRequestMananger instance to destroy the entire
DOM hierarchy that has the specified root DOM element. The _destroyTree method takes a reference
to a DOM element and deletes it and all its descendant DOM elements. As Listing 24-8 shows, this
method first makes sure that its argument is indeed an element. Then it iterates through the child DOM

c24.indd 1209c24.indd 1209 8/20/07 8:47:54 PM8/20/07 8:47:54 PM

Chapter 24: Asynchronous Partial Page Rendering

1210

elements of the element and takes these steps for each. If the enumerated child DOM element supports
the dispose method, _destroyTree invokes this method on the child element. If the enumerated child
DOM element does not support the method but does expose a property named control that supports
the method, _destroyTree calls the method on this property. (Recall that the control property of a
DOM element references the client control associated with the element.) Next, it calls the getBehaviors
method to return an array that contains all the behaviors associated with the enumerated DOM element
and calls the dispose methods of these behaviors. Finally, it calls _destroyTree to destroy all the
descendant DOM elements of the enumerated child element. As you can see, _destroyTree is a
 recursive method.

 Listing 24-8: The _destroyTree Method of PageRequestManager

 function Sys$WebForms$PageRequestManager$_destroyTree(element)
{
 if (element.nodeType === 1)
 {
 var childNodes = element.childNodes;
 for (var i = childNodes.length - 1; i >= 0; i--)
 {
 var node = childNodes[i];
 if (node.nodeType === 1)
 {
 if (node.dispose && typeof(node.dispose) === “function”)
 node.dispose();

 else if (node.control && typeof(node.control.dispose) === “function”)
 node.control.dispose();

 var behaviors = Sys.UI.Behavior.getBehaviors(node);
 for (var j = behaviors.length - 1; j >= 0; j--)
 {
 behaviors[j].dispose();
 }
 this._destroyTree(node);
 }
 }
 }
}

 _ScriptLoader
 The main responsibility of the _ScriptLoader class is to load the required scripts. As you saw, Listing
 24-5 makes extensive use of this class. In this section, I’ll walk you though the implementation of the
methods of the class.

 readLoadedScripts
 Recall from Listing 24-5 that the _onSubmitFormCompleted method invokes the readLoadedScripts
static method on the _ScriptLoader class. As Listing 24-9 shows, the readLoadedScripts method
first instantiates the _referencedScripts static field of the class:

c24.indd 1210c24.indd 1210 8/20/07 8:47:54 PM8/20/07 8:47:54 PM

Chapter 24: Asynchronous Partial Page Rendering

1211

 Sys._ScriptLoader._referencedScripts = [];

 Next, it calls the getElementByTagName method on the document object to return an array that contains
references to all the script HTML elements on the current page:

 var existingScripts = document.getElementsByTagName(‘SCRIPT’);

 Finally, readLoadedScripts iterates through these script HTML elements and adds the value of
the src HTML attribute of each element to the _referencedScripts static collection of the
_ScriptLoader class:

 Array.add(Sys._ScriptLoader._referencedScripts, existingScripts[i].src);

 Listing 24-9: The readLoadedScripts Static Method of the _ScriptLoader Class

 Sys._ScriptLoader.readLoadedScripts =
function Sys$_ScriptLoader$readLoadedScripts()
{
 if(!Sys._ScriptLoader._referencedScripts)
 {
 var existingScripts = document.getElementsByTagName(‘SCRIPT’);
 for (i = existingScripts.length - 1; i >= 0; i--)
 {
 if (existingScripts[i].src.length)
 {
 if (!Array.contains(Sys._ScriptLoader._referencedScripts,
 existingScripts[i].src))
 Array.add(Sys._ScriptLoader._referencedScripts, existingScripts[i].src);
 }
 }
 }
}

 getInstance
 As Listing 24-10 shows, the getInstance static method of the _ScriptLoader class ensures that each
page can have only one instance of the _ScriptLoader class.

 Listing 24-10: The getInstance Static Method of the _ScriptLoader Class

 Sys._ScriptLoader.getInstance = function Sys$_ScriptLoader$getInstance()
{
 if(!Sys._ScriptLoader._activeInstance)
 Sys._ScriptLoader._activeInstance = new Sys._ScriptLoader();

 return Sys._ScriptLoader._activeInstance;
}

c24.indd 1211c24.indd 1211 8/20/07 8:47:54 PM8/20/07 8:47:54 PM

Chapter 24: Asynchronous Partial Page Rendering

1212

 queueScriptBlock
 As you can see from Listing 24-11 , the queueScriptBlock method of the _ScriptLoader class creates
an object with a single name/value pair and adds it to the _scriptToLoad array of the current
_ScriptLoader instance. Note that the name part of this name/value pair is the keyword text and
the value part contains the script being queued.

 Listing 24-11: The queueScriptBlock Method of the _ScriptLoader Class

 function Sys$_ScriptLoader$queueScriptBlock(scriptContent)
{
 if(!this._scriptsToLoad)
 this._scriptsToLoad = [];

 Array.add(this._scriptsToLoad, {text: scriptContent});
}

 queueCustomScriptTag
 Recall from Listing 24-5 that the _onFormSubmitCompleted method of the current PageRequestManager
instance calls the queueCustomScriptTag method on the current _ScriptLoader instance, passing in
the object that represents the serialized form of the attributes of a script HTML element. As Listing 24-12
shows, the queueCustomScriptTag method adds this object to the _scriptsToLoad collection of the
current _scriptLoader instance.

 Listing 24-12: The queueCustomScriptTag Method of the _ScriptLoader Class

 function Sys$_ScriptLoader$queueCustomScriptTag(scriptAttributes)
{
 if(!this._scriptsToLoad)
 this._scriptsToLoad = [];

 Array.add(this._scriptsToLoad, scriptAttributes);
}

 isScriptLoaded
 Recall from Listing 24-5 that the _onFormSubmitCompleted method of the current PageRequestManager
instance invokes the isScriptLoaded static method on the _ScriptLoader class to determine whether
the script file with the specified URL has already been loaded. Listing 24-13 presents the implementation of
this method.

 Listing 24-13: The isScriptLoaded Static Method of the _ScriptLoader Class

 Sys._ScriptLoader.isScriptLoaded =
function Sys$_ScriptLoader$isScriptLoaded(scriptSrc)
{
 var dummyScript = document.createElement(‘script’);
 dummyScript.src = scriptSrc;
 return Array.contains(Sys._ScriptLoader._getLoadedScripts(), dummyScript.src);
}

c24.indd 1212c24.indd 1212 8/20/07 8:47:55 PM8/20/07 8:47:55 PM

Chapter 24: Asynchronous Partial Page Rendering

1213

 _getLoadedScript
 As Listing 24-14 shows, the _getLoadedScripts static method of the _ScriptLoader class simply
returns a reference to the _referencedScripts collection, which contains the values of the src HTML
attributes of all the script HTML elements that currently exist on the current page.

 Listing 24-14: The _getLoadedScripts Static Method of the _ScriptLoader Class

 Sys._ScriptLoader._getLoadedScripts =
function Sys$_ScriptLoader$_getLoadedScripts()
{
 if(!Sys._ScriptLoader._referencedScripts)
 {
 Sys._ScriptLoader._referencedScripts = [];
 Sys._ScriptLoader.readLoadedScripts();
 }

 return Sys._ScriptLoader._referencedScripts;
}

 queueScriptReference
 Recall from Listing 24-5 that the _onFormSubmitCompleted method of the current client script
 PageRequestManager instance calls the queueScriptReference method on the current
_ScriptLoader instance to queue the specified script reference. As Listing 24-15 shows, this method
creates an object with a single name/value pair, the name part of the pair being the keyword src and the
value part the URL of the JavaScript file passed into the method as its only argument. The method then
adds this object to the _scriptsToLoad collection of the current _ScriptLoader instance.

 Listing 24-15: The queueScriptReference Method of the _ScriptLoader Class

 function Sys$_ScriptLoader$queueScriptReference(scriptUrl)
{
 if(!this._scriptsToLoad)
 this._scriptsToLoad = [];

 Array.add(this._scriptsToLoad, {src: scriptUrl});
}

 loadScripts
 Recall from Listing 24-5 that the _onFormSubmitCompleted method of the current client-side
 PageRequestManager instance calls the loadScripts method on the current _ScriptLoader instance
to load the scripts in the _scriptsToLoad collection. As Listing 24-16 shows, this method takes four
parameters. The first contains the script loading timeout, the second references the JavaScript function
that will be automatically invoked if all the scripts in the _scriptsToLoad collection are loaded, the
third references the JavaScript function that will be automatically invoked if the script loading fails,
and the fourth parameter references the JavaScript function that will be automatically invoked if the
scripts in the _scriptsToLoad collection do not load within the time specified by the first parameter
of the method.

c24.indd 1213c24.indd 1213 8/20/07 8:47:55 PM8/20/07 8:47:55 PM

Chapter 24: Asynchronous Partial Page Rendering

1214

 As you can see from Listing 24-16 , the loadScripts method first checks whether the _loading field of
the current _ScriptLoader instance is set to true . If so, this is an indication that the scripts in the
_scriptsToLoad collection are already being loaded. Therefore, an invalid operation exception is raised:

 if(this._loading)
 throw Error.invalidOperation(Sys.Res.scriptLoaderAlreadyLoading);

 Next, the loadScripts method sets the _loading flag to true to signal that the scripts in the
_scriptsToLoad collection are being loaded:

 this._loading = true;

 Then it stores its second parameter in the _allScriptsLoadedCallback field of the current
_ScriptLoader instance:

 this._allScriptsLoadedCallback = allScriptsLoadedCallback;

 Recall from Listing 24-5 that the _onFormSubmitCompleted method of the current PageRequestManager
instance passes the following delegate as the second parameter of the loadScripts method:

 Function.createDelegate(this, this._scriptsLoadComplete)

 As you can see, this delegate represents the _scriptLoadComplete method of the current
 PageRequestManager instance. This means that when all the scripts in the _scriptsToLoad collection
of the current PageRequestManager instance are finally loaded, the current _ScriptLoader instance
will automatically invoke this delegate and consequently the _scriptsLoadComplete method that it
represents.

 As Listing 24-16 shows, the loadScripts method finally invokes the _loadScriptsInternal method
on the current _ScriptLoader instance to load the scripts in the _scriptsToLoad collection of the cur-
rent _ScriptLoader instance:

 this._loadScriptsInternal();

 Listing 24-16: The loadScripts Method of the _ScriptLoader Class

 function Sys$_ScriptLoader$loadScripts(scriptTimeout, allScriptsLoadedCallback,
 scriptLoadFailedCallback,
 scriptLoadTimeoutCallback)
{
 if(this._loading)
 throw Error.invalidOperation(Sys.Res.scriptLoaderAlreadyLoading);

 this._loading = true;
 this._allScriptsLoadedCallback = allScriptsLoadedCallback;
 this._scriptLoadFailedCallback = scriptLoadFailedCallback;
 this._scriptLoadTimeoutCallback = scriptLoadTimeoutCallback;

 this._loadScriptsInternal();
}

c24.indd 1214c24.indd 1214 8/20/07 8:47:55 PM8/20/07 8:47:55 PM

Chapter 24: Asynchronous Partial Page Rendering

1215

 _loadScriptsInternal
 Listing 24-17 presents the internal implementation of the _loadScriptsInternal method of the
 current _ScriptLoader instance. Recall that the _scriptsToLoad array of the current _ScriptLoader
instance contains one object for each script that needs to be loaded. This object contains the complete
information about its associated script.

 Note that the _loadScriptsInternal method is a recursive function, meaning that the method calls
itself to load the script described by the next object in the _scriptsToLoad array. This method checks
whether the _scriptsToLoad collection contains any more objects. If not, it first calls the _stopLoading
method on the current _ScriptLoader instance to end the script-loading process and then calls the
_allScriptsLoadedCallback method to notify its caller that all the scripts have been loaded. As
 discussed earlier, the _allScriptsLoadedCallback field of the current _ScriptLoader instance
 references the delegate that represents the _scriptsLoadComplete method of the current
 PageRequestManager instance.

 var callback = this._allScriptsLoadedCallback;
 this._stopLoading();
 if(callback)
 callback(this);

 If the _scriptsToLoad collection contains more objects, the _loadScriptsInternal method calls the
 dequeue static method on the Array to dequeue the next object from the _scriptsToLoad collection:

 var nextScript = Array.dequeue(this._scriptsToLoad);

 Next, it calls the _createScriptElement method on the current _ScriptLoader instance that is
 passing in the dequeued object. As you’ll see later, this method creates an HTML script element and uses
the values of the properties of the object to initialize the attributes of this script element.

 var scriptElement = this._createScriptElement(nextScript);

 Next, the _loadScriptsInternal method checks whether the object contains a name/value pair
 associated with the src script attribute. If so, this is an indication that the object describes a script file that
must be downloaded from the server. Because of this, we have to worry about issues such as timeout.
Therefore, the _loadScriptsInternal method instantiates an instance of an ASP.NET AJAX class
named _ScriptLoaderTask , passing a reference to the newly instantiated script element and a reference
to the delegate referenced by the _scriptLoadedDelegate field of the current _ScriptLoader
instance. As you’ll see later, the constructor of the _ScriptLoader class creates a delegate that represents
the _scriptLoadedHandler method of the current _ScriptLoader instance and assigns this delegate
to the _scriptLoadedDelegate field.

 this._currentTask = new Sys._ScriptLoaderTask(scriptElement,
 this._scriptLoadedDelegate);

 Next, the _loadScriptsInternal method invokes the execute method on the current
ScriptLoaderTask instance to execute the task. The execute method basically downloads the script
file referenced by the specified script element:

 this._currentTask.execute();

c24.indd 1215c24.indd 1215 8/20/07 8:47:55 PM8/20/07 8:47:55 PM

Chapter 24: Asynchronous Partial Page Rendering

1216

 If the object does not contain a name/value pair associated with the src script attribute, this indicates
that the object does not describe a script file to be downloaded from the server. Instead it describes a lit-
eral script. Therefore the _loadScriptsInternal method first accesses the head HTML element:

 var headElement = document.getElementsByTagName(‘HEAD’)[0];

 Next, it calls the appendChild method on the head HTML element to append the script element as its
child element. Appending this script element immediately runs the script enclosed within the opening
and closing tags of the script element:

 headElement.appendChild(scriptElement);

 Next, the _loadScriptsInternal method removes the script element because you do not need the
 element after running its contained script:

 scriptElement.parentNode.removeChild(scriptElement);

 Finally, it calls the _loadScriptsInternal method to load the script associated with the next object in
the _scriptsToLoad collection:

 this._loadScriptsInternal();

 Listing 24-17: The _loadScriptsInternal Method of the _ScriptLoader Class

 function Sys$_ScriptLoader$_loadScriptsInternal()
{
 if (this._scriptsToLoad && this._scriptsToLoad.length > 0)
 {
 var nextScript = Array.dequeue(this._scriptsToLoad);
 var scriptElement = this._createScriptElement(nextScript);

 if (scriptElement.text && Sys.Browser.agent === Sys.Browser.Safari)
 {
 scriptElement.innerHTML = scriptElement.text;
 delete scriptElement.text;
 }
 if (typeof(nextScript.src) === “string”)
 {
 this._currentTask = new Sys._ScriptLoaderTask(scriptElement,
 this._scriptLoadedDelegate);
 this._currentTask.execute();
 }

 else
 {
 document.getElementsByTagName(‘HEAD’)[0].appendChild(scriptElement);
 Sys._ScriptLoader._clearScript(scriptElement);
 this._loadScriptsInternal();
 }
 }

c24.indd 1216c24.indd 1216 8/20/07 8:47:56 PM8/20/07 8:47:56 PM

Chapter 24: Asynchronous Partial Page Rendering

1217

 else
 {
 var callback = this._allScriptsLoadedCallback;
 this._stopLoading();
 if(callback)
 callback(this);
 }
}

 _createScriptElement
 Listing 24-18 presents the internal implementation of the _createScriptElement method of the
_ScriptLoader class. This method takes a single object that describes the standard and custom HTML
attributes of the HTML script element being created. As you can see, this method first calls the
 createElement method on the document object to create the script HTML element:

 var scriptElement = document.createElement(‘SCRIPT’);

 Next, it sets the type attribute of the script HTML element to a default value. Note that the object may
contain a name/value pair for the type HTML attribute, which means that this default value may be
overridden:

 scriptElement.type = ‘text/javascript’;

 Finally, it iterates through the name/value pairs of the object, uses the name part of each as an index into
the object to return the value part of the pair, and finally uses the name part of each as an index into the
newly instantiated script element to store the value part of the pair.

 for (var attr in queuedScript)
 {
 scriptElement[attr] = queuedScript[attr];
 }

 Listing 24-18: The _createScriptElement Method of the _ScriptLoader Class

 function Sys$_ScriptLoader$_createScriptElement(queuedScript)
{
 var scriptElement = document.createElement(‘SCRIPT’);
 scriptElement.type = ‘text/javascript’;
 for (var attr in queuedScript)
 {
 scriptElement[attr] = queuedScript[attr];
 }

 return scriptElement;
}

c24.indd 1217c24.indd 1217 8/20/07 8:47:56 PM8/20/07 8:47:56 PM

Chapter 24: Asynchronous Partial Page Rendering

1218

 The Constructor of the _ScriptLoader Class
 As Listing 24-19 shows, the constructor of the _ScriptLoader class sets the _scriptsToLoad collection
to null , creates a delegate the represents the _scriptLoadedHandler method of the current
_ScriptLoader instance, and stores this delegate in a field named _scriptLoadedDelegate .

 Listing 24-19: The Constructor of the _ScriptLoader Class

 Sys._ScriptLoader = function Sys$_ScriptLoader()
{
 this._scriptsToLoad = null;
 this._scriptLoadedDelegate =
 Function.createDelegate(this, this._scriptLoadedHandler);
}

 _scriptLoaderHandler
 Listing 24-20 presents the internal implementation of the _scriptLoadedHandler method of the
_ScriptLoader class. As discussed earlier, the current ScriptLoaderTask instance calls this method
when it is finished loading the specified script in the _scriptsToLoad collection. As you can see, this
method calls the _getLoadedScripts static method on the _ScriptLoader class to return a reference
to the _referencedScripts static collection of the class. (Recall that this collection stores the URLs of
all the loaded script files.) The _scriptLoadedHandler method adds the URL of the newly loaded
script file into this collection:

 Array.add(Sys._ScriptLoader._getLoadedScripts(), scriptElement.src);

 Next, it calls the dispose method on the current ScriptLoaderTask instance to allow the instance to
release the resources it is holding before the instance is disposed of:

 this._currentTask.dispose();

 Next, the _scriptLoadedHandler method calls the _loadScriptsInternal method to load the script
described by the next object in the _scriptsToLoad collection. As you can see, the scripts described by
the objects in the _scriptsToLoad collection are loaded one at a time; in other words, the loading of the
next script does not start until the previous script is completely loaded.

 Listing 24-20: The _scriptLoadedHandler Method of the _ScriptLoader Class

 function Sys$_ScriptLoader$_scriptLoadedHandler(scriptElement, loaded)
{
 if(loaded && this._currentTask._notified)
 {
 if(this._currentTask._notified > 1)
 this._raiseError(true);

c24.indd 1218c24.indd 1218 8/20/07 8:47:56 PM8/20/07 8:47:56 PM

Chapter 24: Asynchronous Partial Page Rendering

1219

 else
 {
 Array.add(Sys._ScriptLoader._getLoadedScripts(), scriptElement.src);
 this._currentTask.dispose();
 this._currentTask = null;
 this._loadScriptsInternal();
 }
 }
 else
 this._raiseError(false);
}

 _ScriptLoaderTask
 In this section I’ll discuss the methods of the ASP.NET AJAX _ScriptLoaderTask class.

 The Constructor of the_ScriptLoaderTask Class
 As Listing 24-21 shows, this constructor takes two parameters. The first references a script HTML
 element, and the second references the JavaScript function that will be automatically called when the
specified script is downloaded for the server. Recall from Listing 24-17 that the _loadScriptsInternal
method of the current _ScriptLoader instance passes the _scriptLoadedDelegate field of the cur-
rent _ScriptLoader instance as the second parameter into the constructor of the _ScriptLoaderTask :

 this._currentTask = new Sys._ScriptLoaderTask(scriptElement,
 this._scriptLoadedDelegate);

 Recall from Listing 24-19 that the _scriptLoadedDelegate field references the delegate that represents
the _scriptLoadedHandler method of the current _ScriptLoader instance:

 this._scriptLoadedDelegate =
 Function.createDelegate(this, this._scriptLoadedHandler);

 Listing 24-21: The Constructor Method of the _ScriptLoaderTask Class

 Sys._ScriptLoaderTask =
function Sys$_ScriptLoaderTask(scriptElement, completedCallback)
{
 this._scriptElement = scriptElement;
 this._completedCallback = completedCallback;
 this._notified = 0;
}

c24.indd 1219c24.indd 1219 8/20/07 8:47:57 PM8/20/07 8:47:57 PM

Chapter 24: Asynchronous Partial Page Rendering

1220

 execute
 Listing 24-22 presents the internal implementation of the execute method of the current
_ScriptLoaderTask instance. As you can see, this method first creates a delegate the represents the
_scriptLoadHandler method of the current _ScriptLoaderTask instance, and stores this delegate in
a local variable named scriptLoadDelegate :

 var scriptLoadDelegate = Function.createDelegate(this, this._scriptLoadHandler);

 Next, if the current browser is Internet Explorer, it invokes the $addHandler global JavaScript function
to register the delegate as an event handler for the script HTML element that the _scriptElement
references:

 $addHandler(this._scriptElement, ‘load’, scriptLoadDelegate);

 Internet Explorer will automatically call this delegate, and consequently the _scriptLoadHandler
method that the delegate represents, when the script associated with the specified script HTML element
is downloaded from the server.

 If the current browser is not Internet Explorer, the execute method invokes the $addHandler global
JavaScript function to register the delegate as an event handler for the readystatechange event of the
script HTML element referenced by the _scriptElement field:

 $addHandler(this._scriptElement, ‘readystatechange’, scriptLoadDelegate);

 The browser will automatically call this delegate, and consequently the _scriptLoadHandler method
that the delegate represents, when the script associated with the specified script HTML element is
 downloaded from the server.

 Next, the execute method calls the getElementByTagName method on the current document object to
return a reference to the head HTML element:

 var headElement = document.getElementsByTagName(‘HEAD’)[0];

 Finally, it calls the appendChild method on the head HTML element to append the script HTML
 element referenced by the _scriptElement field as the child element of the head HTML element. As
soon as this script HTML element is added to the DOM hierarchy of the current document, the browser
automatically downloads the JavaScript file whose URL is specified by the src attribute of the newly
added script HTML element, and calls the previously mentioned delegates after the download is
completed.

 Listing 24-22: The Execute Method of the _ScriptLoaderTask Class

 function Sys$_ScriptLoaderTask$execute()
{
 var scriptLoadDelegate = Function.createDelegate(this, this._scriptLoadHandler);

 if (Sys.Browser.agent !== Sys.Browser.InternetExplorer)
 {
 this._scriptElement.readyState = ‘loaded’;
 $addHandler(this._scriptElement, ‘load’, scriptLoadDelegate);
 }

c24.indd 1220c24.indd 1220 8/20/07 8:47:57 PM8/20/07 8:47:57 PM

Chapter 24: Asynchronous Partial Page Rendering

1221

 else
 $addHandler(this._scriptElement, ‘readystatechange’, scriptLoadDelegate);
 var headElement = document.getElementsByTagName(‘HEAD’)[0];
 headElement.appendChild(this._scriptElement);
}

 _scriptLoadHandler
 As you saw from Listing 24-22 , the execute method of the current _ScriptLoader instance registers
a delegate that represents the _scriptLoadHandler method of the current _ScriptLoaderTask
instance as an event handler for the load or readystatechange event of the script HTML element
 referenced by the _scriptElement field of the current _ScriptLoaderTask instance.

 Listing 24-23 presents the internal implementation of the _scriptLoadhandler method. As you can
see, this method simply calls the JavaScript function referenced by the _completedCallback field of the
current _ScriptLoaderTask instance.

 Listing 24-23: The _scriptLoadHandler Method of the _ScriptLoaderTask Class

 function Sys$_ScriptLoaderTask$_scriptLoadHandler()
{
 if(this._disposed)
 return;
 var scriptElement = this.get_scriptElement();
 if ((scriptElement.readyState !== ‘loaded’) &&
 (scriptElement.readyState !== ‘complete’))
 return;

 window.setTimeout(
 function() {this._completedCallback(this._scriptElement, true);}, 0);
}

 _scriptsLoadComplete
 Recall from Listing 24-23 that the current _ScriptLoaderTask instance invokes the _completedCallback
delegate after loading all the scripts. Also recall that this delegate represents the _scriptsLoadComplete
method of the current PageRequestMananger instance. Listing 24-24 presents the internal implementation
of the _scriptsLoadComplete method. This method first calls the scrollTo method on the window
object to set the scroll position:

 window.scrollTo(this._scrollPosition.x, this._scrollPosition.y);

 Next, this method invokes the _pageLoaded method on the current PageRequestManager instance to
raise the pageLoaded event:

 this._pageLoaded(false);

c24.indd 1221c24.indd 1221 8/20/07 8:47:57 PM8/20/07 8:47:57 PM

Chapter 24: Asynchronous Partial Page Rendering

1222

 Then it calls the _endPostBack method to end the current postback:

 this._endPostBack(null, this._response);

 Finally, the _scriptsLoadComplete method calls the WebForm_AutoFocus global JavaScript function
to set the focus to the specified element:

 WebForm_AutoFocus(this._controlIDToFocus);

 Listing 24-24: The _scriptsLoadComplete Method of the Current PageRequestMananger

 function Sys$WebForms$PageRequestManager$_scriptsLoadComplete()
{
 if (window.__theFormPostData)
 window.__theFormPostData = “”;

 if (window.__theFormPostCollection)
 window.__theFormPostCollection = [];

 if (window.WebForm_InitCallback)
 window.WebForm_InitCallback();
 if (this._scrollPosition)
 {
 if (window.scrollTo)
 window.scrollTo(this._scrollPosition.x, this._scrollPosition.y);

 this._scrollPosition = null;
 }
 Sys.Application.endCreateComponents();
 this._pageLoaded(false);
 this._endPostBack(null, this._response);
 this._response = null;
 if (this._controlIDToFocus)
 {
 var focusTarget;
 var oldContentEditableSetting;
 if (Sys.Browser.agent === Sys.Browser.InternetExplorer)
 {
 var targetControl = $get(this._controlIDToFocus);
 var focusTarget = targetControl;
 if (targetControl && (!WebForm_CanFocus(targetControl)))
 focusTarget = WebForm_FindFirstFocusableChild(targetControl);

 if (focusTarget && (typeof(focusTarget.contentEditable) !== “undefined”))
 {
 oldContentEditableSetting = focusTarget.contentEditable;
 focusTarget.contentEditable = false;
 }

c24.indd 1222c24.indd 1222 8/20/07 8:47:57 PM8/20/07 8:47:57 PM

Chapter 24: Asynchronous Partial Page Rendering

1223

 else
 focusTarget = null;
 }
 WebForm_AutoFocus(this._controlIDToFocus);
 if (focusTarget)
 {
 focusTarget.contentEditable = oldContentEditableSetting;
 }
 this._controlIDToFocus = null;
 }
}

 _pageLoaded
 As Listing 24-24 shows, the _scriptsLoadComplete method of the current PageRequestManager
instance invokes the _pageLoaded method on the current PageRequestManager instance. Listing 24-25
presents the internal implementation of the _pageLoaded method. As you can see, this method first calls
the _get_eventHandlerList method on the current PageRequestManager instance to return a refer-
ence to the EventHandlerList object that contains all the event handlers registered for the events of the
current PageRequestManager instance. Then it calls the getHandler method on the EventHandlerList
to return a reference to a JavaScript function whose invocation automatically invokes all the event han-
dlers registered for the pageLoaded event of the current PageRequestManager instance:

 var handler = this._get_eventHandlerList().getHandler(“pageLoaded”);

 Next, the _scriptsLoadComplete method calls the _getPageLoadedEventArgs method to
create and to return the PageLoadedEventArgs object that contains the event data for the current
 pageLoaded event:

 var args = this._getPageLoadedEventArgs(initialLoad);

 Next, it calls the previously mentioned JavaScript function, passing the reference to the current
 PageRequestManager instance and the preceding PageLoadedEventArgs object. This JavaScript
 function in turn calls all the event handlers registered for the pageLoaded event of the current
 PageRequestManager instance, passing the reference to the current PageRequestManager instance
and the preceding PageLoadedEventArgs object:

 handler(this, args);

 Note that the _pageLoaded method takes a Boolean parameter named initialLoad . As the name sug-
gests, this parameter specifies whether the _pageLoaded method is being called during the initialization
phase of the current PageRequestManager instance. In other words, the _pageLoaded method is
invoked in two different life cycle phases of the current PageRequestManager instance:

 ❑ During the instantiation/initialization phase (see Figure 22-5). Recall from Listing 22-6 that the
current PageRequestManager instance invokes the _pageLoaded method, passing in true as
its argument during its initialization phase when the current PageRequestManager instance is
being loaded for the first time.

c24.indd 1223c24.indd 1223 8/20/07 8:47:58 PM8/20/07 8:47:58 PM

Chapter 24: Asynchronous Partial Page Rendering

1224

❑ When the server response for an asynchronous page postback is processed and consequently the
page is reloaded. Recall from Listing 24-24 that the _scriptsLoadComplete method invokes
the _pageLoaded method, passing in false as its argument.

 As Listing 24-25 shows, if the _pageLoaded method is invoked with false as its argument, the method
invokes the raiseLoad method on the Application object that represents the current ASP.NET AJAX
application. The raiseLoad method was thoroughly discussed in Chapter 7 (see Listing 7-28).

 Listing 24-25: The _pageLoaded Method of the Current PageRequestManager Instance

 function Sys$WebForms$PageRequestManager$_pageLoaded(initialLoad)
{
 var handler = this._get_eventHandlerList().getHandler(“pageLoaded”);
 if (handler)
 {
 var args = this._getPageLoadedEventArgs(initialLoad);
 handler(this, args);
 }

 if (!initialLoad)
 Sys.Application.raiseLoad();
}

 _endPostBack
 Listing 24-26 presents a portion of Listing 24-5 . Recall that Listing 24-5 presents the internal
 implementation of the _onFormSubmitCompleted method of the current PageRequestManager
instance. As the highlighted portions of Listing 24-26 show, the current PageRequestManager instance
may invoke its _endPostBack method for a number of reasons:

 ❑ The current request has timed out:

 if (sender.get_timedOut())
 {
 this._endPostBack(this._createPageRequestManagerTimeoutError(), sender);
 return;
 }

 ❑ The current request has aborted:

 if (sender.get_aborted())
 {
 this._endPostBack(null, sender);
 return;
 }

❑ The status code of the server response is a number other than 200:

c24.indd 1224c24.indd 1224 8/20/07 8:47:58 PM8/20/07 8:47:58 PM

Chapter 24: Asynchronous Partial Page Rendering

1225

 if (sender.get_statusCode() !== 200)
 {
 this._endPostBack(
 this._createPageRequestManagerServerError(sender.get_statusCode()), sender);
 return;
 }

 ❑ The server response text is not in the expected format and has some problems:

 if (parserErrorDetails)
 {
 this._endPostBack(this._createPageRequestManagerParserError(
 String.format(Sys.WebForms.Res.PRM_ParserErrorDetails,
 parserErrorDetails)), sender);
 return;
 }

 ❑ The type part of a substring in the server response text is the string “error” . Recall that the
server response text consists of a bunch of substrings in the format length|type|id|content ,
where the type part of the substring specifies the type of information that the content part
contains. The server-side PageRequestManager instance sets the type part of a substring to the
string “error” to signal the current client-side PageRequestManager instance that the id part
of the substring contains the error code and the content part contains an error message:

 case “error”:
 this._endPostBack(this._createPageRequestManagerServerError(
 Number.parseInvariant(deltaNode.id), deltaNode.content), sender);
 return;

 ❑ The type part of a substring in the server response text is a string that the current client-side
 PageRequestManager instance does not recognize:

 default:
 this._endPostBack(this._createPageRequestManagerParserError(
 String.format(Sys.WebForms.Res.PRM_UnknownToken, deltaNode.type)), sender);
 return;

 ❑ The _panelsToRefreshIDs collection that the current client-side PageRequestManager
 instance has received from the server-side PageRequestManager instance contains the
 UniqueID property value of an UpdatePanel server control that does not exist on the current
page. Recall that the _panelsToRefreshIDs collection contains the list of the UniqueID
 property values of all UpdatePanel server controls that need refreshing.

 for (i = 0; i < this._panelsToRefreshIDs.length; i++)
 {
 var panelClientID = this._uniqueIDToClientID(this._panelsToRefreshIDs[i]);
 if (!document.getElementById(panelClientID))
 {
 this._endPostBack(Error.invalidOperation(
 String.format(Sys.WebForms.Res.PRM_MissingPanel, panelClientID)), sender);
 return;
 }
 }

c24.indd 1225c24.indd 1225 8/20/07 8:47:58 PM8/20/07 8:47:58 PM

Chapter 24: Asynchronous Partial Page Rendering

1226

 Recall that the server response text contains one or more substrings with the type value of
 updatePanel , to signal the current client-side PageRequestManager instance that the id part
of the specified substring contains the ClientID property value of an UpdatePanel server con-
trol, and that the content part of the substring contains the HTML markup text that makes up
the content of the UpdatePanel server control.

 Also recall that the _onFormSubmitCallback method parses these substrings into a local array
named updatePanelNodes , which contains one object for each substring: the value of the id
property of the object is a string that contains the id part of the associated substring, and the
value of the content part of the object is a string that contains the content part of the associ-
ated substring.

 The id part of a substring (or the value of the id property of the associated object in the
 updatePanelNodes collection) contains the ClientID property value of an UpdatePanel
server control that does not exist on the current page:

 for (i = 0; i < updatePanelNodes.length; i++)
 {
 var deltaUpdatePanel = updatePanelNodes[i];
 var deltaPanelID = deltaUpdatePanel.id;
 var deltaPanelRendering = deltaUpdatePanel.content;
 var updatePanelElement = document.getElementById(deltaPanelID);
 if (!updatePanelElement)
 {
 this._endPostBack(Error.invalidOperation(
 String.format(Sys.WebForms.Res.PRM_MissingPanel, deltaPanelID)), sender);
 return;
 }
 this._updatePanel(updatePanelElement, deltaPanelRendering);
 }

 As the last highlighted portion of Listing 24-26 shows, the _onFormSubmitCompleted method
registers the _scriptsLoadComplete method with the current _ScriptLoader instance. As
discussed earlier, this instance invokes this method when it is done with downloading all
scripts:

 scriptLoader.loadScripts(0,
 Function.createDelegate(this, this._scriptsLoadComplete), null, null);

 ❑ Recall from Listing 24-24 that the _scriptsLoadComplete method calls the _endPostBack
method after calling the _pageLoaded method, as shown again in the following code fragment:

 this._pageLoaded(false);
 this._endPostBack(null, this._response);
 this._response = null;

c24.indd 1226c24.indd 1226 8/20/07 8:47:59 PM8/20/07 8:47:59 PM

Chapter 24: Asynchronous Partial Page Rendering

1227

 Listing 24-26: The _onFormSubmitCompleted Method of the PageRequestManager
Instance

 function Sys$WebForms$PageRequestManager$_onFormSubmitCompleted(sender, eventArgs)
{
 this._processingRequest = true;
 var delimitByLengthDelimiter = ‘|’;

 if (sender.get_timedOut())
 {
 this._endPostBack(this._createPageRequestManagerTimeoutError(), sender);
 return;
 }
 if (sender.get_aborted())
 {
 this._endPostBack(null, sender);
 return;
 }

 if (!this._request || sender.get_webRequest() !== this._request)
 return;
 var errorMessage;
 var delta = [];

 if (sender.get_statusCode() !== 200)
 {
 this._endPostBack(
 this._createPageRequestManagerServerError(sender.get_statusCode()), sender);
 return;
 }

 var reply = sender.get_responseData();
 . . .

 if (parserErrorDetails)
 {
 this._endPostBack(this._createPageRequestManagerParserError(
 String.format(Sys.WebForms.Res.PRM_ParserErrorDetails,
 parserErrorDetails)), sender);
 return;
 }

 . . .
 for (var i = 0; i < delta.length; i++)
 {
 var deltaNode = delta[i];
 switch (deltaNode.type)
 {
 case “updatePanel”:
 Array.add(updatePanelNodes, deltaNode);
 break;
 case “hiddenField”:
 Array.add(hiddenFieldNodes, deltaNode);
 break;
 . . .

(continued)

c24.indd 1227c24.indd 1227 8/20/07 8:47:59 PM8/20/07 8:47:59 PM

Chapter 24: Asynchronous Partial Page Rendering

1228

 Listing 24-26 (continued)

 case “error”:
 this._endPostBack(this._createPageRequestManagerServerError(
 Number.parseInvariant(deltaNode.id), deltaNode.content), sender);
 return;

 case “pageTitle”:
 document.title = deltaNode.content;
 break;
 case “focus”:
 this._controlIDToFocus = deltaNode.content;
 break;

 default:
 this._endPostBack(this._createPageRequestManagerParserError(
 String.format(Sys.WebForms.Res.PRM_UnknownToken, deltaNode.type)), sender);
 return;

 }
 }
 var i;
 if (asyncPostBackControlIDsNode && postBackControlIDsNode &&
 updatePanelIDsNode && panelsToRefreshNode &&
 asyncPostBackTimeoutNode && childUpdatePanelIDsNode)
 {
 . . .

 for (i = 0; i < this._panelsToRefreshIDs.length; i++)
 {
 var panelClientID = this._uniqueIDToClientID(this._panelsToRefreshIDs[i]);
 if (!document.getElementById(panelClientID))
 {
 this._endPostBack(Error.invalidOperation(
 String.format(Sys.WebForms.Res.PRM_MissingPanel, panelClientID)), sender);
 return;
 }
 }

 var asyncPostBackTimeout = asyncPostBackTimeoutNode.content;
 this._updateControls(updatePanelIDsArray, asyncPostBackControlIDsArray,
 postBackControlIDsArray, asyncPostBackTimeout);
 }
 . . .

 for (i = 0; i < updatePanelNodes.length; i++)
 {
 var deltaUpdatePanel = updatePanelNodes[i];
 var deltaPanelID = deltaUpdatePanel.id;
 var deltaPanelRendering = deltaUpdatePanel.content;
 var updatePanelElement = document.getElementById(deltaPanelID);

c24.indd 1228c24.indd 1228 8/20/07 8:47:59 PM8/20/07 8:47:59 PM

Chapter 24: Asynchronous Partial Page Rendering

1229

 if (!updatePanelElement)
 {
 this._endPostBack(Error.invalidOperation(
 String.format(Sys.WebForms.Res.PRM_MissingPanel, deltaPanelID)), sender);
 return;
 }
 this._updatePanel(updatePanelElement, deltaPanelRendering);
 }

 . . .

 scriptLoader.loadScripts(0,
 Function.createDelegate(this, this._scriptsLoadComplete), null, null);
}

 As you can see from these discussions, the _endPostBack method of the current PageRequestManager
instance can be invoked for a number of reasons. Listing 24-27 presents the internal implementation of
this method. It first sets an internal flag named _processingRequest to false to signal that it is done
with processing the request:

 this._processingRequest = false;

 Then it sets the _request field of the current PageRequestManager instance to null so the same
 WebRequest object is not used to make the next asynchronous page postback requests to the server:

 this._request = null;

 Next, it calls the get_eventHandlerList method on the current PageRequestManager instance to
return a reference to the EventHandlerList object that contains the list of event handlers registered for
the events of the current PageRequestManager instance. Then it invokes the getHandler method on
this EventHandlerList object to return a reference to the JavaScript function whose invocation
 automatically invokes all the event handlers registered for the endRequest event of the current
 PageRequestManager instance:

 var handler = this._get_eventHandlerList().getHandler(“endRequest”);

 Then the _endPostBack method instantiates an EndRequestEventArgs object, passing in three
 parameters: the first references the error object, the second the _dataItems collection of the current
 PageRequestManager instance (recall that the current PageRequestManager instance maintains all
data items in this collection), and the last the WebRequestExecutor object responsible for executing the
current request. As you’ll see later, the EndRequestEventArgs is the event data class associated with
the endRequest event.

 var eventArgs =
 new Sys.WebForms.EndRequestEventArgs(error, this._dataItems, response);

 Finally, the _endPostBack method invokes the previously mentioned JavaScript function and
 consequently all the event handlers registered for the endRequest event of the current
PageRequestManager instance. Note that the _endPostBack method passes two parameters into

c24.indd 1229c24.indd 1229 8/20/07 8:47:59 PM8/20/07 8:47:59 PM

Chapter 24: Asynchronous Partial Page Rendering

1230

each event handler: the first references the current PageRequestManager instance and the second
 references the preceding EndRequestEventArgs object:

 handler(this, eventArgs);

 If you register an event handler for the endRequest event of the current PageRequestManager
 instance, your event handler will receive these two parameters. Your handler can then use them to
 retrieve all the required information about the current response and PageRequestManager instance
and use that information to perform any necessary application-specific tasks that must be done when a
request ends.

 Finally, the _endPostBack method calls the get_errorHandled method on the EndRequestEventArgs
instance to return a Boolean value that specifies whether any of the event handlers has indeed handled
the error (if any):

 errorHandled = eventArgs.get_errorHandled();

 As you’ll see later, the EndRequestEventArgs event data class exposes a Boolean property
named errorHandled . Your event handler can call the set_errorHandled method on the
 EndRequestEventArgs object to set the value of this property to true to signal the current
 PageRequestManager instance that the specified error has already been handled. This enables you
to use a custom error-handling technique to handle the error, bypassing the standard ASP.NET AJAX
error-handling logic. As you’ll see shortly, this standard logic simply displays a popup that contains
the error message.

 If none of the event handlers has processed the error, the _endPostBack method simply calls the alert
method to display the error message to the end user:

 if (error && !errorHandled)
 alert(error.message);

 Listing 24-27: The _endPostBack Method of the Current PageRequestManager
Instance

 function Sys$WebForms$PageRequestManager$_endPostBack(error, response)
{
 this._processingRequest = false;
 this._request = null;
 this._additionalInput = null;
 var handler = this._get_eventHandlerList().getHandler(“endRequest”);
 var errorHandled = false;
 if (handler)
 {
 var eventArgs =
 new Sys.WebForms.EndRequestEventArgs(error, this._dataItems, response);
 handler(this, eventArgs);
 errorHandled = eventArgs.get_errorHandled();
 }

 this._dataItems = null;
 if (error && !errorHandled)
 alert(error.message);
}

c24.indd 1230c24.indd 1230 8/20/07 8:48:00 PM8/20/07 8:48:00 PM

Chapter 24: Asynchronous Partial Page Rendering

1231

 pageLoading
 Recall from Figure 24-1 that the current client-side PageRequestManager instance fires its pageLoading
event right before it calls the _updatePanel method once for each UpdatePanel control that needs
updating. This enables you to run application-specific code that must be run before the UpdatePanel
controls on the current page are updated.

 The client-side PageRequestManager class uses the standard ASP.NET AJAX event-implementation
pattern to implement its pageLoading event, as follows:

 1. It defines a method named add_pageLoading that enables you to register event handlers for
the pageLoading event of the current client-side PageRequestManager instance. As the
 following code fragment shows, this method first calls the get_eventHandlerList method
on the current PageRequestManager instance, to return a reference to the EventHandlerList
 object that contains all the event handlers registered for the events of the current
PageRequestManager instance. Then it calls the addHandler method on this
EventHandlerList object to register the specified handler as an event handler for the
pageLoading event of the current PageRequestManager instance:

 function Sys$WebForms$PageRequestManager$add_pageLoading(handler)
{
 this._get_eventHandlerList().addHandler(“pageLoading”, handler);
}

 2. It defines a method named remove_ pageLoading that enables you to unregister an event
 handler registered for the pageLoading event of the instance:

 function Sys$WebForms$PageRequestManager$remove_pageLoading(handler)
{
 this._get_eventHandlerList().removeHandler(“pageLoading”, handler);
}

 The pageLoading event, like any other, is associated with an event data class whose instance acts as a
container for the associated event data. The event data class associated with the pageLoading event is
an ASP.NET AJAX client class named PageLoadingEventArgs . Listing 24-28 presents the internal
implementation of the PageLoadingEventArgs class.

 Listing 24-28: The Internal Implementation of the PageLoadingEventArgs Class

 Sys.WebForms.PageLoadingEventArgs =
function Sys$WebForms$PageLoadingEventArgs(panelsUpdating, panelsDeleting,
 dataItems)
{
 Sys.WebForms.PageLoadingEventArgs.initializeBase(this);
 this._panelsUpdating = panelsUpdating;
 this._panelsDeleting = panelsDeleting;
 this._dataItems = dataItems || new Object();
}

(continued)

c24.indd 1231c24.indd 1231 8/20/07 8:48:00 PM8/20/07 8:48:00 PM

Chapter 24: Asynchronous Partial Page Rendering

1232

 Listing 24-28 (continued)

function Sys$WebForms$PageLoadingEventArgs$get_dataItems()
{
 return this._dataItems;
}
function Sys$WebForms$PageLoadingEventArgs$get_panelsDeleting()
{
 return this._panelsDeleting;
}
function Sys$WebForms$PageLoadingEventArgs$get_panelsUpdating()
{
 return this._panelsUpdating;
}

Sys.WebForms.PageLoadingEventArgs.prototype =
{
 get_dataItems: Sys$WebForms$PageLoadingEventArgs$get_dataItems,
 get_panelsDeleting: Sys$WebForms$PageLoadingEventArgs$get_panelsDeleting,
 get_panelsUpdating: Sys$WebForms$PageLoadingEventArgs$get_panelsUpdating
}
Sys.WebForms.PageLoadingEventArgs.registerClass(
 ‘Sys.WebForms.PageLoadingEventArgs’, Sys.EventArgs);

 As you can see, the constructor of the PageLoadingEventArgs class takes three parameters. The first is
an array that contains the list of UpdatePanel server controls on the current page to be updated. Note
the emphasis on to be . As I mentioned earlier, the current PageRequestManager instance first raises the
 pageLoading event before it invokes the _updatePanel method, once for each updating UpdatePanel
control, to update the UpdatePanel controls on the current page. In other words, when the
 pageLoading event is raised, the UpdatePanel controls that need updating haven’t been updated yet.

 The second parameter is an array that contains the list of the UpdatePanel server controls on the current
page to be deleted. Again, notice the emphasis on to be . In other words, when the pageLoading event is
raised, the UpdatePanel controls that must be deleted haven’t been deleted yet.

 The last parameter, which is optional, returns an object that contains one name/value pair for each data
item. Recall that the current client-side PageRequestManager instance stores all data items in an inter-
nal collection named _dataItems . This optional parameter basically returns a reference to this
collection.

 As you can see from Listing 24-28 , the constructor of the PageLoadingEventArgs class stores its
 parameters in private fields named _panelsUpdating , _panelsDeleting , and _dataItems . Note
that the PageLoadingEventArgs class exposes three getters named get_panelsUpdating ,
get_panelsDeleting , and get_dataItems , which return these private fields.

 Next, I’ll examine what is and is not in effect or available when the current PageRequestManager
instance raises its pageLoading event:

c24.indd 1232c24.indd 1232 8/20/07 8:48:00 PM8/20/07 8:48:00 PM

Chapter 24: Asynchronous Partial Page Rendering

1233

 ❑ As you can see from the following portion of Listing 24-5 , the title of the current document has
already taken effect. Note that even though the _controlIDToFocus field of the current
 PageRequestManager instance has already been set to the ClientID property value of the
server control to receive the focus, the focus has not yet been given to this server control.
 Therefore the older server control, whatever it is, is still holding the focus at this point.

 for (var i = 0; i < delta.length; i++)
 {
 var deltaNode = delta[i];
 switch (deltaNode.type)
 {
 . . .
 case “pageTitle”:
 document.title = deltaNode.content;
 break;
 case “focus”:
 this._controlIDToFocus = deltaNode.content;
 break;
 . . .
 }
 }

 ❑ As you can see from the following portion of Listing 24-5 , the current PageRequestManager
 instance has already made sure that the current page contains all the UpdatePanel server con-
trols to be refreshed. In other words, your code can safely program against these UpdatePanel
server controls:

 for (i = 0; i < this._panelsToRefreshIDs.length; i++)
 {
 var panelClientID = this._uniqueIDToClientID(this._panelsToRefreshIDs[i]);
 if (!document.getElementById(panelClientID))
 {
 this._endPostBack(Error.invalidOperation(
 String.format(Sys.WebForms.Res.PRM_MissingPanel, panelClientID)), sender);
 return;
 }
 }

❑ As you can see from the following portion of Listing 24-5 , the current PageRequestManager
 instance has already invoked the _updateControls method:

 this._updateControls(updatePanelIDsArray, asyncPostBackControlIDsArray,
 postBackControlIDsArray, asyncPostBackTimeout);

 ❑ Listing 24-29 presents the internal implementation of _updateControls . As discussed in
 Chapter 22 , this method populates the following collections of the current PageRequestManager
instance:

 ❑ _updatePanelIDs : This collection contains the UniqueID property values of all
 UpdatePanel server controls on the current page after processing of the current
 asynchronous page postback request on the server side and before processing of the server
response to this request. This means that when the current PageRequestManager instance

c24.indd 1233c24.indd 1233 8/20/07 8:48:01 PM8/20/07 8:48:01 PM

Chapter 24: Asynchronous Partial Page Rendering

1234

fires its pageLoading event, the current document has not yet been updated with the
 contents of the _updatePanelsIDs collection. Therefore, if your event handler for the
 pageLoading event attempts to access the UpdatePanel controls in the current document,
it will receive references to the old UpdatePanel controls, which may or may not be there
after the current PageRequestManager instance updates the current document with the
contents of the _updatePanelIDs .

 In other words, the current document may contain UpdatePanel controls whose
 UniqueID property values are not included in the _updatePanelIDs collection, which
means that these UpdatePanel controls have been deleted during processing of the cur-
rent asynchronous page postback on the server side. Or the _updatePanelIDs collection
may contain UniqueID property values associated with UpdatePanel server controls that
do not exist in the current document, which means that these UpdatePanel server controls
have been added during processing of the current asynchronous page postback on the
server side.

❑ _updatePanelClientIDs : This collection is the same as the _updatePanelIDs collection,
with one difference: it contains the ClientID property values of all the UpdatePanel
server controls on the current page instead of their UniqueID property values. Therefore,
all the same discussions apply equally to the _updatePanelClientIDs collection.

❑ _updatePanelHasChildrenAsTriggers : This collection contains one Boolean value for
each UpdatePanel server control in the _updatePanelIDs collection, which specifies
whether the ChildrenAsTriggers property of the UpdatePanel server control is set to
 true . Again, keep in mind that when the current PageRequestManager instance fires its
 pageLoading event, the UpdatePanel controls on the current document have not yet
been updated with the contents of the _updatePanelHasChildrenAsTriggers
collection.

❑ _asyncPostBackControlIDs : This collection is the same as the
_syncPostBackControlIDs collection, with one main difference: this one
contains the UniqueID property values of all the asynchronous page postback controls
on the current page after processing of the current asynchronous page postback request on
the server side but before processing of the server response to this request on the
client side. Therefore, all the same discussions presented earlier about the
_syncPostBackControlIDs equally apply to the _asyncPostBackControlIDs
collection.

❑ _asyncPostBackControlClientIDs : This collection is much like the
_asyncPostBackControlIDs collection. The only difference is that this one contains
the ClientID property values of all the asynchronous postback server controls on the
 current page instead of their UniqueID property values.

❑ _postBackControlIDs : This collection is much like syncPostBackControlIDs . The
main difference is that this one contains the UniqueID property values of all the synchro-
nous page postback controls on the current page after processing of the current
 asynchronous page postback request on the server side but before processing of the server
response to this request on the client side.

❑ _postBackControlClientIDs : This collection is the same as _postBackControlIDs
collection, with one difference: it contains the ClientID property values of all the
 synchronous postback server controls on the current page instead of their UniqueID
 property values.

c24.indd 1234c24.indd 1234 8/20/07 8:48:01 PM8/20/07 8:48:01 PM

Chapter 24: Asynchronous Partial Page Rendering

1235

❑ As you can see from the following portion of Listing 24-5 , the current PageRequestManager
 instance has populated the _dataItems collection. Recall that this collection contains all data
items after processing of the current asynchronous page postback request on the server side and
before processing of the server response to this request on the client side.

 This means that when the current PageRequestManager instance fires its pageLoading event,
the current document has not yet been updated with the contents of the _dataItems collection.
Therefore, if your event handler for the pageLoading event attempts to access the data items
 associated with the existing controls in the current document, it will receive references to the old
data items.

 this._dataItems = {};
 for (i = 0; i < dataItemNodes.length; i++)
 {
 var dataItemNode = dataItemNodes[i];
 this._dataItems[dataItemNode.id] = dataItemNode.content;
 }

 for (i = 0; i < dataItemJsonNodes.length; i++)
 {
 var dataItemJsonNode = dataItemJsonNodes[i];
 this._dataItems[dataItemJsonNode.id] = eval(dataItemJsonNode.content);
 }

 ❑ As you can see from Listing 24-5 , when the current PageRequestManager instance raises the
 pageLoading event:

 ❑ The action property of the form element of the current document has not yet been
 updated. This means two things: first, if the value of this property has been changed
 during processing of the current asynchronous page postback, your event handler for the
 pageLoading event will receive the old value of this property if it attempts to access
the value of this property from the current document. Second, if some part of the logic of
your application depends on the value of this property, and if you need to run some
 application-specific code before the value of this property changes, your event handler for
the pageLoading event must contain this application-specific code.

❑ The _updatePanel method has not yet been invoked. This means that the content of none
of the UpdatePanel server controls on the current page whose UniqueID property values
are contained in the _updatePanelsToRefresh collection has yet been updated.

❑ The content of an UpdatePanel server control is what goes between the opening and
 closing tags of the <ContentTemplate> child element of the <UpdatePanel> tag on an
 .aspx page. Therefore, this content contains a bunch of HTML elements and scripts. If
your event handler attempts to access any of these content HTML elements and scripts, it
will get the current HTML elements and scripts, which may or may not be there after the
current PageRequestManager instance is done with processing the server response.

❑ None of the scripts contained in the server response to the current asynchronous page
postback request has yet been processed, and consequently they cannot be accessed from
your event handler for the pageLoading event. For example, if the server response
 contains script blocks that reference new JavaScript files, these files have not been down-
loaded from the server yet. Or if the server response contains new JavaScript array
 declarations or form submit statements, they have not yet been added to the current

c24.indd 1235c24.indd 1235 8/20/07 8:48:01 PM8/20/07 8:48:01 PM

Chapter 24: Asynchronous Partial Page Rendering

1236

 document. Therefore, your event handler for the pageLoading event mustn’t attempt to
use these scripts.

❑ If the current server response contains new hidden fields, these fields have not been yet
added to the current document. Therefore, your event handler for the pageLoading event
will not be able to use the DOM API to access these hidden fields from the current
document.

❑ If the current server response contains new expando attributes, they have not yet been
added to the current document. Therefore, your event handler for the pageLoading event
will not be able to use the DOM API to access these attributes from the current document.

 Listing 24-29: The _updateControls Method

 function Sys$WebForms$PageRequestManager$_updateControls(updatePanelIDs,
 asyncPostBackControlIDs,
 postBackControlIDs,
 asyncPostBackTimeout)
{
 if (updatePanelIDs)
 {
 this._updatePanelIDs = new Array(updatePanelIDs.length);
 this._updatePanelClientIDs = new Array(updatePanelIDs.length);
 this._updatePanelHasChildrenAsTriggers = new Array(updatePanelIDs.length);
 for (var i = 0; i < updatePanelIDs.length; i++)
 {
 this._updatePanelHasChildrenAsTriggers[i] =
 (updatePanelIDs[i].charAt(0) === ‘t’);
 this._updatePanelIDs[i] = updatePanelIDs[i].substr(1);
 this._updatePanelClientIDs[i] =
 this._uniqueIDToClientID(updatePanelIDs[i].substr(1));
 }
 this._asyncPostBackTimeout = asyncPostBackTimeout * 1000;
 }

 else
 {
 this._updatePanelIDs = [];
 this._updatePanelClientIDs = [];
 this._updatePanelHasChildrenAsTriggers = [];
 this._asyncPostBackTimeout = 0;
 }
 this._asyncPostBackControlIDs = [];
 this._asyncPostBackControlClientIDs = [];
 for (var i = 0; i < asyncPostBackControlIDs.length; i++)
 {
 Array.add(this._asyncPostBackControlIDs, asyncPostBackControlIDs[i]);
 Array.add(this._asyncPostBackControlClientIDs,
 this._uniqueIDToClientID(asyncPostBackControlIDs[i]));
 }

c24.indd 1236c24.indd 1236 8/20/07 8:48:02 PM8/20/07 8:48:02 PM

Chapter 24: Asynchronous Partial Page Rendering

1237

 this._postBackControlIDs = [];
 this._postBackControlClientIDs = [];
 for (var i = 0; i < postBackControlIDs.length; i++)
 {
 Array.add(this._postBackControlIDs, postBackControlIDs [i]);
 Array.add(this._postBackControlClientIDs,
 this._uniqueIDToClientID(postBackControlIDs [i]));
 }
}

 As I discussed earlier, when the current PageRequestManager instance fires its pageLoading event and
invokes your event handler, it passes two parameters to your event handler. The first parameter
 references the current PageRequestManager instance. The second references a PageLoadingEventArgs
object that contains the event data for the current pageLoading event. This event data contains three
arrays: data items, panels deleting, and panels updating.

 What is the significance of these three arrays and what can your event handler do with them? First, let’s
see the significance of the panels updating array. As you can see from Listing 24-5 , and as discussed
 earlier, after your event handler finally returns, the current PageRequestManager instance calls
the _updatePanel method shown in Listing 24-6 once for each UpdatePanel server control in the
_updatePanelsToRefreshIDs to update the contents of these UpdatePanel server controls. As you
can see from the highlighted portions of Listing 24-30 , which repeats Listing 24-6 , updating an
 UpdatePanel server control does the following:

 ❑ Runs all the dispose scripts associated with the UpdatePanel server control. If your application
logic depends on resources released by these dispose scripts, your event handler for the
 pageLoading event must take the necessary steps before these resources are released:

 var disposeScripts = this._scriptDisposes[updatePanelID];
 for (var i = 0; i < disposeScripts.length; i++)
 {
 eval(disposeScripts[i]);
 }

 ❑ Deletes all the dispose scripts associated with the UpdatePanel server control:

 delete this._scriptDisposes[updatePanelID];

 ❑ Invokes the _destroyTree method:

 this._destroyTree(updatePanelElement);

 ❑ The _destroyTree method recursively takes these steps for each element in the DOM
 descendant hierarchy of the UpdatePanel server control, as shown in the highlighted portions
of Listing 24-31 , which repeats Listing 24-8 :

 ❑ Invokes the dispose method on client controls associated with the DOM element. If
your application logic depends on these client controls, your event handler for the
 pageLoading event must take the necessary steps before these controls are disposed of:

 node.control.dispose();

c24.indd 1237c24.indd 1237 8/20/07 8:48:02 PM8/20/07 8:48:02 PM

Chapter 24: Asynchronous Partial Page Rendering

1238

 ❑ Invokes the dispose method on all behaviors associated with the DOM element. If your
application logic depends on these behaviors, your event handler for the pageLoading
event must take the necessary steps before these behaviors are disposed of:

 var behaviors = Sys.UI.Behavior.getBehaviors(node);
 for (var j = behaviors.length - 1; j >= 0; j--)
 {
 behaviors[j].dispose();
 }

 ❑ Invokes the _destroyTree method, passing in the DOM element. This method in turn
 repeats the same steps — that is, it recursively invokes the dispose method on client
 controls and behaviors associated with each element in the DOM descendant hierarchy of
the element. If your application logic depends on these client controls and behaviors, your
event handler for the pageLoading event must take the necessary steps before these
 controls and behaviors are disposed of:

 this._destroyTree(node);

 ❑ Assigns the string that contains the new content to the innerHTML property of the UpdatePanel
control. This wipes out all the old content, including the child server controls, and replaces them
with the new content. If your application logic depends on any of the DOM elements enclosed
within the UpdatePanel server control, your event handler for the pageLoading event must
take the necessary steps before these DOM elements are wiped out and replaced.

 Listing 24-30: The _updatePanel Method

 function Sys$WebForms$PageRequestManager$_updatePanel(updatePanelElement,
 htmlMarkup)
{
 for (var updatePanelID in this._scriptDisposes)
 {
 var runDisposeScripts = false;
 var element = document.getElementById(updatePanelID);
 while (element)
 {
 if (element === updatePanelElement)
 {
 runDisposeScripts = true;
 break;
 }
 element = element.parentNode;
 }

c24.indd 1238c24.indd 1238 8/20/07 8:48:02 PM8/20/07 8:48:02 PM

Chapter 24: Asynchronous Partial Page Rendering

1239

 if (runDisposeScripts)
 {

 var disposeScripts = this._scriptDisposes[updatePanelID];
 for (var i = 0; i < disposeScripts.length; i++)
 {
 eval(disposeScripts[i]);
 }
 delete this._scriptDisposes[updatePanelID];

 }
 }

 this._destroyTree(updatePanelElement);
 updatePanelElement.innerHTML = rendering;

}

 Listing 24-31: The _destroyTree Method

 function Sys$WebForms$PageRequestManager$_destroyTree(element)
{
 if (element.nodeType === 1)
 {
 var childNodes = element.childNodes;
 for (var i = childNodes.length - 1; i >= 0; i--)
 {
 var node = childNodes[i];
 if (node.nodeType === 1)
 {
 if (node.dispose && typeof(node.dispose) === “function”)
 node.dispose();

 else if (node.control && typeof(node.control.dispose) === “function”)

 node.control.dispose();

 var behaviors = Sys.UI.Behavior.getBehaviors(node);
 for (var j = behaviors.length - 1; j >= 0; j--)
 {
 behaviors[j].dispose();
 }

 this._destroyTree(node);

 }
 }
 }
}

 Keep in mind that we’re discussing the significance of the three event data arrays — data items, panels
updating, and panels deleting — associated with the pageLoading event. So far, I’ve discussed the pan-
els updating array. Now, let’s study the significance of the panels deleting array. This array contains the
list of all UpdatePanel server controls that are deleted after processing of the current asynchronous
page postback request on the server side and before processing of the server response to this request on

c24.indd 1239c24.indd 1239 8/20/07 8:48:02 PM8/20/07 8:48:02 PM

Chapter 24: Asynchronous Partial Page Rendering

1240

the client side. If your application logic depends on any of these UpdatePanel controls, the
DOM elements and scripts that they contain or the client controls and behaviors associated with
these DOM elements, your event handler for the pageLoading event must take the necessary steps
before these UpdatePanel server controls are deleted from the current document.

 Next, let’s study the significance of the data items dictionary. This dictionary contains all the new data
items after processing of the current asynchronous page postback request on the server side and before
processing of the server response to this request on the client side. Each data item in this dictionary is
associated with a particular control on the current page. You can access this dictionary from within your
event handler to enable the pageLoading event to do whatever application-specific tasks you deem nec-
essary. However, keep in mind that some of these data items could be associated with the server controls
that have not yet been added to the current document.

 Now that we’ve covered the significance of the panels deleting, panels updating, and data items collec-
tions of the PageLoadingEventArgs event data class, let revisit the following portion of Listing 24-5 .
Recall that this portion of the _onFormSubmitCompleted method of the current PageRequestManager
instance invokes the _getPageLoadingEventArgs method on the current PageRequestManager instance
to instantiate and to return an instance of the PageLoadingEventArgs class, which is then passed into the
event handlers registered for the pageLoading event of the current PageRequestManager instance:

 var handler = this._get_eventHandlerList().getHandler(“pageLoading”);
 if (handler)
 handler(this, this._getPageLoadingEventArgs());

 Listing 24-32 presents the internal implementation of the _getPageLoadingEventArgs method.

 Since the main responsibility of the _getPageLoadingEventArgs method is to instantiate an instance of
the PageLoadingEventArgs class, and since the constructor of this class requires the list of updating
and deleting UpdatePanel server controls, the _getPageLoadedEventArgs method first populates two
local collections named updating and deleting with the list of the UpdatePanel server controls to be
updated and the list of UpdatePanel server controls to be deleted , respectively.

 As you can see, the method iterates through the UniqueID property values in the _panelsToRefreshIDs
collection of the current PageRequestManager instance and takes the following steps for each enumer-
ated UniqueID property value. First, it invokes the _uniqueIDToClientID method on the current
 PageRequestManager instance, passing in the enumerated UniqueID property value to return its
 associated ClientID property value:

 updatePanelClientID = this._uniqueIDToClientID(refreshIDs[i]);

 Next, it invokes the getElementById method on the document object passing the ClientID property
value to return a reference to the associated UpdatePanel server control:

 updatePanel = document.getElementById(updatePanelClientID);

 Finally, the _getPageLoadingEventArgs method adds the UpdatePanel server control to the updating
local collection:

 Array.add(updating, updatePanel);

c24.indd 1240c24.indd 1240 8/20/07 8:48:03 PM8/20/07 8:48:03 PM

Chapter 24: Asynchronous Partial Page Rendering

1241

 The next order of business for the _getPageLoadingEventArgs method is to populate the deleting
 collection with the list of UpdatePanel server controls to be deleted .

 As discussed in the previous chapter, as far as the current client-side PageRequestManager instance
is concerned, when an UpdatePanel server control updates, its child UpdatePanel server controls
do not . Instead they are deleted from the current page and replaced with brand-new child
 UpdatePanel server controls that have the same UniqueID and ClientID property values as
 the deleted ones.

 In other words, the current client-side PageRequestManager instance treats all child UpdatePanel
server controls of the UpdatePanel server control being updated as brand-new UpdatePanel server
controls created during processing of the current asynchronous page postback request. This includes
both those child UpdatePanel server controls replacing the deleted ones (that is, those with the same
 UniqueID and ClientID property values as the deleted ones) and those child UpdatePanel server
controls that are not replacing the deleted ones (those with completely different UniqueID and
 ClientID property values from the deleted ones). Keep in mind that the server-side code may add
new child UpdatePanel server controls to an UpdatePanel server control.

 As Listing 24-32 shows, the _getPageLoadingEventArgs method searches through the oldIDs
 collection for those UpdatePanel server controls that are being deleted from the current document,
and adds them to the deleting collection:

 for (var i = 0; i < oldIDs.length; i++)
 {
 if (Array.indexOf(refreshedIDs, oldIDs[i]) === -1 &&
 (Array.indexOf(newIDs, oldIDs[i]) === -1 ||
 Array.indexOf(childIDs, oldIDs[i]) > -1))
 Array.add(deleting,
 document.getElementById(this._uniqueIDToClientID(oldIDs[i])));
 }

 Finally, the _getPageLoadingEventArgs method instantiates and returns an instance of the
 PageLoadingEventArgs event data class passing in three collections: updating, deleting, and
 _dataItems .

 return new Sys.WebForms.PageLoadedEventArgs(updated, created, this._dataItems);

 Listing 24-32: The _getPageLoadingEventArgs Method of the PageRequestManager

 function Sys$WebForms$PageRequestManager$_getPageLoadingEventArgs()
{
 var updating = [];
 var deleting = [];
 var oldIDs = this._oldUpdatePanelIDs;
 var newIDs = this._updatePanelIDs;
 var childIDs = this._childUpdatePanelIDs;
 var refreshedIDs = this._panelsToRefreshIDs;
 var updatePanelClientID;
 var updatePanel;

(continued)

c24.indd 1241c24.indd 1241 8/20/07 8:48:03 PM8/20/07 8:48:03 PM

Chapter 24: Asynchronous Partial Page Rendering

1242

 Listing 24-32 (continued)

 for (var i = 0; i < refreshedIDs.length; i++)
 {
 updatePanelClientID = this._uniqueIDToClientID(refreshIDs[i]);
 updatePanel = document.getElementById(updatePanelClientID);
 Array.add(updating, updatePanel);
 Array.add(updating,
 document.getElementById(this._uniqueIDToClientID(refreshedIDs[i])));
 }
 for (var i = 0; i < oldIDs.length; i++)
 {
 if (Array.indexOf(refreshedIDs, oldIDs[i]) === -1 &&
 (Array.indexOf(newIDs, oldIDs[i]) === -1 ||
 Array.indexOf(childIDs, oldIDs[i]) > -1))
 Array.add(deleting,
 document.getElementById(this._uniqueIDToClientID(oldIDs[i])));
 }
 return new Sys.WebForms.PageLoadingEventArgs(updating, deleting,
 this._dataItems);
}

 Using the pageLoading Event
 As discussed earlier, the current client-side PageRequestManager instance fires its pageLoading event
right before loading new content into the current page, to enable you to perform application-specific
tasks that must be performed right before the new content is loaded. Follow these steps to ensure that
your required application-specific logic is executed right before the loading takes place:

 1. If your required application-specific logic is encapsulated in a method of an ASP.NET AJAX
 client class, invoke the createDelegate static method on the Function to instantiate a
 delegate that represents this method. For example, if this logic is contained in a method named
 myMethod that belongs to an ASP.NET AJAX class named MyClass , you’ll need to create a dele-
gate such as the following:

 var myObj = new CustomComponents.MyClass();
. . .
var myDelegate = Function.createDelegate(myObj, myObj.myMethod);

 2. If your required application-specific logic in not already encapsulated in a method of an ASP.
NET AJAX client class, write a new JavaScript function that encapsulates this logic.

3. Take the following steps inside the pageLoad method:

 ❑ Invoke the getInstance static method on the client-side PageRequestManager class to
return a reference to the current client-side PageRequestManager instance:

 function pageLoad()
{
 var prm = Sys.WebForms.PageRequestManager.getInstance();
 . . .
}

c24.indd 1242c24.indd 1242 8/20/07 8:48:03 PM8/20/07 8:48:03 PM

Chapter 24: Asynchronous Partial Page Rendering

1243

 ❑ Invoke the add_pageLoading method on the current client-side PageRequestManager
 instance to register the delegate from Step 1 or the JavaScript function from Step 2 as the
event handler for the pageLoading event of the current client-side PageRequestManager
instance:

 function pageLoad()
{
 var myObj = new CustomComponents.MyClass();
 . . .
 var myDelegate = Function.createDelegate(myObj, myObj.myMethod);
 var prm = Sys.WebForms.PageRequestManager.getInstance();
 prm.add_pageLoading(myDelegate);
 . . .
}

 Listing 24-33 contains a page that uses this recipe. If you run this page you should see the results shown
in Figure 24-3 . As this figure shows, this page consists of a parent UpdatePanel server control that con-
tains a child UpdatePanel server control. If you click the button labeled Parent UpdatePanel Trigger, the
page will display the popup shown in Figure 24-4 . If you click the button labeled Child UpdatePanel
Trigger, the page will display the popup shown in Figure 24-5 . As you can see, each popup contains
a message that displays some of the information available to an event handler registered for the
 pageLoading event right before the actual loading takes place. What you do with this information is
completely up to you. Your event handler can use it to perform application-specific tasks that must be
performed right before the actual loading occurs.

 Listing 24-33: A Page that Uses the Preceding Recipe

 <%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Drawing” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<script runat=”server”>
 void Page_Load(object sender, EventArgs e)
 {
 Label parentUpdatePanelLabel =
 (Label)Page.FindControl(“ParentUpdatePanelLabel”);
 parentUpdatePanelLabel.Text = “UpdatePanel refreshed at “ +
 DateTime.Now.ToString();
 Label childUpdatePanelLabel =
 (Label)Page.FindControl(“childUpdatePanelLabel”);
 childUpdatePanelLabel.Text = “UpdatePanel refreshed at “ +
 DateTime.Now.ToString();
 }
 void ClickCallback (object sender, EventArgs e)
 {
 Label label = (Label)Page.FindControl(“DynamicChildUpdatePanelLabel”);
 label.Text = “UpdatePanel refreshed at “ + DateTime.Now.ToString() +
 “ ”;
 }
</script>

(continued)

c24.indd 1243c24.indd 1243 8/20/07 8:48:04 PM8/20/07 8:48:04 PM

Chapter 24: Asynchronous Partial Page Rendering

1244

 Listing 24-33 (continued)

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function pageLoad()
 {
 var prm = Sys.WebForms.PageRequestManager.getInstance();
 prm.remove_pageLoading(pageLoadingHandler);
 prm.add_pageLoading(pageLoadingHandler);
 }

 function pageLoadingHandler(sender, e)
 {
 var panelsUpdating = e.get_panelsUpdating();
 var panelsDeleting = e.get_panelsDeleting();
 var dataItems = e.get_dataItems();

 var builder = new Sys.StringBuilder();
 builder.append(“panelsUpdating: “);
 builder.appendLine();
 for (var i in panelsUpdating)
 {
 builder.append(panelsUpdating[i].id);
 builder.appendLine();
 }

 builder.appendLine();
 builder.append(“panelsDeleting: “);
 builder.appendLine();
 for (var j in panelsDeleting)
 {
 builder.append(panelsDeleting[j].id);
 builder.appendLine();
 }
 builder.appendLine();
 builder.append(“_updatePanelIDs: “);
 builder.append(sender._updatePanelIDs);
 builder.appendLine();
 builder.appendLine();
 builder.append(“_updatePanelClientIDs: “);
 builder.append(sender._updatePanelClientIDs);
 builder.appendLine();
 builder.appendLine();
 builder.append(“_updatePanelHasChildrenAsTriggers: “);
 builder.append(sender._updatePanelHasChildrenAsTriggers);
 builder.appendLine();
 builder.appendLine();
 builder.append(“_asyncPostBackTimeout: “);
 builder.append(sender._asyncPostBackTimeout);
 builder.appendLine();

c24.indd 1244c24.indd 1244 8/20/07 8:48:04 PM8/20/07 8:48:04 PM

Chapter 24: Asynchronous Partial Page Rendering

1245

 builder.appendLine();
 builder.append(“_asyncPostBackControlIDs: “);
 builder.append(sender._asyncPostBackControlIDs);
 builder.appendLine();
 builder.appendLine();
 builder.append(“_asyncPostBackControlClientIDs: “);
 builder.append(sender._asyncPostBackControlClientIDs);
 builder.appendLine();
 builder.appendLine();
 builder.append(“_postBackControlIDs: “);
 builder.append(sender._postBackControlIDs);
 builder.appendLine();
 builder.appendLine();
 builder.append(“_postBackControlClientIDs: “);
 builder.append(sender._postBackControlClientIDs);
 alert(builder.toString());
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />
 <table cellspacing=”10”>
 <tr>
 <td align=”center” colspan=”2”>
 <asp:UpdatePanel ID=”ParentUpdatePanel” UpdateMode=”Conditional”
 runat=”server”>
 <ContentTemplate>
 <table cellspacing=”20” style=”background-color: #dddddd”>
 <tr>
 <th>
 Parent UpdatePanel Control</th>
 </tr>
 <tr>
 <td>
 <asp:Label ID=”ParentUpdatePanelLabel” runat=”server” />

 <asp:Button ID=”ParentUpdatePanelButton” runat=”server”
 Text=”Update” />
 </td>
 </tr>
 <tr>
 <td style=”width: 100%”>
 <asp:UpdatePanel ID=”ChildUpdatePanel” runat=”server”>
 <ContentTemplate>
 <table style=”background-color: #aaaaaa”>
 <tr>
 <th>
 Child UpdatePanel Control</th>
 </tr>

(continued)

c24.indd 1245c24.indd 1245 8/20/07 8:48:04 PM8/20/07 8:48:04 PM

Chapter 24: Asynchronous Partial Page Rendering

1246

 Listing 24-33 (continued)

 <tr>
 <td>
 <asp:Label ID=”childUpdatePanelLabel”
 runat=”server” />
 <asp:Button ID=”ChildUpdatePanelButton”
 runat=”server” Text=”Update” />
 </td>
 </tr>
 <tr>
 <td>
 </td>
 </tr>
 </table>
 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger EventName=”Click”
 ControlID=”ChildUpdatePanelTrigger” />
 </Triggers>
 </asp:UpdatePanel>
 </td>
 </tr>
 </table>
 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID=”ParentUpdatePanelTrigger”
 EventName=”Click” />
 </Triggers>
 </asp:UpdatePanel>
 </td>
 </tr>
 <tr>
 <td width=”50%”>
 <asp:Button ID=”ChildUpdatePanelTrigger” runat=”server”
 Text=”Child UpdatePanel Trigger” Width=”100%” />
 </td>
 <td>
 <asp:Button ID=”ParentUpdatePanelTrigger” runat=”server”
 Text=”Parent UpdatePanel Trigger” Width=”100%” />
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

c24.indd 1246c24.indd 1246 8/20/07 8:48:04 PM8/20/07 8:48:04 PM

Chapter 24: Asynchronous Partial Page Rendering

1247

 Now let’s walk through the code shown in Listing 24-33 . As you can see, this page contains a server-side
and a client-side script block. The server-side script block contains the implementation of the Page_Load
method. As you can see, this method first calls the FindControl method twice on the current Page to
return references to the ParentUpdatePanelLabel and ChildUpdatePanelLabel server controls, and
then sets the values of their Text properties to the current time:

 Label parentUpdatePanelLabel = (Label)Page.FindControl(“ParentUpdatePanelLabel”);
parentUpdatePanelLabel.Text = “UpdatePanel refreshed at “ +
 DateTime.Now.ToString();
Label childUpdatePanelLabel = (Label)Page.FindControl(“ChildUpdatePanelLabel”);
childUpdatePanelLabel.Text = “UpdatePanel refreshed at “ + DateTime.Now.ToString();

 As Listing 24-33 shows, the client-side script block consists of two parts. The first part contains the
implementation of the pageLoad method:

 function pageLoad()
 {
 var prm = Sys.WebForms.PageRequestManager.getInstance();
 prm.add_pageLoading(pageLoadingHandler);
 }

 As you can see, pageLoad first calls the getInstance static method on the client-side
PageRequestManager class to return a reference to the current client-side PageRequestManager
instance:

 var prm = Sys.WebForms.PageRequestManager.getInstance();

Figure 24-3

c24.indd 1247c24.indd 1247 8/20/07 8:48:05 PM8/20/07 8:48:05 PM

Chapter 24: Asynchronous Partial Page Rendering

1248

 Next, the method invokes the add_pageLoading method on the current PageRequestManager instance
to register the pageLoadingHandler JavaScript function as an event handler for the pageLoading
event of the current PageRequestManager instance:

 prm.add_pageLoading(pageLoadingHandler);

 Now, let’s walk through the implementation of the pageLoadingHandler JavaScript function. When
the current client-side PageRequestManager instance invokes this function, it passes two para meters
into it. The first parameter references the current client-side PageRequestManager instance. The
second parameter references the PageLoadingEventArgs object that contains the event data for the
 pageLoading event.

 As Listing 24-33 shows, the pageLoadingHandler method first calls the get_panelsUpdating
 method on the PageLoadingEventArgs object to return a reference to the array that contains all the
 UpdatePanel server controls that need to be updated:

 var panelsUpdating = e.get_panelsUpdating();

Figure 24-4

c24.indd 1248c24.indd 1248 8/20/07 8:48:05 PM8/20/07 8:48:05 PM

Chapter 24: Asynchronous Partial Page Rendering

1249

 Next, it calls the get_panelsDeleting method on the PageLoadingEventArgs object to return a refer-
ence to the array that contains all the UpdatePanel server controls that need to be deleted:

 var panelsDeleting = e.get_panelsDeleting();

 Next, the pageLoadingHandler method instantiates a StringBuilder :

 var builder = new Sys.StringBuilder();

 Then it populates the StringBuilder with the UniqueID property values of all the UpdatePanel
server controls in the panelsUpdating array:

 builder.append(“panelsUpdating: “);
 builder.appendLine();
 for (var i in panelsUpdating)
 {
 builder.append(panelsUpdating[i].id);
 builder.appendLine();
 }

Figure 24-5

c24.indd 1249c24.indd 1249 8/20/07 8:48:05 PM8/20/07 8:48:05 PM

Chapter 24: Asynchronous Partial Page Rendering

1250

 Next, it populates the StringBuilder with the UniqueID property values of the all the UpdatePanel
server controls in the panelsDeleting array:

 for (var j in panelsDeleting)
 {
 builder.append(panelsDeleting[j].id);
 builder.appendLine();
 }

 Then the pageLoadingHandler method adds the content of the _updatePanelIDs field of the current
client-side PageRequestManager instance to the StringBuilder . Recall that the first parameter
(that is, the sender parameter) of the pageLoadingHandler method references the current client-
side PageRequestManager instance. Also recall that the _updatePanelIDs field of the current
 PageRequestManager instance contains the comma-separated list of the UniqueID property values
of all the UpdatePanel server controls on the current page after processing of the current request on
the server side and before processing of the server response to this request on the client side:

 builder.appendLine();
 builder.append(“_updatePanelIDs: “);
 builder.append(sender._updatePanelIDs);

 Next, it adds the content of the _updatePanelClientIDs field of the current client-side
 PageRequestManager instance to the StringBuilder . Recall that the _updatePanelClientIDs
field contains the comma-separated list of the ClientID property values of all the UpdatePanel server
controls on the current page after processing of the current request on the server side and before
 processing of the server response to this request on the client side:

 builder.appendLine();
 builder.appendLine();
 builder.append(“_updatePanelClientIDs: “);
 builder.append(sender._updatePanelClientIDs);

 Then it adds the content of the _updatePanelHasChildrenAsTriggers field of the current
client-side PageRequestManager instance to the StringBuilder . Recall that the
_updatePanelHasChildrenAsTriggers field contains the comma-separated list of Boolean
values, one for each UpdatePanel server control in the _updatePanelIDs .

 builder.appendLine();
 builder.appendLine();
 builder.append(“_updatePanelHasChildrenAsTriggers: “);
 builder.append(sender._updatePanelHasChildrenAsTriggers);

 Next, the pageLoadingHandler method adds the value of the _asyncPostBackTimeout field of the
current client-side PageRequestManager instance to the StringBuilder . Recall that this field contains
the asynchronous page postback request timeout.

 builder.appendLine();
 builder.appendLine();
 builder.append(“_asyncPostBackTimeout: “);
 builder.append(sender._asyncPostBackTimeout);

c24.indd 1250c24.indd 1250 8/20/07 8:48:06 PM8/20/07 8:48:06 PM

Chapter 24: Asynchronous Partial Page Rendering

1251

 Next, it adds the content of the _asyncPostBackControlIDs field of the current client-side
 PageRequestManager instance to the StringBuilder . Recall that the _asyncPostBackControlIDs
field contains the comma-separated list of the UniqueID property values of all the asynchronous
 postback controls on the current page after processing of the current request on the server side and
before processing of the server response to this request on the client side:

 builder.appendLine();
 builder.appendLine();
 builder.append(“_asyncPostBackControlIDs: “);
 builder.append(sender._asyncPostBackControlIDs);

 Then it adds the content of the _asyncPostBackControlClientIDs field of the current
client-side PageRequestManager instance to the StringBuilder . Recall that the
_asyncPostBackControlClientIDs field contains the comma-separated list of the ClientID
 property values of all the server controls on the current page that cause asynchronous page postback:

 builder.appendLine();
 builder.appendLine();
 builder.append(“_asyncPostBackControlClientIDs: “);
 builder.append(sender._asyncPostBackControlClientIDs);

 Next, the pageLoadingHandler method adds the content of the _postBackControlIDs field of
the current client-side PageRequestManager instance to the StringBuilder . Recall that the
_postBackControlIDs field contains the comma-separated list of the UniqueID property values of
all the server controls on the current page that cause synchronous page postback:

 builder.appendLine();
 builder.appendLine();
 builder.append(“_postBackControlIDs: “);
 builder.append(sender._postBackControlIDs);

 Then it adds the content of the _postBackControlClientIDs field of the current client-side
 PageRequestManager instance to the StringBuilder . Recall that the _postBackControlClientIDs
field contains the comma-separated list of the ClientID property values of all the server controls on
the current page that cause synchronous page postback:

 builder.appendLine();
 builder.appendLine();
 builder.append(“_postBackControlClientIDs: “);
 builder.append(sender._postBackControlClientIDs);

 Finally, it displays the content of the StringBuilder in a popup, shown in Figure 24-4 or 24-5 .

 alert(builder.toString());

 Next, let’s study the messages shown in Figurers 24-4 and 24-5. As Figure 24-4 shows,

 ❑ The panelsUpdating array contains ParentUpdatePanel because the user clicked the button
labeled Parent UpdatePanel Trigger, which triggers the update of ParentUpdatePanel .

c24.indd 1251c24.indd 1251 8/20/07 8:48:06 PM8/20/07 8:48:06 PM

Chapter 24: Asynchronous Partial Page Rendering

1252

❑ The panelsDeleting array contains the ChildUpdatePanel . This is because updating
the ParentUpdatePanel wipes out the ChildUpdatePanel and replaces it with a new
 ChildUpdatePanel that has the same UniqueID and ClientID property values as the
deleted one.

❑ The _updatePanelIDs field of the current PageRequestManager instance returns the comma-
separated list of the UniqueID properties of all the UpdatePanel server controls on the current
page — that is, ParentUpdatePanel and ChildUpdatePanel . Note that the UniqueID
 property values in this example are the same as the ID property values because none of the
 UpdatePanel server controls in this example belongs to a parent server control that implements
the INamingContainer interface.

❑ The _updatePanelClientIDs field of the current PageRequestManager instance returns the
comma-separated list of the ClientID properties of all the UpdatePanel server controls on the
current page — that is, ParentUpdatePanel and ChildUpdatePanel . Note that the ClientID
property values in this example are the same as the ID property values because none of the
 UpdatePanel server controls in this example belongs to a parent server control that implements
the INamingContainer interface.

❑ The _updatePanelHasChildrenAsTriggers field of the current PageRequestManger
 instance returns the comma-separated list of Boolean values, one for each UpdatePanel server
control. Because this example contains two UpdatePanel server controls and because the
 ChildrenAsTriggers properties of both UpdatePanel server controls are set to true by
 default, the _updatePanelHasChildrenAsTriggers field contains a comma-separated list of
two true values.

❑ The _asyncPostBackTimeout field of the current PageRequestManager instance returns the
default value, which is 90000 .

❑ The _asyncPostBackControlIDs field of the current PageRequestManager instance returns
the comma-separated list of the UniqueID property values of all asynchronous postback
 server controls. Our example contains two asynchronous postback Button server controls:
 ParentUpdatePanelTrigger and ChildUpdatePanelTrigger .

❑ The _asyncPostBackControlClientIDs field of the current PageRequestManager instance
returns the comma-separated list of the ClientID property values of all asynchronous postback
server controls. Our example contains two asynchronous postback Button server controls:
 ParentUpdatePanelTrigger and ChildUpdatePanelTrigger . Again, because these
two Button server controls do not belong to a server control that implements the
INamingContainer interface, their UniqueID , ClientID , and ID properties have
the same values.

 Keep in mind that the arrays returned from the calls into the get_panelsUpdating and
get_panelsDeleting methods contain references to the actual updating and deleting UpdatePanel
server controls, respectively. This gives your event handler (registered for the pageLoading event of
the current PageRequestManager instance) a powerful tool with which to modify the contents of
these UpdatePanel server controls or to enhance their functionality.

c24.indd 1252c24.indd 1252 8/20/07 8:48:06 PM8/20/07 8:48:06 PM

Chapter 24: Asynchronous Partial Page Rendering

1253

 pageLoaded
 The current client-side PageRequestManager instance raises the pageLoaded event in two separate
occasions:

 ❑ At the end of its instantiation/initialization phase, as shown in Figure 22-5 . Recall that this phase
occurs only once during the entire lifetime of the current PageRequestManager instance — when
it is loaded for the first time. This scenario was thoroughly discussed in Chapter 22 .

❑ At the end of the processing of the server response for an asynchronous page postback request,
as shown in Figure 24-2 . This could happen as many times as the current PageRequestManager
instance makes asynchronous page postback requests to the server, because the current
 PageRequestManager instance raises the pageLoaded event at the end of the processing of
the server response for every single asynchronous page postback request it makes to the server.

 The client-side PageRequestManager class uses the standard ASP.NET AJAX event implementation
 pattern to implement its pageLoaded event, as thoroughly discussed in Chapter 22 . Recall that the
 PageRequestManager exposes a method named _pageLoaded that raises its pageLoaded event, as
shown again in the highlighted portion of Listing 24-34 .

 Listing 24-34: The _pageLoaded Method of the PageRequestManager

 function Sys$WebForms$PageRequestManager$_pageLoaded(initialLoad)
{

 var handler = this._get_eventHandlerList().getHandler(“pageLoaded”);
 if (handler)
 handler(this, this._getPageLoadedEventArgs(initialLoad));

 if (!initialLoad)
 Sys.Application.raiseLoad();
}

 As you can see in the highlighted portion of this code listing, this method invokes the
_getPageLoadedEventArgs(initialLoad) internal method on the current PageRequestManager
instance to instantiate and to return an instance of the PageLoadedEventArgs event data class,
which is then passed into the event handlers registered for the pageLoaded event of the current
PageRequestManager instance. Listing 24-35 presents the internal implementation of the
_getPageLoadedEventArgs method.

 Since the main responsibility of the _getPageLoadedEventArgs method is to instantiate an instance of
the PageLoadedEventArgs class, and since the constructor of this class requires the list of updated and
created UpdatePanel server controls, the _getPageLoadedEventArgs method first populates two local
collections named updated and created with the list of the updated UpdatePanel server controls and
the list of newly-created UpdatePanel server controls, respectively.

 As you can see, the method iterates through the UniqueID property values in the _panelsToRefreshIDs
collection of the current PageRequestManager instance and takes the following steps for each enumer-
ated UniqueID property value. First, it invokes the _uniqueIDToClientID method on the current

c24.indd 1253c24.indd 1253 8/20/07 8:48:07 PM8/20/07 8:48:07 PM

Chapter 24: Asynchronous Partial Page Rendering

1254

 PageRequestManager instance, passing in the enumerated UniqueID property value to return its
 associated ClientID property value:

 updatePanelClientID = this._uniqueIDToClientID(refreshIDs[i]);

 Next, the _getPageLoadedEventArgs method invokes the getElementById method on the document
object, passing the ClientID property value to return a reference to the UpdatePanel server control
with the specified ClientID property value:

 updatePanel = document.getElementById(updatePanelClientID);

 Finally, it adds the UpdatePanel server control to the updated local collection:

 Array.add(updated, updatePanel);

 The next order of business for the _getPageLoadedEventArgs method is to populate the created
 collection with the list of all UpdatePanel server controls that the server-side PageRequestManager
instance has created during processing of the current asynchronous page postback request.

 As Listing 24-35 shows, the _getPageLoadedEventArgs method searches through the newIDs
 collection for those UpdatePanel server controls that are child UpdatePanel server controls of other
 UpdatePanel server controls. Since the current client-side PageRequestManager instance treats every
child UpdatePanel server control as a newly-created UpdatePanel server control during processing of
the current asynchronous page postback request, all child UpdatePanel server controls are added to the
created collection. This includes both those child UpdatePanel server controls that have the same
 UniqueID property values as the ones they’re replacing, and those child UpdatePanel server controls
that do not correspond to any of the old child UpdatePanel server controls.

 for (var i = 0; i < newIDs.length; i++)
 {
 if (initialLoad || Array.indexOf(childIDs, newIDs[i]) !== -1)
 {
 updatePanelClientID = this._uniqueIDToClientID(newIDs[i]);
 updatePanel = document.getElementById(updatePanelClientID);
 Array.add(created, updatePanel);
 }
 }

 Finally, the _getPageLoadedEventArgs method instantiates and returns an instance of the
 PageLoadedEventArgs event data class passing in three collections: updated, created, and
 _dataItems .

 return new Sys.WebForms.PageLoadedEventArgs(updated, created, this._dataItems);

 Listing 24-35: The _getPageLoadedEventArgs Method of PageRequestManager

 function Sys$WebForms$PageRequestManager$_getPageLoadedEventArgs(initialLoad)
{
 var updated = [];
 var created = [];
 var oldIDs = this._oldUpdatePanelIDs || [];
 var newIDs = this._updatePanelIDs;

c24.indd 1254c24.indd 1254 8/20/07 8:48:07 PM8/20/07 8:48:07 PM

Chapter 24: Asynchronous Partial Page Rendering

1255

 var childIDs = this._childUpdatePanelIDs || [];
 var refreshedIDs = this._panelsToRefreshIDs || [];
 var updatePanelClientID;
 var updatePanel;
 for (var i = 0; i < refreshedIDs.length; i++)
 {
 updatePanelClientID = this._uniqueIDToClientID(refreshIDs[i]);
 updatePanel = document.getElementById(updatePanelClientID);
 Array.add(updated, updatePanel);
 }
 for (var i = 0; i < newIDs.length; i++)
 {
 if (initialLoad || Array.indexOf(childIDs, newIDs[i]) !== -1)
 {
 updatePanelClientID = this._uniqueIDToClientID(newIDs[i]);
 updatePanel = document.getElementById(updatePanelClientID);
 Array.add(created, updatePanel);
 }
 }
 return new Sys.WebForms.PageLoadedEventArgs(updated, created, this._dataItems);
}

 end Request
 As thoroughly discussed earlier in this chapter, the current PageRequestManager instance invokes its
 _endPostBack on numerious occasions. As the highlighted portion of Listing 24-36 , which repeats
 Listing 24-27 , shows, the _endPostBack method raises the endRequest event.

 Listing 24-36: The _endPostBack Method

 function Sys$WebForms$PageRequestManager$_endPostBack(error, response)
{
 this._processingRequest = false;
 this._request = null;
 this._additionalInput = null;

 var handler = this._get_eventHandlerList().getHandler(“endRequest”);
 var errorHandled = false;
 if (handler)
 {
 var eventArgs =
 new Sys.WebForms.EndRequestEventArgs(error, this._dataItems, response);
 handler(this, eventArgs);
 errorHandled = eventArgs.get_errorHandled();
 }

 this._dataItems = null;
 if (error && !errorHandled)
 alert(error.message);
}

c24.indd 1255c24.indd 1255 8/20/07 8:48:07 PM8/20/07 8:48:07 PM

Chapter 24: Asynchronous Partial Page Rendering

1256

 As you can see from this code listing, the _endPostBack method instantiates an instance of an ASP.NET
AJAX class named EndRequestEventArgs and passes this instance to the event handlers registered
for the endRequest event of the current PageRequestManager instance. This class is the event data
class associated with the endRequest event. Listing 24-37 presents the internal implementation of
this class.

 Listing 24-37: The EndRequestEventArgs Class

 Sys.WebForms.EndRequestEventArgs =
function Sys$WebForms$EndRequestEventArgs(error, dataItems, response)
{
 Sys.WebForms.EndRequestEventArgs.initializeBase(this);
 this._errorHandled = false;
 this._error = error;
 this._dataItems = dataItems || new Object();
 this._response = response;
}
function Sys$WebForms$EndRequestEventArgs$get_dataItems()
{
 return this._dataItems;
}
function Sys$WebForms$EndRequestEventArgs$get_error()
{
 return this._error;
}
function Sys$WebForms$EndRequestEventArgs$get_errorHandled()
{
 return this._errorHandled;
}
function Sys$WebForms$EndRequestEventArgs$set_errorHandled(value)
{
 this._errorHandled = value;
}
function Sys$WebForms$EndRequestEventArgs$get_response()
{
 return this._response;
}
Sys.WebForms.EndRequestEventArgs.prototype =
{
 get_dataItems: Sys$WebForms$EndRequestEventArgs$get_dataItems,
 get_error: Sys$WebForms$EndRequestEventArgs$get_error,
 get_errorHandled: Sys$WebForms$EndRequestEventArgs$get_errorHandled,
 set_errorHandled: Sys$WebForms$EndRequestEventArgs$set_errorHandled,
 get_response: Sys$WebForms$EndRequestEventArgs$get_response
}
Sys.WebForms.EndRequestEventArgs.registerClass(‘Sys.WebForms.EndRequestEventArgs’,
 Sys.EventArgs);

 As you can see from this code listing, the constructor of the EndRequestEventArgs class takes three
parameters. The first parameter references the error object, if any. The second parameter references the
object that contains one name/value pair for each data item. As the highlighted portion of Listing 24-36
shows, this parameter basically returns a reference to the _dataItems collection of the current
 PageRequestManager instance. The third parameter references the WebRequestExecutor object

c24.indd 1256c24.indd 1256 8/20/07 8:48:08 PM8/20/07 8:48:08 PM

Chapter 24: Asynchronous Partial Page Rendering

1257

responsible for executing the current asynchronous page postback request. As Listing 24-37 shows, this
constructor stores these three parameters in three internal fields named _error , _dataItems , and
_response , respectively. Your event handler for the endRequest event can then invoke the get_error ,
 get_dataItems , and get_response methods on the EndRequestEventArgs object passed into it to
access these internal fields.

 As you can see from Listing 24-37 , the EndRequestEventArgs event data class also exposes a Boolean
property named _errorHandled and two methods named get_errorHandled and set_errorHandled
that get and set the values of this property. If your event handler for the endRequest event chooses to use
a custom error handler to handle the error (if any), it must call the set_errorHandled method on the
 EndRequestEventArgs object passed into it to set the value of the _errorHandled property to true to
signal the current PageRequestManager instance that it mustn’t use the default error handler to handle
the error because the error has already been handled by your custom error handler. As the boldface
 portions of Listing 24-36 show, when your event handler for the endRequest event finally returns, the
_endPostBack method calls the get_errorHandled method on the EndRequestEventArgs object
passed into your event handler to access the value of the _errorHandled property to determine whether
your event handler has set this property to true . If so, the _endPostBack method bypasses the default
error-handling mechanism. As the boldface portion of Listing 24-36 shows, the default error-handling
mechanism simply calls the alert function to display the error message in a popup.

 As you should expect by now, the PageRequestManager instance exposes two methods,
 add_endRequest and remove_endRequest , that enable you to register and unregister an event
 handler for the endRequest method of the current PageRequestManager instance, as shown in the
 following code listing:

 function Sys$WebForms$PageRequestManager$add_endRequest(handler)
{
 this._get_eventHandlerList().addHandler(“endRequest”, handler);
}
function Sys$WebForms$PageRequestManager$remove_endRequest(handler)
{
 this._get_eventHandlerList().removeHandler(“endRequest”, handler);
}

 Using the endRequest Event
 As the name suggests, the current PageRequestManager instance raises the endRequest event to mark
the end of the current asynchronous page postback request. Since the _endPostBack method can be
invoked for a number of reasons, the endRequest event can be raised for a number of reasons as well. In
other words, your event handler for the endRequest event must not assume that everything went fine
and the server response successfully arrived. It must include the necessary logic to determine why the
 endRequest event was fired.

 Follow these steps to ensure that your required application-specific logic is executed when the current
 PageRequestManager instance fires its endRequest event:

 1. If your required application-specific logic is encapsulated in a method of an ASP.NET AJAX
 client class, invoke the createDelegate static method on the Function to instantiate a
 delegate that represents this method. For example, if this logic is contained in a method named

c24.indd 1257c24.indd 1257 8/20/07 8:48:08 PM8/20/07 8:48:08 PM

Chapter 24: Asynchronous Partial Page Rendering

1258

 myMethod that belongs to an ASP.NET AJAX class named MyClass , you’ll need to create a
 delegate such as the following:

 var myObj = new CustomComponents.MyClass();
. . .
Var myDelegate = Function.createDelegate(myObj, myObj.myMethod);

 2. If your required application-specific logic in not already encapsulated in a method of an
ASP.NET AJAX client class, write a new JavaScript function that encapsulates this logic.

3. Take the following steps inside the pageLoad method:

 ❑ Invoke the getInstance static method on the client-side PageRequestManager class to
return a reference to the current client-side PageRequestManager instance:

 function pageLoad()
{
 var prm = Sys.WebForms.PageRequestManager.getInstance();
 . . .
}

 ❑ Invoke the add_endRequest method on the current client-side PageRequestManager
 instance to register the delegate from Step 1 or the JavaScript function from Step 2 as the
event handler for the endRequest event of the current client-side PageRequestManager
instance:

 function pageLoad()
{
 var myObj = new CustomComponents.MyClass();
 . . .
 var myDelegate = Function.createDelegate(myObj, myObj.myMethod);
 var prm = Sys.WebForms.PageRequestManager.getInstance();
 prm.add_endRequest(myDelegate);
 . . .
}

 As Listing 24-36 shows, the _endPostBack method uses a default error-handling mechanism to handle
an error if your event handler for the endRequest event does not handle it and does not set the
_errorHandled property of the EndRequestEventArgs object passed into it to true . As you can see
from the bottom boldface portion of Listing 24-36 , this default error-handling mechanism simply calls
the alert JavaScript function to display the value of the message property of the error object in
a popup.

 If you’re not happy with this default error mechanism, you can write your own custom error-handling
routine. Such a routine normally needs to know the type of error being handled. As thoroughly
 discussed in Chapter 4 , every error object exposes a property named name , which specifies the name or
type of the exception. Your custom error-handling routine must contain a switch statement with one
 case statement for each type of error, something like the following:

c24.indd 1258c24.indd 1258 8/20/07 8:48:08 PM8/20/07 8:48:08 PM

Chapter 24: Asynchronous Partial Page Rendering

1259

 function myCustomErrorHandler(error)
{
 switch (error.name)
 {
 case “...”:
 // Handle error here
 break;
 case “...”:
 // Handle error here
 break;
 case “...”:
 // Handle error here
 break;
 }
}

 As you can see from this code fragment, your custom error handler needs to know exactly what type of
errors it is supposted to handle. This raises the following question: what types of exceptions could the
current PageRequestManager instance throw when it is firing its endRequest event? To find the answer
to this question we need to revisit those places where the current PageRequestManager instance invokes
its _endPostBack method, because those are the places where the current PageRequestManager
instance creates the error object and passes it as the first argument into the _endPostBack method. As
we discussed earlier, the _endPostBack method, in turn, passes the error object to your event handler
when it invokes your handler.

 As we also discussed earlier, the current PageRequestManager instance invokes the _endPostBack
method on eight different occasions, as follows (the variable sender in all the following code fragments
references the current WebRequestExecutor object responsible for executing the current asynchronous
page postback request):

 1. When the current request times out, the current PageRequestManager instance
invokes its _endPostBack method, passing in a parameter that calls the
_createPageRequestManagerTimeoutError method on the current PageRequestManager
 instance to instantiate and return an exception of type PageRequestManagerTimeoutException .
(I’ll discuss this method shortly.)

 if (sender.get_timedOut())
 {
 this._endPostBack(this._createPageRequestManagerTimeoutError(), sender);
 return;
 }

2. When the current request aborts, the current PageRequestManager instance invokes its
_endPostBack method, passing in null as an error. As you can see, the absence of an error
does not mean that everything went fine and the server response successfully arrived.

 if (sender.get_aborted())
 {
 this._endPostBack(null, sender);
 return;
 }

c24.indd 1259c24.indd 1259 8/20/07 8:48:09 PM8/20/07 8:48:09 PM

Chapter 24: Asynchronous Partial Page Rendering

1260

 3. When the status code of the server response is a number other than 200, the current
 PageRequestManager instance invokes its _endPostBack method, passing in a parameter
that calls the _createPageRequestManagerServerError method on the current
 PageRequestManager instance to instantiate and return an exception of type
PageRequestManagerServerErrorException . (I’ll discuss this method shortly.)

 if (sender.get_statusCode() !== 200)
 {
 this._endPostBack(
 this._createPageRequestManagerServerError(sender.get_statusCode()), sender);
 return;
 }

 4. Recall that the server response text consists of a bunch of substrings with the format
 length|type|id|content . When the type part of a substring in the server response text
is the string “error” , the current PageRequestManager instance invokes its _endPostBack
method, passing in a parameter that calls the _createPageRequestManagerServerError
method on the current PageRequestManager instance to instantiate and return an exception
of type PageRequestManagerServerErrorException . Note that the current
PageRequestManager instance passes the id and content parts of the substring into the
_createPageRequestManagerServerError method . Recall that these two parts respectively
contain the error code and the error message.

 this._endPostBack(this._createPageRequestManagerServerError(
 Number.parseInvariant(deltaNode.id), deltaNode.content), sender);

5. When the type part of a substring in the server response text is a string that the current client-
side PageRequestManager instance does not recognize, the current PageRequestManager
 instance invokes its _endPostBack method, passing in a parameter that calls the
_createPageRequestManagerParserError method to instantiate and to return an
 exception of type PageRequestManagerParserErrorException . Note that the current
 PageRequestManager instance passes the type part of the substring into the
_createPageRequestManagerParserError method.

 this._endPostBack(this._createPageRequestManagerParserError(
 String.format(Sys.WebForms.Res.PRM_UnknownToken, deltaNode.type)), sender);

 6. When the _panelsToRefreshIDs collection that the current client-side PageRequestManager
instance has received from the server-side PageRequestManager instance contains the UniqueID
property value of an UpdatePanel server control that does not exist on the current page, the cur-
rent PageRequestManager instance invokes its _endPostBack method, passing in a parameter
that calls the invalidOperation static method on the Error to instantiate and return an excep-
tion of type InvalidOperationException . Note that the current PageRequestManager
 instance passes the ClientID property value of the nonexistent UpdatePanel server control as
a parameter into the invalidOperation method.

c24.indd 1260c24.indd 1260 8/20/07 8:48:09 PM8/20/07 8:48:09 PM

Chapter 24: Asynchronous Partial Page Rendering

1261

 for (i = 0; i < this._panelsToRefreshIDs.length; i++)
 {
 var panelClientID = this._uniqueIDToClientID(this._panelsToRefreshIDs[i]);
 if (!document.getElementById(panelClientID))
 {
 this._endPostBack(Error.invalidOperation(
 String.format(Sys.WebForms.Res.PRM_MissingPanel, panelClientID)), sender);
 return;
 }
 }

 7. When the type part of a substring in the server response text is the string “updatePanel”
and the id part contains the UniqueID property value of an UpdatePanel server control
that does not exist on the current page, the current PageRequestManager instance invokes its
 _endPostBack method, passing in a parameter that calls the invalidOperation static method
on the Error to instantiate and return an exception of type InvalidOperationException . Note
that the current PageRequestManager instance passes the ClientID property value of the
 nonexistent UpdatePanel server control as a parameter into the invalidOperation method.

 for (i = 0; i < updatePanelNodes.length; i++)
 {
 var deltaUpdatePanel = updatePanelNodes[i];
 var deltaPanelID = deltaUpdatePanel.id;
 var deltaPanelRendering = deltaUpdatePanel.content;
 var updatePanelElement = document.getElementById(deltaPanelID);
 if (!updatePanelElement)
 {
 this._endPostBack(Error.invalidOperation(
 String.format(Sys.WebForms.Res.PRM_MissingPanel, deltaPanelID)), sender);
 return;
 }
 this._updatePanel(updatePanelElement, deltaPanelRendering);
 }

 8. When all the scripts are loaded, the current PageRequestManager instance invokes its
_endPostBack method, passing in null as its argument. This scenario happens when
 everything goes fine and the server response is successfully processed.

 this._pageLoaded(false);
 this._endPostBack(null, this._response);
 this._response = null;

 As you can see, the current PageRequestManager instance passes one of the following exceptions into
the _endPostBack method when it invokes the method and thereafter fires its endRequest event:

 ❑ PageRequestManagerTimeoutException

❑ PageRequestManagerServerErrorException

❑ PageRequestManagerParserErrorException

❑ InvalidOperationException

c24.indd 1261c24.indd 1261 8/20/07 8:48:09 PM8/20/07 8:48:09 PM

Chapter 24: Asynchronous Partial Page Rendering

1262

 To understand what these exceptions are we need to study the methods that generate them, which we’ll
do in the following sections.

 PageRequestManagerTimeoutException
 Listing 24-38 presents the internal implementation of the _createPageRequestManagerTimeoutError
method of the PageRequestManager class. As you can see, this method creates an error object with the
following two properties:

 ❑ message : This property specifies the following error message:

 var displayMessage = “Sys.WebForms.PageRequestManagerTimeoutException: “ +
 Sys.WebForms.Res.PRM_TimeoutError;

 ❑ name : This property specifies the name of the exception, Sys.WebForms
.PageRequestManagerTimeoutException .

 Listing 24-38: The _createPageRequestManagerTimeoutError Method of
PageRequestManager

 function Sys$WebForms$PageRequestManager$_createPageRequestManagerTimeoutError()
{
 var displayMessage = “Sys.WebForms.PageRequestManagerTimeoutException: “ +
 Sys.WebForms.Res.PRM_TimeoutError;
 var e = Error.create(displayMessage,
 {name: ‘Sys.WebForms.PageRequestManagerTimeoutException’});
 e.popStackFrame();
 return e;
}

 PageRequestManagerServerErrorException
 Listing 24-39 presents the internal implementation of the _createPageRequestManagerServerError
method of the PageRequestManager class. As you can see, this method creates an error object with the
following three properties:

 ❑ message : This property specifies the following error message:

 var displayMessage “Sys.WebForms.PageRequestManagerServerErrorException: “ +
 String.format(Sys.WebForms.Res.PRM_ServerError, httpStatusCode));

 ❑ name : This property specifies the name of the exception, Sys.WebForms
.PageRequestManagerServerErrorException .

❑ httpStatusCode : This property specifies the HTTP status code of the server response.

c24.indd 1262c24.indd 1262 8/20/07 8:48:10 PM8/20/07 8:48:10 PM

Chapter 24: Asynchronous Partial Page Rendering

1263

 Listing 24-39: The _createPageRequestManagerServerError Method of
PageRequestManager

 function Sys$WebForms$PageRequestManager$_createPageRequestManagerServerError(
 httpStatusCode, message)
{
 var displayMessage = message ||
 (“Sys.WebForms.PageRequestManagerServerErrorException: “ +
 String.format(Sys.WebForms.Res.PRM_ServerError, httpStatusCode));
 var e = Error.create(displayMessage,
 {name: ‘Sys.WebForms.PageRequestManagerServerErrorException’,
 httpStatusCode: httpStatusCode});
 e.popStackFrame();
 return e;
}

 PageRequestManagerParserErrorException
 Listing 24-40 presents the internal implementation of the _createPageRequestManagerParserError
method of the PageRequestManager class. As you can see, this method creates an error object with the
following two properties:

 ❑ message : This property specifies the following error message:

 var displayMessage = “Sys.WebForms.PageRequestManagerParserErrorException: “ +
 String.format(Sys.WebForms.Res.PRM_ParserError, parserErrorMessage);

 ❑ name : This property specifies the name of the exception, Sys.WebForms
.PageRequestManagerParserErrorException .

 Listing 24-40: The _createPageRequestManagerParserError Method of
PageRequestManager

 function Sys$WebForms$PageRequestManager$_createPageRequestManagerParserError(
 parserErrorMessage)
{
 var displayMessage = “Sys.WebForms.PageRequestManagerParserErrorException: “ +
 String.format(Sys.WebForms.Res.PRM_ParserError, parserErrorMessage);
 var e = Error.create(displayMessage,
 {name: ‘Sys.WebForms.PageRequestManagerParserErrorException’});
 e.popStackFrame();
 return e;
}

 InvalidOperationException
 Listing 24-41 presents the internal implementation of the invalidOperation static method of the Error
class. As you can see, this method creates an error object with the following two properties:

 ❑ message : This property specifies the following error message:

 var displayMessage = “Sys.InvalidOperationException: “ +
 (message ? message : Sys.Res.invalidOperation);

c24.indd 1263c24.indd 1263 8/20/07 8:48:10 PM8/20/07 8:48:10 PM

Chapter 24: Asynchronous Partial Page Rendering

1264

 ❑ name : This property specifies the name of the exception, Sys.InvalidOperationException .

 Listing 24-41: The invalidOperation Static Method of Error

 Error.invalidOperation = function Error$invalidOperation(message)
{
 var displayMessage = “Sys.InvalidOperationException: “ +
 (message ? message : Sys.Res.invalidOperation);
 var e = Error.create(displayMessage, {name: ‘Sys.InvalidOperationException’});
 e.popStackFrame();
 return e;
}

 Listing 24-42 presents the skeleton of a sample custom error handler that you can use to handle errors
that the current PageRequestManager raises when it fires its endRequest event. Use this error handler
if you want to handle the error on the client side by simply displaying the appropriate error to the
end user.

 Listing 24-42: A Custom Error Handler Skeleton

 function myCustomErrorHandler(error)
{
 switch (error.name)
 {
 case ‘Sys.WebForms.PageRequestManagerTimeoutException’:
 // Handle error here
 break;
 case ‘Sys.WebForms.PageRequestManagerServerErrorException’:
 switch (error.httpStatusCode)
 {
 case 300:
 // Handle error here
 break;
 case 301:
 // Handle error here
 break;
 case 302:
 // Handle error here
 break;
 case 303:
 // Handle error here
 break;
 case 305:
 // Handle error here
 break;
 case 307:
 // Handle error here
 break;
 case 400:
 // Handle error here
 break;
 case 401:
 // Handle error here
 break;

c24.indd 1264c24.indd 1264 8/20/07 8:48:10 PM8/20/07 8:48:10 PM

Chapter 24: Asynchronous Partial Page Rendering

1265

 case 403:
 // Handle error here
 break;
 case 404:
 // Handle error here
 break;
 // . . .
 }
 break;
 case ‘Sys.WebForms.PageRequestManagerParserErrorException’:
 // Handle error here
 break;
 case ‘Sys.InvalidOperationException’:
 // Handle error here
 break;
 default:
 // Handle error here
 break;
 }
}

 Another thing that a custom error handler can do is quietly send an e-mail to the site administration
when an error occurs. Listing 24-43 presents an example of a page that uses this approach.

 Listing 24-43: A Page that Uses a Custom Error Handler

 <%@ Page Language=”C#” %>
<%@ Import Namespace=”System.Drawing” %>
<%@ Import Namespace=”System.Net.Mail” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<script runat=”server”>
 void Page_Load(object sender, EventArgs e)
 {
 if (Request.Form[“ErrorName”] != null)
 {
 MailMessage mail = new MailMessage();
 MailAddress fromAddress = new MailAddress(“admin@somesite.com”);
 mail.From = fromAddress;
 MailAddress toAddress = new MailAddress(“admin@somesite.com”);
 mail.To.Add(toAddress);
 mail.Subject = “Asynchronous Page Postback Request Error at “ + DateTime.Now;
 mail.Body = “Error Name: “ + Request.Form[“ErrorName”];
 if (Request.Form[“HttpStatusCode”] != null)
 mail.Body += (“
” + “HTTP Status Code: “ +
 Request.Form[“HttpStatusCode”]);
 mail.IsBodyHtml = true;
 SmtpClient smtp = new SmtpClient();
 smtp.Host = “HostName”;
 smtp.Send(mail);
 Response.End();
 }

(continued)

c24.indd 1265c24.indd 1265 8/20/07 8:48:10 PM8/20/07 8:48:10 PM

Chapter 24: Asynchronous Partial Page Rendering

1266

 Listing 24-43 (continued)

 Label parentUpdatePanelLabel =
 (Label)Page.FindControl(“ParentUpdatePanelLabel”);
 parentUpdatePanelLabel.Text = “UpdatePanel refreshed at “ +
 DateTime.Now.ToString();
 Label childUpdatePanelLabel = (Label)Page.FindControl(“ChildUpdatePanelLabel”);
 childUpdatePanelLabel.Text = “UpdatePanel refreshed at “ +
 DateTime.Now.ToString();
 }
</script>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function customErrorHandler(error)
 {
 var formBody = new Sys.StringBuilder();
 formBody.append(‘ErrorName=’);

 if (!error)
 formBody.append(
 encodeURIComponent(
 ‘Sys.WebForms.PageRequestManagerRequestAbortedException’));
 else
 formBody.append(encodeURIComponent(error.name));

 formBody.append(‘&’);

 if (error && error.name ==
 ‘Sys.WebForms.PageRequestManagerServerErrorException’)
 {
 formBody.append(‘HttpStatusCode=’);
 formBody.append(encodeURIComponent(error.httpStatusCode));
 formBody.append(‘&’);
 }

 var request = new Sys.Net.WebRequest();
 request.set_url(document.form1.action);
 request.set_body(formBody.toString());
 request.invoke();
 }
 function pageLoad ()
 {
 var prm = Sys.WebForms.PageRequestManager.getInstance();
 prm.remove_endRequest(endRequestHandler);
 prm.add_endRequest(endRequestHandler);
 }

c24.indd 1266c24.indd 1266 8/20/07 8:48:11 PM8/20/07 8:48:11 PM

Chapter 24: Asynchronous Partial Page Rendering

1267

 function endRequestHandler(sender, e)
 {
 var error = e.get_error();
 if (error)
 {
 customErrorHandler(error);
 return;
 }

 var response = e.get_response();
 if (response.get_aborted())
 {
 customErrorHandler(null);
 return;
 }

 var dataItems = e.get_dataItems();
 var builder = new Sys.StringBuilder();
 builder.append(“dataItems: “);
 builder.appendLine();
 for (var controlID in dataItems)
 {
 builder.append(“Control ID: “);
 builder.append(controlID);
 builder.appendLine();
 builder.append(“Data Item: “);
 builder.append(dataItem[controlID]);
 builder.appendLine();
 }

 alert(builder.toString());
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server” />
 <table cellspacing=”10”>
 <tr>
 <td align=”center” colspan=”2”>
 <asp:UpdatePanel ID=”ParentUpdatePanel” UpdateMode=”Conditional”
 runat=”server”>
 <ContentTemplate>
 <table cellspacing=”20” style=”background-color: #dddddd”>
 <tr>
 <th>
 Parent UpdatePanel Control</th>
 </tr>

(continued)

c24.indd 1267c24.indd 1267 8/20/07 8:48:11 PM8/20/07 8:48:11 PM

Chapter 24: Asynchronous Partial Page Rendering

1268

 Listing 24-43 (continued)

 <tr>
 <td>
 <asp:Label ID=”ParentUpdatePanelLabel” runat=”server” />

 <asp:Button ID=”ParentUpdatePanelButton” runat=”server”
 Text=”Update” />
 </td>
 </tr>
 <tr>
 <td style=”width: 100%”>
 <asp:UpdatePanel ID=”ChildUpdatePanel” runat=”server”>
 <ContentTemplate>
 <table style=”background-color: #aaaaaa”>
 <tr>
 <th>
 Child UpdatePanel Control</th>
 </tr>
 <tr>
 <td>
 <asp:Label ID=”ChildUpdatePanelLabel”
 runat=”server” />

 <asp:Button ID=”ChildUpdatePanelButton”
 runat=”server” Text=”Update” />
 </td>
 </tr>
 <tr>
 <td>
 </td>
 </tr>
 </table>
 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger
 ControlID=”ChildUpdatePanelTrigger” EventName=”Click” />
 </Triggers>
 </asp:UpdatePanel>
 </td>
 </tr>
 </table>
 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID=”ParentUpdatePanelTrigger”
 EventName=”Click” />
 </Triggers>
 </asp:UpdatePanel>
 </td>
 </tr>

c24.indd 1268c24.indd 1268 8/20/07 8:48:11 PM8/20/07 8:48:11 PM

Chapter 24: Asynchronous Partial Page Rendering

1269

 <tr>
 <td style=”width:50%”>
 <asp:Button ID=”ChildUpdatePanelTrigger” runat=”server”
 Text=”Child UpdatePanel Trigger” Width=”100%” />
 </td>
 <td>
 <asp:Button ID=”ParentUpdatePanelTrigger” runat=”server”
 Text=”Parent UpdatePanel Trigger” Width=”100%” />
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

 As you can see, the pageLoad JavaScript function is where we register a JavaScript function named
 endRequestHandler as an event handler for the endRequest event of the current PageRequestManager
instance:

 function pageLoad ()
 {
 var prm = Sys.WebForms.PageRequestManager.getInstance();
 prm.remove_endRequest(endRequestHandler);
 prm.add_endRequest(endRequestHandler);
 }

 When the current PageRequestManager instance finally fires the endRequest event and invokes the
 endRequestHandler function, it passes two parameters into this function. The first references the
 current PageRequestManager instance. The second references the EndRequestEventArgs object that
contains the event data for the current endRequest event.

 Now let’s walk through the code for the endRequestHandler function. As you can see from Listing 24-43 ,
this function first invokes the get_error method on the EndRequestEventArgs object to return a refer-
ence to the error object, if any.

 var error = e.get_error();

 If the current PageRequestManager instance has indeed raised an error, the endRequestHandler
method invokes the custom error handler function, passing in the error object. Note that the
 endRequestHandler method simply returns after invoking the error handler function. I’ll discuss
the customErrorHandler function shortly.

 if (error)
 {
 customErrorHandler(error);
 return;
 }

c24.indd 1269c24.indd 1269 8/20/07 8:48:12 PM8/20/07 8:48:12 PM

Chapter 24: Asynchronous Partial Page Rendering

1270

 Next, the endRequestHandler function invokes the get_response method on the EndRequestEventArgs
object to return a reference to the WebRequestExecutor object responsible for executing the current request:

 var response = e.get_response();

 Then the function calls the get_aborted method on the WebRequestExecutor object to return a
 Boolean value that specifies whether the current request has been aborted. If so, it invokes our custom
error handler function, passing in null :

 if (response.get_aborted())
 {
 customErrorHandler(null);
 return;
 }

 Next, it invokes the get_dataItems method on the EndRequestEventArgs object to return the
 dictionary that contains all data items:

 var dataItems = e.get_dataItems();

 Then it instantiates a StringBuilder and populates it with the data items in this dictionary. Note that
the endRequestHandler function uses the control ID as an index into the dictionary to access its associ-
ated data item. As we discussed earlier, each data item is associated with a particular server control on
the current page.

 var builder = new Sys.StringBuilder();
 builder.append(“dataItems: “);
 builder.appendLine();
 for (var controlID in dataItems)
 {
 builder.append(“Control ID: “);
 builder.append(controlID);
 builder.appendLine();
 builder.append(“Data Item: “);
 builder.append(dataItem[controlID]);
 builder.appendLine();
 }

 alert(builder.toString());

 Next, I’ll walk you through the implementation of the customErrorHandler function. The main
responsibility of this method is to make an asynchronous request containing the error information to the
server. What the server does with this error information is completely up to your application. As you’ll
see later in this example, the server will simply send an e-mail containing the error information to the
system administrator.

 As you can see from Listing 24-43 , the customErrorHandler function first instantiates a
 StringBuilder , which will accumulate a list of ampersand-separated strings that will make up the
body of the request that will subsequently be sent to the server. Each string will consist of two parts

c24.indd 1270c24.indd 1270 8/20/07 8:48:12 PM8/20/07 8:48:12 PM

Chapter 24: Asynchronous Partial Page Rendering

1271

 separated by the equals sign (=), where the first part will be used as a key on the server side to access
the second part. The second part contains a piece of error information.

 var formBody = new Sys.StringBuilder();

 The customErrorHandler function adds two strings to the StringBuilder . The first part (the key) of
the first string is the string ErrorName :

 formBody.append(‘ErrorName=’);

 The second part of the first string contains the name of the error. Recall that the
endRequestHandler function passes null into the customErrorHandler function if the
request has been aborted. As such, the customErrorHandler appends the string
Sys.WebForms.PageRequestManagerRequestAbortedException as the error name.
Keep in mind that the ASP.NET AJAX client-side framework does not contain an error with
this name. I’ve added this for consistency.

 if (!error)
 formBody.append(
 encodeURIComponent(
 ‘Sys.WebForms.PageRequestManagerRequestAbortedException’));

 If the error object passed into the customErrorHandler function is not null , the function simply
appends the value of the name property of the error object as the error name:

 else
 formBody.append(encodeURIComponent(error.name));

 The customErrorHandler function appends an & character before it starts rendering the second string.
Keep in mind that the strings that make up the body of the request must be separated by & character:

 formBody.append(‘&’);

 Next, the customErrorHandler function checks whether the error is of type
Sys.WebForms.PageRequestManagerServerErrorException . If so, it appends a second
string as follows. First, it appends the string HttpStatusCode as the first part (that is, the key) of
the string:

 formBody.append(‘HttpStatusCode=’);

 Then it appends the value of the httpStatusCode property of the error object as the second part of
the string:

 formBody.append(encodeURIComponent(error.httpStatusCode));
 formBody.append(‘&’);

 Next, it instantiates a WebRequest object to represent a new asynchronous request:

 var request = new Sys.Net.WebRequest();

c24.indd 1271c24.indd 1271 8/20/07 8:48:12 PM8/20/07 8:48:12 PM

Chapter 24: Asynchronous Partial Page Rendering

1272

 Then it calls the set_url method on the WebRequest object to set the target URL of the request to the
value of the action property of the form DOM element:

 request.set_url(document.form1.action);

 Next, it calls the toString method on the StringBuilder to return a string that makes up the body of
the request, and passes this string into the set_body method of the WebRequest object:

 request.set_body(formBody.toString());

 Finally the customErrorHandler function calls the invoke method on the WebRequest object to send
the request to the server:

 request.invoke();

 Next, we need to go to the server side, where this request is processed. As you can see from Listing 24-43 ,
the Page_Load method checks whether the Form collection of the current ASP.NET Request object
 contains an item with the key ErrorName . If so, it takes the following steps to send an e-mail to the
administrator. First, it instantiates a MailMessage object to represent the e-mail being sent:

 MailMessage mail = new MailMessage();

 Next, it instantiates a MailAddress object to represent the e-mail address of the sender and assigns this
object to the From property of the MailMessage object that represents the e-mail being sent:

 MailAddress fromAddress = new MailAddress(“error@somesite.com”);
 mail.From = fromAddress;

 Next, it instantiates another MailAddress object to represent the e-mail address of the receiver, that is,
the administrator, and adds this object to the To collection property of the MailMessage that represents the
e-mail being sent:

 MailAddress toAddress = new MailAddress(“admin@somesite.com”);
 mail.To.Add(toAddress);

 Then it specifies the subject of the e-mail:

 mail.Subject = “Asynchronous Page Postback Request Error at “ + DateTime.Now;

 Next, it specifies the body of the e-mail. Note that the body contains the error name and HTTP status
code (if any):

 mail.Body = “Error Name: “ + Request.Form[“ErrorName”];
 if (Request.Form[“HttpStatusCode”] != null)
 mail.Body += (“
” + “HTTP Status Code: “ +
 Request.Form[“HttpStatusCode”]);
 mail.IsBodyHtml = true;

c24.indd 1272c24.indd 1272 8/20/07 8:48:12 PM8/20/07 8:48:12 PM

Chapter 24: Asynchronous Partial Page Rendering

1273

 Then it instantiates a SmptClient object to send the e-mail:

 SmtpClient smtp = new SmtpClient();
 smtp.Host = “HostName”;
 smtp.Send(mail);

 Finally the Page_Load method calls the End method on the ASP.NET Response object to end processing
of the current request:

 Response.End();

 Summary
 This chapter followed the current PageRequestManager instance thorough its life cycle phases to
 process the asynchronous server response text and update the associated UpdatePanel server controls
and scripts.

 The chapters of this book used numerous examples, code walkthroughs, and under-the-hood looks to
help you gain the skills, knowledge, and experience you need to take full advantage of the rich features
of the ASP.NET AJAX framework in your own Web application. The earlier chapters of the book showed
you how the ASP.NET AJAX client-side framework manages to simulate the rich features of the
ASP.NET/.NET framework on the client side to enable you to use an ASP.NET/.NET-like programming
style and techniques in your own client code. These earlier chapters covered a wide range of topics such
as JavaScript base type extensions, object-oriented programming, exception programming, type
 inspection/description, event programming, and component/control development.

 We then dived into the client-server communication layer of the ASP.NET AJAX framework, where you
learned how to use a .NET-like network programming style in your client-side code to communicate
with the backend server. From there we moved on to Web services, where you learned how to enable
your client code to exchange SOAP and JSON messages with Web services. You also learned four differ-
ent ways to make a remote method call from your client code. Those discussions took us to the next
related topic, proxy classes, where you learned how to use these classes to save yourself from having to
write a lot of code to make remote method calls.

 We then moved on to the ASP.NET AJAX behaviors, where we also discussed the ASP.NET AJAX control
toolkit. Next we covered script and extender server controls, where you learned how to develop your
own custom versions. Finally, we covered UpdatePanel and ScriptManager server controls and
ASP.NET AJAX partial page rendering.

 The appendices of the book will begin by providing an in-depth coverage of ASP.NET AJAX XML-script
and showing you how it enables you to implement most features of your ASP.NET AJAX application in a
purely declarative fashion, without writing imperative JavaScript code. This is great news to those of
you who prefer declarative programming over imperative programming. These appendices will then
cover ASP.NET AJAX actions, where you’ll learn how to encapsulate your favorite client-side
 functionality in a component known as an action and how to execute this component in response to
a specified event of a specified ASP.NET AJAX object.

c24.indd 1273c24.indd 1273 8/20/07 8:48:13 PM8/20/07 8:48:13 PM

Chapter 24: Asynchronous Partial Page Rendering

1274

 We’ll then move on to ASP.NET AJAX binding, which will teach you how to bind specified properties of
a given ASP.NET AJAX object to specified properties of another ASP.NET AJAX object. The appendices
will then take us to data controls, and you’ll learn how to implement your own custom data controls that
can bind to your favorite data collections to display the records of these collections. We’ll then dive into
templated controls, where you’ll learn how to develop your own custom templated data controls.
Finally, you’ll get a complete coverage of the ASP.NET AJAX ListView templated data control.

c24.indd 1274c24.indd 1274 8/20/07 8:48:13 PM8/20/07 8:48:13 PM

 XML Script
 The xml-script is an XML document enclosed within the opening and closing tags of an HTML
 script element whose type attribute is set to text/xml-script . The xml-script, like any other XML
document, has a single element known as the document element that encapsulates the rest of the xml-
script. In other words, the document element is the outermost or containing element of an XML docu-
ment. The document element in the case of the xml-script XML document is an element named page
that belongs to an XML namespace named http://schemas.microsoft.com/xml-script/2005 .
The page document element contains a child element named components , which belongs to the same
XML namespace as the page element. The descendants of the components element are the declarative
representations of ASP.NET AJAX client-side objects.

 The ASP.NET AJAX client-side framework comes with an extensible JavaScript library that parses
the descendants of the components element, instantiates and initializes the ASP.NET AJAX client-
side objects that these descendant elements represent, and adds these ASP.NET AJAX client-side
objects to the current ASP.NET AJAX application. As you’ll see later, an ASP.NET AJAX client class
named MarkupContext plays an important role in the logic that parses the xml-script document.
Therefore, I’ll begin by discussing this class.

 MarkupContext
 Every instance of the MarkupContext ASP.NET AJAX class contains two important pieces of
information:

 ❑ An XML document that contains a subtree of DOM elements. As you’ll see later, the
 MarkupContext class comes with methods that you can use to search this document for
a particular DOM element.

❑ An object collection that contains a list of ASP.NET AJAX components. As you’ll see later,
the MarkupContext class comes with methods that you can use to search this collection
for a particular ASP.NET AJAX component, or to add a new component to this collection.

bapp01.indd 1275bapp01.indd 1275 8/20/07 8:58:14 PM8/20/07 8:58:14 PM

Appendix A: XML Script

1276

 In general, there’re two types of markup contexts:

 ❑ Global markup context: The XML document of the global markup context contains all the DOM
elements in the current document, including those in the xml-script. In other words, the
 document object is the XML document of the global markup context. The object collection of the
global markup context contains all the ASP.NET AJAX components in the current page.

❑ Local markup context: The XML document of a local markup context contains a subtree of DOM
elements that do not belong to the document object. In other words, you cannot call the
 getElementById method on the document object to access the DOM elements in this subtree.
That is why MarkupContext comes with methods that enable you to access the DOM elements
in the XML document of a local markup context. Local markup contexts are normally used in
ASP.NET templates. As you’ll see later, the createInstance method of the ASP.NET AJAX
 Template class instantiates and initializes a local MarkupContext .

 The following code listing presents the constructor of the MarkupContext class:

 Sys.Preview.MarkupContext =
function Sys$Preview$MarkupContext(document, global, parentContext, dataContext)
{
 this._document = document;
 this._global = global;
 this._ parentContext = parentContext;
 this._objects = { };
 this._ pendingReferences = [];
 this._ pendingEndUpdates = [];
}

 This constructor takes the four parameters shown in the following table:

 Note that the constructor of the MarkupContext instantiates an internal collection named _objects ,
in which it will maintain the list of its associated ASP.NET AJAX client-side components. The
 MarkupContext class exposes a method named addComponent that adds a new ASP.NET AJAX
 component to the _objects collection.

 Parameter Description

 document This parameter references the XML document associated with the
 MarkupContext .

 global This Boolean parameter specifies whether the MarkupContext is global.

 parentContext This parameter references the parent markup context of the current
markup context. The parent markup context of the global markup
 context is null .

 dataContext This parameter references the current data context. (I’ll cover data
 contexts later.)

bapp01.indd 1276bapp01.indd 1276 8/20/07 8:58:14 PM8/20/07 8:58:14 PM

Appendix A: XML Script

1277

 As you’ll see later, every time the xml-script parser parses a node in xml-script and instantiates the ASP
.NET AJAX component that the node represents, it calls the addComponent method on the current
 MarkupContext class to add this component to its _objects collection. As you can see from the
 following code listing, each component is stored in this collection under its id . (Recall that every
ASP.NET AJAX component is uniquely identified by its id .) Note that addComponent takes a second
argument of type Boolean that specifies whether the specified component must also be added to the
 Application object that represents the current application. Also note that the addComponent method
does not add the specified component to the current Application if the current markup context is a
local markup context.

 function Sys$Preview$MarkupContext$addComponent(component, noRegisterWithApp)
{
 var id = component.get_id();
 if(id)
 this._addComponentByID(id, component, noRegisterWithApp);
}
function Sys$Preview$MarkupContext$_addComponentByID(id, object, noRegisterWithApp)
{
 this._objects[id] = object;
 if(!noRegisterWithApp && this._global && Sys.Component.isInstanceOfType(object))
 Sys.Application.addComponent(object);
}

 This makes finding an ASP.NET AJAX component interesting. The MarkupContext exposes a method
named findComponent that takes two parameters, the first being a string that contains the id of the
component that you’re looking for. If the second parameter is not specified, findComponent first
searches through the _objects collection of the current markup context for the component with the
specified id . If it can’t find it there, findComponent then calls the findComponent method on the
 parent MarkupContext object. In most cases, the parent MarkupContext object is the global markup
context.

 If the second parameter is specified, the findComponent method simply calls the findComponent
method on the Application object that represents the current application, to look for the component
among the child components of the specified parent.

 function Sys$Preview$MarkupContext$findComponent(id, parent)
{
 if(parent)
 return Sys.Application.findComponent(id, parent);

 else
 {
 var object = this._objects[id];
 if (!object)
 {
 parent = this._parentContext || Sys.Application;
 object = parent.findComponent(id);
 }
 return object;
 }
}

bapp01.indd 1277bapp01.indd 1277 8/20/07 8:58:15 PM8/20/07 8:58:15 PM

Appendix A: XML Script

1278

 The MarkupContext class also exposes a method named getComponents that returns all the
 components in its _objects collection of the current markup context.

 function Sys$Preview$MarkupContext$getComponents()
{
 var res = [];
 var objects = this._objects;
 for (var id in objects)
 res[res.length] = objects[id];

 return res;
}

 Another interesting method of the MarkupContext class is one named findElement . As the name
implies, this method returns a reference to the DOM element with the specified id HTML attribute
value. It’s interesting to see how the search for this DOM element is performed. The findElement
method first calls the getElementById method to search for the DOM element in the _document XML
document fragment. Recall that the _document field of MarkupContext contains the XML document
fragment associated with MarkupContext . In other words, MarkupContext assumes that the DOM
 element you’re looking for is in this XML document fragment. If it can’t find the element there, it
searches the XML document fragment of its parent MarkupContext for the DOM element.

 function Sys$Preview$MarkupContext$findElement(id)
{
 if (this._opened)
 {
 var element = Sys.UI.DomElement.getElementById(id, this._document);
 if (!element && this._parentContext)
 element = Sys.UI.DomElement.getElementById(id, this._parentContext);

 return element;
 }
 return null;
}

 Note that the constructor of the MarkupContext class instantiates another internal collection named
_ pendingReferences . As we discussed earlier, when the xml-script parser parses a node in the
xml-script into its associated ASP.NET AJAX component, it calls the addComponent method on the
 current MarkupContext to add the component to its _objects collection. If this component contains a
property that references another ASP.NET AJAX component, the parser also invokes the addReference
method on the current MarkupContext to add a reference to the _ pendingReferences collection for
this property. This reference is a JavaScript object literal that has three properties: o , which refers to the
ASP.NET AJAX component that owns the property that references another ASP.NET AJAX component,
 p , which refers to the propertyInfo object that represents this property, and r , which refers to the id of
the referenced ASP.NET AJAX component. In other words, instead of trying to initialize the property that
references another ASP.NET AJAX component, the parser makes a note of it by adding this JavaScript
object literal to the _ pendingReferences collection of the current MarkupContext so it can
 initialize the property when it’s done with parsing all the xml-script nodes associated with the current
 MarkupContext . This is necessary because the property could be referencing an ASP.NET AJAX compo-
nent associated with an xml-script node that hasn’t yet been parsed. To put it differently, the parser
 performs all the cross-references when it’s done with parsing all the xml-script nodes associated with the
current markup context.

bapp01.indd 1278bapp01.indd 1278 8/20/07 8:58:15 PM8/20/07 8:58:15 PM

Appendix A: XML Script

1279

 function Sys$Preview$MarkupContext$addReference(instance, propertyInfo, reference)
{
 Array.add(this._pendingReferences,
 { o: instance, p: propertyInfo, r: reference });
}

 When the xml-script parser is finally done with parsing all the xml-script nodes associated with the
 current markup context, it invokes the close method of the current MarkupContext to resolve the
 previously mentioned cross-references, as shown in the following code listing. The close method iter-
ates through the JavaScript object literals in the _pendingReferences collection and takes the following
steps for each enumerated object. First, it calls the findComponent method on the MarkupContext ,
passing in the value of the r property of the enumerated JavaScript object literal. Recall that this
 property contains the id of the component referenced by the property being initialized. Also recall that
the findComponent method first looks for the referenced component in its own _objects collection. If
it can’t find the component there, it calls the findComponent method on its parent MarkupContext to
look for the referenced component in the _objects collection of the parent MarkupContext . This search
finally ends when the referenced component is located in the _objects collection of the first ancestor
 MarkupContext of the current MarkupContext .

 Next, the close method creates the string that contains the name of the setter method of the property being
initialized, and uses this string as an index into the ASP.NET AJAX component whose property is being ini-
tialized to return a reference to this setter method:

 var setter = instance[‘set_’ + propertyInfo.name];

 Next, the close method invokes the setter method to set the value of the specified property of the
 referenced component.

 function Sys$Preview$MarkupContext$close()
{
 this._opened = false;
 var i;
 for (i = 0; i < this._pendingReferences.length; i++)
 {
 var pendingReference = this._pendingReferences[i];
 var instance = pendingReference.o;
 var propertyInfo = pendingReference.p;
 var propertyValue = pendingReference.r;
 var object = this.findComponent(propertyValue);
 var setter = instance[‘set_’ + propertyInfo.name];
 setter.call(instance, object);
 }
 this._pendingReferences = null;
}

bapp01.indd 1279bapp01.indd 1279 8/20/07 8:58:15 PM8/20/07 8:58:15 PM

Appendix A: XML Script

1280

 The open method of MarkupContext instantiates the _pendingReferences collection and marks the
 MarkupContext as open:

 function Sys$Preview$MarkupContext$open()
{
 this._pendingReferences = [];
 this._pendingEndUpdates = [];
 this._opened = true;
}

 MarkupContext exposes a static method named createGlobalContext that creates the global
 MarkupContext . Note that the document object is passed into the constructor of the MarkupContext
class to create the global markup context.

 Sys.Preview.MarkupContext.createGlobalContext =
function Sys$Preview$MarkupContext$createGlobalContext()
{
 return new Sys.Preview.MarkupContext(document, true);
}

 The MarkupContext class also exposes a static method named createLocalContext that creates a
local MarkupContext . Note that the XML document fragment associated with this local markup context
is passed into the constructor of the MarkupContext class. Also note that the parent MarkupContext is
passed as the third argument to this constructor.

 Sys.Preview.MarkupContext.createLocalContext =
function Sys$Preview$MarkupContext$createLocalContext(documentFragment,
 parentContext, dataContext)
{
 return new Sys.Preview.MarkupContext(documentFragment, false,
 parentContext, dataContext);
}

 Processing the xml-script XML Document
 Listing A-1 presents the script that starts the processing of the xml-script XML document. This script is
part of the PreviewScript.js JavaScript file and is loaded and executed automatically. As you can see,
this script first invokes the createGlobalContext static method on the MarkupContext class to create
the global MarkupContext . Recall that the XML document associated with the global markup context
is the document object. Note that the script shown in Listing A-1 stores this global MarkupContext in
the _markupContext private field of the Application object that represents the current ASP.NET AJAX
application.

 Sys.Application._markupContext = Sys.Preview.MarkupContext.createGlobalContext();

 Next, the script shown in Listing A-1 registers a method of the Application object named
__initHandler as an event handler for the init event of the Application object:

 Sys.Application.add_init(Sys.Application.__initHandler);

bapp01.indd 1280bapp01.indd 1280 8/20/07 8:58:16 PM8/20/07 8:58:16 PM

Appendix A: XML Script

1281

 Listing A-1: The Script that Starts the Processing of the xml-script XML Document

 if(!Sys.Application._markupContext)
{
 Sys.Application._markupContext = Sys.Preview.MarkupContext.createGlobalContext();
 Sys.Application.add_init(Sys.Application.__initHandler);
 Sys.Application.add_unload(Sys.Application.__unloadHandler);
}

 When the Application object that represents the current ASP.NET AJAX application finally raises its
 init event, the Application object automatically invokes the __initHandler method. As you can see
from Listing A-2 , this method in turn invokes the processDocument static method on an ASP.NET
AJAX client class named MarkupParser , passing in the global MarkupContext :

 Sys.Preview.MarkupParser.processDocument(Sys.Application._markupContext);

 Listing A-2: The __initHandler Method

 Sys.Application.__initHandler = function
Sys$Application$__initHandler()
{
 Sys.Application.remove_init(Sys.Application.__initHandler);

Sys.Preview.MarkupParser.processDocument(Sys.Application._markupContext);
}

 processDocument
 Listing A-3 presents a simplified version of the implementation of the processDocument method.

 Listing A-3: The processDocument Method

 Sys.Preview.MarkupParser.processDocument =
function Sys$Preview$MarkupParser$processDocument(markupContext)
{
 var pageNodes = [];
 var scriptElements = document.getElementsByTagName(‘script’);
 var xmlScriptElement = null;

 for (var e = 0; e < scriptElements.length; e++)
 {
 if (scriptElements[e].type == ‘text/xml-script’)
 {
 xmlScriptElement = scriptElements[e];
 break;
 }
 }

(continued)

bapp01.indd 1281bapp01.indd 1281 8/20/07 8:58:16 PM8/20/07 8:58:16 PM

Appendix A: XML Script

1282

 Listing A-3 (continued)

 if (xmlScriptElement)
 {
 var xmlDocument;
 if (Sys.Net.XMLDOM)
 xmlDocument = new Sys.Net.XMLDOM(scriptMarkup);
 else
 xmlDocument = new XMLDOM(xmlScriptElement.innerHTML);

 var documentElement = xmlDocument.documentElement;
 if (!documentElement ||
 Sys.Preview.MarkupParser.getNodeName(documentElement) != =”page”)
 throw Error.create(‘Missing page element in xml script block.’,
 scriptMarkup);

 Sys.Preview.MarkupParser.processDocumentScripts(markupContext,
 documentElement);
 }
}

 This method first calls the getElementsByTagName method on the document object to return an array
that contains references to all script HTML elements on the current page:

 var scriptElements = document.getElementsByTagName(‘script’);

 Next, it searches through the script HTML elements in this array for a script HTML element with the
 type attribute value of text/xml-script :

 for (var e = 0; e < scriptElements.length; e++)
 {
 if (scriptElements[e].type == ‘text/xml-script’)
 {
 xmlScriptElement = scriptElements[e];
 break;
 }
 }

 As I mentioned earlier, Listing A-3 presents a simplified version of the ProcessDocument method. The
full version of this method supports multiple script HTML elements with a type attribute value of
 text/xml-script .

 Next the processDocument method loads the content of this script HTML element into an XMLDOM
document:

 var xmlDocument = new XMLDOM(xmlScriptElement.innerHTML);

 Then it references the document element of the xml-script XML document. As we discussed earlier, the
document element of the xml-script XML document is an element named page . If the document element

bapp01.indd 1282bapp01.indd 1282 8/20/07 8:58:16 PM8/20/07 8:58:16 PM

Appendix A: XML Script

1283

does not exist or if it is anything other than the page element, the processDocument method raises an
exception:

 var documentElement = xmlDocument.documentElement;
 if (!documentElement ||
 Sys.Preview.MarkupParser.getNodeName(documentElement) != =”page”)
 throw Error.create(‘Missing page element in xml script block.’,
 scriptMarkup);

 Finally, processDocument invokes the processDocumentScripts static method on the MarkupParser
class, passing in the global MarkupContext and the document element of the xml-script XML document
— that is, the page element or node:

 Sys.Preview.MarkupParser.processDocumentScripts(markupContext,
 documentElement);

 processDocumentScripts
 Listing A-4 presents the implementation of the processDocumentScripts method.

 Listing A-4: The processDocumentScripts Method

 Sys.Preview.MarkupParser.processDocumentScripts =
function Sys$Preview$MarkupParser$processDocumentScripts(markupContext, pageNode)
{
 markupContext.open();
 var componentNodes = [];
 var pageChildNodes = pageNode.childNodes;
 for (var i = pageChildNodes.length - 1; i > =0; i--)
 {
 var pageChildNode = pageChildNodes[i];
 if (pageChildNode.nodeType != =1)
 continue;
 var pageChildNodeName = Sys.Preview.MarkupParser.getNodeName(pageChildNode);
 pageChildNodeName = pageChildNodeName.toLowerCase();

 if (pageChildNodeName === ‘components’)
 {
 for (var c = 0; c < pageChildNode.childNodes.length; c++)
 {
 var componentNode = pageChildNode.childNodes[c];
 if (componentNode.nodeType != =1)
 continue;
 Array.add(componentNodes, componentNode);
 }
 }
 }

 Sys.Preview.MarkupParser.parseNodes(componentNodes, markupContext);

 markupContext.close();
}

bapp01.indd 1283bapp01.indd 1283 8/20/07 8:58:16 PM8/20/07 8:58:16 PM

Appendix A: XML Script

1284

 This method first invokes the open method on the global MarkupContext . Recall that the open method
instantiates the _pendingReferences collection:

 markupContext.open();

 Next, the processDocumentScripts method searches through the child elements of the page node
for a child element named components . It then iterates through the child elements of the components
 element and adds each enumerated child element to a local collection named componentNodes .
(Keep in mind that each child element of the components element is a declarative representation of an
ASP.NET AJAX client component. In other words, each child element of the components element
is a component node.)

 if (pageChildNodeName === ‘components’)
 {
 for (var c = 0; c < pageChildNode.childNodes.length; c++)
 {
 var componentNode = pageChildNode.childNodes[c];
 if (componentNode.nodeType !== 1)
 continue;
 Array.add(componentNodes, componentNode);
 }
 }

 Next, the processDocumentScripts method invokes the parseNodes static method on the
 MarkupParser class, passing in two parameters. The first parameter is the array that contains
 the references to all the component child nodes of the components element. The second parameter
 references the global MarkupContext .

 As you’ll see later, the parseNodes method parses the nodes in its first parameter, determines the
ASP.NET AJAX type associated with each node, instantiates this type, and adds it to the _objects
 collection of the MarkupContext object that is passed into the method as its second argument.

 Sys.Preview.MarkupParser.parseNodes(componentNodes, markupContext);

 Finally, the processDocumentScripts method invokes the close method on the global
 MarkupContext . Recall that the close method resolves the component cross-references.

 markupContext.close();

 parseNodes
 The parseNodes static method of the MarkupParser class takes two parameters, as shown in the fol-
lowing table:

bapp01.indd 1284bapp01.indd 1284 8/20/07 8:58:17 PM8/20/07 8:58:17 PM

Appendix A: XML Script

1285

 The main responsibility of the parseNodes method is to parse the specified xml-script nodes into their
associated ASP.NET AJAX objects.

 As Listing A-5 shows, the parseNodes method iterates through these xml-script nodes and takes the
 following steps for each enumerated xml-script node. First, it invokes the parseNode static method on
the MarkupParser class, passing in two parameters: the first is the reference to the enumerated
xml-script node, and the second is the reference to the current MarkupContext .

 var processedObject = Sys.Preview.MarkupParser.parseNode(node, markupContext);

 As you’ll see later, the parseNode method parses the specified xml-script node into its associated
ASP.NET AJAX object, and returns this object. The parseNodes method then adds the object to an
internal collection:

 if (processedObject)
 Array.add(objects, processedObject);

 As you can see, this internal collection basically collects all the ASP.NET AJAX objects associated with
the xml-script nodes passed into the parseNodes method as its first argument. The parseNodes method
then returns this collection to its caller:

 if (processedObject)
 Array.add(objects, processedObject);

 Listing A-5: The parseNodes Method

 Sys.Preview.MarkupParser.parseNodes =
function Sys$Preview$MarkupParser$parseNodes(nodes, markupContext)
{
 var objects = [];
 for (var i = 0; i < nodes.length; i++)
 {
 var node = nodes[i];
 if (node.nodeType != =1)
 continue;
 var processedObject = Sys.Preview.MarkupParser.parseNode(node, markupContext);
 if (processedObject)
 Array.add(objects, processedObject);
 }
 return objects;
}

 Parameter Description

 Nodes An array that contains references to xml-script nodes being parsed.

 markupContext References the current MarkupContext . For example, as you’ll see later,
each <template> element in xml-script is associated with a local markup
context, which means that all descendant nodes of this element are parsed
within this local markup context.

bapp01.indd 1285bapp01.indd 1285 8/20/07 8:58:17 PM8/20/07 8:58:17 PM

Appendix A: XML Script

1286

 parseNode
 The parseNode method, shown in Listing A-6 , takes two parameters, as shown in the following table:

 The main responsibility of the parseNode method is to parse the specified xml-script node to its associ-
ated ASP.NET AJAX object. It begins by invoking the _getTagType static method on the MarkupParser
class, passing in the reference to the xml-script node being parsed. As you’ll see later, the _getTagType
name determines and returns the Type object that represents the type of the ASP.NET AJAX class
 associated with the xml-script node being parsed:

 var tagType = Sys.Preview.MarkupParser._getTagType(node);

 Next, the parseNode method checks whether the ASP.NET AJAX class associated with the xml-script
node being parsed contains a static method named parseFromMarkup . If so, it uses this method as the
parsing method. If not, it walks up the ancestors of this ASP.NET AJAX class until it reaches an ancestor
that supports the parseFromMarkup static method, and assigns this method as the static method of the
ASP.NET AJAX class.

 var parseMethod = tagType.parseFromMarkup;
 if (!parseMethod)
 {
 var baseType = tagType.getBaseType();
 while (baseType)
 {
 parseMethod = baseType.parseFromMarkup;
 if (parseMethod)
 break;

 baseType = baseType.getBaseType();
 }
 tagType.parseFromMarkup = parseMethod;
 }

 Next, it invokes the parseFromMarkup static method, passing in four parameters: the first is null , the
second references the Type object that represents the ASP.NET AJAX class associated with the xml-script
node being parsed, the third references the xml-script node being parsed, and the fourth references the
current MarkupContext .

 parsedObject = parseMethod.call(null, tagType, node, markupContext);

 As you’ll see later, the parseFromMarkup static method of the ASP.NET AJAX class that’s associated
with the xml-script node being parsed instantiates, initializes, and returns an instance of this class.

 Parameter Description

 node References the xml-script node being parsed

 markupContext References the current MarkupContext

bapp01.indd 1286bapp01.indd 1286 8/20/07 8:58:17 PM8/20/07 8:58:17 PM

Appendix A: XML Script

1287

 Listing A-6: The parseNode Method

 Sys.Preview.MarkupParser.parseNode =
function Sys$Preview$MarkupParser$parseNode(node, markupContext)
{
 var parsedObject = null;
 var tagType = Sys.Preview.MarkupParser._getTagType(node);
 if (tagType)
 {
 var parseMethod = tagType.parseFromMarkup;
 if (!parseMethod)
 {
 var baseType = tagType.getBaseType();
 while (baseType)
 {
 parseMethod = baseType.parseFromMarkup;
 if (parseMethod)
 break;

 baseType = baseType.getBaseType();
 }
 tagType.parseFromMarkup = parseMethod;
 }
 if (parseMethod)
 parsedObject = parseMethod.call(null, tagType, node, markupContext);

 }
 return parsedObject;
}

 _getTagType
 The _getTagType static method of the MarkupParser class, shown in Listing A-7 , takes a single
 parameter that references the node being parsed.

 The main responsibility of the _getTagType method is to determine the ASP.NET AJAX type associated
with the specified xml-script node. This method begins by invoking the getNodeName static method on
the MarkupParser class to return the name of the xml-script node being parsed:

 var tagName = Sys.Preview.MarkupParser.getNodeName(node);

 It then determines the XML namespace to which the node being parsed belongs:

 var namespaceURI = node.namespaceURI ||
 Sys.Preview.MarkupParser._defaultNamespaceURI;

 Note that the MarkupParser class exposes a static field named _defaultNamespaceURI with the
 following value:

 Sys.Preview.MarkupParser._defaultNamespaceURI =
 ‘http://schemas.microsoft.com/xml-script/2005’;

bapp01.indd 1287bapp01.indd 1287 8/20/07 8:58:18 PM8/20/07 8:58:18 PM

Appendix A: XML Script

1288

 The MarkupParser class also exposes another static collection field named _cachedNamespaceURILists ,
which caches the ASP.NET AJAX namespaces associated with each XML namespace.

 Sys.Preview.MarkupParser._cachedNamespaceURILists = {};

 The _getTagType method uses the XML namespace of the node being parsed as an index into this cache
to return the list of ASP.NET AJAX namespaces associated with the node:

 var nspaceList = Sys.Preview.MarkupParser._cachedNamespaceURILists[namespaceURI];

 If the cache does not contain any ASP.NET AJAX namespaces associated with the XML namespace of the
node being parsed, the _getTagType method invokes the _processNamespaceURI static method on
the MarkupParser class to evaluate and return the list of ASP.NET AJAX namespaces associated with
this XML namespace:

 nspaceList = Sys.Preview.MarkupParser._processNamespaceURI(namespaceURI);

 The _getTagType method then uses the XML namespace as an index into the cache to add this list of
ASP.NET AJAX namespaces to the cache. As a result, the next request for this list will be serviced directly
from the cache to improve performance:

 Sys.Preview.MarkupParser._cachedNamespaceURILists[namespaceURI] = nspaceList;

 Next, _getTagType uses the toUpperCase method to convert all lowercase characters in the name of
the xml-script node to uppercase:

 var upperTagName = tagName.toUpperCase();

 Next, _getTagType iterates through the list of ASP.NET AJAX namespaces associated with the XML
namespace of the xml-script node being parsed, and invokes the parse static method on the Type class,
passing in the name of the xml-script node and the enumerated ASP.NET AJAX namespace. The parse
static method determines whether the enumerated ASP.NET AJAX namespace contains an ASP.NET
AJAX type with the same name as the xml-script node. If so, the method returns a reference to the
 constructor of the ASP.NET AJAX type.

 for(var i=0; i < nspaceList.length; i++)
 {
 var nspace = nspaceList[i];
 var type = Type.parse(tagName, nspace);
 if(typeof(type) === ‘function’)
 return type;
 }

 If none of the ASP.NET AJAX namespaces associated with the specified XML namespace contains an
ASP.NET AJAX type with the same name as the xml-script node, the _getTagType checks whether the
xml-script node’s name is APPLICATION . If so, it simply returns a reference to the Sys._Application
constructor.

 if(upperTagName === “APPLICATION”)
 return Sys._Application;

bapp01.indd 1288bapp01.indd 1288 8/20/07 8:58:18 PM8/20/07 8:58:18 PM

Appendix A: XML Script

1289

 If the xml-script node’s name is not APPLICATION either, the _getTagType checks whether
the xml-script node’s name is WEBREQUESTMANAGER . If so, it simply returns a reference to the
Sys.Net._WebRequestManager constructor:

 if(upperTagName === “WEBREQUESTMANAGER”)
 return Sys.Net._WebRequestManager;

 If the xml-script node’s name is not WEBREQUESTMANAGER either, the _getTagType gives up and returns
 null to tell its caller that there’s no ASP.NET AJAX type with the same name as the xml-script node
whose type is being determined:

 return null;

 Listing A-7: The _getTagType Method

 Sys.Preview.MarkupParser._getTagType =
function Sys$Preview$MarkupParser$_getTagType(node)
{
 var tagName = Sys.Preview.MarkupParser.getNodeName(node);
 var namespaceURI = node.namespaceURI ||
 Sys.Preview.MarkupParser._defaultNamespaceURI;
 var nspaceList = Sys.Preview.MarkupParser._cachedNamespaceURILists[namespaceURI];
 if (typeof(nspaceList) === ‘undefined’)
 {
 nspaceList = Sys.Preview.MarkupParser._processNamespaceURI(namespaceURI);
 Sys.Preview.MarkupParser._cachedNamespaceURILists[namespaceURI] = nspaceList;
 }

 var upperTagName = tagName.toUpperCase();
 for(var i=0; i < nspaceList.length; i++)
 {
 var nspace = nspaceList[i];
 var type = Type.parse(tagName, nspace);
 if(typeof(type) === ‘function’)
 return type;
 }

 if(upperTagName === “APPLICATION”)
 return Sys._Application;

 if(upperTagName === “WEBREQUESTMANAGER”)
 return Sys.Net._WebRequestManager;

 return null;
}

 _processNamespaceURI
 The main responsibilities of the _processNamespaceURI static method of the MarkupParser class are
to create and return an array that contains all the ASP.NET AJAX namespaces associated with the
 specified XML namespace URI. Listing A-8 contains the implementation of this method.

bapp01.indd 1289bapp01.indd 1289 8/20/07 8:58:18 PM8/20/07 8:58:18 PM

Appendix A: XML Script

1290

 Listing A-8: The _processNamespaceURI Method

 Sys.Preview.MarkupParser._processNamespaceURI =
function Sys$Preview$MarkupParser$_processNamespaceURI(namespaceURI)
{
 if(!namespaceURI ||
 namespaceURI === Sys.Preview.MarkupParser._defaultNamespaceURI)
 return Sys.Preview.MarkupParser._getDefaultNamespaces();

 var start = namespaceURI.slice(0, 12).toLowerCase();
 if(start === “javascript:”)
 {
 namespaceURI = namespaceURI.slice(11);
 if(!namespaceURI.length)
 return [];
 }
 var nspaceList = namespaceURI.split(‘,’);
 list = [];
 for(var i=0; i < nspaceList.length; i++)
 {
 var nspaceName = nspaceList[i];
 if(nspaceName.startsWith(‘ ‘))
 nspaceName = nspaceName.trimStart();
 if(nspaceName.endsWith(‘ ‘))
 nspaceName = nspaceName.trimEnd();
 if(!nspaceName.length)
 continue;
 var nspace = null;
 try
 {
 nspace = eval(nspaceName);
 }
 catch(e) { }

 if (!nspace || !Type.isNamespace(nspace))
 throw Error.invalidOperation(String.format(“’{0}’ is not a valid namespace.”,
 nspaceName));
 if(nspace)
 Array.add(list, nspace);
 }
 return list;
}

 If the specified XML namespace URI is the default namespace (that is, the standard http://schemas
.microsoft.com/xml-script/2005 XML namespace) the _processNamespaceURI delegates to the
_getDefaultNamespaces static method of the MarkupParser class the responsibility of creating and
returning the array that contains all the ASP.NET AJAX namespaces associated with this standard XML
namespace. I’ll discuss this static method in the following section.

 if(!namespaceURI ||
 namespaceURI === Sys.Preview.MarkupParser._defaultNamespaceURI)
 return Sys.Preview.MarkupParser._getDefaultNamespaces();

bapp01.indd 1290bapp01.indd 1290 8/20/07 8:58:18 PM8/20/07 8:58:18 PM

Appendix A: XML Script

1291

 Next, the _processNamespaceURI splits the specified XML namespace URI into an array of XML
namespace names:

 var nspaceList = namespaceURI.split(‘,’);
 list = [];

 Then it iterates through these XML namespace names and invokes the eval JavaScript function once for
each XML namespace name, to return one reference for each namespace to the actual XML namespace.

 nspace = eval(nspaceName);

 As you can see, the xml-script is very strict about the names of the custom XML namespaces. They
 cannot include strings such as http:// ; they must be the name of the actual ASP.NET AJAX
namespaces. The eval JavaScript function basically takes the string that contains the name of an
ASP.NET AJAX namespace and returns a reference to the actual namespace.

 Note that if the value that the eval method returns is not a valid ASP.NET AJAX namespace, the
 _processNamespaceURI raises an exception:

 if (!nspace || !Type.isNamespace(nspace))
 throw Error.invalidOperation(String.format(“’{0}’ is not a valid namespace.”,
 nspaceName));

 Also note that the _processNamespaceURI collects in a local array the return values of the calls into the eval
method (that is, the actual ASP.NET AJAX namespaces). This array is then returned to the caller of the method:

 Array.add(list, nspace);

 _getDefaultNamespaces
 As you can see from Listing A-9 , the _getDefaultNamespaces method populates the _defaultNamespace
static array field of the MarkupParser class with the list of standard ASP.NET AJAX namespaces such as
 Sys , Sys.UI , Sys.Net , and so on.

 Listing A-9: The _getDefaultNamespaces Method

 Sys.Preview.MarkupParser._getDefaultNamespaces =
function Sys$Preview$MarkupParser$_getDefaultNamespaces()
{
 if(!Sys.Preview.MarkupParser._defaultNamespaces)
 {
 var list = [Sys, Sys.UI, Sys.Net, Sys.Preview, Sys.Preview.UI,
 Sys.Preview.Net, Sys.Preview.Data, Sys.Preview.UI.Data,
 Sys.Preview.Services.Components];

 if(Sys.Preview.UI.Effects)
 Array.add(list, Sys.Preview.UI.Effects);
 Sys.Preview.MarkupParser._defaultNamespaces = list;
 }
 return Sys.Preview.MarkupParser._defaultNamespaces;
}

bapp01.indd 1291bapp01.indd 1291 8/20/07 8:58:19 PM8/20/07 8:58:19 PM

Appendix A: XML Script

1292

 parseFromMarkup
 Each ASP.NET AJAX type either defines a static method named parseFromMarkup or inherits this
method from its first ancestor, which defines this method through the process discussed earlier.
This method takes the three parameters shown in the following table:

 Parameter Description

 type This parameter references the constructor of the ASP.NET AJAX type
 associated with the xml-script node being parsed. Recall that this
ASP.NET AJAX type has the same name as the xml-node being parsed.

 node This parameter references the xml-node being parsed.

 markupContext This parameter references the current MarkupContext . Recall that the
current MarkupContext internally maintains three important entities.
The first one is a document fragment that contains a subtree of nodes
(_document). The second is a collection of ASP.NET AJAX components
(_objects). The third is a collection of JavaScript object literals, each of
which represents a property of an ASP.NET AJAX component that refer-
ences another ASP.NET AJAX component (_pendingReferences).

 As mentioned earlier, the parseFromMarkup method is a static method: it is defined on an ASP.NET
AJAX type itself, not its prototype property. The parseFromMarkup static method of a given
ASP.NET AJAX type has the following main responsibilities:

 ❑ It must instantiate an instance of the ASP.NET AJAX type. Since the first parameter of the
 parseFromMarkup method references the constructor of this type, instantiating an instance is
normally as simple as invoking the new JavaScript operator on this constructor:

 var instance = new type();

 ❑ It must initialize this instance. Initializing an ASP.NET AJAX object involves two main tasks:

 ❑ Initializing the properties of the instance: The second parameter of the parseFromMarkup
method references the xml-script node that represents this instance in xml-script. This
xml-script node contains attributes or child nodes with the same names as the properties of
this ASP.NET AJAX instance. The parseFromMarkup method must parse the values of
these attributes or child nodes and assign them to the properties of the ASP.NET AJAX
 instance with the same names. For some properties of this ASP.NET AJAX instance, such as
those simple properties that directly map to the attributes on the xml-script node, the
 parseFromMarkup method may simply use the DOM API to access the values of these
 attributes and directly assign them to the properties of the instance. For some more
 complex properties, the parseFromMarkup method delegates the responsibility of
 initialization to the initializeObject static method of the MarkupParser class.

❑ Registering event handlers for the events of the instance: As just mentioned, the second
 parameter of the parseFromMarkup method references the xml-script node that represents
this instance in xml-script. This xml-script node contains attributes or child nodes with the
same names as the events of this ASP.NET AJAX instance. The parseFromMarkup method
must parse the values of these attributes or child nodes. These values are nothing but the

bapp01.indd 1292bapp01.indd 1292 8/20/07 8:58:19 PM8/20/07 8:58:19 PM

Appendix A: XML Script

1293

names of the event handlers that must be registered for the specified events. Since the
 initializeObject static method of the MarkupParser class already contains the logic
that knows how to get a reference to the event handler with the specified name, the
 parseFromMarkup method normally delegates the responsibility of registering event
 handlers for the events of the instance to the initializeObject method.

❑ It must add this ASP.NET AJAX instance to the _objects collection of the current MarkupContext .
Recall that this collection maintains the list of all the ASP.NET AJAX instances parsed within the
current MarkupContext . As we discussed earlier, the current MarkupContext exposes a method
named addComponent that the parseFromMarkup method can use to add the newly parsed
ASP.NET AJAX instance to this collection.

 The parseFromMarkup method is the most important extensibility point of the ASP.NET AJAX
xml-script-parsing infrastructure. Your custom classes can define a custom parseFromMarkup method
to take complete control over how the xml-script node that represents an instance of your custom class in
xml-script must be parsed. The custom parseFromMarkup method of your custom class must meet the
following requirements:

 ❑ It must be named parseFromMarkup.

❑ It must take three parameters. The first references the constructor of your custom class, the
 second references the xml-script node that represents the current instance of your custom class
in xml-script, and the third references the current MarkupContext .

❑ It must instantiate, initialize, and return the instance of your custom class that represents the
xml-script node referenced by the second parameter.

❑ It must be static — that is, it must be defined on your custom class, not its prototype property.

 You’ll see an example of a custom parseFromMarkup method in Appendix E . If your custom component
does not define its own parseFromMarkup method, the ASP.NET AJAX xml-script-parsing infrastructure
walks up the ancestors of your custom class searching for the first ancestor that support this method
and assigns it to your custom class. In other words, your custom class will end up using the
parseFromMarkup method of its first ancestor that supports this method.

 For example, if you implement a custom control that derives from the Control base class, and if your
custom control does not directly support its own parseFromMarkup method, it will end up using the
 parseFromMarkup method of the Control base class, as shown in Listing A-10 .

 Listing A-10: The parseFromMarkup Method

 Sys.UI.Control.parseFromMarkup =
function SysUIControl$parseFromMarkup(type, node, markupContext)
{
 var idAttribute = node.attributes.getNamedItem(‘id’);
 var id = idAttribute.nodeValue;
 var associatedElement = markupContext.findElement(id);
 var dataContextHidden = false;
 var dataContext = markupContext.get_dataContext();
 if (dataContext)
 dataContextHidden = markupContext.hideDataContext();

(continued)

bapp01.indd 1293bapp01.indd 1293 8/20/07 8:58:19 PM8/20/07 8:58:19 PM

Appendix A: XML Script

1294

 Listing A-10 (continued)

 var newControl = new type(associatedElement);
 var control = Sys.Preview.MarkupParser.initializeObject(newControl, node,
 markupContext);
 if (control)
 {
 var id = control.get_id();
 markupContext.addComponent(control);
 if (dataContext)
 control.set_dataContext(dataContext);
 }

 else
 newControl.dispose();
 if (dataContextHidden)
 markupContext.restoreDataContext();
 return control;
}

 This listing shows an example of the implementation of the parseFromMarkup method. You can follow
this example to implement your own custom parseFromMarkup method for your own custom classes.
Next, I’ll walk you through this sample parseFromMarkup method.

 As you can see, it begins by calling the getNamedItem method on the attributes collection of the
xml-script node that represents the current control in xml-script to return a reference to the attribute
node that represents the id attribute of the xml-script node:

 var idAttribute = node.attributes.getNamedItem(‘id’);

 Next, it invokes the nodeValue property on this attribute node to access the value of the id attribute:

 var id = idAttribute.nodeValue;

 Then it invokes the findElement method on the current MarkupContext , passing in the id attribute
value to return a reference to the associated DOM element of the control. Recall that each ASP.NET AJAX
client control is associated with a DOM element whose id HTML attribute is given by the id attribute of
the xml-script node that represents the client control in xml-script:

 var associatedElement = markupContext.findElement(id);

 Next, it invokes the new JavaScript operator on the constructor of the client control, passing in the refer-
ence to the associated DOM element of the control to instantiate the client control associated with the
specified xml-script node. Recall that the first parameter of the parseFromMarkup method references the
constructor of the ASP.NET AJAX type associated with the specified xml-script node:

 var newControl = new type(associatedElement);

 Then the parseFromMarkup method delegates the responsibility of initializing the properties of the
newly instantiated client control, and the responsibility of registering event handlers for its events, to the
 initializeObject static method of the MarkupParser class:

bapp01.indd 1294bapp01.indd 1294 8/20/07 8:58:20 PM8/20/07 8:58:20 PM

Appendix A: XML Script

1295

 var control = Sys.Preview.MarkupParser.initializeObject(newControl, node,
 markupContext);

 Next, the parseFromMarkup method calls the addComponent method on the current MarkupContext to
add the client control to its _objects collection. Recall that the current MarkupContext maintains the
list of all the ASP.NET AJAX components parsed in the current markup context in this collection:

 markupContext.addComponent(control);

 initializeObject
 The initializeObject method takes the three parameters described in the following table:

 Parameter Description

 instance References the ASP.NET AJAX object being initialized

 node References the xml-script node that represents the ASP.NET AJAX object
being initialized

 markupContext References the current MarkupContext

 As the name suggests, the initializeObject method initializes the ASP.NET AJAX object that its first
parameter references. This initialization involves two main tasks:

 ❑ Initializing the properties of the ASP.NET AJAX object: The xml-script node referenced by the sec-
ond parameter of the initializeObject method exposes attributes or child nodes with the same
names as the properties of the ASP.NET AJAX object being initialized. The initializeObject
method extracts the required values from these attributes or child nodes and assigns them to the
properties of the ASP.NET AJAX object with the same names.

❑ Registering event handlers for the events of the ASP.NET AJAX object: The xml-script node ref-
erenced by the second parameter of the initializeObject method exposes attributes or child
nodes with the same names as the events of the ASP.NET AJAX object being initialized. The
 initializeObject method extracts the required event handlers from these attributes or child
nodes and registers them as event handlers for the events of the ASP.NET AJAX object with the
same names.

 Before diving into the implementation of the initializeObject method we need to revisit the
ASP.NET AJAX TypeDescriptor class, because the initializeObject method makes extensive use of
this class and its methods. Recall from Chapter 10 that every ASP.NET AJAX type, such as a class, is
associated with an object known as a type descriptor, which generically describes the properties, events,
methods, and metadata attributes of the type. This object allows the client of an ASP.NET AJAX type to
inspect the type generically without knowing the actual type of the type.

 The ASP.NET AJAX TypeDescriptor class comes with a static method named getTypeDescriptor
that takes an ASP.NET AJAX object as its argument and returns a reference to the type descriptor
object that describes the type of this ASP.NET AJAX object.

bapp01.indd 1295bapp01.indd 1295 8/20/07 8:58:20 PM8/20/07 8:58:20 PM

Appendix A: XML Script

1296

 As you’ll see shortly, to initialize the ASP.NET AJAX object passed into it in a generic way, the
initializeObject method uses the type descriptor object returned by the getTypeDescriptor
 static method of the TypeDescriptor class. Therefore, the type descriptor object associated with a
 given ASP.NET AJAX type determines how an instance of the type is initialized from the attributes and
child nodes of the xml-script node that represents the instance in xml-script.

 Therefore, if you want to enable the clients of your custom ASP.NET AJAX type to instantiate and initial-
ize instances of your custom type in xml-script in a purely declarative fashion, without their writing any
JavaScript code, you must take extra steps to make sure that the getTypeDescriptor static method of
the TypeDescriptor class returns the appropriate type descriptor object to the initializeObject
method. You have two options:

 ❑ Have your custom type implement the ICustomTypeProvider interface, so the
 getTypeDescriptor static method returns your own custom type descriptor object.

❑ Define a descriptor static property on your custom type to describe the properties, events,
methods, and metadata attributes of your type, as we discussed earlier.

 Which approach is better? It depends on the specifics of your application requirements. In general, the
first approach is more flexible than the second but requires more coding. Keep in mind that your custom
type must either implement the ICustomTypeProvider interface or expose a static property named
 descriptor . Otherwise no one will be able to use your custom type declaratively in xml-script.

 The implementation of the initializeObject method is quite complex. To help you get a better
 understanding of this method, I’ll present an example of its implementation. This example consists of
four ASP.NET AJAX client classes named MyCustomType , MyEnumeration , MyType , and MyType2 .
 A JavaScript file named MyClientTypes.js contains the implementation of these three client classes.
Listing A-11 presents the content of this JavaScript file.

 Listing A-11: The Content of the MyClientTypes.js JavaScript File

 Type.registerNamespace(“CustomComponents”);
CustomComponents.MyType2 =
function CustomComponents$MyType2(param1, param2, param3)
{
 this._param1 = param1;
 this._param2 = param2;
 this._param3 = param3;
}
CustomComponents.MyType2.registerClass(“CustomComponents.MyType2”);
CustomComponents.MyType2.parse = function (value)
{
 var params = value.split(‘,’);
 alert(“Instantiating a MyType2 object and initializing it with “ + params);
 return new CustomComponents.MyType2(params[0], params[1], params[2]);
}
///////////////////////////////
CustomComponents.MyEnumeration = function CustomComponents$MyEnumeration()
{
 throw Error.invalidOperation();
}

bapp01.indd 1296bapp01.indd 1296 8/20/07 8:58:20 PM8/20/07 8:58:20 PM

Appendix A: XML Script

1297

CustomComponents.MyEnumeration.prototype =
{
 EnumValue1: 0,
 EnumValue2: 1,
 EnumValue3: 2
}
CustomComponents.MyEnumeration.registerEnum(“CustomComponents.MyEnumeration”);
//////////////////////////////
CustomComponents.MyType = function CustomComponents$MyType()
{
}
function CustomComponents$MyType$set_myTypeProperty(value)
{
 this._myTypeProperty = value;
 alert(“myTypeProperty was set to “ + value);
}
function CustomComponents$MyType$get_myTypeProperty()
{
 return this._myTypeProperty;
}
CustomComponents.MyType.prototype =
{
 get_myTypeProperty : CustomComponents$MyType$get_myTypeProperty,
 set_myTypeProperty : CustomComponents$MyType$set_myTypeProperty
}
CustomComponents.MyType.registerClass(“CustomComponents.MyType”);
CustomComponents.MyType.descriptor =
{
 properties : [{name : “myTypeProperty”, type : String}]
}
//////////////////////////////
CustomComponents.MyCustomType = function CustomComponents$MyCustomType()
{
 CustomComponents.MyCustomType.initializeBase(this);
}
function CustomComponents$MyCustomType$add_myEvent(eventHandler)
{
 this.get_events().addHandler(“myEvent”, eventHandler);
 alert(eventHandler + “ \n\nwas registered as event handler for myEvent event!”);
}
function CustomComponents$MyCustomType$remove_myEvent(eventHandler)
{
 this.get_events().removeHandler(“myEvent”, eventHandler);
}
function CustomComponents$MyCustomType$set_myProperty(value)
{
 this._myProperty = value;
 alert(“myProperty was set to the DOM element with id HTML attribute value of “ +
 value.id);
}

(continued)

bapp01.indd 1297bapp01.indd 1297 8/20/07 8:58:21 PM8/20/07 8:58:21 PM

Appendix A: XML Script

1298

 Listing A-11 (continued)

function CustomComponents$MyCustomType$get_myProperty()
{
 return this._myProperty;
}
function CustomComponents$MyCustomType$set_myNonReadOnlyStringProperty(value)
{
 this._myNonReadOnlyStringProperty = value;
 alert(“myNonReadOnlyStringProperty was set to “ + value);
}
function CustomComponents$MyCustomType$get_myNonReadOnlyStringProperty()
{
 return this._myNonReadOnlyStringProperty;
}
function CustomComponents$MyCustomType$set_myProperty2(value)
{
 this._myProperty2 = value;
 alert(“myProperty2 was set to “ + value);
}
function CustomComponents$MyCustomType$get_myProperty2()
{
 return this._myProperty2;
}
function CustomComponents$MyCustomType$set_myReferenceProperty(value)
{
 this._myReferenceProperty = value;
 alert(“myReferenceProperty was set to the component with the id value of “ +
 value.get_id());
}
function CustomComponents$MyCustomType$get_myReferenceProperty()
{
 return this._myReferenceProperty;
}
function CustomComponents$MyCustomType$set_myArrayProperty(value)
{
 this._myArrayProperty = value;
 alert(“myArrayProperty was set to “ + value);
}
function CustomComponents$MyCustomType$get_myArrayProperty()
{
 return this._myArrayProperty;
}
function CustomComponents$MyCustomType$get_myReadOnlyArrayProperty()
{
 alert(“The value of myReadOnlyArrayProperty is being retrieved!”);
 return this._myReadOnlyArrayProperty;
}

bapp01.indd 1298bapp01.indd 1298 8/20/07 8:58:21 PM8/20/07 8:58:21 PM

Appendix A: XML Script

1299

function CustomComponents$MyCustomType$get_myObjectProperty()
{
 alert(“The value of myObjectProperty is being retrieved!”);
 return this._myObjectProperty;
}
function CustomComponents$MyCustomType$get_myNonObjectNonArrayProperty()
{
 alert(“The value of myNonObjectNonArrayProperty is being retrieved!”);
 if (!this._myNonObjectNonArrayProperty)
 this._myNonObjectNonArrayProperty = new CustomComponents.MyType();
 return this._myNonObjectNonArrayProperty;
}
function CustomComponents$MyCustomType$set_myEnumProperty(value)
{
 this._myEnumProperty = value;
 alert(“myEnumProperty was set to “ + value);
}
function CustomComponents$MyCustomType$get_myEnumProperty()
{
 return this._myEnumProperty;
}
CustomComponents.MyCustomType.prototype =
{
 _myReadOnlyArrayProperty : [],
 _myObjectProperty : {},
 set_myProperty : CustomComponents$MyCustomType$set_myProperty,
 get_myProperty : CustomComponents$MyCustomType$get_myProperty,
 set_myNonReadOnlyStringProperty :
 CustomComponents$MyCustomType$set_myNonReadOnlyStringProperty,
 get_myNonReadOnlyStringProperty :
 CustomComponents$MyCustomType$get_myNonReadOnlyStringProperty,
 set_myProperty2 : CustomComponents$MyCustomType$set_myProperty2,
 get_myProperty2 : CustomComponents$MyCustomType$get_myProperty2,
 set_myReferenceProperty : CustomComponents$MyCustomType$set_myReferenceProperty,
 get_myReferenceProperty : CustomComponents$MyCustomType$get_myReferenceProperty,
 set_myArrayProperty : CustomComponents$MyCustomType$set_myArrayProperty,
 get_myArrayProperty : CustomComponents$MyCustomType$get_myArrayProperty,
 set_myEnumProperty : CustomComponents$MyCustomType$set_myEnumProperty,
 get_myEnumProperty : CustomComponents$MyCustomType$get_myEnumProperty,
 get_myReadOnlyArrayProperty :
 CustomComponents$MyCustomType$get_myReadOnlyArrayProperty,
 get_myObjectProperty : CustomComponents$MyCustomType$get_myObjectProperty,
 get_myNonObjectNonArrayProperty :
 CustomComponents$MyCustomType$get_myNonObjectNonArrayProperty,
 add_myEvent : CustomComponents$MyCustomType$add_myEvent,
 remove_myEvent : CustomComponents$MyCustomType$remove_myEvent
}

(continued)

bapp01.indd 1299bapp01.indd 1299 8/20/07 8:58:21 PM8/20/07 8:58:21 PM

Appendix A: XML Script

1300

 Listing A-11 (continued)

CustomComponents.MyCustomType.registerClass(“CustomComponents.MyCustomType”,
 Sys.Component);
CustomComponents.MyCustomType.descriptor =
{
 properties : [{name : ‘myProperty’, type : null, isDomElement : true},
 {name : ‘myNonReadOnlyStringProperty’, type : String},
 {name : ‘myReferenceProperty’,
 type : CustomComponents.MyCustomType},
 {name : ‘myProperty2’, type : CustomComponents.MyType2},
 {name : ‘myArrayProperty’, type : Array},
 {name : ‘myEnumProperty’, type : CustomComponents.MyEnumeration},
 {name : ‘myReadOnlyArrayProperty’, type : Array, readOnly : true},
 {name : ‘myObjectProperty’, type : Object, readOnly : true},
 {name : ‘myNonObjectNonArrayProperty’,
 type : CustomComponents.MyType, readOnly : true}],
 events : [{name : “myEvent”}]
}
if(typeof(Sys)!==’undefined’)
 Sys.Application.notifyScriptLoaded();

 Listing A-12 presents a page that uses these client classes in xml-script in a purely declarative fashion.

 Listing A-12: A Page that Uses the Client Classes Defined in Listing A-11 in xml-script

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script language=”text/javascript” type=”text/javascript”>
 function myEventHandler (sender, eventArgs) { }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 <asp:ScriptReference Path=”MyClientTypes.js” />
 </Scripts>
 </asp:ScriptManager>
 <div id=”mydiv” />
 <div id=”mydiv2” />
 </form>

bapp01.indd 1300bapp01.indd 1300 8/20/07 8:58:21 PM8/20/07 8:58:21 PM

Appendix A: XML Script

1301

 <script type=”text/xml-script”>
 <page xmlns=”http://schemas.microsoft.com/xml-script/2005”
 xmlns:custom=”CustomComponents”>
 <components>
 <custom:MyCustomType id=”myCustomType1” myReferenceProperty=”myCustomType2”
 myProperty=”mydiv” myProperty2=”’valuevvv1’,’valuevvv2’,’valuevvv3’”
 myArrayProperty=”’value1’,’value2’”
 myEnumProperty=”EnumValue2” myEvent=”myEventHandler”>
 <myReadOnlyArrayProperty>
 <custom:MyType myTypeProperty=”’value1’” />
 <custom:MyType myTypeProperty=”’value2’” />
 </myReadOnlyArrayProperty>
 <myObjectProperty myObjectPropertyProperty1=”’value1’”
 myObjectPropertyProperty2=”’value2’” />
 <myNonReadOnlyStringProperty>value1</myNonReadOnlyStringProperty>
 <myNonObjectNonArrayProperty myTypeProperty=”’value1’” />
 </custom:MyCustomType>

 <custom:MyCustomType id=”myCustomType2” myProperty=”mydiv2” />
 </components>
 </page>
 </script>
</body>
</html>

 I’ll walk you through the implementation of these client classes (that is, Listing A-11) as we’re walking
through the implementation of the initializeObject method, shown in Listing A-13 .

 Listing A-13: The initializeObject Method

 Sys.Preview.MarkupParser.initializeObject =
function Sys$Preview$MarkupParser$initializeObject(instance, node, markupContext)
{
 var td = Sys.Preview.TypeDescriptor.getTypeDescriptor(instance);
 if (!td)
 return null;

 var supportsBatchedUpdates = false;
 if ((instance.beginUpdate && instance.endUpdate && instance !==Sys.Application))
 {
 supportsBatchedUpdates = true;
 instance.beginUpdate();
 }
 var i, a;
 var attr, attrName;
 var propertyInfo, propertyName, propertyType, propertyValue;
 var eventInfo, eventValue;
 var setter, getter;
 var properties = td._getProperties();
 var events = td._getEvents();
 var attributes = node.attributes;

(continued)

bapp01.indd 1301bapp01.indd 1301 8/20/07 8:58:22 PM8/20/07 8:58:22 PM

Appendix A: XML Script

1302

 Listing A-13 (continued)

 if (attributes)
 {
 for (a = attributes.length - 1; a > =0; a--)
 {
 attr = attributes[a];
 attrName = attr.nodeName;

 if(attrName === “id” && Sys.UI.Control.isInstanceOfType(instance))
 continue;
 propertyInfo = properties[attrName];
 if (propertyInfo)
 {
 propertyType = propertyInfo.type;
 propertyValue = attr.nodeValue;
 if (propertyType &&
 (propertyType === Object ||
 propertyType === Sys.Component ||
 propertyType.inheritsFrom(Sys.Component)))
 markupContext.addReference(instance, propertyInfo, propertyValue);

 else
 {
 if (propertyInfo.isDomElement || propertyType === Sys.UI.DomElement)
 propertyValue = markupContext.findElement(propertyValue);

 else
 {
 if (propertyType === Array)
 propertyValue = Array.parse(‘[‘ + propertyValue + ‘]’);

 else if (propertyType && propertyType != =String)
 {
 if(Type.isEnum(propertyType))
 propertyValue = propertyType.parse(propertyValue, true);

 else
 {
 if(propertyValue === “” && propertyType === Number)
 propertyValue = 0;

 else
 propertyValue =
 (propertyType.parseInvariant || propertyType.parse)
 (propertyValue);
 }
 }
 }
 propertyName = propertyInfo.name;
 setter = instance[‘set_’ + propertyName];
 setter.call(instance, propertyValue);
 }
 }

bapp01.indd 1302bapp01.indd 1302 8/20/07 8:58:22 PM8/20/07 8:58:22 PM

Appendix A: XML Script

1303

 else
 {
 eventInfo = events[attrName];
 if (eventInfo)
 {
 var handler = Function.parse(attr.nodeValue);
 if (handler)
 {
 eventValue = instance[‘add_’ + eventInfo.name];
 if (eventValue)
 eventValue.apply(instance, [handler]);
 else
 throw Error.invalidOperation(String.format(
 “The event ‘{0}’ is specified in the type descriptor, but add_{0} was not found.”,
 eventInfo.name));
 }
 }
 else
 throw Error.invalidOperation(
 String.format(‘Unrecognized attribute “{0}” on object of type “{1}”’,
 attrName, Object.getTypeName(instance)));
 }
 }
 }
 var childNodes = node.childNodes;
 if (childNodes && (childNodes.length ! =0))
 {
 for (i = childNodes.length - 1; i >= 0; i--)
 {
 var childNode = childNodes[i];
 if (childNode.nodeType != 1)
 continue;
 var nodeName = Sys.Preview.MarkupParser.getNodeName(childNode);
 propertyInfo = properties[nodeName];
 if (propertyInfo)
 {
 propertyName = propertyInfo.name;
 propertyType = propertyInfo.type;
 if (propertyInfo.readOnly)
 {
 getter = instance[‘get_’ + propertyName];
 var nestedObject = getter.call(instance);
 if (propertyType === Array)
 {
 if (childNode.childNodes.length)
 {
 var items = Sys.Preview.MarkupParser.parseNodes(childNode.childNodes,
 markupContext);
 for (var itemIndex = 0; itemIndex < items.length; itemIndex++)
 {
 var item = items[itemIndex];
 if(typeof(nestedObject.add) === “function”)
 nestedObject.add(item);

(continued)

bapp01.indd 1303bapp01.indd 1303 8/20/07 8:58:22 PM8/20/07 8:58:22 PM

Appendix A: XML Script

1304

 Listing A-13 (continued)

 else
 {
 Array.add(nestedObject, item);
 if(typeof(item.setOwner) === “function”)
 item.setOwner(instance);
 }
 }
 }
 }

 else if (propertyType === Object)
 {
 attributes = childNode.attributes;
 for (a = attributes.length - 1; a >= 0; a--)
 {
 attr = attributes[a];
 nestedObject[attr.nodeName] = attr.nodeValue;
 }
 }
 else
 Sys.Preview.MarkupParser.initializeObject(nestedObject, childNode,
 markupContext);
 }

 else
 {
 propertyValue = null;
 if (propertyType == String)
 propertyValue = childNode.text;

 else if (childNode.childNodes.length != 0)
 {
 var valueNode;
 for (var childNodeIndex = 0;
 childNodeIndex < childNode.childNodes.length; childNodeIndex++)
 {
 if (childNode.childNodes[childNodeIndex].nodeType != 1)
 continue;

 valueNode = childNode.childNodes[childNodeIndex];
 break;
 }
 if (valueNode)
 propertyValue = Sys.Preview.MarkupParser.parseNode(valueNode,
 markupContext);
 }
 if (propertyValue)
 {
 setter = instance[‘set_’ + propertyName];
 setter.call(instance, propertyValue);
 }
 }
 }

bapp01.indd 1304bapp01.indd 1304 8/20/07 8:58:23 PM8/20/07 8:58:23 PM

Appendix A: XML Script

1305

 else
 {
 eventInfo = events[nodeName];
 if (eventInfo)
 {
 var actions = Sys.Preview.MarkupParser.parseNodes(childNode.childNodes,
 markupContext);
 if (actions.length)
 {
 eventValue = instance[“add_” + eventInfo.name];
 if(eventValue)
 {
 for (var e = 0; e < actions.length; e++)
 {
 var action = actions[e];
 action.set_eventName(eventInfo.name);
 action.set_eventSource(instance);
 }
 }
 else
 throw Error.invalidOperation(String.format(
 “The event ‘{0}’ is specified in the type descriptor, but add_{0} was not found.”,
 eventInfo.name));
 }
 }

 else
 {
 var type = null;
 var upperName = nodeName.toUpperCase();
 if(upperName === ‘BINDINGS’)
 type = Sys.Preview.BindingBase;

 else if(upperName === ‘BEHAVIORS’)
 type = Sys.UI.Behavior;

 if(type)
 {
 if (childNode.childNodes.length)
 {
 var items = Sys.Preview.MarkupParser.parseNodes(childNode.childNodes,
 markupContext);
 for (var itemIndex = 0; itemIndex < items.length; itemIndex++)
 {
 var item = items[itemIndex];
 debug.assert(type.isInstanceOfType(item),
 String.format(“The ‘{0}’ element may only contain child elements
 of type ‘{1}’.”, nodeName, type.getName()));
 if(typeof(item.setOwner) === “function”)
 item.setOwner(instance);
 }
 }
 }

(continued)

bapp01.indd 1305bapp01.indd 1305 8/20/07 8:58:23 PM8/20/07 8:58:23 PM

Appendix A: XML Script

1306

 Listing A-13 (continued)

 else
 throw Error.invalidOperation(String.format(
 ‘Unrecognized child node “{0}” on object of type “{1}”’, nodeName,
 Object.getTypeName(instance)));
 }
 }
 }
 }
 if (supportsBatchedUpdates)
 markupContext.addEndUpdate(instance);
 return instance;
}

 As you can see from Listing A-13 , the initializeObject method begins by invoking the
getT ypeDescriptor static method on the TypeDescriptor class, passing in the reference to the
ASP.NET AJAX object being initialized. This method returns a reference to the type descriptor object
that describes the type of the ASP.NET AJAX object being initialized.

 var td = Sys.Preview.TypeDescriptor.getTypeDescriptor(instance);

 Next, the initializeObject method invokes the getProperties method on the type descriptor
object to return a dictionary that contains the complete information about the properties of the ASP.NET
AJAX object being initialized:

 var properties = td._getProperties();

 Next, the initializeObject method invokes the getEvents method on the type descriptor object to
return a dictionary that contains the complete information about the events of the ASP.NET AJAX object
being initialized:

 var events = td._getEvents();

 Then the method accesses the attributes collection of the xml-script node referenced by the second
parameter of the method. (Recall that this xml-script node represents the ASP.NET AJAX object
being initialized.) The attributes collection contains one attribute node for each attribute on this
xml-script node:

 var attributes = node.attributes;

 Next, the initializeObject method iterates through the attribute nodes in the attributes collection
and performs several tasks for each enumerated attribute node. First, the initializeObject method
accesses the name of the attribute that the attribute node represents:

 attr = attributes[a];
 attrName = attr.nodeName;

bapp01.indd 1306bapp01.indd 1306 8/20/07 8:58:23 PM8/20/07 8:58:23 PM

Appendix A: XML Script

1307

 The initializeObject method ignores the id attribute if the ASP.NET AJAX object being initialized is
a client control. Recall from Listing A-10 that the parseFromMarkup method of the Control class has
already taken care of the id attribute:

 if(attrName === “id” && Sys.UI.Control.isInstanceOfType(instance))
 continue;

 The method then uses the attribute name as an index into the properties collection, to return a refer-
ence to the property info object that contains the complete information about the property with the
same name as the attribute. Recall that the properties collection is the return value of the call into the
_getProperties method:

 propertyInfo = properties[attrName];

 If the properties collection does contain a property with the same name as the attribute, the
 initializeObject method accesses a reference to the constructor of the type of the property:

 propertyType = propertyInfo.type;

 It then accesses the attribute value:

 propertyValue = attr.nodeValue;

 If the property references a JavaScript object, or an instance of the ASP.NET AJAX Component class, or an
instance of the ASP.NET AJAX class that derives from the ASP.NET AJAX Component class, the
 initializeObject method invokes the addReference method on the current MarkupContext to add
a reference for this property to the _ pendingReferences collection of the current MarkupContext .
Recall that this collection contains one JavaScript object literal for each property that references another
component. This JavaScript object literal exposes three properties: the first references the object that
owns the property (which is the object being initialized), the second references the property info object
that represents the property, and the last is the attribute value, which will be used to evaluate the
 property value. Recall that the actual evaluation takes place when the close method is invoked on the
current MarkupContext . This is to ensure that the object being referenced is instantiated and initialized
before it is referenced:

 if (propertyType &&
 (propertyType === Object ||
 propertyType === Sys.Component ||
 propertyType.inheritsFrom(Sys.Component)))
 markupContext.addReference(instance, propertyInfo, propertyValue);

 Next, I’ll present an example of this case. As Listing A-11 shows, the MyCustomType class exposes a
property named myReferenceProperty that references another MyCustomType component in the
 current application:

 function CustomComponents$MyCustomType$set_myReferenceProperty(value)
{
 this._myReferenceProperty = value;
 alert(“myReferenceProperty was set to the component with the id value of “ +
 value.get_id());
}

bapp01.indd 1307bapp01.indd 1307 8/20/07 8:58:23 PM8/20/07 8:58:23 PM

Appendix A: XML Script

1308

 Note that the setter method associated with this property pops up an alert that displays the new value of
the property. As Listing A-11 shows, the value of the properties property of the descriptor static
property of the MyCustomType contains the object literal shown in the boldface portion of the following
code fragment, where the value of the type property of this object literal references the constructor of
the MyCustomType type:

 CustomComponents.MyCustomType.descriptor =
{
 properties : [. . .
 {name : ‘myReferenceProperty’, type : CustomComponents.MyCustomType} , . . .],
 . . .
}

 This object literal tells the initializeObject method that the myReferenceProperty property of the
 MyCustomType object references another MyCustomType object in the current application. As Listing A-12
shows, this enables you to use the boldface declarative syntax shown in the following code fragment to
specify the value of this property in xml-script if the value of the myReferenceProperty attribute on the
 <custom:MyCustomType> element with an id property value of myCustomType1 is set to the value of
the id property of the <custom:MyCustomType> element with an id property value of myCustomType2 :

 <custom:MyCustomType id=”myCustomType1” myReferenceProperty=”myCustomType2” . . . >
 . . .
</custom:MyCustomType>

<custom:MyCustomType id=”myCustomType2” . . . />

 Now back to the implementation of the initializeObject method. If the property references a DOM
element, the initializeObject invokes the findElement method on the current MarkupContext ,
passing in the attribute value to return a reference to the DOM element that will be used as the value of
the property:

 if (propertyInfo.isDomElement || propertyType === Sys.UI.DomElement)
 propertyValue = markupContext.findElement(propertyValue);

 Listing A-11 shows an example of this case, in which the MyCustomType component exposes a property
named myProperty that references a DOM element. As you can see from this code listing, the value of
the properties property of the descriptor property of the MyCustomType component contains an
object literal, shown in the boldface portion of the following excerpt from this code listing:

 CustomComponents.MyCustomType.descriptor =
{
 properties : [{name : ‘myProperty’, type : null, isDomElement : true} , . . .],
 . . .
}

 This enables you to declaratively specify the value of the myProperty property by declaring an attribute
named myProperty on an xml-script <custom:MyCustomType> node in xml-script, and setting the value

bapp01.indd 1308bapp01.indd 1308 8/20/07 8:58:24 PM8/20/07 8:58:24 PM

Appendix A: XML Script

1309

of this attribute to the id HTML attribute value of the DOM element that the myProperty property is
supposed to reference, as shown in the boldface portion of the following excerpt from Listing A-12 :

 <form id=”form1” runat=”server”>
 . . .
 <div id=”mydiv” />
 </form>

 <script type=”text/xml-script”>
 <page xmlns=”http://schemas.microsoft.com/xml-script/2005”
 xmlns:custom=”CustomComponents”>
 <components>
 <custom:MyCustomType myProperty=”mydiv” . . . >
 . . .
 </custom:MyCustomType>
 </components>
 </page>
 </script>

 Since the descriptor static property of the MyCustomType ASP.NET AJAX type specifies true as the
value of the isDomElement property, the initializeObject method automatically passes the value of
the myProperty attribute into the findElement method to return a reference to the referenced <div>
DOM element, which is the actual value of the myProperty property.

 Now back to the implementation of the initializeObject method. If the property is a JavaScript
array, the initializeObject generates a string that encloses the attribute value within square brackets
and parses this string into a JavaScript array, which will be used as the value of the property:

 if (propertyType === Array)
 propertyValue = Array.parse(‘[‘ + propertyValue + ‘]’);

 Listing A-11 also shows an example of this case, in which MyCustomType exposes a property of type
 Array named myArrayProperty . Note that the properties property of the descriptor static
 property of MyCustomType contains the object literal shown in the boldface portion of the following
excerpt from Listing A-11 :

 CustomComponents.MyCustomType.descriptor =
{
 properties : [. . . , {name : ‘myArrayProperty’, type : Array} , . . .],
 . . .
}

 This enables you to declaratively specify the value of the myArrayProperty property by declaring in
xml-script an attribute named myArrayProperty on the xml-script <custom:MyCustomType> node and
setting the value of this attribute to a comma-separated list of values, as shown in the boldface portion of
the following excerpt from Listing A-12 :

 <custom:MyCustomType . . . myArrayProperty=”’value1’,’value2’” . . . >
 . . .
 </custom:MyCustomType>

bapp01.indd 1309bapp01.indd 1309 8/20/07 8:58:24 PM8/20/07 8:58:24 PM

Appendix A: XML Script

1310

 This excerpt sets the value of the myArrayProperty attribute on the <custom:MyCustomType>
xml-script node to a comma-separated list of two values. Since the descriptor static property of
MyCustomType specifies Array as the type of the myArrayProperty property, the initializeObject
method automatically encloses the preceding comma-separated list of values in square brackets and
passes the result into the parse method of the Array class to parse the list into a valid JavaScript array,
to arrive at the actual value of the myArrayProperty property.

 Now back to the implementation of the initializeObject method. If the property is not a string, the
 initializeObject method checks whether the property is an enumeration. If so, it parses the attribute
value into the appropriate enumeration value, which will be used as the value of the property.

 if(Type.isEnum(propertyType))
 propertyValue = propertyType.parse(propertyValue, true);

 Next, we’ll look at the portions of Listings A-11 and A-12 that cover this case. As Listing A-11 shows,
 MyCustomType exposes a property of type MyEnumeration named myEnumProperty , which has three
possible values named EnumValue1 , EnumValue2 , and EnumValue3 . Notice that the properties prop-
erty of the descriptor static property of MyCustomType contains an object literal with the type value
of CustomComponents.MyEnumeration , as shown in the boldface portion of the following excerpt from
Listing A-11 :

 CustomComponents.MyCustomType.descriptor =
{
 properties : [. . . ,
 {name : ‘myEnumProperty’, type : CustomComponents.MyEnumeration} , . . .],
 . . .
}

 This enables you to declaratively specify the value of the myEnumProperty property by declaring in
xml-script an attribute named myEnumProperty on the xml-script <custom:MyCustomType> node and
setting the value of this attribute to one of the possible values of the MyEnumeration — that is,
 EnumValue1 , EnumValue2 , or EnumValue3 — without having to specify the complete name of the
value, as shown in the boldface portion of the following excerpt from Listing A-12 . The complete name
is prefixed by CustomComponents.MyEnumeration .

 <custom:MyCustomType . . . myEnumProperty=”EnumValue2” . . . >
 . . .
</custom:MyCustomType>

 This example sets the value of the myEnumProperty attribute on the <custom:MyCustomType>
xml-script node to the enumeration value of EnumValue2 without your having to specify the complete
name of the enumeration value, MyNamespace.MyEnumeration.MyEnumValue2 . Since the descriptor
static property of MyCustomType specifies CustomComponents.MyEnumeration as the type of the
myEnumProperty property, the initializeObject method automatically calls the parse method
to parse this attribute value to the actual MyNamespace.MyEnumeration.MyEnumValue2
enumeration value.

 Now back to the implementation of the initializeObject method. If the property is not an enumera-
tion, the initializeObject method simply invokes the parse static method on the type of the

bapp01.indd 1310bapp01.indd 1310 8/20/07 8:58:24 PM8/20/07 8:58:24 PM

Appendix A: XML Script

1311

 property to parse the attribute value, which will be used as the value of the property. In other words,
 initializeObject assumes that the parse static method of this type knows how to parse this attribute
value to the type that the property expects.

 else
 propertyValue = propertyType.parse(propertyValue);

 Next, I’ll take a look at an example of this case. As you can see from Listing A-11 , MyCustomType
 features a property named myProperty2 :

 function CustomComponents$MyCustomType$set_myProperty2(value)
{
 this._myProperty2 = value;
 alert(“myProperty2 was set to “ + value);
}

 As you can see from the boldface portion of the following excerpt from Listing A-11 , the myProperty2 is
of type CustomComponents.MyType2 :

 CustomComponents.MyCustomType.descriptor =
{
 properties : [. . . , {name : ‘myProperty2’, type : CustomComponents.MyType2} ,
 . . .],
 . . .
}

 As Listing A-11 shows, CustomComponents.MyType2 exposes the following parse static method, which
parses the specified value into a CustomComponents.MyType2 object and returns this object to its caller
(the caller in our case being the initializeObject method):

 CustomComponents.MyType2.parse = function (value)
{
 var params = value.split(‘,’);
 alert(“Instantiating a MyType2 object and initializing it with “ + params);
 return new CustomComponents.MyType2(params[0], params[1], params[2]);
}

 This is a powerful technique that you can use in your own client code to enable page developers to
instantiate instances of your custom client classes from xml-script in a purely declarative fashion, as you
can from the boldface portion of the following excerpt from Listing A-12 . Here the page developer uses a
declarative approach to instantiate an instance of CustomComponents.MyType2 and to assign this
instance to the myProperty2 property of the specified MyCustomType component:

 <custom:MyCustomType . . . myProperty2=”’value1’,’value2’,’value3’” . . . >
 . . .
</custom:MyCustomType>

bapp01.indd 1311bapp01.indd 1311 8/20/07 8:58:25 PM8/20/07 8:58:25 PM

Appendix A: XML Script

1312

 Now back to the implementation of the initializeObject method. Now that the property’s value has
been determined, it’s time to assign this value to the property. The initializeObject method takes
 several steps to accomplish this.

 ❑ First, it accesses the property name:

 propertyName = propertyInfo.name;

 ❑ Then it generates a string that contains the name of the setter method for the property and uses
this string as an index into the object being initialized to return a reference to this setter method:

 setter = instance[‘set_’ + propertyName];

 ❑ Finally, it invokes the call method on this reference to set the value of the property to the
 specified value:

 setter.call(instance, propertyValue);

 As you can see, the initializeObject method expects the getter and setter methods associated with a
given property to follow these naming conventions:

 get_ PropertyName
set_ PropertyName

 PropertyName stands for the name of the property. Following these naming conventions will enable
page developers to declare an attribute with the same name as the property on the xml-script node that
represents an instance of your custom type in xml-script, and to assign the appropriate value to this
 attribute and rest assured that the initializeObject method will automatically invoke the underlying
setter method to assign the specified value to the property.

 Your custom ASP.NET AJAX type must explicitly describe its properties in the value of the properties
property of its descriptor static property, as you saw in the previous examples.

 It’s very important to realize that the initializeObject method does not pick up the property
 information, such as name and type, from the prototype property of your custom type. Such informa-
tion is picked up from the descriptor property. If you do not add object literals describing your
 properties to the value of the properties property of the descriptor property of your custom type,
the initializeObject will have no way of knowing that your type exposes those properties. As we
discussed earlier, another approach is to have your type implement the ICustomTypeProvider
 interface to return a type descriptor that describes these properties.

 If the properties collection does not contain a property with the same name as the attribute, the
 initializeObject method uses the attribute name as an index into the events collection to return a
reference to the event info object that contains the complete information about the event with the same
name as the attribute. Recall that the events collection is the return value of the call into the
_getEvents method:

 eventInfo = events[attrName];

bapp01.indd 1312bapp01.indd 1312 8/20/07 8:58:25 PM8/20/07 8:58:25 PM

Appendix A: XML Script

1313

 If the events collection does indeed contain an event with the same name as the attribute, the
initializeObject method performs the following tasks:

 ❑ First, it invokes the parse static method on the Function class, passing in the attribute value to
return a reference to the event handler being registered. As you can see, the initializeObject
method assumes that the value assigned to the attribute is the name of the event handler being
registered for the event with the same name as the attribute name:

 var handler = Function.parse(attr.nodeValue);

 ❑ Next, it generates a string that contains the name of the method that registers event handlers for
the event with the specified name, and uses this string as an index into the object being initial-
ized in order to return a reference to this method:

 eventValue = instance[‘add_’ + eventInfo.name];

 ❑ Then the initializeObject method calls the apply method on this reference to invoke the
method and consequently to register the specified event handler for the specified event of
the object being initialized:

 eventValue.apply(instance, [handler]);

 As you can see, the initializeObject method expects the methods of your custom ASP.NET
AJAX type that register event handlers for events with specified names to follow this naming
convention:

 add_ EventName

 EventName stands for the name of the event. Following this naming convention will enable page
developers to declare an attribute with the same name as the event on the xml-script node that
represents an instance of your custom type in xml-script, and to assign the name of the desired
event handler to this attribute and rest assured that the initializeObject method will auto-
matically invoke the underlying add method to register the specified event handler for the event
with the specified name.

 For example, as you can see from Listing A-11 , MyCustomType exposes a method named add_myEvent :

 function CustomComponents$MyCustomType$add_myEvent(eventHandler)
{
 this.get_events().addHandler(“myEvent”, eventHandler);
 alert(eventHandler + “ \n\nwas registered as event handler for myEvent event!”);
}

 Notice that the value of the events property of the descriptor property of MyCustomType includes the
object literal shown in the boldface portion of the following excerpt from Listing A-11 :

 CustomComponents.MyCustomType.descriptor =
{
 . . .
 events : [{name : “myEvent”}]
}

bapp01.indd 1313bapp01.indd 1313 8/20/07 8:58:25 PM8/20/07 8:58:25 PM

Appendix A: XML Script

1314

 This object literal tells the initializeObject method that the attribute named myEvent contains the name
of an event handler that must be registered for the myEvent event of the specified MyCustomType object.
This enables the page developer to register an event handler such as myEventHandler in a purely declara-
tive fashion in xml-script, as shown in the boldface portion of the following excerpt from Listing A-12 :

 <custom:MyCustomType . . . myEvent=”myEventHandler” . . . >
 . . .
</custom:MyCustomType>

 When the initializeObject method encounters this boldface portion, it automatically calls the parse
method to return a reference to the myEventHandler JavaScript function:

 var refTomyEventHandler = Function.parse(“myEventHandler”);

 It then creates the “add_myEvent” string and uses it as an index to return a reference to the
add_myEvent method of your custom type:

 var refToadd_myEvent = instance[“add_” + “myEvent”];

 It then calls the apply method on the refToadd_myEvent reference to invoke the add_myEvent method
of MyCustomType to register the myEventHandler JavaScript function for myEvent event:

 refToadd_MyEvent.apply(instance, [refTomyEventHandler]);

 Again, it’s very important to realize that the initializeObject method does not pick up the event
information from the prototype property of your custom type. That information is picked up from the
 descriptor property. If you do not describe the events of your custom type in the events property of
the descriptor property of your custom type, the initializeObject will have no way of knowing
that your type exposes those events.

 If neither the properties nor the events collection contains an entry with the same name as the attri-
bute, the initializeObject method raises an exception because the specified attribute on the xml-
script node referenced by the second parameter of the initializeObject method is unrecognized.

 else
 throw Error.invalidOperation(
 String.format(‘Unrecognized attribute “{0}” on object of type “{1}”’,
 attrName, Object.getTypeName(instance)));

 As you can see, the xml-script does not support expando or custom attributes. Every attribute on an
xml-script node that represents an ASP.NET AJAX object must map into either a property or an event
of the ASP.NET AJAX object with the same name as the attribute.

 Next, the initializeObject method accesses the collection that contains the child nodes of the xml-
script node referenced by the second parameter of the initializeObject method. Recall that this
xml-script node represents the ASP.NET AJAX object being initialized:

 var childNodes = node.childNodes;

bapp01.indd 1314bapp01.indd 1314 8/20/07 8:58:26 PM8/20/07 8:58:26 PM

Appendix A: XML Script

1315

 Next, the initialize method iterates through these child xml-script nodes and performs several tasks
for each enumerated child xml-script node.

 First, the initialize method ignores the child xml-script node if the node is not an element node:

 var childNode = childNodes[i];
 if (childNode.nodeType ! =1)
 continue;

 Next, it invokes the getNodeName static method on the MarkupParser class, passing in the child
xml-script node to access the name of the node:

 var nodeName = Sys.Preview.MarkupParser.getNodeName(childNode);

 The initialize method then uses the node name as an index into the properties collection to return
a reference to the property info object that contains the complete information about the property with the
same name as the child xml-script node. Recall that the properties collection is the return value of the
call into the _getProperties method:

 propertyInfo = properties[nodeName];

 If the properties collection contains a property with the same name as the child xml-script node, this is
an indication that this child xml-script node represents this property. This means that the attributes and
child nodes of this child xml-script node are there to specify the value of this property. Therefore, the
value of this property must be an object. In other words, this property references a nested object. This is
very similar to what is known in object-oriented programming as object composition, wherein one object
composes or encapsulates another object. In this case, the object that owns the property encapsulates
or composes the object referenced by the property. The initializeObject method performs the
 following tasks to initialize this property:

 ❑ Accesses the name of the property:

 propertyName = propertyInfo.name;

 ❑ Accesses the Type object that represents the type of the property — that is, the type of the object
represented by the property, or the type of the nested or composed object:

 propertyType = propertyInfo.type;

 If the property is read-only, the initializeObject takes the following steps. First, it generates a string
that contains the name of the getter method that gets the value of the property, and uses this string as an
index into the object being initialized (which is the object that owns the property), to return a reference to
this getter method:

 getter = instance[‘get_’ + propertyName];

 Next, it invokes the call method on this reference to invoke this getter method and to return the value
of the property, which is the object encapsulated by the object that owns the property:

 var nestedObject = getter.call(instance);

bapp01.indd 1315bapp01.indd 1315 8/20/07 8:58:26 PM8/20/07 8:58:26 PM

Appendix A: XML Script

1316

 What happens next depends on the type of the property. If the property is a JavaScript array, the
initializeObject method invokes the parseNodes static method on the MarkupParser class to
parse the child xml-script nodes of the current child xml-script node:

 var items = Sys.Preview.MarkupParser.parseNodes(childNode.childNodes,
 markupContext);

 As we discussed earlier, the parseNodes method parses the specified xml-script nodes into their
 associated ASP.NET AJAX objects and returns a collection that contains these parsed objects. The
 initializeObject method then adds each parsed object to the property. Recall that the property is
a JavaScript array:

 for (var itemIndex = 0; itemIndex < items.length; itemIndex++)
 {
 var item = items[itemIndex];
 if(typeof(nestedObject.add) === “function”)
 nestedObject.add(item);

 else
 {
 Array.add(nestedObject, item);
 if(typeof(item.setOwner) === “function”)
 item.setOwner(instance);
 }
 }

 For example, MyCustomType , shown in Listing A-11 , exposes a property of type Array named
 myReadOnlyArrayProperty :

 function CustomComponents$MyCustomType$get_myReadOnlyArrayProperty()
{
 alert(“The value of myReadOnlyArrayProperty is being retrieved!”);
 return this._myReadOnlyArrayProperty;
}

 As the boldface portion of the following excerpt from Listing A-11 shows, the value of the properties
property of the descriptor static property of MyCustomType contains an object literal that contains
metadata information about the myReadOnlyArrayProperty property:

 CustomComponents.MyCustomType.descriptor =
{
 properties : [. . .
 {name : ‘myReadOnlyArrayProperty’, type : Array, readOnly : true} ,
 . . .],
 . . .
}

 This enables you to declaratively specify the value of the myReadOnlyArrayProperty property
in xml-script by declaring an xml-script node named myReadOnlyArrayProperty as the child node

bapp01.indd 1316bapp01.indd 1316 8/20/07 8:58:26 PM8/20/07 8:58:26 PM

Appendix A: XML Script

1317

of the xml-script <custom:MyCustomType> node, which contains a bunch of <custom:MyType> child
nodes. each of these nodes represents an item in the myReadOnlyArrayProperty array property, as
shown in the boldface portion of the following excerpt from Listing A-12 :

 <custom:MyCustomType . . . >
 <myReadOnlyArrayProperty>
 <custom:MyType myTypeProperty=”’value1’” />
 <custom:MyType myTypeProperty=”’value2’” />
 </myReadOnlyArrayProperty>
 . . .
 </custom:MyCustomType>

 As you can see, each child node of a read-only array property such as myReadOnlyArrayProperty
has its own attributes and child nodes. For example, each <custom:MyType> child node has its own
 myTypeProperty attribute. That is why the initializeObject method invokes the parseNodes
method and passes all these child nodes into it to parse them into the appropriate ASP.NET AJAX
objects. In our case, the parseNodes method will parse the <custom:MyType> child nodes into
instances of the CustomComponents.MyType client class.

 Now back to the implementation of the initializeObject method. If the property is not a JavaScript
array, the initializeObject checks whether the property is a JavaScript object. If so, it first accesses
the attributes collection of the child xml-script node. This collection contains one attribute node
for each attribute on the child xml-script node. Then it uses the attribute name as an index into the
 JavaScript object to access the property of the object with the same name as the attribute, and assigns
the attribute value as the value of this property:

 else if (propertyType === Object)
 {
 attributes = childNode.attributes;
 for (a = attributes.length - 1; a > =0; a--)
 {
 attr = attributes[a];
 nestedObject[attr.nodeName] = attr.nodeValue;
 }
 }

 Now let’s take a look at an example before we continue with the implementation of the initializeObject
method. As Listing A-11 shows, MyCustomType exposes a property named myObjectProperty with the
following associated getter method:

 function CustomComponents$MyCustomType$get_myObjectProperty()
{
 alert(“The value of myObjectProperty is being retrieved!”);
 return this._myObjectProperty;
}

bapp01.indd 1317bapp01.indd 1317 8/20/07 8:58:26 PM8/20/07 8:58:26 PM

Appendix A: XML Script

1318

 As you can see from the boldface portion of the following excerpt from Listing A-12 , the descriptor
static property of MyCustomType describes this property as a read-only property of type Object :

 CustomComponents.MyCustomType.descriptor =
{
 properties : [. . . ,
 {name : ‘myObjectProperty’, type : Object, readOnly : true} ,. . .],
 . . .
}

 This enables you to specify the value of the myObjectProperty property by declaring a
< myObjectProperty> xml-script node as the child node of the <custom:MyCustomType> xml-script
node and setting its myObjectPropertyProperty1 and myObjectPropertyProperty2 properties
as the attributes with the same names on the <myObjectProperty> xml-script node, as shown in the
boldface portion of the following excerpt from Listing A-12 :

 <custom:MyCustomType . . . >
 . . .
 <myObjectProperty myObjectPropertyProperty1=”’value1’”
 myObjectPropertyProperty2=”’value2’” />
 . . .
</custom:MyCustomType>

 In this case, the initializeObject method takes the following steps.

 ❑ First, it generates the string that contains the name of the getter method — that is, the string
 “get_myObjectProperty” . Next, it will use this string as an index into the ASP.NET AJAX
 object that represents the <custom:MyCustomType> xml-script node, in order to return a
 reference to the get_myObjectProperty getter method:

 var refToget_myObjectPropertyMethod = instance[‘get_myObjectProperty’];

 ❑ Next, it will invoke the call method on refToget_myObjectPropertyMethod to invoke this
method and consequently to return a reference to the object that the myObjectProperty prop-
erty references — that is, the nested or composed object:

 var nestedObject = refToget_myObjectPropertyMethod.call(instance);

 ❑ Then it uses ‘myObjectPropertyProperty1’ and ‘myObjectPropertyProperty2’ as
 indexes into the nestedObject , and assigns ‘ value1’ and ‘ value2’ :

 nestedObject[‘myObjectPropertyProperty1’] = ‘Value1’;
nestedObject[‘myObjectPropertyProperty2’] = ‘Value1’;

 Now back to the implementation of the initializeObject method. If the property is neither a JavaScript
array nor a JavaScript Object , the initializeObject method invokes the initializeObject method
once again to initialize this property. As you can see, initializeObject is a recursive method.

bapp01.indd 1318bapp01.indd 1318 8/20/07 8:58:27 PM8/20/07 8:58:27 PM

Appendix A: XML Script

1319

 else
 Sys.Preview.MarkupParser.initializeObject(nestedObject, childNode,
 markupContext);

 Here is an example of this case. As you can see from Listing A-11 , MyCustomType features a property
named myNonObjectNonArrayProperty with the following associated getter method:

 function CustomComponents$MyCustomType$get_myNonObjectNonArrayProperty()
{
 alert(“The value of myNonObjectNonArrayProperty is being retrieved!”);
 if (!this._myNonObjectNonArrayProperty)
 this._myNonObjectNonArrayProperty = new CustomComponents.MyType();
 return this._myNonObjectNonArrayProperty;
}

 Notice that the value of the properties property of the descriptor static property of MyCustomType
contains the object literal, which is shown in the boldface portion of the following excerpt from
Listing A-11 :

 CustomComponents.MyCustomType.descriptor =
{
 properties : [. . . , {name : ‘myNonObjectNonArrayProperty’,
 type : CustomComponents.MyType, readOnly : true} . . .],
 . . .
}

 This object literal describes myNonObjectNonArrayProperty as a read-only property of type
CustomComponents.MyType , which is neither an Array nor an Object . As the boldface portion
of the following excerpt from Listing A-12 shows, you can specify the value of the
myNonObjectNonArrayProperty property by declaring a myNonObjectNonArrayProperty
xml-script node as the child node of the <custom:MyCustomType> xml-script node:

 <custom:MyCustomType . . . >
 . . .
 <myNonObjectNonArrayProperty myTypeProperty=”’value1’” />
 </custom:MyCustomType>

 Note that the xml-script node that represents a non-object, non-array property in xml-script may have
its own attributes and child xml-script nodes. For example, the <myNonObjectNonArrayProperty>
xml-script node in the preceding xml-script fragment contains an attribute named myTypeProperty ,
which maps to the myTypeProperty property of the CustomComponents.MyType object represented
by this xml-script node. That is why the initializeObject method invokes the initializeObject
method once again to have this method use these attributes and child nodes to initialize the
 CustomComponents.MyType object represented by the <myNonObjectNonArrayProperty>
xml-script node.

 Now back to the implementation of the initializeObject method. If the property is not read-only, the
 initializeObject method assigns the value of the text property of the child xml-script node as the
value of the property if the property is a string:

 propertyValue = null;
 if (propertyType == String)
 propertyValue = childNode.text;

bapp01.indd 1319bapp01.indd 1319 8/20/07 8:58:27 PM8/20/07 8:58:27 PM

Appendix A: XML Script

1320

 For example, MyCustomType shown in Listing A-11 features a property named
myNonReadOnlyStringProperty with the following associated setter method:

 function CustomComponents$MyCustomType$set_myNonReadOnlyStringProperty(value)
{
 this._myNonReadOnlyStringProperty = value;
 alert(“myNonReadOnlyStringProperty was set to “ + value);
}

 As the boldface portion of the following excerpt from Listing A-11 shows, the value of the properties
property of the descriptor property of MyCustomType contains an object literal that describes
myNonReadOnlyStringProperty as a non-read-only property of type String :

 CustomComponents.MyCustomType.descriptor =
{
 properties : [. . . ,
 {name : ‘myNonReadOnlyStringProperty’, type : String} , . . .],
 . . .
}

 This enables you to specify the value of the myNonReadOnlyStringProperty property by declaring a
 <myNonReadOnlyStringProperty> xml-script node as the child node of the <custom:MyCustomType>
xml-script node and setting the content of this child node as shown in the boldface portion of the
 following excerpt from Listing A-12 :

 <custom:MyCustomType . . . >
 . . .
 <myNonReadOnlyStringProperty>value1</myNonReadOnlyStringProperty>
 . . .
</custom:MyCustomType>

 Now back to the implementation of the initializeObject method. If the property is not a string,
the method first searches the child xml-script nodes of the current xml-script node for the first child
xml-script node, which is an element node:

 var valueNode;
 for (var childNodeIndex = 0;
 childNodeIndex < childNode.childNodes.length; childNodeIndex++)
 {
 if (childNode.childNodes[childNodeIndex].nodeType ! =1)
 continue;

 valueNode = childNode.childNodes[childNodeIndex];
 break;
 }

 Then it invokes the parseNode method to parse this element node.

 if (valueNode)
 propertyValue = Sys.Preview.MarkupParser.parseNode(valueNode,
 markupContext);

bapp01.indd 1320bapp01.indd 1320 8/20/07 8:58:27 PM8/20/07 8:58:27 PM

Appendix A: XML Script

1321

 As we discussed earlier, the parseNode method parses the specified xml-script node into its associated
ASP.NET AJAX object and returns this object. Now that we know the value of the property, we need to
assign this value to the property. The intializeObject method first generates a string that contains the
name of the setter method for this property and uses this string as an index into the object being initial-
ized to return a reference to this setter method:

 setter = instance[‘set_’ + propertyName];

 Next, it invokes the call method on this reference to invoke the setter method and consequently to
assign the specified value as the value of the property:

 setter.call(instance, propertyValue);

 If the properties collection does not contain a property with the same name as the child xml-script
node, the initializeObject method uses the child xml-script node’s name as an index into the
 events collection, in order to return a reference to the event info object that provides complete
 information about the event with the same name as the child xml-script node:

 eventInfo = events[nodeName];

 If the events collection does contain an event with the same name as the child xml-script node, the
 initializeObject method performs the following tasks:

 ❑ Invokes the parseNodes static method on the MarkupParser class to parse the child xml-script
nodes of this child xml-script node:

 var actions = Sys.Preview.MarkupParser.parseNodes(childNode.childNodes,
 markupContext);

 The parseNodes method parses the specified xml-script nodes to their associated ASP.NET
AJAX objects and returns a collection that contains these parsed objects. These objects in this
case are instances of an ASP.NET AJAX class named Action or one of its subclasses. (I’ll discuss
the Action class and its subclasses in Appendix C .)

❑ Generates a string that contains the name of the method that registers an event handler for the
specified event, and uses this string as an index into the object being initialized to return a refer-
ence to this method:

 eventValue = instance[“add_” + eventInfo.name];

 ❑ If the object being initialized does contain such a method, the initializeObject performs the
following tasks for each parsed object in the collection of parsed objects returned from the
 parseNodes method. (Recall that each parsed object is an instance of the Action ASP.NET
AJAX class or one of its subclasses.)

 ❑ First, the initializeObject method calls the set_eventName method on the
 enumerated parsed object or action to set the value of the eventName property of
the parsed object to the specified event name. Recall that the Action ASP.NET AJAX
class exposes a property named eventName .

bapp01.indd 1321bapp01.indd 1321 8/20/07 8:58:28 PM8/20/07 8:58:28 PM

Appendix A: XML Script

1322

❑ Next, the initializeObject method calls the set_eventSource method on the
 enumerated parsed object or action to set the value of the eventSource property of
the parsed object or action to the object being initialized. In other words, this tells this
 action that the object being initialized is the source of the event with the specified name.

 if(eventValue)
 {
 for (var e = 0; e < actions.length; e++)
 {
 var action = actions[e];
 action.set_eventName(eventInfo.name);
 action.set_eventSource(instance);
 }
 }

 ❑ If neither the properties nor the events collection contains an entry with the same name as
the child xml-script node, the initializeObject method takes the following steps:

❑ Calls the toUpperCase method to convert lowercase characters of the child xml-script
node’s name to uppercase:

 var type = null;
 var upperName = nodeName.toUpperCase();

 ❑ If the child xml-script node’s name is BINDINGS , sets a local variable named type to refer-
ence the constructor of the Sys.Preview.BindingBase class. (I’ll discuss ASP.NET AJAX
binding in Appendix B .)

 if(upperName === ‘BINDINGS’)
 type = Sys.Preview.BindingBase;

 ❑ If the child xml-script node’s name is BEHAVIORS , sets the type local variable to reference
the constructor of the Sys.UI.Behavior class:

 else if(upperName === ‘BEHAVIORS’)
 type = Sys.UI.Behavior;

 ❑ If the type local variable is not null — that is, if it references the constructor of either
the BindingBase or the Behavior class, the initializeObject method first invokes the
 parseNodes static method on the MarkupParser class to parse the child xml-script nodes
of the child xml-script node to their associated ASP.NET AJAX objects. Then it returns a
collection that contains these parsed objects.

 var items = Sys.Preview.MarkupParser.parseNodes(childNode.childNodes,
 markupContext);

❑ If the child xml-script node’s name is BEHAVIORS , these parsed objects are instances of the
 Behavior ASP.NET AJAX class or its sub-classes. If the child xml-script node’s name is
 BINDINGS , these parsed objects are instances of the BindingBase ASP.NET AJAX class or
its subclasses.

bapp01.indd 1322bapp01.indd 1322 8/20/07 8:58:28 PM8/20/07 8:58:28 PM

Appendix A: XML Script

1323

 ❑ Next, the initializeObject method iterates through the parsed objects in the collection
returned from the call into the parseNodes method and takes the following steps for each
enumerated parsed object. As just mentioned, each enumerated parsed object is either a
behavior or a binding object. First, the method checks whether the enumerated parsed ob-
ject supports a method named setOwner . If so, it invokes this method on the enumerated
parsed object, passing in the reference to the object being initialized. This specifies the ob-
ject being initialized as the owner of the behavior or binding object.

 for (var itemIndex = 0; itemIndex < items.length; itemIndex++)
 {
 var item = items[itemIndex];
 debug.assert(type.isInstanceOfType(item),
 String.format(“The ‘{0}’ element may only contain child elements
 of type ‘{1}’.”, nodeName, type.getName()));
 if(typeof(item.setOwner) === “function”)
 item.setOwner(instance);
 }

 ❑ If the type local variable is null — that is, if the child xml-script node does not represent
 BindingBase or Behaviors , the initializeObject raises an exception because the
child xml-script node is not recognized:

 else
 throw Error.invalidOperation(
 String.format(‘Unrecognized child node “{0}” on object of type “{1}”’,
 nodeName, Object.getTypeName(instance)));

bapp01.indd 1323bapp01.indd 1323 8/20/07 8:58:28 PM8/20/07 8:58:28 PM

bapp01.indd 1324bapp01.indd 1324 8/20/07 8:58:29 PM8/20/07 8:58:29 PM

 Binding
 The best way to understand what a binding is and what it does is to use it in an example. Listing B-1
contains a page that binds the text property of the Label ASP.NET AJAX client control with an id
property value of span1 to the text property of the TextBox ASP.NET AJAX client control with an
 id property value of text1 . Thanks to this binding, every time you enter a different value in the
text box, the span element associated with the Label control will be automatically updated with
the new value.

 Listing B-1: A Page that Uses Binding

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 </Scripts>
 </asp:ScriptManager>
 <input type=”text” id=”text1” />

 </form>

(continued)

bapp02.indd 1325bapp02.indd 1325 8/20/07 8:58:54 PM8/20/07 8:58:54 PM

Appendix B: Binding

1326

 Listing B-1 (continued)

 <script type=”text/xml-script”>
 <page xmlns=”http://schemas.microsoft.com/xml-script/2005”>
 <components>
 <textBox id=”text1” />
 <label id=”span1”>
 <bindings>
 <binding dataContext=”text1” dataPath=”text” property=”text” />
 </bindings>
 </label>
 </components>
 </page>
 </script>
</body>
</html>

 As this example shows, the ASP.NET AJAX binding enables you to bind a specified property of a speci-
fied ASP.NET AJAX object to a specified property of another ASP.NET AJAX object. Every time the value
of the specified property of the latter ASP.NET AJAX object changes, the value of the specified property of
the former ASP.NET AJAX object automatically changes as well. The latter ASP.NET AJAX object is
known as the data context and its associated property is known as the data path . As Listing B-1 shows, the
 <label> xml-script node that represents the Label ASP.NET AJAX client control contains a child
node named <bindings> . This makes it seem that the Label ASP.NET AJAX client control exposes
a property named bindings , which is not true. Neither the Label ASP.NET AJAX client control nor its
base classes exposes such a property. As a matter of fact, none of the ASP.NET AJAX client classes cur-
rently exposes the bindings property. The only exception to this rule is the Action class.

 Yet the only way to use the ASP.NET AJAX binding feature in xml-script is to declare a <bindings> xml-
script node. The answer to this apparent contradiction lies in the initializeObject method shown in
Listing A-11 . Listing B-2 presents the portion of Listing A-11 (I’ve cleaned up Listing B-2 for presentation
purposes) that parses the Bindings subelement of the xml-script node that represents an ASP.NET AJAX
object in xml-script. Let’s study Listing B-2 in the context of the example shown in Listing B-1 .

 When the initializeObject method is invoked to initialize the Label ASP.NET AJAX client control
shown in Listing B-1 , three parameters are passed into this method. The first parameter references the
 Label ASP.NET AJAX client control, and the second references the <label> xml-script node that
 represents this Label ASP.NET AJAX client control in xml-script. As you can see from Listing B-2 , if the
name of the child node of the <label> xml-script node is Bindings , the initializeObject method
invokes the parseNodes method, passing in the child nodes of the <bindings> node. Recall that the
child nodes of the <bindings> node are the <binding> nodes. The parseNodes method parses
these <binding> nodes into instances of Binding ASP.NET AJAX class and uses the attributes on each
 <binding> element to set the associated properties of the associated Binding ASP.NET AJAX object.

 Note that the initializeObject method then iterates through these Binding ASP.NET AJAX
objects and invokes the setOwner method on each object to specify the Label ASP.NET AJAX object
as its owner.

bapp02.indd 1326bapp02.indd 1326 8/20/07 8:58:55 PM8/20/07 8:58:55 PM

Appendix B: Binding

1327

 Listing B-2: The Portion of Listing A-11 that Initializes a Binding Object

 Sys.Preview.MarkupParser.initializeObject =
function Sys$Preview$MarkupParser$initializeObject(instance, node, markupContext)
{
 var childNodes = node.childNodes;
 for (i = childNodes.length - 1; i >= 0; i--)
 {
 var childNode = childNodes[i];
 var nodeName = Sys.Preview.MarkupParser.getNodeName(childNode);
 var upperName = nodeName.toUpperCase();
 if(upperName === ‘BINDINGS’)
 {
 var bindings = Sys.Preview.MarkupParser.parseNodes(childNode.childNodes,
 markupContext);
 for (var bindingIndex = 0; bindingIndex < bindings.length; bindingIndex++)
 {
 var binding = bindings[bindingIndex];
 binding.setOwner(instance);
 }
 }
 }
}

 BindingBase
 As you saw in the previous section, each <binding> subelement of the <bindings> subelement binds a
specified property of an ASP.NET AJAX object (also known as the owner) to the specified property of
another ASP.NET AJAX object in xml-script. Recall from Listing B-2 that the parseNodes method parses
each <binding> subelement of the <bindings> subelement into an instance of an ASP.NET AJAX class
named Binding . The Binding class derives from a base class named BindingBase . This means that if
you’re not happy with the Binding class you can implement your own custom Binding class that
derives from the BindingBase class.

 The BindingBase class derives from the Component base class:

 Sys.Preview.BindingBase.registerClass(‘Sys.Preview.BindingBase’, Sys.Component,
 Sys.IDisposable);

 The following table presents the methods of the BindingBase class:

 Method Description

 get_automatic Gets a Boolean value that specifies whether the binding
 object should evaluate the binding automatically.

 set_automatic Sets a Boolean value that specifies whether the binding
 object should evaluate the binding automatically.

(continued)

bapp02.indd 1327bapp02.indd 1327 8/20/07 8:58:55 PM8/20/07 8:58:55 PM

Appendix B: Binding

1328

 Method Description

 get_dataContext Gets the current data context. The data context references
the ASP.NET AJAX object whose property the specified
property of the ASP.NET AJAX object that owns the binding
object binds to.

 set_dataContext Sets the current data context.

 get_dataPath Gets the data path. The data path contains the name of the
property of the data context that the specified property of
the ASP.NET AJAX object that owns the binding object
binds to.

 set_dataPath Sets the data path.

 get_target Gets the binding target. The binding target references the
ASP.NET AJAX object that owns the binding object.

 set_target Sets the binding target.

 get_property Gets the name of the property of the binding target that
binds to the specified property of the data context.

 set_property Sets the name of the property of the binding target that
binds to the specified property of the data context.

 get_propertyKey Gets the property key. The property key enables you to bind
the subproperty of a property of a binding target to the
specified property of the data context.

 set_propertyKey Sets the property key.

 get_transformerArgument Gets the transformer argument.

 set_transformerArgument Sets the transformer argument.

 add_transform Adds a new event handler to the list of event handlers regis-
tered for the transform event of the binding object. This
event handler is known as the transformer . In other words,
transformers are treated as event handlers registered for the
 transform event.

 remove_transform Removes an event handler from the list of event handlers
registered for the transform event of the binding object. In
other words, this method removes a transformer from the
list of registered transformers.

 dispose Performs the final cleanup before the binding object is
 disposed of.

 evaluate Takes an enumeration parameter of type BindingDirection .
The method delegates to the evaluateIn method if the value
of this parameter is BindingDirection.In ; otherwise it
 delegates to the evaluateOut method.

(continued)

bapp02.indd 1328bapp02.indd 1328 8/20/07 8:58:55 PM8/20/07 8:58:55 PM

Appendix B: Binding

1329

 evaluateIn This method retrieves the value of the data path from the
data context and assigns it to the target property.

 evaluateOut The BindingBase class does not implement this method; it
delegates the implementation to its subclasses.

 initialize Initializes the binding object. The BindingBase class inherits
this method from the Component base class.

 setOwner Specifies the ASP.NET AJAX object that owns the binding
object. The setOwner internally invokes the set_target
method.

 evaluate
 Listing B-3 presents the implementation of the evaluate method of the BindingBase class. As you can
see, this method delegates to the evaluateIn method if the BindingDirection.In value is passed into
it, and delegates to the evaluateOut method otherwise. The BindingDirection is an enumeration
type with three possible values: In , Out , and InOut . As you can see, the evaluateOut method handles
both the BindingDirection.Out and BindingDirection.InOut cases.

 Listing B-3: The evaluate Method

 function Sys$Preview$BindingBase$evaluate(direction)
{
 /// <param name=”direction” type=”Number”></param>
 if (this._bindingExecuting)
 return;

 this._bindingExecuting = true;
 if (direction === Sys.Preview.BindingDirection.In)
 this.evaluateIn();

 else
 this.evaluateOut();

 this._bindingExecuting = false;
}

 evaluateIn
 As Listing B-4 shows, the evaluateIn method first invokes the getPropertyType static method on the
 TypeDescriptor class to return the type object that provides complete information about the type of
the property whose value is being set. Recall that this is the property of the target ASP.NET AJAX object.

 var targetPropertyType =
 Sys.Preview.TypeDescriptor.getPropertyType(this._target, this._property,
 this._propertyKey);

bapp02.indd 1329bapp02.indd 1329 8/20/07 8:58:56 PM8/20/07 8:58:56 PM

Appendix B: Binding

1330

 Under the hood, the getPropertyType method extracts the required information about the target
 property from the descriptor static property of the target ASP.NET AJAX object (assuming that the
 target ASP.NET AJAX type does not implement the ICustomTypeProvider interface). As you can see,
the evaluteIn method and consequently the whole ASP.NET AJAX binding infrastructure only
 supports target ASP.NET AJAX objects whose types expose a descriptor static property with an
entry for the target property.

 For example, if we have a target ASP.NET AJAX type named MyNamespace.MyType with a property of
type MyNamespace.MyPropertyType named myProperty , the MyNamespace.MyType type must
expose a descriptor static property that has an entry for the myProperty property, as follows:

 MyNamespace.MyType.descriptor =
{
 properties: [{name: “myProperty”, type: MyNamespace.MyPropertyType}]
}

 Next, the evaluateIn method invokes an internal method named _getSourceValue to retrieve the
value of the source property to which the target property is bound:

 var value = this._getSourceValue(targetPropertyType);

 Then, the evaluateIn method fires the transform event of the BindingBase class and consequently
invokes the event handlers registered for this event. These event handlers are known as transformers
because they’re used to transforme the source property value before it is assigned to the target property.
As you can see, ASP.NET AJAX transformers are treated as event handlers.

 Note that the evaluateIn method instantiates an instance of BindingEventArgs , passing in four
parameters. The first parameter is the value of the source property, the second is the enumeration value
 BindingDirection.In , the third is the reference to the constructor of the type of the property, and the
fourth is the transformer argument. Note that the evaluateIn method passes this BindingEventArgs
object into these event handlers.

 These event handlers or transformers can then invoke the following getters on this BindingEventArgs
object to access the same parameters that the evaluateIn method passed into the BindingEventArgs
object:

 ❑ get_value : Returns the source property value that the evaluateIn method passed into the
 BindingEventArgs object

❑ get_direction : Returns the BindingDirection.In value that the evaluateIn method
passed into the BindingEventArgs object

❑ get_targetPropertyType : Returns the type object that the evaluateIn method passed into
the BindingEventArgs object

❑ get_transformerArgument : Returns the transformer argument value that the evaluateIn
method passed into the BindingEventArgs object

 Note that BindingEventArgs also exposes a setter named set_value that the event handlers can
optionally invoke to request the evaluateIn method to assign a value other than the original source
property value to the target property.

bapp02.indd 1330bapp02.indd 1330 8/20/07 8:58:56 PM8/20/07 8:58:56 PM

Appendix B: Binding

1331

 Since the BindingEventArgs class derives from the CancelEventArgs base class, it inherits the
 set_cancel method from this class. The event handlers or transformers can optionally invoke
the set_cancel method, passing in true as its argument, to request the evaluateIn method not to
assign the source property value to the target property. This in effect cancels the binding.

 As Listing B-4 shows, when these event handlers finally return, the evaluateIn method first invokes
the get_cancel method on the BindingEventArgs object to check whether any of the handlers or
transformers has placed a request for the cancellation of the assignment of the source property value to
the target property. If so, the evaluateIn method does not assign the source property value to the target
property. If not, the evaluteIn method invokes the get_value method on the BindingEventArgs
object to return the value that must be assigned to the target property. Recall that this value is different
from the original source property value if any of the event handlers or transformers has invoked the
 set_value method on the BindingEventArgs object to specify a different value.

 Finally, the evaluateIn method invokes the setProperty static method on the TypeDescriptor class
to set the value of the target property:

 Sys.Preview.TypeDescriptor.setProperty(this._target, this._property,
 value, this._propertyKey);

 Listing B-4: The evaluateIn Method

 function Sys$Preview$BindingBase$evaluateIn()
{
 var targetPropertyType =
 Sys.Preview.TypeDescriptor.getPropertyType(this._target, this._property,
 this._propertyKey);
 var value = this._getSourceValue(targetPropertyType);

 var canceled = false;
 var handler = this.get_events().getHandler(“transform”);
 if (handler)
 {
 var be = new Sys.Preview.BindingEventArgs(value,
 Sys.Preview.BindingDirection.In,
 targetPropertyType,
 this._transformerArgument);
 handler(this, be);
 canceled = be.get_cancel();
 value = be.get_value();
 }
 if (!canceled)
 Sys.Preview.TypeDescriptor.setProperty(this._target, this._property,
 value, this._propertyKey);
}

bapp02.indd 1331bapp02.indd 1331 8/20/07 8:58:56 PM8/20/07 8:58:56 PM

Appendix B: Binding

1332

 evalulateOut
 As you can see from the following code listing, the BindingBase class does not implement the evaluateOut
method and delegates the responsibility of implementing this method to its subclasses. Recall that the
 evaluateOut method handles the BindingDirection.Out and BindingDirection.InOut cases.

 function Sys$Preview$BindingBase$evaluateOut()
{
 throw Error.createError(‘evaluateOut is not supported for this binding’);
}

 initialize
 The BindingBase class overrides the initialize method that inherits from the Component base class,
as shown in Listing B-5 .

 Listing B-5: The initialize Method

 function Sys$Preview$BindingBase$initialize()
{
 Sys.Preview.BindingBase.callBaseMethod(this, ‘initialize’);
 this._source = this._dataContext;
 if (!this._source)
 this._source = this._target.get_dataContext();
 if (this._dataPath && this._dataPath.indexOf(‘.’) > 0)
 this._dataPathParts = this._dataPath.split(‘.’);
}

 Recall that BindingBase exposes a property named dataContext that you can set to reference the
source ASP.NET AJAX object. If this property has not been explicitly set, the initialize method
invokes the get_dataContext method on the target ASP.NET AJAX object to use as the source ASP.NET
AJAX object the current data context associated with the target.

 this._source = this._dataContext;
 if (!this._source)
 this._source = this._target.get_dataContext();

 You’ll see an example of this case in Appendix F , where we’ll use a Binding object to bind the text
property of a Label ASP.NET AJAX client control to the specified data field of data records in a data
 collection bound to the ListView client control that contains this Label ASP.NET AJAX client control.
As you’ll see, this example will not explicitly specify the dataContext property of this Binding object.
Thanks to the initialize method of the BindingBase class, the Binding object will pick up the
 current data context, which references the current data record of the data collection bound to the
 ListView control. This will enable us to display the specified data field of the current data record in
this Label ASP.NET AJAX client control.

 Next, the initialize method splits the dataPath into its constituent parts:

 if (this._dataPath && this._dataPath.indexOf(‘.’) > 0)
 this._dataPathParts = this._dataPath.split(‘.’);

bapp02.indd 1332bapp02.indd 1332 8/20/07 8:58:57 PM8/20/07 8:58:57 PM

Appendix B: Binding

1333

 As you can see, if you assign a string that consists of a dot-separated list of names to the dataPath
 property of a Binding object, the initialize method treats each name in the list as a subproperty of
the previous name in the list. Here is an example. Let’s say you have an ASP.NET AJAX type named
 CustomComponents.MyTyp e that exposes a property of type CustomComponents.MyPropertyType
named myProperty , where the CustomComponents.MyPropertyType type itself exposes two proper-
ties, mySubProperty1 and mySubProperty2 . You can then use the following Binding object to bind the
 text property of a Label ASP.NET AJAX client control to the mySubProperty2 property of the
 myProperty property of an instance of the CustomComponents.MyPropertyType type:

 <html>
 <body>
 <form runat=”server”>
 . . .

 </form>
 <script type=”text/xml-script”>
 <page xmlns=”http://schemas.microsoft.com/xml-script/2005”
 xmlns:custom=”CustomComponents”>
 <components>
 <custom:MyType id=”mytype1” />
 <label id=”span1”>
 <bindings>
 <binding dataContext==”mytype1” property==”text”
 dataPath==”myProperty.mySubProperty1” />
 </bindings>
 </label>
 </components>
 </page>
 </script>
 </body>
</html>

 descriptor
 The descriptor static property of the BindingBase class specifies those properties, methods, and
events of the class that the clients of the class such as the xml-script parser can access using the ASP.NET
AJAX type inspection facilities. This means that you can use these properties, methods, and events only
in xml-script.

 Sys.Preview.BindingBase.descriptor =
{
 properties: [{name: ‘target’, type: Object},
 {name: ‘automatic’, type: Boolean},
 {name: ‘dataContext’, type: Object},
 {name: ‘dataPath’, type: String},
 {name: ‘property’, type: String},
 {name: ‘propertyKey’ },
 {name: ‘transformerArgument’, type: String}],
 methods: [{name: ‘evaluateIn’}],
 events: [{name: ‘transform’}]
}

bapp02.indd 1333bapp02.indd 1333 8/20/07 8:58:57 PM8/20/07 8:58:57 PM

Appendix B: Binding

1334

 Transformers
 As you saw from Listing B-4 , a transformer is an event handler registered for the transform event of a
given binding object: it transforms the source property value before the value is assigned to the target
property. The BindingBase class exposes a method named add_transform that you can use from your
client code to imperatively add a transformer. As you can see, writing a custom transformer is as easy as
implementing a new event handler for the transform event. This event handler takes two parameters,
the first referencing the binding object that raises the transform event and the second referencing an
instance of the BindingEventArgs event data class that contains the event data for the transform
event. As discussed earlier, you can use the methods of the BindingEventArgs event data class to
access the event data.

 Listing B-6 contains a page that defines a new transformer. This transformer simply adds the transformer
argument to the beginning of the source property value and displays a pop-up that contains the return
values of the getter methods of the BindingEventArgs object.

 Listing B-6: A Page that Defines a Custom Transformer

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function transformCallback(sender, e)
 {
 var builder = new Sys.StringBuilder();
 builder.append(“old value: “);
 builder.append(e.get_value());
 builder.appendLine();
 builder.append(“direction: “);
 builder.append(e.get_direction());
 builder.appendLine();
 builder.append(“target property type: “);
 builder.append(e.get_targetPropertyType());
 builder.appendLine();
 builder.append(“transformer argument: “);
 builder.append(e.get_transformerArgument());
 builder.appendLine();

 e.set_value(e.get_transformerArgument()+e.get_value());
 builder.append(“new value: “);
 builder.append(e.get_value());
 alert(builder.toString());
 }
 </script>
</head>

bapp02.indd 1334bapp02.indd 1334 8/20/07 8:58:57 PM8/20/07 8:58:57 PM

Appendix B: Binding

1335

<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 </Scripts>
 </asp:ScriptManager>
 <input type=”text” id=”text1” />

 </form>
 <script type=”text/xml-script”>
 <page xmlns=”http://schemas.microsoft.com/xml-script/2005”>
 <components>
 <textBox id=”text1” />
 <label id=”span1”>
 <bindings>
 <binding dataContext=”text1” dataPath=”text” property=”text”
 transform=”transformCallback” transformerArgument=”MyArg” />
 </bindings>
 </label>
 </components>
 </page>
 </script>
</body>
</html>

 In the following sections I’ll discuss some of the standard built-in ASP.NET AJAX transformers.

 ToString
 As you can see, the ToString transformer transforms the source property value into its string represen-
tation. You can optionally pass a format string as the value of the transformerArgument property. As
the following code listing shows, the ToString transformer simply passes this format string into the
 format static method of the String class as its first argument and the source property value as its
 second argument.

 Sys.Preview.BindingBase.Transformers.ToString =
function Sys$Preview$BindingBase$Transformers$ToString(sender, eventArgs)
{
 var value = eventArgs.get_value();
 var newValue = ‘’;
 var formatString = eventArgs.get_transformerArgument();
 var placeHolder = (formatString && (formatString.length !== 0)) ?
 formatString.indexOf(‘{0}’) : -1;

(continued)

bapp02.indd 1335bapp02.indd 1335 8/20/07 8:58:58 PM8/20/07 8:58:58 PM

Appendix B: Binding

1336

 if (placeHolder != -1)
 newValue = String.format(formatString, value);

 else if (value)
 newValue = value.toString();

 else
 newValue = formatString;
 eventArgs.set_value(newValue);
}

 Here is an example:

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 </Scripts>
 </asp:ScriptManager>
 <input type=”text” id=”text1” />

 </form>
 <script type=”text/xml-script”>
 <page xmlns=”http://schemas.microsoft.com/xml-script/2005”>
 <components>
 <textBox id=”text1” />
 <label id=”span1”>
 <bindings>
 <binding dataContext=”text1” dataPath=”text” property=”text”
 transform=”ToString” transformerArgument=”${0}” />
 </bindings>
 </label>
 </components>
 </page>
 </script>
</body>
</html>

 Invert
 As you can see from the following code listing, the Invert transformer simply inverts the source prop-
erty value. This means that if the source property value is null , this transformer sets the value to true .
Otherwise it sets the value to false .

(continued)

bapp02.indd 1336bapp02.indd 1336 8/20/07 8:58:58 PM8/20/07 8:58:58 PM

Appendix B: Binding

1337

 Sys.Preview.BindingBase.Transformers.Invert =
function Sys$Preview$BindingBase$Transformers$Invert(sender, eventArgs)
{
 eventArgs.set_value(!eventArgs.get_value());
}

 Compare
 As the following code listing shows, the Compare transformer compares the source property value with
the value assigned to the transformerArgument property. If they’re equal, the transformer sets the
value to true . Otherwise it sets the value to false .

 Sys.Preview.BindingBase.Transformers.Compare =
function Sys$Preview$BindingBase$Transformers$Compare(sender, eventArgs)
{
 var value = eventArgs.get_value();
 var compareValue = eventArgs.get_transformerArgument();
 if (compareValue === null)
 value = value ? true : false;

 else
 value = (value === compareValue);

 eventArgs.set_value(value);
}

 CompareInverted
 As the following code listing shows, the CompareInverted transformer is the opposite of the Compare
transformer. In other words, if the source property value is equal to the value assigned to the
 transformerArgument property, this transformer sets the value to false . Otherwise it sets the value
to true .

 Sys.Preview.BindingBase.Transformers.CompareInverted =
function Sys$Preview$BindingBase$Transformers$CompareInverted(sender, eventArgs)
{
 Sys.Debug.assert(eventArgs.get_direction() === Sys.Preview.BindingDirection.In);
 var value = eventArgs.get_value();
 var compareValue = eventArgs.get_transformerArgument();
 if (compareValue === null)
 value = value ? false : true;

 else
 value = (value !== compareValue);
 eventArgs.set_value(value);
}

bapp02.indd 1337bapp02.indd 1337 8/20/07 8:58:58 PM8/20/07 8:58:58 PM

Appendix B: Binding

1338

 Binding
 The Binding class derives from the BindingBase class and extends its functionality to add support for
a new property of type Sys.Preview.BindingDirection named direction . You can use the
get_direction and set_direction methods of the Binding object to imperatively get and set the
value of the direction property from your code.

 Sys.Preview.Binding.registerClass(‘Sys.Preview.Binding’, Sys.Preview.BindingBase);

 The direction property specifies the direction of binding. By default, the target property is bound to
the source property, so that changes in the source property value are reflected in the target property. The
 direction property value of Sys.Preview.BindingDirection.In represents this default behavior.
However, you can set the direction property to the Sys.Preview.BindingDirection.Out value to
instruct the Binding object that you want the binding in the opposite direction, so that the changes
made in the target property are reflected in the source property. You can also set the direction property to
 Sys.Preview.BindingDirection.InOut to instruct the Binding object that you want a two-way
binding, so that changes made in the target property are reflected in the source property and vice versa.

 The Binding class also overrides the evaluateOut method that it inherits from the BindingBase class.
Recall that this base class did not implement this method. Listing B-3 showed that the evaluate method
of the BindingBase class invokes the evaluateOut method when the binding direction is not Sys
.Preview.BindingDirection.In . In other words, the evaluateOut method handles the reverse and
two-way binding scenarios.

 Note that the binding direction affects the results of some built-in transformers such as Add and Multiply .
The following code listing presents the implementation of the Add transformer. As you can see, this trans-
former adds the value specified in the transformerArgument property to the source property value if the
binding direction is Sys.Preview.BindingDirection.In and subtracts this value from the source
 property value if the binding direction is Sys.Preview.BindingDirection.Out .

 Sys.Preview.BindingBase.Transformers.Add =
function Sys$Preview$BindingBase$Transformers$Add(sender, eventArgs)
{
 var value = eventArgs.get_value();
 if (typeof(value) !== ‘number’)
 {
 if(value === “”)
 value = 0;

 else
 value = Number.parseInvariant(value);
 }
 var delta = eventArgs.get_transformerArgument();
 if (!delta)
 delta = 1;

 if (typeof(delta) !== ‘number’)
 {
 if(value === “”)
 delta = 0;

bapp02.indd 1338bapp02.indd 1338 8/20/07 8:58:58 PM8/20/07 8:58:58 PM

Appendix B: Binding

1339

 else
 delta = Number.parseInvariant(delta);
 }
 if (eventArgs.get_direction() === Sys.Preview.BindingDirection.Out)
 delta = -delta;
 var newValue = value + delta;
 if (eventArgs.get_targetPropertyType() !== ‘number’)
 newValue = newValue.toString();
 eventArgs.set_value(newValue);
}

 The Binding class exposes a descriptor static property that specifies the members of this class that
you can invoke declaratively in xml-script. As the following code listing shows, you can set the direction
property of a Binding object in xml-script. You can also invoke the evaluateOut method in xml-script.

 Sys.Preview.Binding.descriptor =
{
 properties: [{name: ‘direction’, type: Sys.Preview.BindingDirection}],
 methods: [{name: ‘evaluateOut’}]
}

bapp02.indd 1339bapp02.indd 1339 8/20/07 8:58:59 PM8/20/07 8:58:59 PM

bapp02.indd 1340bapp02.indd 1340 8/20/07 8:58:59 PM8/20/07 8:58:59 PM

 Actions
 Most ASP.NET AJAX client classes expose events. An action is an ASP.NET AJAX object that
 encapsulates a piece of client-side functionality that gets executed in response to a specified event
of a specified ASP.NET AJAX object. All ASP.NET AJAX actions implement an interface named
 IAction , defined in Listing C-1 . As you can see, this interface exposes the two methods described
in the following table:

 Method Description

 execute This method executes the action’s encapsulated client-side functionality in
response to a specified event of a specified ASP.NET AJAX object.

 setOwner This method specifies the owner of the action. The owner of the action is
the ASP.NET AJAX object that fires the event that triggers the execution
of the action’s encapsulated client-side functionality.

 Listing C-1: The IAction Interface

 Sys.Preview.IAction = function Sys$Preview$IAction()
{
 throw Error.notImplemented();
}
function Sys$Preview$IAction$execute()
{
 throw Error.notImplemented();
}
function Sys$Preview$IAction$setOwner()
{
 throw Error.notImplemented();
}
Sys.Preview.IAction.prototype =
{
 execute: Sys$Preview$IAction$execute,
 setOwner: Sys$Preview$IAction$setOwner
}
Sys.Preview.IAction.registerInterface(‘Sys.Preview.IAction’);

bapp03.indd 1341bapp03.indd 1341 8/20/07 8:59:23 PM8/20/07 8:59:23 PM

Appendix C: Actions

1342

 Action
 The ASP.NET AJAX client-side framework comes with an implementation of the IAction interface
named Action , which encapsulates the base functionality that every action must support. Because of
this, you should derive your custom actions from the Action base class instead of directly implementing
the IAction interface, to save yourself from having to re-implement the base functionality that the
 Action base class already supports. The following table presents the methods of the Action class:

 Method Description

 get_eventSource Gets the reference to the ASP.NET AJAX object whose event triggers
the execution of the client-side functionality that the action
encapsulates.

 set_eventSource Sets the reference to the ASP.NET AJAX object whose event triggers the
execution of the client-side functionality that the action encapsulates.

 get_eventName Gets the name of the event that triggers the execution of the client-side
functionality that the action encapsulates.

 set_eventName Sets the name of the event that triggers the execution of the client-side
functionality that the action encapsulates.

 get_target Gets the target of the action. The target of an action is an ASP.NET
AJAX object to which the client-side functionality that the action
 encapsulates is applied. Note the difference between the target and
event source of an action. The event source of an action is the ASP.NET
AJAX object whose event triggers the execution of the encapsulated
client-side functionality of the action.

 set_target Sets the target of the action.

 get_dataContext Returns a reference to the action. The Action inherits this method
from the Component base class. This method allows the action to act as
a data context for other ASP.NET AJAX objects. (A data context is an
ASP.NET AJAX object that acts as a source of data for other ASP.NET
AJAX objects.)

 get_eventArgs The initialize method of the Action class registers the execute
method as an event handler for the event (whose name is given by
the eventName property) of the event source (referenced by the
 eventSource property). When event source raises the event and
 consequently invokes the execute method, it passes two parameters
into this method. The first parameter references the event source. The
second parameter references an instance of the event data class
 associated with the event. The execute method stores this instance
in an internal field named _eventArgs before it invokes the
 performAction method. The get_eventArgs method simply returns
the value of this field. This allows the subclasses of the Action to
 invoke the get_eventArgs method from within their implementation
of the performAction method in order to access the event data class
instance that holds the event data. The execute method sets the

bapp03.indd 1342bapp03.indd 1342 8/20/07 8:59:24 PM8/20/07 8:59:24 PM

Appendix C: Actions

1343

_eventArgs field to null before it returns. Therefore, you must call
the get_eventArgs method only inside the performAction method
of your custom action class. If you call this method after the execute
method returns or before the execute method is invoked, you’ll get a
 null value.

 get_result Returns the return value of the performAction method of the action.
The execute method invokes the performAction method and stores
the return value of this method in an internal field named _result .
The get_result method basically returns the value of this internal
field. The execute method sets the _results field to null before it
returns. Therefore, you must call the get_result method only inside
the performAction method of your custom action class. If you call
this method after the execute method returns or before the execute
method is invoked, you’ll get a null value.

 get_sender Returns a reference to the event source — in other words, the same
 object that get_eventSource returns.

 get_bindings Gets an array of Binding objects, each of which binds a particular
property of the action to a particular property of the current data
context.

 dispose Performs the final cleanup before the action is disposed of. The Action
class inherits this method from the Component base class.

 performAction The subclasses of the Action base class must implement this method
to encapsulate the client-side functionality that they want executed in
response to a specified event of the specified ASP.NET AJAX object.

 execute Executes the client-side functionality encapsulated by the action. The
 Action class inherits this method from the IAction interface. Your
custom action mustn’t override this method; it must instead override
the performAction method.

 initialize Initializes the action. The Action class inherits this method from the
 Component base class. Your custom action can override this optional
method to initialize itself. If you do decide to override this method,
make sure you invoke the initialize method of the base class to
allow the base class to perform its own initialization.

 setOwner Sets the owner of the action. The Action class inherits this method
from the IAction interface. The owner of an Action object is the same
as its event source.

 The Action class derives from the Component base class and implements the IAction interface:

 Sys.Preview.Action.registerClass(‘Sys.Preview.Action’,
 Sys.Component, Sys.Preview.IAction);

 The Action class exposes a property named eventSource , as well as a getter named get_eventSource
and a setter named set_eventSource that you can use to get and set this property. The eventSource
property references the ASP.NET AJAX object whose event triggers the execution of the client-side
 functionality encapsulated by the action.

bapp03.indd 1343bapp03.indd 1343 8/20/07 8:59:24 PM8/20/07 8:59:24 PM

Appendix C: Actions

1344

 Listing C-2 presents an excerpt from Listing A-13 . I’ve cleaned up this excerpt for presentation purposes.
As you can see, it contains the logic that initializes the ASP.NET AJAX object whose event triggers the
execution of the client-side functionality encapsulated by the action. In other words, the first parameter
of the initializeObject method references the ASP.NET AJAX object whose event triggers the
 execution of the action, and the second parameter of this method references the xml-script node that
 represents this ASP.NET AJAX object in xml-script.

 Listing C-2: An Excerpt from Listing A-13

 Sys.Preview.MarkupParser.initializeObject =
function Sys$Preview$MarkupParser$initializeObject(instance, node, markupContext)
{
 var td = Sys.Preview.TypeDescriptor.getTypeDescriptor(instance);
 var events = td._getEvents();
 var childNodes = node.childNodes;
 for (i = childNodes.length - 1; i >= 0; i--)
 {
 var childNode = childNodes[i];
 var nodeName = Sys.Preview.MarkupParser.getNodeName(childNode);
 eventInfo = events[nodeName];
 if (eventInfo)
 {
 var actions = Sys.Preview.MarkupParser.parseNodes(childNode.childNodes,
 markupContext);
 if (actions.length)
 {
 eventValue = instance[“add_” + eventInfo.name];
 if(eventValue)
 {
 for (var e = 0; e < actions.length; e++)
 {
 var action = actions[e];
 action.set_eventName(eventInfo.name);
 action.set_eventSource(instance);
 }
 }
 }
 }
 }
}

 Let’s study this excerpt in the context of the example shown in Listing C-3 . This example shows a page
that uses an instance of an action named SetPropertyAction , which is a subclass of the Action base
class. SetPropertyAction encapsulates the client-side functionality that sets the specified property of a
specified ASP.NET AJAX object. In the example shown in Listing C-3 , SetPropertyAction sets the
value of the text property of a Label ASP.NET AJAX control with id property value of myspan , which
represents a span HTML element with an id HTML attribute value of myspan . Note that the target

bapp03.indd 1344bapp03.indd 1344 8/20/07 8:59:25 PM8/20/07 8:59:25 PM

Appendix C: Actions

1345

property of this SetPropertyAction contains the id property value of this Label ASP.NET AJAX
 control. Recall that the target property references the ASP.NET AJAX object to which the action applies.

 The except shown in Listing C-2 basically parses the boldface portion of Listing C-3 , that is,

 <button id=”button1”>
 <click>
 <SetPropertyAction target=”myspan” property=”text”
 value=”This is a message!” />
 </click>
 </button>

 In other words, the first parameter of the initializeObject method references the Button ASP.NET
AJAX client control with the id property value of button1 , and the second parameter of this method
references the xml-script node that represents this Button ASP.NET AJAX client control in xml-script —
that is, the <button id=”button1”> node.

 Note that this excerpt invokes the set_eventName setter of the SetPropertyAction action to set its
 eventName property to click , because this is the event that triggers this action, and invokes the
set_eventSource setter of the SetPropertyAction action to set its eventSource property to a refer-
ence to the Button ASP.NET AJAX control with the id property value of button1 , because this is the
ASP.NET AJAX object whose event triggers the action. As you can see, the initializeObject method
sets only the eventName and eventSource properties of an action. You may be wondering who is
responsible for setting the rest of the properties. The answer is the parseFromMarkup static method of
the Action class, as shown in Listing C-4 .

 Listing C-3: An Example of an Action

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 </Scripts>
 </asp:ScriptManager>
 <button id=”button1”>
 Print Message</button>

 </form>

(continued)

bapp03.indd 1345bapp03.indd 1345 8/20/07 8:59:25 PM8/20/07 8:59:25 PM

Appendix C: Actions

1346

 Listing C-3 (continued)

 <script type=”text/xml-script”>
 <page xmlns=”http://schemas.microsoft.com/xml-script/2005”>
 <components>
 <label id=”myspan”/>
 <button id=”button1”>
 <click>
 <SetPropertyAction target=”myspan” property=”text”
 value=”This is a message!” />
 </click>
 </button>
 </components>
 </page>
 </script>
</body>
</html>

 Listing C-4: The parseFormMarkup Method

 Sys.Preview.Action.parseFromMarkup =
function Sys$Preview$Action$parseFromMarkup(type, node,
 markupContext)
{
 var newAction = new type();
 var action = Sys.Preview.MarkupParser.initializeObject(newAction, node,
 markupContext);
 if (action)
 {
 markupContext.addComponent(action);
 return action;
 }

 else
 newAction.dispose();
 return null;
}

 As you can see, the parseFromMarkup method first invokes the new operator on the first parameter
of the method. In the case of Listing C-3 , the first parameter references the constructor of the
SetPropertyAction class, which means that the following statement basically instantiates an
instance of the SetPropertyAction class:

 var newAction = new type();

 Next, the parseFromMarkup method invokes the initializeObject static method on the
 MarkupParser class, passing in four parameters. The first parameter references the newly instantiated
action, which is the newly instantiated SetPropertyAction in the case of listing C-3 . The second

bapp03.indd 1346bapp03.indd 1346 8/20/07 8:59:25 PM8/20/07 8:59:25 PM

Appendix C: Actions

1347

parameter references the xml-script node that represents the action in xml-script, which is the following
node in the case of Listing C-3 :

 <SetPropertyAction target=”myspan” property=”text” value=”This is a message!” />

 The third parameter references the current MarkupContext . The initializeObject method first
parses the xml-script node referenced by its second parameter, which is the following node:

 <SetPropertyAction target=”myspan” property=”text” value=”This is a message!” />

 The method then extracts the values of the target , property , and value attributes on the xml-script
node and assigns them to the target , property , and value properties of the newly instantiated
SetPropertyAction action.

 Note that the get_target and set_target methods of the Action base class get and set the actual
 reference to the target ASP.NET AJAX object. If you plan to invoke the set_target method imperatively
from your client code to set the target property, you must ensure that you pass the actual reference to
the target ASP.NET AJAX object into this method.

 You may be wondering why the xml-script shown in Listing C-3 enables page developers to assign the id
property value of the Label ASP.NET AJAX control to the target property of the SetPropertyAction ,
as opposed to assigning the actual reference to the Label ASP.NET AJAX control, as shown in the bold-
face portions of the following excerpt from Listing C-3 :

 <label id=”myspan”/>
 <button id=”button1”>
 <click>
 <SetPropertyAction target=”myspan” property=”text”
 value=”This is a message!” />
 </click>
 </button>

 The answer lies in what the parseFromMarkup static method of the Action base class does when the
xml-script is being parsed. As discussed earlier, this method invokes the initializeObject method.
As thoroughly discussed in Appendix A, this method automatically uses the value of the target attribute
to access the actual reference to the Label ASP.NET AJAX control.

 execute
 The Action class implements the execute method of the IAction interface, as shown in Listing C-5 .
As mentioned earlier, this method is registered as an event handler for a specified event of a specified
ASP.NET AJAX object. Therefore, like any other ASP.NET AJAX event handler, it takes two arguments:
the first references the object that raised the event and consequently called the method, and the second
references the event data class instance that contains the event data associated with the event.

 As Listing C-5 shows, the execute method stores this event data class instance in a private field named
 _eventArgs . As I mentioned earlier, the Action class exposes a getter named get_eventArgs , which
returns the value of this private field.

 this._eventArgs = eventArgs;

bapp03.indd 1347bapp03.indd 1347 8/20/07 8:59:26 PM8/20/07 8:59:26 PM

Appendix C: Actions

1348

 The execute method then calls the get_bindings method to return an array that contains all the
 binding objects associated with the action:

 var bindings = this.get_bindings();

 Then the execute method iterates through the binding objects in this array and takes the following
steps for each enumerated binding object. If the binding object is of type Binding or one of its sub-
classes, and if the binding direction of the binding object is not reverse — that is, if the get_direction
method of the binding object does not return the enumeration value of Out — the execute method
invokes the evaluateIn method on the binding object to have the object assign the value of the speci-
fied property of the current data context to the specified property of the action. Which property of the
current data context is bound to which property of the action is determined when the associated binding
object is defined and added to the bindings collection property of the action. Keep in mind that the
 get_bindings method of the Action class returns a reference to this bindings collection property.

 This logic ensures that the values of those properties of the action that are bound to the properties of
some other ASP.NET AJAX objects are updated before the performAction method is invoked to execute
the action.

 Next, the execute method invokes the performAction method to execute the action and stores the
return value of this method in a private field named _result . As a matter of fact, the Action base class
exposes a getter named get_result that returns the value of this private field.

 this._result = this.performAction();

 Then the execute method iterates through the binding objects in the bindings collection property of
the action once more, and takes the following steps for each enumerated binding object. If the enumer-
ated binding object is of type Binding or one of its subclasses, and if the binding direction of the binding
object is reverse or two-way — that is, if the call into the get_direction method of the binding object
does not return an In enumeration value — the execute method invokes the evalutateOut method on
the binding object to have this object evaluate the value of the specified property of the action and to
assign this value to the specified property of the specified ASP.NET AJAX object. This ensures that if the
 performAction method causes one or more properties of the action to change, these changes are
reflected in the properties of those ASP.NET AJAX objects that are bound to the changed properties of
the action.

 Finally, the execute method resets the values of the _eventArgs and _result private fields. This
means that the values of these two fields, and consequently the return values of the get_eventArgs and
 get_result getter methods, are only valid during the execution of the execute method — that is, after
the execute method is invoked and before this method returns.

 this._eventArgs = null;
this._result = null;

 Note that the Action base class does not implement the performAction method; it delegates the
responsibility of implementing this method to its subclasses.

bapp03.indd 1348bapp03.indd 1348 8/20/07 8:59:26 PM8/20/07 8:59:26 PM

Appendix C: Actions

1349

 Listing C-5: The Execute Method of the Action Base Class

 function Sys$Preview$Action$execute(sender, eventArgs)
{
 this._eventArgs = eventArgs;

 var bindings = this.get_bindings();
 var binding;
 var bindingType;
 if(bindings)
 {
 var i;
 for (i = 0; i < bindings.length; i++)
 {
 binding = bindings[i];
 bindingType = binding ? Object.getType(binding) : null;
 if(bindingType && (bindingType === Sys.Preview.Binding ||
 Sys.Preview.Binding.inheritsFrom(bindingType)))
 {
 if(binding.get_direction() !== Sys.Preview.BindingDirection.Out) :
 binding.evaluateIn(); : } : else :
 binding.evaluateIn();
 }
 }

 this._result = this.performAction();
 if(bindings)
 {
 for (i = 0; i < bindings.length; i++)
 {
 binding = bindings[i];
 bindingType = binding ? Object.getType(binding) : null;
 if(bindingType && (bindingType === Sys.Preview.Binding ||
 Sys.Preview.Binding.inheritsFrom(bindingType)))
 {
 if(binding.get_direction() !== Sys.Preview.BindingDirection.In)
 binding.evaluateOut();
 }
 else
 binding.evaluateOut();
 }
 }

 this._eventArgs = null;
 this._result = null;
}

 descriptor
 The following code listing presents the descriptor property of the Action class. This property
 specifies those properties that can be set declaratively from xml-script.

bapp03.indd 1349bapp03.indd 1349 8/20/07 8:59:26 PM8/20/07 8:59:26 PM

Appendix C: Actions

1350

 Sys.Preview.Action.descriptor =
{
 properties: [{name: ‘eventSource’, type: Object},
 {name: ‘eventName’, type: String},
 {name: ‘bindings’, type: Array, readOnly: true},
 {name: ‘eventArgs’, type: Sys.EventArgs, readOnly: true},
 {name: ‘result’, type: Object, readOnly: true},
 {name: ‘sender’, type: Object, readOnly: true},
 {name: ‘target’, type: Object}]
}

 InvokeMethodAction
 The InvokeMethodAction ASP.NET AJAX action, like any other, derives from the Action base class:

 Sys.Preview.InvokeMethodAction.registerClass(‘Sys.Preview.InvokeMethodAction’,
 Sys.Preview.Action);

 As the name suggests, the InvokeMethodActio n encapsulates the client-side functionality that invokes
a specified method on a specified ASP.NET AJAX object. The following table presents the members of the
 InvokeMethodAction :

 Member Description

 get_method Gets the name of the method invoked by the InvokeMethodAction

 set_method Sets the name of the method invoked by the InvokeMethodAction

 get_parameters Returns the JavaScript object literal that contains the names and values of
the parameters of the method invoked by the InvokeMethodAction

 The InvokeMethodAction implements the performAction method that it inherits from the Action
base class, as shown in the following code fragment. As you can see, this method calls the
 invokeMethod static method on the TypeDescriptor class, passing in three parameters: the first
 references the ASP.NET AJAX object whose method is being invoked, the second contains the name of
the method being invoked, and the third is the JavaScript object literal that contains the names and
 values of the parameters of the method being invoked.

 function Sys$Preview$InvokeMethodAction$performAction()
{
 return Sys.Preview.TypeDescriptor.invokeMethod(this.get_target(),
 this._method, this._parameters);
}

 The invokeMethod static method of the TypeDescriptor class searches for the method with the speci-
fied name in the descriptor property of the ASP.NET AJAX object that owns the method. Therefore,

bapp03.indd 1350bapp03.indd 1350 8/20/07 8:59:26 PM8/20/07 8:59:26 PM

Appendix C: Actions

1351

the ASP.NET AJAX object whose method the InvokeMethodAction invokes must expose a static
 descriptor property with an entry for the method. Suppose you have an ASP.NET AJAX type named
 MyNamespace.MyType that exposes a method named MyMethod that takes a parameter of type
 MyNamespace.MyParameterType named MyParameter . The MyNamespace.MyType type must expose
a descriptor static property with the following entry to allow the InvokeMethodAction to invoke its
 MyMethod method:

 MyNamespace.MyType.descriptor =
{
 methods: [{name: “MyMethod”,
 parameters: [{name: “Parameter1”,
 type: MyNamespace.MyParameterType}]}]
}

 The InvokeMethodAction class exposes the following descriptor static property:

 Sys.Preview.InvokeMethodAction.descriptor =
{
 properties: [{name: ‘method’, type: String},
 {name: ‘parameters’, type: Object, readOnly: true}]
}

 This means that you can set the method and parameters properties of the InvokeMethodAction
declaratively in xml-script.

 Keep in mind that only those properties and events of an ASP.NET AJAX class specified in the
 descriptor static property of the class can be set in xml-script. If a class exposes a property but does
not include an entry for it in its descriptor static property, you cannot set the value of this property
in xml-script. You must set it imperatively from your client code. As I mentioned earlier, another option
is for the class to implement the ICustomTypeProvider interface.

 The following code listing contains a page that uses the InvokeMethodAction to invoke the
 toggleCssClass method on the Label ASP.NET AJAX client control with an id property value
of myspan .

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <style type=”text/css”>
 .myCssClass {
 background-color: #dddddd;
 }
 </style>
</head>

(continued)

bapp03.indd 1351bapp03.indd 1351 8/20/07 8:59:27 PM8/20/07 8:59:27 PM

Appendix C: Actions

1352

<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 </Scripts>
 </asp:ScriptManager>
 <button id=”button1”>Toggle CSS Class</button>
 Wrox Web Site
 </form>
 <script type=”text/xml-script”>
 <page xmlns=”http://schemas.microsoft.com/xml-script/2005”>
 <components>
 <label id=”myspan”/>
 <button id=”button1”>
 <click>
 <InvokeMethodAction target=”myspan” method=”toggleCssClass” >
 <parameters className=”myCssClass” />
 </InvokeMethodAction>
 </click>
 </button>
 </components>
 </page>
 </script>
</body>
</html>

 It is very important that you use the same exact names for the method and its parameters that the
 descriptor property of the class that owns the method uses. For example, in this case, the Label
ASP.NET AJAX client control derives from the Control base class, which exposes the following
 descriptor property. As the boldface portion of this code fragment shows, the descriptor property
contains an entry for a method named toggleCssClass , which takes a parameter of type string named
 className , which are the same exact names we’ve used (as shown in the boldfaced portion of the
 previous code listing).

 Sys.UI.Control.descriptor =
{
 properties: [{name: ‘element’, type: Object, readOnly: true},
 {name: ‘role’, type: String, readOnly: true},
 {name: ‘parent’, type: Object},
 {name: ‘visible’, type: Boolean},
 {name: ‘visibilityMode’, type: Sys.UI.VisibilityMode}],
 methods: [{name: ‘addCssClass’,
 parameters: [{name: ‘className’, type: String}] },
 {name: ‘removeCssClass’,
 parameters: [{name: ‘className’, type: String}] },
 {name: ‘toggleCssClass’,
 parameters: [{name: ‘className’, type: String}] }]
}

(continued)

bapp03.indd 1352bapp03.indd 1352 8/20/07 8:59:27 PM8/20/07 8:59:27 PM

Appendix C: Actions

1353

 SetProper tyAction
 The SetPropertyAction ASP.NET AJAX action, like any other, derives from the Action base class:

 Sys.Preview.SetPropertyAction.registerClass(‘Sys.Preview.SetPropertyAction’,
 Sys.Preview.Action);

 As the name suggests, the SetPropertyAction encapsulates the client-side functionality that sets
the value of a specified property of a specified ASP.NET AJAX object. The following table presents the
 members of the SetPropertyAction :

 Member Description

 get_property Gets the name of the property set by SetPropertyAction .

 set_property Sets the name of the property set by SetPropertyAction .

 get_propertyKey Gets the name of the subproperty set by SetPropertyAction . If
both the property and propertyKey properties are specified,
SetPropertyAction assumes that the specified propertyKey is
a subproperty of the specified property and sets the value of the
subproperty.

 set_propertyKey Sets the name of the subproperty set by SetPropertyAction .

 get_value Gets the value that SetPropertyAction assigns to the specified
 property or subproperty.

 set_value Sets the value that SetPropertyAction assigns to the specified
 property or subproperty.

 SetPropertyAction , like any other action, implements the performAction method that it inherits
from the Action base class, as shown in the following code fragment. As you can see, this method calls
the setProperty static method on the TypeDescriptor class, passing in four parameters: the first
 references the ASP.NET AJAX object whose property is being set, the second contains the name of the
property being set, the third contains the value to be assigned to the specified property or subproperty,
and the last specifies the name of the subproperty being set:

 function Sys$Preview$SetPropertyAction$performAction()
{
 Sys.Preview.TypeDescriptor.setProperty(this.get_target(), this._property,
 this._value, this._propertyKey);
 return null;
}

 The setProperty static method of the TypeDescriptor class searches for the property with the
 specified name in the descriptor property of the ASP.NET AJAX object that owns the property.
 Therefore, the ASP.NET AJAX object whose property the InvokeMethodAction sets must expose a
 static descriptor property with an entry for the property.

bapp03.indd 1353bapp03.indd 1353 8/20/07 8:59:27 PM8/20/07 8:59:27 PM

Appendix C: Actions

1354

 The SetPropertyAction class exposes the following descriptor static property:

 Sys.Preview.SetPropertyAction.descriptor =
{
 properties: [{name: ‘property’, type: String},
 {name: ‘propertyKey’ },
 {name: ‘value’, type: String}]
}

 This means that you can set in xml-script only those properties of the SetPropertyAction specified in
this descriptor property.

 The following code listing contains a page that uses SetPropertyAction to set the className
 subproperty of the element property of the Label ASP.NET AJAX client control with an id property
value of myspan to the value myCssClass :

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <style type=”text/css”>
 .myCssClass
 {
 background-color: #dddddd;
 }
 </style>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 </Scripts>
 </asp:ScriptManager>
 <button id=”button1”>Toggle CSS Class</button>
 Wrox Web Site
 </form>
 <script type=”text/xml-script”>
 <page xmlns=”http://schemas.microsoft.com/xml-script/2005”>
 <components>
 <label id=”myspan”/>
 <button id=”button1”>
 <click>
 <SetPropertyAction target=”myspan” property=”element”
 propertyKey=”className” value=”myCssClass” />
 </click>
 </button>
 </components>
 </page>
 </script>
</body>
</html>

bapp03.indd 1354bapp03.indd 1354 8/20/07 8:59:28 PM8/20/07 8:59:28 PM

Appendix C: Actions

1355

 PostBackAction
 The PostBackAction ASP.NET AJAX action also derives from the Action base class:

 Sys.Preview.PostBackAction.registerClass(‘Sys.Preview.PostBackAction’,
 Sys.Preview.Action);

 As the name implies, PostBackAction encapsulates the client-side functionality that enables an
ASP.NET AJAX object to post the current page back to the server. The best way to understand the
 significance of the PostBackAction action is to study its implementation of the performAction
method, as shown in the following code listing:

 function Sys$Preview$PostBackAction$performAction()
{
 __doPostBack(this.get_target(), this.get_eventArgument());
 return null;
}

 As you can see, the performAction method calls the __doPostBack global JavaScript function, passing
in two parameters, the return values of the get_target and get_eventArgument getter methods,
respectively. Recall that the __doPostBack global JavaScript function posts the page back to the server.
Also recall that this JavaScript function takes two parameters. The first is a string that contains the value
of the name HTML attribute of the HTML element responsible for the postback. This HTML element is
known as the event target. The second parameter is an optional string that contains extra information that
helps the server-side code process the page postback. This optional parameter is known as the event
argument .

 The following table presents the members of PostBackAction :

 Member Description

 get_target Gets the value of the name HTML attribute of the event target

 set_target Sets the value of the name HTML attribute of the event target

 get_eventArgument Gets the event argument

 set_eventArgument Sets the event argument

 The PostBackAction class exposes the following descriptor static property:

 Sys.Preview.PostBackAction.descriptor =
{
 properties: [{name: ‘eventArgument’, type: String},
 {name: ‘target’, type: String}]
}

 This means that you can set in xml-script only those properties of PostBackAction specified in the
 preceding descriptor property.

bapp03.indd 1355bapp03.indd 1355 8/20/07 8:59:28 PM8/20/07 8:59:28 PM

Appendix C: Actions

1356

 The great thing about the PostBackAction action is that it lets you enable your ASP.NET AJAX classes
to perform a page postback. For example, the Button ASP.NET AJAX client control associated with the
 <button> HTML element normally does not post the page back to the server. The page shown in the
 following code listing demonstrates how to use PostBackAction to enable the Button ASP.NET AJAX
client control associated with the <button> HTML element to perform a page postback:

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 </Scripts>
 </asp:ScriptManager>
 <button id=”button1” type=”button”>Submit</button>
 </form>
 <script type=”text/xml-script”>
 <page xmlns=”http://schemas.microsoft.com/xml-script/2005”>
 <components>
 <button id=”button1”>
 <click>
 <PostBackAction target=”button1” eventArgument=”myArg” />
 </click>
 </button>
 </components>
 </page>
 </script>
</body>
</html>

bapp03.indd 1356bapp03.indd 1356 8/20/07 8:59:28 PM8/20/07 8:59:28 PM

 Data Control
 The ASP.NET framework comes with a server control named DataBoundControl that acts as
the base class for important server controls such as GridView and DetailsView . The
DataBoundControl base server control encapsulates the basic functionality that all data-bound
controls must support. The ASP.NET AJAX client-side framework comes with a client control
named DataControl that acts as the base control for important client controls such as ListView .
The DataControl client control, just like its DataBoundControl server-side counterpart,
 encapsulates the base functionality that all data-bound client controls must support. In this
 appendix I’ll present and discuss the members of the DataControl base class to:

 ❑ Help you gain the skills you need to derive from this base class in order to implement
your own custom data controls.

❑ Set the stage for the Appendix F , where you’ll see how the ASP.NET AJAX ListView
 client control extends the functionality of the DataControl base class.

 The DataControl base class belongs to a namespace named Sys.Preview.UI.Data , as defined
in the following:

 Type.registerNamespace(‘Sys.Preview.UI.Data’);

 Constructor
 Listing D-1 presents the internal implementation of the constructor of the DataControl base class.
This constructor takes a single argument that references the DOM element that the DataControl
base class represents. In other words, you can think of the DataControl base class as the ASP.NET
AJAX representation of this DOM element. This constructor, like that of any other subclass, first
calls the initializeBase method to invoke the constructor of its base class:

 Sys.Preview.UI.Data.DataControl.initializeBase(this, [associatedElement]);

bapp04.indd 1357bapp04.indd 1357 8/20/07 8:59:54 PM8/20/07 8:59:54 PM

Appendix D: Data Control

1358

 The base class in this case is the Control client class:

 Sys.Preview.UI.Data.DataControl.registerClass(‘Sys.Preview.UI.Data.DataControl’,
 Sys.UI.Control);

 The constructor then sets the value of a property named dataIndex to 0 . The value of this property will
be used as an index into the collection that contains the data records to access the associated record:

 this._dataIndex = 0;

 Listing D-1: The Internal Implementation of the Constructor of the DataControl
Base Class

 Sys.Preview.UI.Data.DataControl = function
Sys$Preview$UI$Data$DataControl(associatedElement)
{
 Sys.Preview.UI.Data.DataControl.initializeBase(this, [associatedElement]);
 this._dataIndex = 0;
}
Sys.Preview.UI.Data.DataControl.registerClass(‘Sys.Preview.UI.Data.DataControl’,
 Sys.UI.Control);

 prepareChange
 As you can see from Listing D-2 , the DataControl base class comes with a method named
 prepareChange that returns a JavaScript object literal that contains three name/value pairs, which
describe the dataIndex , canMoveNext , and canMovePrevious properties of the class, respectively. I’ll
discuss these three properties shortly. As you’ll see later, other methods of the DataControl base class
call the prepareChange method every time the values of these properties are about to change. These
methods store the JavaScript object containing the current values of these properties so they can compare
those values with the new ones and raise the necessary events if the values have indeed changed (hence
the name prepareChange) .

 Listing D-2: The prepareChange Method of the DataControl Base Class

 function Sys$Preview$UI$Data$DataControl$prepareChange()
{
 return {dataIndex: this.get_dataIndex(),
 canMoveNext: this.get_canMoveNext(),
 canMovePrevious: this.get_canMovePrevious()};
}

 triggerChangeEvents
 As you can see from Listing D-3 , the triggerChangeEvents method of the DataControl base class
takes a JavaScript object literal as its sole argument. This object is the same one that the prepareChange
method returns. As we discussed earlier, other methods of the DataControl base class invoke the

bapp04.indd 1358bapp04.indd 1358 8/20/07 8:59:55 PM8/20/07 8:59:55 PM

Appendix D: Data Control

1359

 prepareChange method to return the object that contains the current values of the dataIndex ,
 canMoveNext , and canMovePrevious properties every time the values of these properties are about to
change. After the changes occur, these methods call the triggerChangeEvents method, passing in the
object containing the old values of these properties. This method takes the following steps for each of
these properties. First, it calls the associated getter method of the DataControl base class to access the
current value of the property:

 var dataIndex = this.get_dataIndex();

 Next, it compares the current value with the old value and calls the raisePropertyChanged method to
raise the propertyChanged event if the two values are different:

 this.raisePropertyChanged(‘dataIndex’);
this.raisePropertyChanged(‘dataItem’);

 The DataControl class inherits the raisePropertyChanged method from its base class — that is,
the Control class. Recall from the previous chapters that this method raises an event named
 propertyChanged .

 Finally, the triggerChangeEvents method assigns the new value to the respective property of the
object. In other words, the new value is now the old value:

 oldState.dataIndex = dataIndex;

 Listing D-3: The triggerChangeEvent Method of the DataControl Base Class

 function Sys$Preview$UI$Data$DataControl$triggerChangeEvents(oldState)
{
 var dataIndex = this.get_dataIndex();
 if (oldState.dataIndex !== dataIndex)
 {
 this.raisePropertyChanged(‘dataIndex’);
 this.raisePropertyChanged(‘dataItem’);
 oldState.dataIndex = dataIndex;
 }

 var canMoveNext = this.get_canMoveNext();
 if (oldState.canMoveNext !== canMoveNext)
 {
 this.raisePropertyChanged(‘canMoveNext’);
 oldState.canMoveNext = canMoveNext;
 }

 var canMovePrevious = this.get_canMovePrevious();
 if (oldState.canMovePrevious !== canMovePrevious)
 {
 this.raisePropertyChanged(‘canMovePrevious’);
 oldState.canMovePrevious = canMovePrevious;
 }
}

bapp04.indd 1359bapp04.indd 1359 8/20/07 8:59:55 PM8/20/07 8:59:55 PM

Appendix D: Data Control

1360

 get_canMoveNext
 The DataControl class exposes a read-only Boolean property named canMoveNext that specifies
whether the data control can move to the next data record in the internal data record collection. As
 Listing D-4 shows, the DataControl class features a getter method named get_canMoveNext that you
can use to access the value of this property. This method first checks whether the internal data collection
exists to begin with. If not, it returns false :

 if (!this._data)
 return false;

 DataControl exposes a collection property named data that contains the data records. If the data col-
lection does exist, it checks whether the current data index is less than the total number of data records
in the data record collection:

 return (this._dataIndex < this.get_length() - 1);

 As you’ll see later, the DataControl class exposes a getter method named get_length that returns the
total number of data records in the data collection.

 Listing D-4: The get_canMoveNext Method of the DataControl Base Class

 function Sys$Preview$UI$Data$DataControl$get_canMoveNext()
{
 if (!this._data)
 return false;

 return (this._dataIndex < this.get_length() - 1);
}

 get_canMovePrevious
 The DataControl base class exposes a read-only Boolean property named canMovePrevious that
 specifies whether the data control can move to the previous record in the data record collection. As
you can see from Listing D-5 , the DataControl base class comes with a getter method named
get_canMovePrevious that you can use to access the value of the canMovePrevious property. This
method first checks whether the data record collection exists. If not, it returns false to inform its caller
that the data control cannot move to the previous record:

 if (!this._data)
 return false;

 If so, it checks whether the current data index is greater than 0 . If so, it returns true to inform its caller
that the data control can indeed move to the previous record.

bapp04.indd 1360bapp04.indd 1360 8/20/07 8:59:55 PM8/20/07 8:59:55 PM

Appendix D: Data Control

1361

 Listing D-5: The get_canMovePrevious Method of the DataControl Base Class

 function Sys$Preview$UI$Data$DataControl$get_canMovePrevious()
{
 if (!this._data)
 return false;

 return (this._dataIndex > 0);
}

 get_data
 As I mentioned earlier, the DataControl base class exposes a collection property named data that
 contains the data records. The get_data getter method of the DataControl class returns a reference to
this collection, as shown in Listing D-6 .

 Listing D-6: The get_data Method of the DataControl Base Class

 function Sys$Preview$UI$Data$DataControl$get_data()
{
 return this._data;
}

 set_data
 The set_data setter method of the DataControl base class enables you to set the value of the data
property of the class. As you can see from Listing D-7 , this method takes a collection of data records as
its single argument and assigns that collection to the data property. Here are the steps that the
set_data method takes to accomplish this task. First, it calls the prepareChange method to return
the JavaScript object that contains the current values of the dataIndex , canMoveNext , and
 canMovePrevious properties of the data control:

 var oldState = this.prepareChange();

 As you’ll see shortly, every time the value of the data property is set — that is, every time a new data
record collection is assigned to the data property — the set_data method registers a delegate named
_dataChangedDelegate as an event handler for the collectionChanged event of the new data record
collection, if the collection implements the INotifyCollectionChanged interface. That is why,
before assigning the new data collection to the data property, the set_data setter first invokes the
 remove_collectionChanged method on the old data collection to remove the _dataChangedDelegate
delegate from the list of event handlers registered for the collectionChanged event of the old data

bapp04.indd 1361bapp04.indd 1361 8/20/07 8:59:55 PM8/20/07 8:59:55 PM

Appendix D: Data Control

1362

 collection. This ensures that the old data collection no longer invokes this delegate, because it is being
replaced with the new data collection:

 if (this._data &&
 Sys.Preview.INotifyCollectionChanged.isImplementedBy(this._data))
 {
 this._data.remove_collectionChanged(this._dataChangedDelegate);
 this._dataChangedDelegate = null;
 }

 Next, the set_data method assigns the new data collection to the data property:

 this._data = value;

 Next, the set_data method checks whether the new data collection implements the
 INotifyCollectionChanged interface. If so, it calls the createDelegate static method on the
 Function to create a delegate that represents a method named onDataChanged , and stores this delegate
in the _dataChangedDelegate field. Next, it invokes the add_collectionChanged method on
the new data collection to register this delegate as event handler for the collectionChanged event
of the new data collection:

 if (this._data &&
 Sys.Preview.INotifyCollectionChanged.isImplementedBy(this._data))
 {
 this._dataChangedDelegate = Function.createDelegate(this, this.onDataChanged);
 this._data.add_collectionChanged(this._dataChangedDelegate);
 }

 Next, the set_data setter calls the get_length method to determine the total number of records in the
new data collection. If the current data index of the data control is greater or equal to this number,
the set_data setter method invokes the set_dataIndex setter to reset the current data index to 0 :

 if (this._dataIndex >= this.get_length())
 this.set_dataIndex(0);

 If the data control is not already updating, the set_data setter invokes the render method to update
the data control:

 if (!this.get_isUpdating())
 this.render();

 Next, the set_data setter invokes the raisePropertyChanged method to raise the propertyChanged
event and consequently to invoke all the event handlers registered for this event:

 this.raisePropertyChanged(‘data’);

 If you need to run some custom code when the data control is bound to a new data collection, encapsulate
this custom code in a method and register this method as an event handler for the propertyChanged
event of the data control.

bapp04.indd 1362bapp04.indd 1362 8/20/07 8:59:56 PM8/20/07 8:59:56 PM

Appendix D: Data Control

1363

 Finally, the set_data setter invokes triggerChangedEvents , passing in the JavaScript object that
 contains the old values of the dataIndex , canMoveNext , and canMovePrevious properties to raise
the associated events as discussed earlier:

 this.triggerChangeEvents(oldState);

 Listing D-7: The set_data Method of the DataControl Base Class

 function Sys$Preview$UI$Data$DataControl$set_data(value)
{
 var oldState = this.prepareChange();
 if (this._data &&
 Sys.Preview.INotifyCollectionChanged.isImplementedBy(this._data))
 {
 this._data.remove_collectionChanged(this._dataChangedDelegate);
 this._dataChangedDelegate = null;
 }

 this._data = value;
 if (this._data &&
 Sys.Preview.INotifyCollectionChanged.isImplementedBy(this._data))
 {
 this._dataChangedDelegate = Function.createDelegate(this, this.onDataChanged);
 this._data.add_collectionChanged(this._dataChangedDelegate);
 }

 if (this._dataIndex >= this.get_length())
 this.set_dataIndex(0);
 if (!this.get_isUpdating())
 this.render();
 this.raisePropertyChanged(‘data’);
 this.triggerChangeEvents(oldState);
}

 get_length
 The DataControl base class exposes a getter named get_length that returns the total number of
records in the data collection to which the data control is bound. As Listing D-8 shows, this getter
returns 0 if the data property is null — that is, if the data control is not bound any data collection:

 if(!this._data)
 return 0;

 Next, the get_length getter checks whether the bound data collection implements the IData interface.
If so, it invokes the get_length method on the data collection to return the total number of records in
the collection:

 if (Sys.Preview.Data.IData.isImplementedBy(this._data))
 return this._data.get_length();

bapp04.indd 1363bapp04.indd 1363 8/20/07 8:59:56 PM8/20/07 8:59:56 PM

Appendix D: Data Control

1364

 Then, it checks whether the bound data collection is a JavaScript array. If so, it returns the value of the
 length property of the data collection:

 if (this._data instanceof Array)
 return this._data.length;

 If the bound data collection does not implement the IData interface and is not a JavaScript array, the
 get_length method returns 0 because the bound data collection is not supported:

 return 0;

 Listing D-8: The get_length Getter

 function Sys$Preview$UI$Data$DataControl$get_length()
{
 if(!this._data)
 return 0;

 if (Sys.Preview.Data.IData.isImplementedBy(this._data))
 return this._data.get_length();

 if (this._data instanceof Array)
 return this._data.length;

 return 0;
}

 get_dataIndex
 The get_dataIndex getter method of the DataControl base class returns the index of the current
record in the data collection to which the data control is bound. This getter simply returns the value of
the _ dataIndex field, as shown in Listing D-9 .

 Listing D-9: The get_dataIndex Getter

 function Sys$Preview$UI$Data$DataControl$get_dataIndex()
{
 return this._dataIndex;
}

 set_dataIndex
 The set_dataIndex setter of the DataControl base class takes the following steps (see Listing D-10).
First, it checks whether the new value is different from the old value. If not, it doesn’t do anything. If so,
it begins by calling the prepareChange method to return the JavaScript object that contains the current
values of the dataIndex , canMoveNext , and canMovePrevious properties:

 var oldState = this.prepareChange();

bapp04.indd 1364bapp04.indd 1364 8/20/07 8:59:56 PM8/20/07 8:59:56 PM

Appendix D: Data Control

1365

 Next, it assigns the new value to the dataIndex property:

 this._dataIndex = value;

 Finally, it invokes the triggerChangeEvents method, passing in the preceding JavaScript object to
raise the required events, as discussed earlier:

 this.triggerChangeEvents(oldState);

 Listing D-10: The set_dataIndex Setter

 function Sys$Preview$UI$Data$DataControl$set_dataIndex(value)
{
 if (this._dataIndex !== value)
 {
 var oldState = this.prepareChange();
 this._dataIndex = value;
 if (!this._suspendChangeNotifications)
 this.triggerChangeEvents(oldState);
 }
}

 onDataChanged
 Recall that the set_data setter method registers a delegate that represents the onDataChanged method
as event handler for the collectionChanged event of the bound data collection if this collection imple-
ments the INotifyCollectionChanged interface. As we discussed earlier, a collection raises this event
when it changes. As you can see from Listing D-11 , the onDataChanged method simply invokes the
 render method of the data control to update the data control.

 Listing D-11: The onDataChanged Method

 function Sys$Preview$UI$Data$DataControl$onDataChanged(sender, args)
{
 this.render();
}

 get_dataItem
 The get_dataItem getter method of the DataControl base class returns a reference to the current data
record in the data collection bound to the data control. As Listing D-12 shows, this method first checks
whether the current data index is a positive number. If not, it returns null because the data collection
does not contain a data record with a negative index! If so, it checks whether the data collection imple-
ments the IData interface. If so, it invokes the getItem method on the data collection, passing in the
current data index to return a reference to the data record with the specified index:

 if (Sys.Preview.Data.IData.isImplementedBy(this._data))
 return this._data.getItem(this._dataIndex);

bapp04.indd 1365bapp04.indd 1365 8/20/07 8:59:57 PM8/20/07 8:59:57 PM

Appendix D: Data Control

1366

 If the data collection is a JavaScript array, the getter method simply uses the value of the data index as an
index into the data collection to return a reference to the data item with the specified index:

 if (this._data instanceof Array)
 return this._data[this._dataIndex];

 Listing D-12: The get_dataItem Getter Method

 function Sys$Preview$UI$Data$DataControl$get_dataItem()
{
 if (this._data && (this._dataIndex >= 0))
 {
 if (Sys.Preview.Data.IData.isImplementedBy(this._data))
 return this._data.getItem(this._dataIndex);

 if (this._data instanceof Array)
 return this._data[this._dataIndex];
 }
 return null;
}

 get_dataContext
 The DataControl base class overrides the get_dataContext method that it inherits from the Control
base class, in which DataControl invokes the get_dataItem method to return a reference to the
 current data record in the bound data collection, as shown in Listing D-13 :

 return this.get_dataItem();

 Listing D-13: The get_dataContext Getter

 function Sys$Preview$UI$Data$DataControl$get_dataContext()
{
 return this.get_dataItem();
}

 addItem
 The addItem method of the DataControl base class enables you to add an empty record to the bound
data collection. As Listing D-14 shows, this method first checks whether the data control is bound to
any data collection. If not, it doesn’t do anything and returns. If so, it begins by calling the
 prepareChange method to return the JavaScript object that contains the current values of the
 dataIndex , canMoveNext , and canMovePrevious properties:

 var oldState = this.prepareChange();

bapp04.indd 1366bapp04.indd 1366 8/20/07 8:59:57 PM8/20/07 8:59:57 PM

Appendix D: Data Control

1367

 Next, it checks whether the bound data collection implements the IData interface. If so, it invokes the
 add method on the data collection to add an empty record to the collection:

 if (Sys.Preview.Data.IData.isImplementedBy(this._data))
 this._data.add({});

 If the bound data collection is a JavaScript array, and if it exposes a method named add , the addItem
method simply calls this method to add an empty record to the data collection:

 else if (this._data instanceof Array)
 {
 if(typeof(this._data.add) === “function”)
 this._data.add({});

 If the bound data collection is a JavaScript array but it does not expose the add method, the addItem
method simply calls the add static method on the Array class to add an empty record to the data
collection:

 else if (this._data instanceof Array)
 {
 if(typeof(this._data.add) === “function”)
 this._data.add({});

 else
 Array.add(this._data, {});
 }

 Next, the addItem method sets the current data index to the index of the newly added data record:

 this.set_dataIndex(this.get_length() - 1);

 Finally, the addItem method calls the triggerChangeEvents method, passing the JavaScript object that
contains the old values of the dataIndex , canMoveNext , and canMovePrevious properties to raise the
appropriate events, as discussed earlier:

 this.triggerChangeEvents(oldState);

 Listing D-14: The addItem Method

 function Sys$Preview$UI$Data$DataControl$addItem()
{
 if (this._data)
 {
 var oldState = this.prepareChange();
 if (Sys.Preview.Data.IData.isImplementedBy(this._data))
 this._data.add({});

(continued)

bapp04.indd 1367bapp04.indd 1367 8/20/07 8:59:57 PM8/20/07 8:59:57 PM

Appendix D: Data Control

1368

 Listing D-14 (continued)

 else if (this._data instanceof Array)
 {
 if(typeof(this._data.add) === “function”)
 this._data.add({});

 else
 Array.add(this._data, {});
 }
 this.set_dataIndex(this.get_length() - 1);
 this.triggerChangeEvents(oldState);
 }
}

 deleteCurrentItem
 As the name suggests, the deleteCurrentItem method deletes the current data record from the bound
data collection — if the data control is indeed bound to a data collection. As Listing D-15 shows, this
method begins by invoking the prepareChange method to return the JavaScript object that contains the
current values of the dataIndex , canMoveNext , and canMovePrevious properties:

 var oldState = this.prepareChange();

 Next, it sets an internal flag to true to signal that all change notifications must be suspended because
we’re about to introduce new changes:

 this._suspendChangeNotifications = true;

 Then it calls the get_dataItem getter to return a reference to the current data record:

 var item = this.get_dataItem();

 Next, it resets the current data index if the current data record is the last data record in the data
collection:

 if (this.get_dataIndex() === this.get_length() - 1)
 this.set_dataIndex(Math.max(0, this.get_length() - 2));

 Then it checks whether the bound data collection implements the IData interface. If so, it invokes the
 remove method on the bound data collection to remove the current data record:

 if (Sys.Preview.Data.IData.isImplementedBy(this._data))
 this._data.remove(item);

 Next, the deleteCurrentItem method checks whether the bound data collection is a JavaScript array
and whether it supports the remove method. If so, it invokes the remove method on the data collection
to remove the current data record:

bapp04.indd 1368bapp04.indd 1368 8/20/07 8:59:57 PM8/20/07 8:59:57 PM

Appendix D: Data Control

1369

 else if (this._data instanceof Array)
 {
 if(typeof(this._data.remove) === “function”)
 this._data.remove(item);

 If the bound data collection is a JavaScript array but does not support the remove method, it calls the
 remove static method on the Array class to remove the current data record for the data collection:

 else if (this._data instanceof Array)
 {
 if(typeof(this._data.remove) === “function”)
 this._data.remove(item);

 else
 Array.remove(this._data, item);
 }

 Next, it resets the _suspendChangeNotifications flag to allow change notifications:

 this._suspendChangeNotifications = false;

 Finally, it invokes the triggerChangeEvents method, passing in the JavaScript object that contains the
old values of the dataIndex , canMoveNext , and canMovePrevious properties, to trigger the required
events, as discussed earlier:

 this.triggerChangeEvents(oldState);

 Listing D-15: The deleteCurrentItem Method

 function Sys$Preview$UI$Data$DataControl$deleteCurrentItem()
{
 if (this._data)
 {
 var oldState = this.prepareChange();
 this._suspendChangeNotifications = true;
 var item = this.get_dataItem();
 if (this.get_dataIndex() === this.get_length() - 1)
 this.set_dataIndex(Math.max(0, this.get_length() - 2));

 if (Sys.Preview.Data.IData.isImplementedBy(this._data))
 this._data.remove(item);

 else if (this._data instanceof Array)
 {
 if(typeof(this._data.remove) === “function”)
 this._data.remove(item);

 else
 Array.remove(this._data, item);
 }
 this._suspendChangeNotifications = false;
 this.triggerChangeEvents(oldState);
 }
}

bapp04.indd 1369bapp04.indd 1369 8/20/07 8:59:58 PM8/20/07 8:59:58 PM

Appendix D: Data Control

1370

 getItem
 The getItem method of the DataControl base class enables you to return a reference to the data record
with the specified data index. As you can see from Listing D-16 , this method first checks whether the
data control is indeed bound to a data collection. If not, it returns null . If so, it checks whether the
bound data collection implements the IData interface. If so, it simply calls the getItem method on the
data collection to return a reference to the data record with the specified index:

 if (Sys.Preview.Data.IData.isImplementedBy(this._data))
 return this._data.getItem(index);

 If not, it checks whether the bound data collection is a JavaScript array. If so, it uses the specified data
index as an index into the data collection to return a reference to the data record with the specified index:

 if (this._data instanceof Array)
 return this._data[index];

 Listing D-16: The getItem Method

 function Sys$Preview$UI$Data$DataControl$getItem(index)
{
 if (this._data)
 {
 if (Sys.Preview.Data.IData.isImplementedBy(this._data))
 return this._data.getItem(index);

 if (this._data instanceof Array)
 return this._data[index];
 }
 return null;
}

 moveNext
 The moveNext method of the DataControl base class enables you to move to the next data record in the
bound data collection. As Listing D-17 shows, if the data control is not bound to any data collection, the
 moveNext method does not do anything. This method begins by invoking the prepareChange method,
as usual:

 var oldState = this.prepareChange();

 Next, it calls the get_dataIndex getter to return the current data index, and increments this value by
one to arrive at the new value for the current data index:

 var newIndex = this.get_dataIndex() + 1;

bapp04.indd 1370bapp04.indd 1370 8/20/07 8:59:58 PM8/20/07 8:59:58 PM

Appendix D: Data Control

1371

 If the new value is not greater than or equal to the total number of data records in the bound collection, it
calls the set_dataIndex setter to set the current data index to the new value:

 if (newIndex < this.get_length())
 this.set_dataIndex(newIndex);

 Finally, it invokes the triggerChangeEvents method as usual to trigger the necessary events:

 this.triggerChangeEvents(oldState);

 Listing D-17: The moveNext Method

 function Sys$Preview$UI$Data$DataControl$moveNext()
{
 if (this._data)
 {
 var oldState = this.prepareChange();
 var newIndex = this.get_dataIndex() + 1;
 if (newIndex < this.get_length())
 this.set_dataIndex(newIndex);

 this.triggerChangeEvents(oldState);
 }
}

 movePrevious
 As the name suggests, the movePrevious method of the DataControl base class enables you to move
to the previous data record of the bound data collection. As Listing D-18 shows, this method begins by
calling the prepareChange method as usual:

 var oldState = this.prepareChange();

 Next, it calls the get_dataIndex getter to return the current data index and decrements this value by
one to arrive at the new value:

 var newIndex = this.get_dataIndex() - 1;

 If the new value is a positive number, it invokes the set_dataIndex setter to set the current data index
to the new value:

 if (newIndex >=0)
 this.set_dataIndex(newIndex);

 Finally, it invokes the triggerChangeEvents method as usual:

 this.triggerChangeEvents(oldState);

bapp04.indd 1371bapp04.indd 1371 8/20/07 8:59:58 PM8/20/07 8:59:58 PM

Appendix D: Data Control

1372

 Listing D-18: The movePrevious Method

 function Sys$Preview$UI$Data$DataControl$movePrevious()
{
 if (this._data)
 {
 var oldState = this.prepareChange();
 var newIndex = this.get_dataIndex() - 1;
 if (newIndex >=0)
 this.set_dataIndex(newIndex);

 this.triggerChangeEvents(oldState);
 }
}

 onBubbleEvent
 The DataControl base class overrides the onBubbleEvent method that it inherits from the Control
base class, as shown in Listing D-19 . Recall that the onBubbleEvent method is where a client control
captures the command events raised by its child controls. The DataControl base class’ implementation
of this method only handles the select event; that is why the method begins by calling the
get_commandName method on its second parameter to determine whether the current event is a
 select event. If so, it takes these steps to handle the event. First, it calls the get_argument method
on its second parameter to return the index of the selected data record:

 var arg = args.get_argument();

 If no data index has been specified, the onBubbleEvent takes these steps to access the current data
index, and uses this index as the selected index. First, it invokes the get_dataContext to return a
 reference to the current data record:

 var dataContext = source.get_dataContext();

 Next, it invokes the get_index method on the current data record to return its index, and uses this
index as the selected index:

 arg = dataContext.get_index();

 Next, it calls the set_dataIndex method to specify the selected index as the current data index:

 this.set_dataIndex(arg);

bapp04.indd 1372bapp04.indd 1372 8/20/07 8:59:58 PM8/20/07 8:59:58 PM

Appendix D: Data Control

1373

 Listing D-19: The onBubbleEvent Method

 function Sys$Preview$UI$Data$DataControl$onBubbleEvent(source, args)
{
 if (args.get_commandName() === “select”)
 {
 var arg = args.get_argument();
 if (!arg && arg !== 0)
 {
 var dataContext = source.get_dataContext();
 if (dataContext)
 arg = dataContext.get_index();
 }

 if (arg && String.isInstanceOfType(arg))
 arg = Number.parseInvariant(arg);

 if (arg || arg === 0)
 {
 this.set_dataIndex(arg);
 return true;
 }
 }
 return false;
}

 descriptor
 The DataControl base class, like any other ASP.NET AJAX client class, exposes a static property named
descriptor that describes its methods and properties to enable its clients to use the ASP.NET AJAX
client-side type inspection facilities to inspect its methods and properties generically, without knowing
the actual type of the class, as shown in Listing D-20 .

 Listing D-20: The descriptor Property

 Sys.Preview.UI.Data.DataControl.descriptor =
{
 properties: [{ name: ‘canMoveNext’, type: Boolean, readOnly: true },
 { name: ‘canMovePrevious’, type: Boolean, readOnly: true },
 { name: ‘data’, type: Sys.Preview.Data.DataTable },
 { name: ‘dataIndex’, type: Number },
 { name: ‘dataItem’, type: Object, readOnly: true },
 { name: ‘length’, type: Number, readOnly: true }],
 methods: [{ name: ‘addItem’ },
 { name: ‘deleteCurrentItem’ },
 { name: ‘moveNext’ },
 { name: ‘movePrevious’ }]
}

bapp04.indd 1373bapp04.indd 1373 8/20/07 8:59:59 PM8/20/07 8:59:59 PM

Appendix D: Data Control

1374

 Developing a Custom Data Control
 Listing D-21 presents the content of a JavaScript file named CustomTable.js that contains the
 implementation of a new version of the CustomTable control that derives from the DataControl base
class. As you can see, the render method is where all the action is. This is the method that renders the
user interface of the CustomTable custom data control. As you can see, this method begins by invoking
the get_data method to return a reference to the data collection bound to the CustomTable data
 control. This control, like any other data control, inherits the get_data method from the DataControl
base class:

 var dataSource = this.get_data();

 Next, the render method raises an exception if the data collection bound to the data control is neither a
JavaScript array nor an IData object:

 if (Sys.Preview.Data.IData.isImplementedBy(dataSource))
 isArray = false;

 else if (!Array.isInstanceOfType(dataSource))
 throw Error.createError(‘Unknown data source type!’);

 Next, the render method simply iterates through the data records in the data collection bound to the
data control to render each record in a <tr> DOM element.

 Listing D-21: The Content of the CustomTable.js JavaScript File that Contains the
Implementation of the CustomTable Custom Data Control

 Type.registerNamespace(“CustomComponents”);
CustomComponents.CustomTable = function
CustomComponents$CustomTable(associatedElement)
{
 CustomComponents.CustomTable.initializeBase(this, [associatedElement]);
}
function CustomComponents$CustomTable$set_dataFieldNames(value)
{
 this._dataFieldNames = value;
}
function CustomComponents$CustomTable$get_dataFieldNames()
{
 return this._dataFieldNames;
}
function CustomComponents$CustomTable$render()
{
 var isArray = true;
 var dataSource = this.get_data();

 if (Sys.Preview.Data.IData.isImplementedBy(dataSource))
 isArray = false;

 else if (!Array.isInstanceOfType(dataSource))
 throw Error.createError(‘Unknown data source type!’);

bapp04.indd 1374bapp04.indd 1374 8/20/07 8:59:59 PM8/20/07 8:59:59 PM

Appendix D: Data Control

1375

 var sb = new Sys.StringBuilder(‘<table align=”center” id=”products” ‘);
 sb.append(‘style=”background-color:LightGoldenrodYellow; border-color:Tan;’);
 sb.append(‘border-width:1px; color:Black”’);
 sb.append(‘ cellpadding=”5”>’);

 var propertyNames = [];

 var length = isArray ? dataSource.length : dataSource.get_length();

 for (var i=0; i<length; i++)
 {
 var dataItem = isArray? dataSource[i] : dataSource.getItem(i);

 if (i == 0)
 {
 sb.append(‘<tr style=”background-color:Tan; font-weight:bold”>’);
 for (var c in this._dataFieldNames)
 {
 sb.append(‘<td>’);
 sb.append(this._dataFieldNames[c]);
 sb.append(‘</td>’);
 }
 sb.append(‘</tr>’);
 }

 if (i % 2 == 1)
 sb.append(‘<tr style=”background-color:PaleGoldenrod”>’);
 else
 sb.append(‘<tr>’);

 for (var j in this._dataFieldNames)
 {
 var dataFieldName = this._dataFieldNames[j];

 var dataFieldValue = Sys.Preview.TypeDescriptor.getProperty(dataItem,
 dataFieldName, null);
 var typeName = Object.getTypeName(dataFieldValue);

 if (typeName !== ‘String’ && typeName !== ‘Number’ && typeName !== ‘Boolean’)
 {
 var convertToStringMethodName =
 Sys.Preview.TypeDescriptor.getAttribute(dataFieldValue,
 “convertToStringMethodName”);

 if (convertToStringMethodName)
 dataFieldValue = Sys.Preview.TypeDescriptor.invokeMethod(dataFieldValue,
 convertToStringMethodName);
 }

 sb.append(‘<td>’)
 sb.append(dataFieldValue);
 sb.append(‘</td>’);
 }

(continued)

bapp04.indd 1375bapp04.indd 1375 8/20/07 8:59:59 PM8/20/07 8:59:59 PM

Appendix D: Data Control

1376

 Listing D-21 (continued)

 sb.append(‘</tr>’);
 }

 sb.append(‘</table>’);
 this.get_element().innerHTML = sb.toString();
}
function CustomComponents$CustomTable$initialize()
{
 CustomComponents.CustomTable.callBaseMethod(this, “initialize”);
}
CustomComponents.CustomTable.prototype =
{
 get_dataFieldNames : CustomComponents$CustomTable$get_dataFieldNames,
 set_dataFieldNames : CustomComponents$CustomTable$set_dataFieldNames,
 render : CustomComponents$CustomTable$render,
 initialize : CustomComponents$CustomTable$initialize
}
CustomComponents.CustomTable.registerClass(“CustomComponents.CustomTable”,
 Sys.Preview.UI.Data.DataControl);
CustomComponents.CustomTable.descriptor =
{
 properties: [{name : “dataFieldNames”, type: Array}]
}
if(typeof(Sys)!==’undefined’)
 Sys.Application.notifyScriptLoaded();

 Listing D-22 shows a page that uses the CustomTable data control. If you run this page, you’ll get the
result shown in Figure D-1 .

 Listing D-22: A Page that Uses the CustomTable Data Control

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <script type=”text/javascript” language=”javascript”>
 function onSuccess(result, userContext, methodName)
 {
 userContext.set_data(result);
 }

 function onFailure(result, userContext, methodName)
 {
 var builder = new Sys.StringBuilder();
 builder.append(“timedOut: “);
 builder.append(result.get_timedOut());
 builder.appendLine();
 builder.appendLine();

bapp04.indd 1376bapp04.indd 1376 8/20/07 8:59:59 PM8/20/07 8:59:59 PM

Appendix D: Data Control

1377

 builder.append(“message: “);
 builder.append(result.get_message());
 builder.appendLine();
 builder.appendLine();
 builder.append(“stackTrace: “);
 builder.appendLine();
 builder.append(result.get_stackTrace());
 builder.appendLine();
 builder.appendLine();
 builder.append(“exceptionType: “);
 builder.append(result.get_exceptionType());
 builder.appendLine();
 builder.appendLine();
 builder.append(“statusCode: “);
 builder.append(result.get_statusCode());
 builder.appendLine();
 builder.appendLine();
 builder.append(“methodName: “);
 builder.append(methodName);

 alert(builder.toString());
 }

 function pageLoad()
 {
 var properties = [];
 properties[“dataFieldNames”] = [‘Title’, ‘AuthorName’, ‘Publisher’];
 var customTable = $create(CustomComponents.CustomTable, properties,
 null, null, $get(“mydiv”));
 MyWebService.GetBooks(onSuccess, onFailure, customTable);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Services>
 <asp:ServiceReference InlineScript=”true” Path=”WebService.asmx” />
 </Services>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 <asp:ScriptReference Path=”CustomTable.js” />
 </Scripts>
 </asp:ScriptManager>
 <div id=”myDiv”>
 </div>
 </form>
</body>
</html>

bapp04.indd 1377bapp04.indd 1377 8/20/07 9:00:00 PM8/20/07 9:00:00 PM

Appendix D: Data Control

1378

 Listing D-22 retrieves the data from the Web service shown in Listing D-23 . This code listing presents the
content of the WebService.asmx file that contains the implementation of our Web service. As you can
see, this Web service exposes a method named GetBooks that retrieves the data from the underlying
database and populates an array of Book objects with them.

 Note that the underlying database is a database named BooksDB that contains two tables named Books
and Authors . The following table describes the Books database table:

Figure D-1

bapp04.indd 1378bapp04.indd 1378 8/20/07 9:00:00 PM8/20/07 9:00:00 PM

Appendix D: Data Control

1379

 The following table describes the Authors database table:

 Column Name Data Type

 BookID int

 Title nvarchar(50)

 Publisher nvarchar(50)

 Price decimal(18, 0)

 AuthorID int

 Column Name Data Type

 AuthorID int

 AuthorName nvarchar(50)

 Make sure you add the following fragment to the Web.config file of the application that contains the
Web service:

 <configuration>
 <connectionStrings>
 <add connectionString=”Data Source=ServerName;Initial Catalog=BooksDB;
 Integrated Security=SSPI” name=”MyConnectionString” />
 </connectionStrings>
</configuration>

 Listing D-23: The Content of the WebService.asmx File that Contains the
Implementation of the Web Service Used by the Page Shown in Listing D-22

 <%@ WebService Language=”C#” Class=”MyWebService” %>
using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Data;
using System.Data.SqlClient;
using System.Configuration;
using System.Web.Script.Services;
using System.Web.Script.Serialization;
using System.Collections;
public class Book
{
 private string title;
 public string Title
 {
 get { return this.title; }
 set { this.title = value; }
 }

(continued)

bapp04.indd 1379bapp04.indd 1379 8/20/07 9:00:00 PM8/20/07 9:00:00 PM

Appendix D: Data Control

1380

 Listing D-23 (continued)

 private string authorName;
 public string AuthorName
 {
 get { return this.authorName; }
 set { this.authorName = value; }
 }
 private string publisher;
 public string Publisher
 {
 get { return this.publisher; }
 set { this.publisher = value; }
 }
 private decimal price;
 public decimal Price
 {
 get { return this.price; }
 set { this.price = value; }
 }
}
[WebService(Namespace = “http://tempuri.org/”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[ScriptService]
public class MyWebService : System.Web.Services.WebService
{
 [WebMethod]
 public Book[] GetBooks()
 {
 ConnectionStringSettings settings =
 ConfigurationManager.ConnectionStrings[“MyConnectionString”];
 string connectionString = settings.ConnectionString;
 string commandText = “Select Title, AuthorName, Publisher, Price “ +
 “From Books Inner Join Authors “ +
 “On Books.AuthorID = Authors.AuthorID “;
 DataTable dt = new DataTable();
 SqlDataAdapter ad = new SqlDataAdapter(commandText, connectionString);
 ad.Fill(dt);
 Book[] books = new Book[dt.Rows.Count];
 for (int i=0; i<dt.Rows.Count; i++)
 {
 books[i] = new Book();
 books[i].Title = (string)dt.Rows[i][“Title”];
 books[i].AuthorName = (string)dt.Rows[i][“AuthorName”];
 books[i].Publisher = (string)dt.Rows[i][“Publisher”];
 books[i].Price = (decimal)dt.Rows[i][“Price”];
 }
 return books;
 }
}

bapp04.indd 1380bapp04.indd 1380 8/20/07 9:00:01 PM8/20/07 9:00:01 PM

 Templated Controls
 Appendix D implemented a client control named CustomTable that uses predetermined HTML
content to render its user interface to display the specified data records. This client control is an
example of one that hard-codes its HTML content. A templated client control is a control that
enables page developers to customize the HTML content that makes up its user interface. In other
words, a templated client control does not hard-code its HTML. Every ASP.NET AJAX templated
client control exposes a property of type ITemplate . As Listing E-1 shows, the ITemplate inter-
face exposes the methods discussed in the following table:

Method Description

createInstance Every subclass of the ITemplate interface must implement
this method. The subclass must contain the appropriate logic to
create the DOM subtree that the template represents and to
 attach this subtree to the document object.

initialize Every subclass of the ITemplate interface must implement
this method to initialize itself.

disposeInstance A static method that must be used as is. This method simply
disposes the current MarkupContext. Recall that the current
MarkupContext maintains two important pieces of informa-
tion: the DOM subtree that the template represents and its
associated ASP.NET AJAX components.

(continued)

 Listing E-1: The ITemplate Interface

 }
Sys.Preview.UI.ITemplate = function Sys$Preview$UI$ITemplate()
{
 throw Error.notImplemented();
}
function Sys$Preview$UI$ITemplate$createInstance()
{
 throw Error.notImplemented();
}

bapp05.indd 1381bapp05.indd 1381 8/20/07 9:00:27 PM8/20/07 9:00:27 PM

Appendix E: Templated Controls

1382

 Listing E-1 (continued)

function Sys$Preview$UI$ITemplate$initialize()
{
 throw Error.notImplemented();
}
Sys.Preview.UI.ITemplate.prototype =
{
 createInstance: Sys$Preview$UI$ITemplate$createInstance,
 initialize: Sys$Preview$UI$ITemplate$initialize
}
Sys.Preview.UI.ITemplate.registerInterface(‘Sys.Preview.UI.ITemplate’);
Sys.Preview.UI.ITemplate.disposeInstance =
function Sys$Preview$UI$ITemplate$disposeInstance(container)
{
 if (container.markupContext)
 {
 container.markupContext.dispose();
 container.markupContext = null;
 }

 TemplateInstance
 Property Description

 instanceElement References the root DOM element of the subtree of DOM elements
represented by the template and its associated MarkupContext

 callbackResult Normally references a DOM element with a specified id HTML
 attribute value

 A subclass of the ITemplate interface normally instantiates and initializes an instance of the
 TemplateInstance class inside the createInstance method, and returns this instance as
 the return value of the createInstance method.

 Listing E-2: The TemplateInstance Type

 Sys.Preview.UI.TemplateInstance = function Sys$Preview$UI$TemplateInstance()
{
 this.instanceElement = null;
 this.callbackResult = null;
}

bapp05.indd 1382bapp05.indd 1382 8/20/07 9:00:27 PM8/20/07 9:00:27 PM

Appendix E: Templated Controls

1383

 Template
 The ASP.NET AJAX client-side framework comes with an implementation of the ITemplate interface
named Template , as shown in Listing E-3 , which is used in ASP.NET AJAX templated controls such as
 ListView . I’ll discuss the members of this class in the following sections.

 Listing E-3: The Template Type

 Sys.Preview.UI.Template =
function Sys$Preview$UI$Template(layoutElement, scriptNode, parentMarkupContext)
{
 Sys.Preview.UI.Template.initializeBase(this);
 this._layoutElement = layoutElement;
 this._scriptNode = scriptNode;
 this._parentMarkupContext = parentMarkupContext;
}
Sys.Preview.UI.Template.prototype =
{
 createInstance: Sys$Preview$UI$Template$createInstance,
 dispose: Sys$Preview$UI$Template$dispose,
 initialize: Sys$Preview$UI$Template$initialize
}
Sys.Preview.UI.Template.registerClass(‘Sys.Preview.UI.Template’, null,
 Sys.Preview.UI.ITemplate, Sys.IDisposable);

 Constructor
 The constructor of the Template class takes three parameters, as shown in the following table:

 Parameter Description

 layoutElement References the DOM element, such as a <div> HTML element,
that represents the template on the current page. Every
ASP.NET AJAX template must be associated with an HTML
 element. This HTML element is known as a layout element.

 scriptNode References the xml-script <template> element that represents
the template in the xml-script.

 parentMarkupContext References the parent MarkupContext of the local
 MarkupContext that the template uses to represent the
 subtree of nodes associated with the template. The parent
 MarkupContext is normally the global MarkupContext .
Recall that the global MarkupContext represents the current
 document object.

bapp05.indd 1383bapp05.indd 1383 8/20/07 9:00:28 PM8/20/07 9:00:28 PM

Appendix E: Templated Controls

1384

 parseFromMarkup
 Every ASP.NET AJAX component either exposes a parseFromMarkup static method or inherits this static
method from its parent component through the process discussed in Appendix A . When the xml-script
parser is parsing an xml-script node that represents an ASP.NET AJAX client class of type Component , it
first accesses a reference to the type and then invokes the parseFromMarkup method of the type, pass-
ing in three parameters to have the type parse the child xml-script nodes of the xml-script node that
 represents the type. The following table presents these three parameters:

 Parameter Description

 Type References the ASP.NET AJAX type associated with the xml-script
node being parsed, which is the <template> xml-script node in
this case.

 Node References the xml-script node being parsed.

 markupContext References the current MarkupContext . (Recall that the current
 MarkupContext maintains two important pieces of information:
a DOM subtree and its associated ASP.NET AJAX components.)

 As you can see from Listing E-4 , the parseFromMarkup static method of the Template class first
calls the getNamedItem method on the attributes collection property of the node that references the
 <template> xml-script element to return a reference to the attribute node named layoutElement :

 var layoutElementAttribute = node.attributes.getNamedItem(‘layoutElement’);

 Next, it calls the nodeValue property on the attribute node to return the value of the attribute node. This
value is a string that contains the value of the id HTML attribute of the HTML element, such as a <div>
element, that represents the template:

 var layoutElementID = layoutElementAttribute.nodeValue;

 Next, it calls the findElement instance method on the current MarkupContext to return a reference to
the HTML DOM element in the subtree of nodes represented by the current MarkupContext . Keep in
mind that this subtree of nodes is not part of the document object. As a result, you cannot call the
 getElementById method on the document object to return a reference to this DOM element. The
 document object is part of the global MarkupContext , not the local MarkupContext , which is local to
the current template:

 var layoutElement = markupContext.findElement(layoutElementID);

 Finally, it instantiates a Template object, passing in three parameters. The first parameter references the
HTML DOM element returned by the call into the findElement method. This DOM element is the root
node of the subtree that the current MarkupContext represents. The second parameter references the
xml-script <template> node that represents the template in the xml-script XML document. The third
parameter references the current MarkupContext .

bapp05.indd 1384bapp05.indd 1384 8/20/07 9:00:28 PM8/20/07 9:00:28 PM

Appendix E: Templated Controls

1385

 Listing E-4: The parseFromMarkup Static Method of the Template Class

 Sys.Preview.UI.Template.parseFromMarkup =
function Sys$Preview$UI$Template$parseFromMarkup(type, node, markupContext)
{
 var layoutElementAttribute = node.attributes.getNamedItem(‘layoutElement’);
 var layoutElementID = layoutElementAttribute.nodeValue;
 var layoutElement = markupContext.findElement(layoutElementID);
 return new Sys.Preview.UI.Template(layoutElement, node, markupContext);
}

 createInstance
 The Template client class, like any other template class, implements the createInstanc e method of
the ITemplate interface. This method takes the parameters shown in the following table:

 Parameter Description

 containerElement References the DOM element on the current page
that will contain the subtree of DOM elements gen-
erated by the call into the createInstance
method. The createInstance method basically
parses the specified <template> node in xml-
script to extract the information that it needs to
generate this subtree of DOM nodes.

 dataContext References the current data context, which is nor-
mally the current data record in the underlying
data record collection.

 instanceElementCreatedCallback References a JavaScript function or delegate that
will be invoked right after the parsing of the child
nodes of the <template> node that represents the
template in the xml-script document.

 callbackContext References contextual information that will be
passed into the JavaScript function or delegate
as is.

 As Listing E-5 shows, the Template class’s implementation of the createInstance method performs
the following tasks. First, it instantiates an instance of the TemplateInstance class:

 var result = new Sys.Preview.UI.TemplateInstance();

 Next, it invokes the cloneNode method on the DOM element that represents the template on the current
page. Note that the createInstance method passes true to the cloneNode method to instruct it to
clone the descendants of this DOM element as well. In other words, the return value of the cloneNode is

bapp05.indd 1385bapp05.indd 1385 8/20/07 9:00:28 PM8/20/07 9:00:28 PM

Appendix E: Templated Controls

1386

a subtree of DOM nodes, in which the root is the clone of the DOM element that represents the template
on the current page. The createInstance method then stores this subtree in the instanceElement
property of the newly instantiated TemplateInstance object:

 result.instanceElement = this._layoutElement.cloneNode(true);

 Then, it invokes the createDocumentFragment method on the document object to create a new docu-
ment fragment:

 var documentFragment = document.createDocumentFragment();

 Next, it appends the cloned sub tree of DOM nodes to this document fragment:

 documentFragment.appendChild(result.instanceElement);

 Then the createInstance method invokes the createLocalContext static method on the
 MarkupContext class to create a new local MarkupContext to represent the preceding document frag-
ment. Note that the createInstance method passes three parameters into the createLocalContext
method. The first parameter references the new document fragment, which contains the preceding
cloned subtree. The second parameter references the current MarkupContext , which is normally the
global MarkupContext . While the global MarkupContext represents the document object, the local
markup context represents this document fragment. (Keep in mind that this document fragment, which
contains the cloned subtree, is not part of the document object. In other words, you cannot invoke the
 getElementById method on the document object to access the DOM elements in this closed subtree.)
The third parameter is the reference to the current data context. The data context is normally the current
data record in the underlying data record collection:

 var markupContext =
 Sys.Preview.MarkupContext.createLocalContext(documentFragment,
 this._parentMarkupContext, dataContext);

 Next, the createInstance method invokes the open method on the newly created MarkupContext
object. Recall that the open method simply instantiates the _pendingReferences collection of the
 MarkupContext object.

 markupContext.open();

 Then it invokes the parseNodes static method on the MarkupParser class to parse the child nodes of
the <template> node that represents the template in xml-script. Note that the createInstance method
passes two parameters into the parseNodes method. The first is an array that contains the references to
all the child nodes of the <template> node that represents the template in xml-script. (These child
nodes are normally the ASP.NET AJAX components that the page developer declares between the
 opening and closing of the template element.) The second parameter references the newly instantiated
local MarkupContext . This is the MarkupContext that represents a cloned subtree of nodes:

 Sys.Preview.MarkupParser.parseNodes(this._scriptNode.childNodes, markupContext);

 The caller of the createInstance method can pass a reference to a JavaScript function or delegate that
represents a JavaScript function, and use this as the third parameter of the createInstance method.
The createInstance method invokes this JavaScript function or delegate at this point and passes three

bapp05.indd 1386bapp05.indd 1386 8/20/07 9:00:29 PM8/20/07 9:00:29 PM

Appendix E: Templated Controls

1387

parameters into it. The first parameter references the cloned subtree of nodes. The second parameter
 references the newly created MarkupContext . The third parameter references the JavaScript object that
the caller of the createInstance method has passed into the method as its last parameter (if any). As
you can see, the createInstance method doesn’t do anything with its last parameter. It simply passes
it back into its caller through the JavaScript function, or the delegate that the caller passed into the
 createInstance method as its third argument. It is the responsibility of this JavaScript function or
 delegate to use the parameters passed into it to run the necessary custom code and return the result to
the createInstance method. The createInstance method simply stores the returned value of this
JavaScript function or delegate in the callbackResult property of the TemplateInstance object. The
caller of the createInstance method can then access this return value via the callbackResult prop-
erty of this object.

 if (instanceElementCreatedCallback)
 result.callbackResult = instanceElementCreatedCallback(result.instanceElement,
 markupContext, callbackContext);

 Next, the createInstance method stores the newly created markupContext in the markupContext
property of the instanceElement property of the TemplateInstance object.

 result.instanceElement.markupContext = markupContext;

 Then the createInstance method appends the cloned subtree of nodes as the child element of the
DOM element passed into the method as its first parameter:

 containerElement.appendChild(result.instanceElement);

 Next, the createInstance method invokes the close method on the newly created MarkupContext .
Recall that this method resolves the cross-references among the ASP.NET AJAX objects that represent the
parsed nodes:

 markupContext.close();

 Finally, the createInstance method returns the TemplateInstance object to its caller:

 return result;

 Listing E-5: The createInstance Method

 function Sys$Preview$UI$Template$createInstance(containerElement, dataContext,
 instanceElementCreatedCallback,
 callbackContext)
{
 var result = new Sys.Preview.UI.TemplateInstance();
 result.instanceElement = this._layoutElement.cloneNode(true);
 var documentFragment = document.createDocumentFragment();
 documentFragment.appendChild(result.instanceElement);
 var markupContext =
 Sys.Preview.MarkupContext.createLocalContext(documentFragment,
 this._parentMarkupContext, dataContext);
 markupContext.open();
 Sys.Preview.MarkupParser.parseNodes(this._scriptNode.childNodes, markupContext);

(continued)

bapp05.indd 1387bapp05.indd 1387 8/20/07 9:00:29 PM8/20/07 9:00:29 PM

Appendix E: Templated Controls

1388

 Listing E-5 (continued)

 if (instanceElementCreatedCallback)
 result.callbackResult = instanceElementCreatedCallback(result.instanceElement,
 markupContext, callbackContext);
 result.instanceElement.markupContext = markupContext;
 containerElement.appendChild(result.instanceElement);
 markupContext.close();
 return result;
}

 Developing a Custom Template
 Listing E-6 presents the content of a JavaScript file named TemplateField.js that contains the imple-
mentation of a custom template named TemplateField . (You’ll see an application of this custom
 template later in this appendix.) As you can see, the TemplateField inherits from the Template class
and extends its functionality to add support for a new property named headerText :

 CustomComponents.TemplateField.registerClass(“CustomComponents.TemplateField”,
 Sys.Preview.UI.Template);

 I’ll walk you through the implementation of the members of this template in the following sections.

 Listing E-6: The Content of the TemplateField.js JavaScript File that Contains the
Implementation of the TemplateField Custom Template

 Type.registerNamespace(“CustomComponents”);
CustomComponents.TemplateField =
function CustomComponents$TemplateField(layoutElement, scriptNode,
 parentMarkupContext, headerText)
{
 CustomComponents.TemplateField.initializeBase(this,
 [layoutElement, scriptNode, parentMarkupContext]);
 this._headerText = headerText;
}
function CustomComponents$TemplateField$get_headerText()
{
 return this._headerText;
}
CustomComponents.TemplateField.prototype =
{
 get_headerText : CustomComponents$TemplateField$get_headerText
}
CustomComponents.TemplateField.registerClass(“CustomComponents.TemplateField”,
 Sys.Preview.UI.Template);
CustomComponents.TemplateField.parseFromMarkup =
function Sys$Preview$UI$Template$parseFromMarkup(type, node, markupContext)
{
 var layoutElementAttribute = node.attributes.getNamedItem(‘layoutElement’);
 Sys.Debug.assert(!!(layoutElementAttribute &&
 layoutElementAttribute.nodeValue.length),
 ‘Missing layoutElement attribute on template definition’);

bapp05.indd 1388bapp05.indd 1388 8/20/07 9:00:29 PM8/20/07 9:00:29 PM

Appendix E: Templated Controls

1389

 var layoutElementID = layoutElementAttribute.nodeValue;
 var layoutElement = markupContext.findElement(layoutElementID);
 Sys.Debug.assert(!!layoutElement,
 String.format(‘Could not find the HTML element with ID “{0}”
 associated with the template’,
 layoutElementID));
 var headerTextAttribute = node.attributes.getNamedItem(‘headerText’);
 var headerText = headerTextAttribute.nodeValue;
 return new CustomComponents.TemplateField(layoutElement, node,
 markupContext, headerText);
}
if(typeof(Sys)!==’undefined’)
 Sys.Application.notifyScriptLoaded();

 Constructor
 As Listing E-7 shows, the constructor of the TemplateField custom template takes a fourth parameter,
in addition to the parameters that the Template constructor takes. This fourth parameter is used to
set the headerText property of this custom template:

 this._headerText = headerText;

 Note that the constructor of the TemplateField custom template passes its first three parameters to
the constructor of the Template class:

 CustomComponents.TemplateField.initializeBase(this,
 [layoutElement, scriptNode, parentMarkupContext]);

 Listing E-7: The Constructor of the TemplateField Custom Template

 CustomComponents.TemplateField =
function CustomComponents$TemplateField(layoutElement, scriptNode,
parentMarkupContext, headerText)
{
 CustomComponents.TemplateField.initializeBase(this,
 [layoutElement, scriptNode, parentMarkupContext]);
 this._headerText = headerText;
}

 headerText
 The TemplateField custom template extends the functionality of the Template base class to add
 support for a read-only string property named headerText . You can set this property only through the
constructor of the TemplateField custom template. Therefore, this custom template does not expose a
setter method for setting this property. Listing E-8 presents the implementation of the getter method for
this property.

bapp05.indd 1389bapp05.indd 1389 8/20/07 9:00:30 PM8/20/07 9:00:30 PM

Appendix E: Templated Controls

1390

 Listing E-8: The Getter Method for the HeaderText Property

 function CustomComponents$TemplateField$get_headerText()
{
 return this._headerText;
}

 parseFromMarkup
 Every time you implement a custom template that derives from the Template class, you must also
implement a method for your custom template that meets the following criteria:

❑ It must be named parseFromMarkup .

❑ It must be static — that is, it must be defined on your custom template, not its prototype
property.

❑ This method must take the following three parameters:

❑ type : This parameter references the Type object that describes the ASP.NET AJAX type
that represents the DOM node referenced by the second parameter.

❑ node : This parameter references the DOM node that represents your custom template in
xml-script.

❑ markupContext : This parameter references the current MarkupContext , which is
 normally the global MarkupContext .

❑ This method must instantiate an instance of your custom template and return the instance to
its caller.

 Listing E-9 presents the TemplateField custom template’s implementation of the parseFromMarkup
method. This method begins by invoking the getNamedItem method on the attributes collection
property of the DOM node that represents your custom template in xml-script, in order to return a refer-
ence to the DOM node that represents the layoutElement attribute on your custom template:

 var layoutElementAttribute = node.attributes.getNamedItem(‘layoutElement’);

 Next, it invokes the nodeValue property on the DOM node that represents the layoutElement
 attribute, to access the value of this attribute:

 var layoutElementID = layoutElementAttribute.nodeValue;

 Then it invokes the findElement method on the current MarkupContext to return a reference to the
associated DOM element of the TemplateField custom template:

 var layoutElement = markupContext.findElement(layoutElementID);

 Note that parseFromMarkup raises an exception if the current page does not contain the specified
DOM element.

bapp05.indd 1390bapp05.indd 1390 8/20/07 9:00:30 PM8/20/07 9:00:30 PM

Appendix E: Templated Controls

1391

 Next, the parseFromMarkup method invokes the getNamedItem method on the attributes collection
property of the DOM node that represents the TemplateField in xml-script, in order to return a refer-
ence to the DOM node that represents the headerText attribute:

 var headerTextAttribute = node.attributes.getNamedItem(‘headerText’);

 Then it invokes the nodeValue property on the attribute node to access the value of this attribute:

 var headerText = headerTextAttribute.nodeValue;

 Next, it instantiates and returns an instance of the TemplateField , passing in the reference to the
 associated DOM element of the template, the reference to the DOM element that represents the template
in xml-script, the reference to the current MarkupContext , and the header text.

 return new CustomComponents.TemplateField(layoutElement, node,
 markupContext, headerText);

 Listing E-9: The parseFromMarkup Method

 CustomComponents.TemplateField.parseFromMarkup =
function Sys$Preview$UI$Template$parseFromMarkup(type, node, markupContext)
{
 var layoutElementAttribute = node.attributes.getNamedItem(‘layoutElement’);
 Sys.Debug.assert(!!(layoutElementAttribute &&
 layoutElementAttribute.nodeValue.length),
 ‘Missing layoutElement attribute on template definition’);
 var layoutElementID = layoutElementAttribute.nodeValue;

 var layoutElement = markupContext.findElement(layoutElementID);
 Sys.Debug.assert(!!layoutElement,
 String.format(‘Could not find the HTML element with ID “{0}”
 associated with the template’,
 layoutElementID));
 var headerTextAttribute = node.attributes.getNamedItem(‘headerText’);
 var headerText = headerTextAttribute.nodeValue;
 return new CustomComponents.TemplateField(layoutElement, node,
 markupContext, headerText);
}

 Developing a Custom Templated Data Control
 Recall that we developed a custom data control named CustomTable in Appendix D . The main problem
with this data control is that its user interface is not customizable. The great thing about templates is that
they enable page developers to customize the HTML content of their associated client controls. In this
section, I’ll present and discuss the implementation of a new version of the CustomTable data control
that enables page developers to declare instances of the TemplateField custom template in xml-script
to customize the HTML content of the CustomTable client control and the appearance of the control.
Listing E-10 presents the content of a JavaScript file named CustomTable.js that contains the

bapp05.indd 1391bapp05.indd 1391 8/20/07 9:00:30 PM8/20/07 9:00:30 PM

Appendix E: Templated Controls

1392

 implementation of the CustomTable templated data control. This is a data control because it derives
from the DataControl base class:

 CustomComponents.CustomTable.registerClass(“CustomComponents.CustomTable”,
 Sys.Preview.UI.Data.DataControl);

 I’ll discuss the members of this custom templated data control in the following sections.

 Listing E-10: The Content of the CustomTable.js JavaScript File that Contains the
Implementation of the CustomTable Templated Data Control

 Type.registerNamespace(“CustomComponents”);
CustomComponents.CustomTable =
function CustomComponents$CustomTable(associatedElement)
{
 CustomComponents.CustomTable.initializeBase(this, [associatedElement]);
 this._fields = [];
}
function CustomComponents$CustomTable$get_fields()
{
 return this._fields;
}
function CustomComponents$CustomTable$get_cssClass()
{
 return this._cssClass;
}
function CustomComponents$CustomTable$set_cssClass(value)
{
 this._cssClass = value;
}
function CustomComponents$CustomTable$get_hoverCssClass()
{
 return this._hoverCssClass;
}
function CustomComponents$CustomTable$set_hoverCssClass(value)
{
 this._hoverCssClass = value;
}
function CustomComponents$CustomTable$get_headerCssClass()
{
 return this._headerCssClass;
}
function CustomComponents$CustomTable$set_headerCssClass(value)
{
 this._headerCssClass = value;
}
function CustomComponents$CustomTable$get_itemCssClass()
{
 return this._itemCssClass;
}
function CustomComponents$CustomTable$set_itemCssClass(value)
{
 this._itemCssClass = value;
}

bapp05.indd 1392bapp05.indd 1392 8/20/07 9:00:30 PM8/20/07 9:00:30 PM

Appendix E: Templated Controls

1393

function CustomComponents$CustomTable$get_alternatingItemCssClass()
{
 return this._alternatingItemCssClass;
}
function CustomComponents$CustomTable$set_alternatingItemCssClass(value)
{
 this._alternatingItemCssClass = value;
}
function CustomComponents$CustomTable$render()
{
 var isArray = true;
 var dataSource = this.get_data();

 if (Sys.Preview.Data.IData.isImplementedBy(dataSource))
 isArray = false;

 else if (!Array.isInstanceOfType(dataSource))
 throw Error.createError(‘Unknown data source type!’);

 var table = document.createElement(“table”);
 if (this._cssClass)
 table.className = this._cssClass;

 var length = isArray ? dataSource.length : dataSource.get_length();
 var dataRow;
 var dataItem;
 var dataCell;
 var index = 0;
 var headerRow;
 var headerCell;

 if (this._fields)
 {
 headerRow = table.insertRow(index);
 if (this._headerCssClass)
 headerRow.className = this._headerCssClass;

 index++;
 for (var c in this._fields)
 {
 headerCell = headerRow.insertCell(c);
 headerCell.innerText = this._fields[c].get_headerText();
 }
 }

 this._toggleCssClassHandler =
 Function.createDelegate(this, this._toggleCssClass);

 for (var i=0; i<length; i++)
 {
 dataItem = isArray? dataSource[i] : dataSource.getItem(i);

(continued)

bapp05.indd 1393bapp05.indd 1393 8/20/07 9:00:31 PM8/20/07 9:00:31 PM

Appendix E: Templated Controls

1394

Listing E-10 (continued)

 if (this._fields)
 {
 dataRow = table.insertRow(index + i);
 $addHandler(dataRow, “mouseover”, this._toggleCssClassHandler);
 $addHandler(dataRow, “mouseout”, this._toggleCssClassHandler);

 if ((i % 2 === 1) && (this._alternatingItemCssClass))
 dataRow.className = this._alternatingItemCssClass;

 else if (this._itemCssClass)
 dataRow.className = this._itemCssClass;
 for (var c in this._fields)
 {
 dataCell = dataRow.insertCell(c);
 this._fields[c].createInstance(dataCell, dataItem);
 }
 }
 }

 this.get_element().appendChild(table);
}
function CustomComponents$CustomTable$_toggleCssClass(evt)
{
 var s = evt.target;
 while (s && (typeof(s.insertCell) === ‘undefined’))
 {
 s = s.parentNode;
 }

 Sys.UI.DomElement.toggleCssClass(s, this._hoverCssClass);
}
CustomComponents.CustomTable.prototype =
{
 render : CustomComponents$CustomTable$render,
 get_cssClass : CustomComponents$CustomTable$get_cssClass,
 set_cssClass : CustomComponents$CustomTable$set_cssClass,
 get_hoverCssClass : CustomComponents$CustomTable$get_hoverCssClass,
 set_hoverCssClass : CustomComponents$CustomTable$set_hoverCssClass,
 get_headerCssClass : CustomComponents$CustomTable$get_headerCssClass,
 set_headerCssClass : CustomComponents$CustomTable$set_headerCssClass,
 get_itemCssClass : CustomComponents$CustomTable$get_itemCssClass,
 set_itemCssClass : CustomComponents$CustomTable$set_itemCssClass,
 get_alternatingItemCssClass :
 CustomComponents$CustomTable$get_alternatingItemCssClass,
 set_alternatingItemCssClass :
 CustomComponents$CustomTable$set_alternatingItemCssClass,
 _toggleCssClass : CustomComponents$CustomTable$_toggleCssClass,
 get_fields : CustomComponents$CustomTable$get_fields
}
CustomComponents.CustomTable.registerClass(“CustomComponents.CustomTable”,
 Sys.Preview.UI.Data.DataControl);

bapp05.indd 1394bapp05.indd 1394 8/20/07 9:00:31 PM8/20/07 9:00:31 PM

Appendix E: Templated Controls

1395

CustomComponents.CustomTable.descriptor =
{
 properties: [{name: “fields”, type: Array, readOnly: true},
 {name: ‘cssClass’, type: String },
 {name: ‘hoverCssClass’, type: String },
 {name: ‘headerCssClass’, type: String },
 {name: ‘itemCssClass’, type: String },
 {name: ‘alternatingItemCssClass’, type: String }
]
}
if(typeof(Sys)!==’undefined’)
 Sys.Application.notifyScriptLoaded();

 fields
 The CustomTable template data control exposes an array property named fields , as shown in
 Listing E-11 . As you’ll see later, page developers declaratively add instances of the TemplateField
 template to this array in xml-script. They do this in order to specify which data fields of each data record
of the data collection bound to the CustomTable must be displayed, and what header text must be used
for each data column.

 Listing E-11: The Getter Method for the Fields Property

 function CustomComponents$CustomTable$get_fields()
{
 return this._fields;
}

 Style Properties
 The following table describes the style properties of the CustomTable templated data control:

 Property Description

 cssClass Specifies the name of the CSS class for the containing
 <table> element of the CustomTable control

 headerCssClass Specifies the name of the CSS class for the header row

 hoverCssClass Specifies the name of the CSS class for the data row
when the mouse hovers over the data row

 itemCssClass Specifies the name of the CSS class for the even-
 numbered data rows

 alternatingItemCssClass Specifies the name of the CSS class for the odd-
 numbered data rows

 render
 Every data control that inherits from the DataControl base class must implement a method named
 render . Listing E-12 presents the CustomTable class’s implementation of this method. As you can see,

bapp05.indd 1395bapp05.indd 1395 8/20/07 9:00:31 PM8/20/07 9:00:31 PM

Appendix E: Templated Controls

1396

it begins by calling the get_data method to return a reference to the data collection bound to the
 CustomTable control. The CustomTable control, like any other data control, inherits the get_data
method from the DataControl base class:

 var dataSource = this.get_data();

 Next, it raises an exception if the bound data collection is not a JavaScript array and does not implement
the IData interface:

 if (Sys.Preview.Data.IData.isImplementedBy(dataSource))
 isArray = false;

 else if (!Array.isInstanceOfType(dataSource))
 throw Error.createError(‘Unknown data source type!’);

 Then it creates a table DOM element:

 var table = document.createElement(“table”);

 Next, it assigns the value of the cssClass style property to the className property of the table DOM
element:

 if (this._cssClass)
 table.className = this._cssClass;

 Next, the CustomTable control determines the total number of data records in the data collection bound
to the CustomTable data control:

 var length = isArray ? dataSource.length : dataSource.get_length();

 Then it inserts a new row into the table DOM element and sets its className property to the value of
the headerCssClass property:

 headerRow = table.insertRow(index);
 if (this._headerCssClass)
 headerRow.className = this._headerCssClass;

 index++;

 Next, it iterates through the template objects in the fields collection, inserts a cell into the newly added row,
and sets the inner text of this cell to the value of the headerText property of the enumerated template object:

 for (var c in this._fields)
 {
 headerCell = headerRow.insertCell(c);
 headerCell.innerText = this._fields[c].get_headerText();
 }

 Then it creates a delegate that represents the _toggleCssClass method:

 this._toggleCssClassHandler =
 Function.createDelegate(this, this._toggleCssClass);

bapp05.indd 1396bapp05.indd 1396 8/20/07 9:00:32 PM8/20/07 9:00:32 PM

Appendix E: Templated Controls

1397

 Next, the CustomTable control iterates through the data records in the data collection bound to the
 CustomTable control and performs the following tasks for each enumerated data record.

 dataItem = isArray? dataSource[i] : dataSource.getItem(i);

 First, it inserts a new row into the table DOM element and registers the _toggleCssClassHandler
 delegate as the event handler for the mouseover and mouseout events of the newly added row.

 dataRow = table.insertRow(index + i);
 $addHandler(dataRow, “mouseover”, this._toggleCssClassHandler);
 $addHandler(dataRow, “mouseout”, this._toggleCssClassHandler);

 If the row is an even-numbered row, the CustomTable control assigns the value of the
itemCssClass property to the className property of the row. Otherwise, it assigns the
value of the alternatingItemCssClass property to the className property:

 if ((i % 2 === 1) && (this._alternatingItemCssClass))
 dataRow.className = this._alternatingItemCssClass;

 else if (this._itemCssClass)
 dataRow.className = this._itemCssClass;

 Next, it iterates through the template objects in the fields collection, inserts a new cell for each tem-
plate object, and calls the createInstance method of the template object to render the HTML enclosed
within the template object into the newly added cell to display the current data record:

 for (var c in this._fields)
 {
 dataCell = dataRow.insertCell(c);
 this._fields[c].createInstance(dataCell, dataItem);
 }

 Finally, it appends the table DOM element to the associated DOM element of the CustomTable control
as a child element:

 this.get_element().appendChild(table);

 Listing E-12: The Render Method

 function CustomComponents$CustomTable$render()
{
 var isArray = true;
 var dataSource = this.get_data();

 if (Sys.Preview.Data.IData.isImplementedBy(dataSource))
 isArray = false;

 else if (!Array.isInstanceOfType(dataSource))
 throw Error.createError(‘Unknown data source type!’);

(continued)

bapp05.indd 1397bapp05.indd 1397 8/20/07 9:00:32 PM8/20/07 9:00:32 PM

Appendix E: Templated Controls

1398

Listing E-12 (continued)

 var table = document.createElement(“table”);
 if (this._cssClass)
 table.className = this._cssClass;

 var length = isArray ? dataSource.length : dataSource.get_length();
 var dataRow;
 var dataItem;
 var dataCell;
 var index = 0;
 var headerRow;
 var headerCell;

 if (this._fields)
 {
 headerRow = table.insertRow(index);
 if (this._headerCssClass)
 headerRow.className = this._headerCssClass;

 index++;
 for (var c in this._fields)
 {
 headerCell = headerRow.insertCell(c);
 headerCell.innerText = this._fields[c].get_headerText();
 }
 }

 this._toggleCssClassHandler =
 Function.createDelegate(this, this._toggleCssClass);

 for (var i=0; i<length; i++)
 {
 dataItem = isArray? dataSource[i] : dataSource.getItem(i);

 if (this._fields)
 {
 dataRow = table.insertRow(index + i);
 $addHandler(dataRow, “mouseover”, this._toggleCssClassHandler);
 $addHandler(dataRow, “mouseout”, this._toggleCssClassHandler);

 if ((i % 2 === 1) && (this._alternatingItemCssClass))
 dataRow.className = this._alternatingItemCssClass;

 else if (this._itemCssClass)
 dataRow.className = this._itemCssClass;
 for (var c in this._fields)
 {
 dataCell = dataRow.insertCell(c);
 this._fields[c].createInstance(dataCell, dataItem);
 }
 }
 }

 this.get_element().appendChild(table);
}

bapp05.indd 1398bapp05.indd 1398 8/20/07 9:00:32 PM8/20/07 9:00:32 PM

Appendix E: Templated Controls

1399

 _toggleCssClass
 Recall from Listing E-12 that the render method registers the delegate that represents the
_toggleCssClass method as an event handler for the mouseout and mouseover events of
the CustomTable control. As Listing E-13 shows, the _toggleCssClass method invokes the
 toggleCssClass static method on the DomElement to toggle the CSS class name.

 Listing E-13: The _toggleCssClass Method

 function CustomComponents$CustomTable$_toggleCssClass(evt)
{
 var s = evt.target;
 while (s && (typeof(s.insertCell) === ‘undefined’))
 {
 s = s.parentNode;
 }

 Sys.UI.DomElement.toggleCssClass(s, this._hoverCssClass);
}

 Descriptor
 The CustomTable control exposes a descriptor static property to expose its properties to the ASP.NET
AJAX type inspection infrastructure, as shown in Listing E-14 . This will enable page developers to set
these properties in xml-script.

 Listing E-14: The Descriptor Static Property

 CustomComponents.CustomTable.descriptor =
{
 properties: [{name: “fields”, type: Array, readOnly: true},
 {name: ‘cssClass’, type: String },
 {name: ‘hoverCssClass’, type: String },
 {name: ‘headerCssClass’, type: String },
 {name: ‘itemCssClass’, type: String },
 {name: ‘alternatingItemCssClass’, type: String }
]
}

 Using the TemplateField and CustomTable Templated
Data Controls

 Follow these steps to use the TemplateField and CustomTable templated data controls:

1. Create a new Ajax-enabled Web site in Visual Studio 2005.

2. Add a new JavaScript file named TemplateField.js to the root directory of this application
and add Listing E-6 to this file.

3. Add a new JavaScript file named CustomTable.js to the root directory of this application and
add Listing E-10 to this file.

bapp05.indd 1399bapp05.indd 1399 8/20/07 9:00:32 PM8/20/07 9:00:32 PM

Appendix E: Templated Controls

1400

4. Add a new Web page named CustomTable.aspx to the root directory of this application and
add Listing E-15 to this file.

5. Add a new Web service named WebService.asmx to the root directory of this application
and add Listing E-16 to this file.

 Keep in mind that this example uses the same BooksDB database discussed in Appendix D .

 Listing E-15: A Page that Uses the TemplateField and CustomTable Templated
Data Controls

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
 <title>Untitled Page</title>
 <style type=”text/css”>
 .cssClass
 {
 background-color: LightGoldenrodYellow;
 border-color: Tan;
 border-width: 1px;
 }

 .headerCssClass
 {
 background-color: Tan;
 font-weight: bold;
 }

 .alternatingItemCssClass
 {
 background-color: PaleGoldenrod
 }

 .hoverCssClass
 {
 background-color: DarkSlateBlue;
 color: GhostWhite;
 }

 </style>
 <script type=”text/javascript” language=”javascript”>
 function onSuccess(result, userContext, methodName)
 {
 userContext.set_data(result);
 }

bapp05.indd 1400bapp05.indd 1400 8/20/07 9:00:33 PM8/20/07 9:00:33 PM

Appendix E: Templated Controls

1401

 function onFailure(result, userContext, methodName)
 {
 var builder = new Sys.StringBuilder();
 builder.append(“timedOut: “);
 builder.append(result.get_timedOut());
 builder.appendLine();
 builder.appendLine();
 builder.append(“message: “);
 builder.append(result.get_message());
 builder.appendLine();
 builder.appendLine();
 builder.append(“stackTrace: “);
 builder.appendLine();
 builder.append(result.get_stackTrace());
 builder.appendLine();
 builder.appendLine();
 builder.append(“exceptionType: “);
 builder.append(result.get_exceptionType());
 builder.appendLine();
 builder.appendLine();
 builder.append(“statusCode: “);
 builder.append(result.get_statusCode());
 builder.appendLine();
 builder.appendLine();
 builder.append(“methodName: “);
 builder.append(methodName);

 alert(builder.toString());
 }

 function pageLoad()
 {
 var customTable = Sys.Application.findComponent(“customTable”);
 MyWebService.GetBooks(onSuccess, onFailure, customTable);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager runat=”server” ID=”ScriptManager1”>
 <Services>
 <asp:ServiceReference InlineScript=”true” Path=”WebService.asmx” />
 </Services>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 <asp:ScriptReference Path=”CustomTable.js” />
 <asp:ScriptReference Path=”TemplateField.js” />
 </Scripts>
 </asp:ScriptManager>

(continued)

bapp05.indd 1401bapp05.indd 1401 8/20/07 9:00:33 PM8/20/07 9:00:33 PM

Appendix E: Templated Controls

1402

Listing E-15 (continued)

 <div id=”customTable” />
 <div style=”display: none;” >
 <div id=”field1”>

 </div>
 <div id=”field2”>

 </div>
 <div id=”field3”>

 </div>
 </div>
 </form>
 <script type=”text/xml-script”>
 <page xmlns=”http://schemas.microsoft.com/xml-script/2005”
 xmlns:custom=”CustomComponents”>
 <components>
 <custom:CustomTable id=”customTable” cssClass=”cssClass”
 headerCssClass=”headerCssClass” hoverCssClass=”hoverCssClass”
 alternatingItemCssClass=”alternatingItemCssClass” >
 <fields>
 <custom:TemplateField layoutElement=”field1” headerText=”Title”>
 <label id=”title”>
 <bindings>
 <binding dataPath=”Title” property=”text” />
 </bindings>
 </label>
 </custom:TemplateField>
 <custom:TemplateField layoutElement=”field2” headerText=”Publisher”>
 <label id=”publisher”>
 <bindings>
 <binding dataPath=”Publisher” property=”text” />
 </bindings>
 </label>
 </custom:TemplateField>
 <custom:TemplateField layoutElement=”field3” headerText=”Price”>
 <label id=”price”>
 <bindings>
 <binding dataPath=”Price” property=”text” transform=”ToString”
 transformerArgument=”${0}” />
 </bindings>
 </label>
 </custom:TemplateField>
 </fields>
 </custom:CustomTable>
 </components>
 </page>
 </script>
</body>
</html>

bapp05.indd 1402bapp05.indd 1402 8/20/07 9:00:33 PM8/20/07 9:00:33 PM

Appendix E: Templated Controls

1403

 Listing E-16: The MyWebService Web Service

 <%@ WebService Language=”C#” Class=”MyWebService” %>
using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Data;
using System.Data.SqlClient;
using System.Configuration;
using System.Web.Script.Services;
using System.Web.Script.Serialization;
using System.Collections;
public class Book
{
 private string title;
 public string Title
 {
 get { return this.title; }
 set { this.title = value; }
 }
 private string authorName;
 public string AuthorName
 {
 get { return this.authorName; }
 set { this.authorName = value; }
 }
 private string publisher;
 public string Publisher
 {
 get { return this.publisher; }
 set { this.publisher = value; }
 }
 private decimal price;
 public decimal Price
 {
 get { return this.price; }
 set { this.price = value; }
 }
}
[WebService(Namespace = “http://tempuri.org/”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[ScriptService]
public class MyWebService : System.Web.Services.WebService
{
 [WebMethod]
 public Book[] GetBooks()
 {
 ConnectionStringSettings settings =
 ConfigurationManager.ConnectionStrings[“MyConnectionString”];
 string connectionString = settings.ConnectionString;
 string commandText = “Select Title, AuthorName, Publisher, Price “ +
 “From Books Inner Join Authors “ +
 “On Books.AuthorID = Authors.AuthorID “;

(continued)

bapp05.indd 1403bapp05.indd 1403 8/20/07 9:00:33 PM8/20/07 9:00:33 PM

Appendix E: Templated Controls

1404

 Listing E-16 (continued)

 DataTable dt = new DataTable();
 SqlDataAdapter ad = new SqlDataAdapter(commandText, connectionString);
 ad.Fill(dt);
 Book[] books = new Book[dt.Rows.Count];
 for (int i=0; i<dt.Rows.Count; i++)
 {
 books[i] = new Book();
 books[i].Title = (string)dt.Rows[i][“Title”];
 books[i].AuthorName = (string)dt.Rows[i][“AuthorName”];
 books[i].Publisher = (string)dt.Rows[i][“Publisher”];
 books[i].Price = (decimal)dt.Rows[i][“Price”];
 }
 return books;
 }
}

 Using a custom ASP.NET AJAX class in xml-script requires you to define on the <page> element an
XML namespace prefix that maps to the ASP.NET AJAX namespace containing the custom ASP.NET
AJAX class. In this case, Listing E-15 defines an XML namespace prefix named custom that maps to the
ASP.NET AJAX CustomComponents namespace, because this is the namespace that contains the
 TemplateField and CustomTable ASP.NET AJAX client classes:

 <script type=”text/xml-script”>
 <page xmlns=”http://schemas.microsoft.com/xml-script/2005”

 xmlns:custom=”CustomComponents”>

 <components>
 <custom:CustomTable id=”customTable” cssClass=”cssClass”
 headerCssClass=”headerCssClass” hoverCssClass=”hoverCssClass”
 alternatingItemCssClass=”alternatingItemCssClass” >
 </custom:CustomTable>
 . . .
 </components>
 </page>
 </script>

 You must qualify with this XML namespace prefix the names of the XML elements that represent
instances of your custom client class in xml-script. In this case, Listing E-15 qualifies the names of the
 TemplateField and CustomTable XML elements with the prefix custom , as shown in the highlighted
portions of the following excerpt from Listing E-15 :

 <script type=”text/xml-script”>
 <page xmlns=”http://schemas.microsoft.com/xml-script/2005”
 xmlns:custom=”CustomComponents”>
 <components>

 <custom:CustomTable

 id=”customTable” cssClass=”cssClass”
 headerCssClass=”headerCssClass” hoverCssClass=”hoverCssClass”

bapp05.indd 1404bapp05.indd 1404 8/20/07 9:00:34 PM8/20/07 9:00:34 PM

Appendix E: Templated Controls

1405

 alternatingItemCssClass=”alternatingItemCssClass” >
 <fields>

 <custom:TemplateField

 layoutElement=”field1” headerText=”Title”>
 <label id=”title”>
 <bindings>
 <binding dataPath=”Title” property=”text” />
 </bindings>
 </label>
 </custom:TemplateField>

 <custom:TemplateField

 layoutElement=”field2” headerText=”Publisher”>
 <label id=”publisher”>
 <bindings>
 <binding dataPath=”Publisher” property=”text” />
 </bindings>
 </label>
 </custom:TemplateField>

 <custom:TemplateField

 layoutElement=”field3” headerText=”Price”>
 <label id=”Price”>
 <bindings>
 <binding dataPath=”Price” property=”text” transform=”ToString”
 transformerArgument=”${0}” />
 </bindings>
 </label>
 </custom:TemplateField>
 </fields>
 </custom:CustomTable>
 </components>
 <page>
 <script>

 As you can see, each TemplateField in Listing E-15 is associated with an HTML element on the page.
For example, consider the following excerpt from Listing E-15 that contains one of these
 TemplateFields :

 <custom:TemplateField layoutElement=”field1” headerText=”Title”>
 <label id=”title”>
 <bindings>
 <binding dataPath=”Title” property=”text” />
 </bindings>
 </label>
 </custom:TemplateField>

 The following excerpt from Listing E-15 shows the HTML element associated with the TemplateField :

 <div id=”field1”>

 </div>

bapp05.indd 1405bapp05.indd 1405 8/20/07 9:00:34 PM8/20/07 9:00:34 PM

Appendix E: Templated Controls

1406

 Also note that each TemplateField contains a <label> element that represents a element,
which is the subelement of the associated HTML element of the TemplateField . For example, in the
preceding two excerpts, the <label> subelement of the <custom:TemplateField> represents the
 subelement of the <div> element associated with this TemplateField .

 Note that each <label> element contains a <bindings> subelement, which in turn contains a
 <binding> subelement. This <binding> subelement binds the text property of its associated <label>
element to the specified data field of the current data record of the data collection bound to the
 CustomTable data control. For example, in the case of the following excerpt from Listing E-15 , the
 <binding> subelement binds the text property of the <label> element that has the id attribute value
of title to the Title data field of the current data record:

 <custom:TemplateField layoutElement=“field1” headerText=“Title“>
 <label id=“title“>
 <bindings>

 <binding dataPath=”Title” property=”text” />

 </bindings>
 </label>
 </custom:TemplateField>

 Also note that all <custom:TemplateField> elements are declared as child elements of the <fields>
element:

 <custom:CustomTable id=”customTable” cssClass=”cssClass”
 headerCssClass=”headerCssClass” hoverCssClass=”hoverCssClass”
 alternatingItemCssClass=”alternatingItemCssClass” >

 <fields>
 <custom:TemplateField layoutElement=”field1” headerText=”Title”>
 . . .

 </custom:TemplateField>
 <custom:TemplateField layoutElement=”field2” headerText=”Publisher”>
 . . .

 </custom:TemplateField>
 <custom:TemplateField layoutElement=”field3” headerText=”Price”>

 . . .

 </custom:TemplateField>
 </fields>

 </custom:CustomTable>

 Also note that Listing E-15 sets the cssClass , headerCssClass , hoverCssClass , and
 alternatingItemCssClass properties of the CustomTable to the names of the CSS classes defined
on the page:

bapp05.indd 1406bapp05.indd 1406 8/20/07 9:00:34 PM8/20/07 9:00:34 PM

Appendix E: Templated Controls

1407

 <script type=”text/xml-script”>
 <page xmlns=”http://schemas.microsoft.com/xml-script/2005”
 xmlns:custom=”CustomComponents”>
 <components>

 <custom:CustomTable id=”customTable” cssClass=”cssClass”
 headerCssClass=”headerCssClass” hoverCssClass=”hoverCssClass”
 alternatingItemCssClass=”alternatingItemCssClass” >

 <fields>
 . . .
 </fields>
 </custom:CustomTable>
 </components>
 </page>
 </script>

bapp05.indd 1407bapp05.indd 1407 8/20/07 9:00:35 PM8/20/07 9:00:35 PM

bapp05.indd 1408bapp05.indd 1408 8/20/07 9:00:35 PM8/20/07 9:00:35 PM

 ListView
 The ASP.NET AJAX ListView client control is a templated data control for displaying data
records. A good understanding of the implementation of the ListView templated data control and
its surrounding ASP.NET AJAX classes and interfaces will provide you with the skills, knowledge,
and experience that you need to implement templated data controls as complex as the ListView .

 However, before diving into the implementation of the ListView control and its surrounding
ASP.NET AJAX classes and interfaces, I’ll uses a few examples to show you how to take advantage
of the rich features of this control in your own Web applications.

 Overview of ListView
 The ListView templated data control offers two sets of properties to customize the control:

 ❑ Style properties: These enable you to style the DOM elements that make up the ListView
templated data control. In other words, you cannot use the style properties to customize
the DOM elements themselves — that is, to replace them with a new set of DOM elements;
you can only customize the appearances of these DOM elements.

❑ Template properties: These enable you to customize the DOM elements that make up the
 ListView control. In other words, you get to decide what types of DOM elements are
used to build the ListView control’s UI.

 The following table presents the getter and setter methods of the style properties of the ListView
templated data control:

 Style Property Description

 get_itemCssClass Gets the name of the CSS class that styles the even-
numbered data rows or items of the ListView
 control. (A data row is a row that displays a data
record.)

(continued)

bapp06.indd 1409bapp06.indd 1409 8/20/07 9:01:04 PM8/20/07 9:01:04 PM

Appendix F: ListView

1410

 Style Property Description

 set_itemCssClass Sets the name of the CSS class that styles the even-
 numbered data rows or items of the ListView control.

 get_alternatingItemCssClass Gets the name of the CSS class that styles the odd-
 numbered data rows or items of the ListView control.

 set_alternatingItemCssClass Sets the name of the CSS class that styles the odd-
 numbered data rows or items of the ListView control

 get_separatorCssClass Gets the name of the CSS class that styles the separator
rows or items of the ListView control. (A separator row
is a row that separates two consecutive data rows.)

 set_separatorCssClass Sets the name of the CSS class that styles the separator
rows or items of the ListView control.

 get_selectedItemCssClass Gets the name of the CSS class that styles the selected data
row or item of the ListView control.

 set_selectedItemCssClass Sets the name of the CSS class that styles the selected data
row or item of the ListView control.

 The following table presents the template properties of the ListView templated data control:

 Template Property Description

 get_emptyTemplate Gets a reference to the empty template. (The empty template
is the one that specifies the markup that will be shown to the
end user when the data collection bound to the ListView
control does not contain any data records.)

 set_emptyTemplate Sets the empty template. (Take the following steps to specify
the empty template. First, add an <emptyTemplate> subele-
ment to the <listView> element in the xml-script. Next, add
a <template> subelement to the <emptyTemplate> element.
Finally, add the desired markup text between the opening and
closing tags of the template subelement. The ListView
 control will automatically display this markup text if the
bound data collection does not contain any data records.)

 get_itemTemplate Gets a reference to the item template. (The item template is the
one that specifies the markup that displays a data record.)

 set_itemTemplate Sets the item template. (Take these steps to specify the item
template. First, add an <itemTemplate> subelement to the
 <listView> element in the xml-script. Next, add a
<template> subelement to the <itemTemplate> element.
 Finally, add the desired markup text between the opening and
closing tags of the template subelement. The ListView control
will automatically use this markup to display a data record.)

(continued)

bapp06.indd 1410bapp06.indd 1410 8/20/07 9:01:05 PM8/20/07 9:01:05 PM

Appendix F: ListView

1411

 Template Property Description

 get_layoutTemplate Gets a reference to the layout template. (The layout template is
the one that specifies the layout markup for the whole
 ListView control.)

 set_layoutTemplate Sets the layout template. (Take these steps to specify the layout
template. First, add a <layoutTemplate> subelement to the
 <listView> element in the xml-script. Next, add a <template>
subelement to the <layoutTemplate> element. Finally, add the
desired markup text between the opening and closing tags of the
template subelement. The ListView control will automatically
use this markup to layout the ListView control.)

 get_separatorTemplate Gets a reference to the separator template. (The separator
 template is the one that specifies the markup that separates
two consecutive data rows of the ListView control.)

 set_separatorTemplate Sets the separator template. (Take the following steps to specify
the separator template. First, add a <separatorTemplate>
subelement to the <listView> element in the xml-script. Next,
add a <template> subelement to the <separatorTemplate>
element. Finally, add the desired markup text between the
opening and closing tags of the template subelement.
The ListView control will automatically use this markup to
separate data rows.)

 Besides the getters and setters that get and set the style and template properties, the ListView control
also exposes the getters and setters shown in the following table that get and set other properties:

 Property Descriptor

 set_dataIndex Sets the current data index. (The current data index
is the index of the current data record in the data
collection bound to the ListView control.)

 get_itemTemplateParentElementId Gets the id HTML attribute value of the parent DOM
element of the DOM element that represents the item
template. (Keep in mind that every ASP.NET AJAX
template, including the item template, is associated
with a DOM element on the current page.)

 set_itemTemplateParentElementId Sets the id HTML attribute value of the parent
DOM element of the DOM element that represents
the item template. You can specify this id HTML
attribute value declaratively in the xml-script by
setting the itemTemplateParentElementId
 attribute on the <listView> element.

 getItemElement Returns a reference to the item DOM element with
the specified data index. (An item DOM element is
a DOM element that displays a data record.)

bapp06.indd 1411bapp06.indd 1411 8/20/07 9:01:05 PM8/20/07 9:01:05 PM

Appendix F: ListView

1412

 The ListView control also exposes an event named renderComplete . This event is fired when the
 rendering of the ListView control completes:

 Method Description

 add_renderComplete Adds a new event handler to the list of event handlers regis-
tered for the renderComplete event of the ListView control.

 remove_renderComplete Removes an event handler from the list of event handlers reg-
istered for the renderComplete event of the ListView
control.

 The following table presents some of the important methods of the ListView control:

 Method Description

 Initialize This method initializes the ListView control. Since the ListView control is
normally added declaratively to the current page, that is, since it is declared
in the xml-script, you do not have to worry about this method because the
ASP.NET AJAX client side Framework automatically invokes this method
 behind the scenes. However, it you decide to use the ListView control
 imperatively and if you do not use the $create global JavaScript function
to instantiate the control, you do have to invoke the initialize method to
 initialize the control.

 Dispose Performs the final cleanup before the ListView control is disposed of. The
 Application object that represents the current ASP.NET AJAX application
automatically invokes this method when the current page is about to be
 disposed of.

 Render Renders the ListView control. You do not need to directly invoke this
method because it is automatically invoked under the hood when you bind
a data collection to the ListView control.

 Since the ListView control derives from the DataConrol base class, it inherits the following members
from this base class:

 Inherited Member Description

 get_canMoveNext Gets a Boolean value that specifies whether the ListView
 control can move to the next data record. It returns false if the
data collection bound to the ListView control contains no
 records or if the current data record is the last record in this
collection.

 get_canMovePrevious Gets a Boolean value that specifies whether the ListView
 control can move to the previous data record. It returns false if
the data collection bound to the ListView control contains no
records or if the current data record is the first record in this
collection.

bapp06.indd 1412bapp06.indd 1412 8/20/07 9:01:05 PM8/20/07 9:01:05 PM

Appendix F: ListView

1413

 Inherited Member Description

 get_data Returns a reference to the data collection bound to the List-
View control.

 set_data Binds a data collection to the ListView control. This method
automatically invokes the render method of the ListView
 control to render the control. Therefore, binding the data collec-
tion to the ListView control is all it takes to have the control
display the data records in the collection.

 get_length Gets the total record count in the data collection bound to the
 ListView control.

 get_dataIndex Gets the index of the current data record in the data collection
bound to the ListView control.

 onDataChanged Simply invokes the render method to render the ListView
control.

 get_dataItem Returns a reference to the current data record in the data
 collection bound to the ListView control.

 get_dataContext Returns a reference to the current data record in the data
 collection bound to the ListView control.

 addItem Adds an empty record to the data collection bound to the
 ListView control. (The current implementation of the ListView
control does not make use of this method.)

 deleteCurrentItem Deletes the current data record from the data collection bound
to the ListView control.

 getItem Returns a reference to the data record in the data collection
bound to the ListView control that has the specified index.

 moveNext Moves to the next data record in the data collection bound to
the ListView control.

 movePrevious Moves to the previous data record in the data collection bound
to the ListView control.

 onBubbleEvent Captures the events raised by those child controls of the
 ListView control that bubble up their events. (The current
 implementation of the ListView control catches only the select
event. However, you can implement your own custom ListView
control in which your implementation of the onBubbleEvent can
capture and handle other events, such as update and delete .)

 Using ListView
 The previous section provided you with an overview of the methods, properties, and events of the
 ListView control. The examples in this section will show you how to use these methods, properties, and
events in your own Web applications.

bapp06.indd 1413bapp06.indd 1413 8/20/07 9:01:06 PM8/20/07 9:01:06 PM

Appendix F: ListView

1414

 Listing F-1 presents the first example. If you run this page you’ll get the result shown in Figure F-1 .

 Listing F-1: A Page that Uses the ListView Control

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <script language=”javascript” type=”text/javascript”>
 function onSuccess(result, userContext, methodName)
 {
 userContext.set_data(result);
 if (firstTime)
 {
 firstTime = false;
 selectionChangedCallback(userContext);
 }
 }

 function onFailure(result, userContext, methodName)
 {
 var builder = new Sys.StringBuilder();
 builder.append(“timedOut: “);
 builder.append(result.get_timedOut());
 builder.appendLine();
 builder.appendLine();
 builder.append(“message: “);
 builder.append(result.get_message());
 builder.appendLine();
 builder.appendLine();
 builder.append(“stackTrace: “);
 builder.appendLine();
 builder.append(result.get_stackTrace());
 builder.appendLine();
 builder.appendLine();
 builder.append(“exceptionType: “);
 builder.append(result.get_exceptionType());
 builder.appendLine();
 builder.appendLine();
 builder.append(“statusCode: “);
 builder.append(result.get_statusCode());
 builder.appendLine();
 builder.appendLine();
 builder.append(“methodName: “);
 builder.append(methodName);

 alert(builder.toString());
 }

bapp06.indd 1414bapp06.indd 1414 8/20/07 9:01:06 PM8/20/07 9:01:06 PM

Appendix F: ListView

1415

 function selectionChangedCallback(sender, eventArgs)
 {
 var authorID = sender.get_selectedValue();
 var listView = Sys.Application.findComponent(“listView”);
 MyWebService.GetBooks(authorID, onSuccess, onFailure, listView);
 }
 var firstTime = true;
 function pageLoad()
 {
 var authorList = Sys.Application.findComponent(“authorList”);

 if (!authorList.get_data())
 MyWebService.GetAuthors(onSuccess, onFailure, authorList);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”>
 <Services>
 <asp:ServiceReference InlineScript=”true” Path=”WebService.asmx” />
 </Services>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 </Scripts>
 </asp:ScriptManager>
 <center>
 Select an author:
 <select id=”authorList”>
 </select>

 </center>
 <div id=”listView” />
 <div style=”display: none;”>
 <div id=”layout”>
 <table width=”100%”>
 <tr>
 <th style=”background-color: Tan”>
 Title, <i>Publisher</i>, <i>Price</i>
 </th>
 </tr>

(continued)

bapp06.indd 1415bapp06.indd 1415 8/20/07 9:01:06 PM8/20/07 9:01:06 PM

Appendix F: ListView

1416

 Listing F-1 (continued)

 <tr>
 <td>
 <ul id=”itemContainer”>
 <li id=”item”>,
 <i></i>,
 <i></i>

 </td>
 </tr>
 </table>
 </div>
 </div>
 </form>
 <script type=”text/xml-script”>
 <page xmlns=”http://schemas.microsoft.com/xml-script/2005”>
 <components>
 <selector id=”authorList” textProperty=”AuthorName”
 valueProperty=”AuthorID” selectionChanged=”selectionChangedCallback” />

 <listView id=”listView” itemTemplateParentElementId=”itemContainer”>
 <layoutTemplate>
 <template layoutElement=”layout”/>
 </layoutTemplate>

 <itemTemplate>
 <template layoutElement=”item”>

 <label id=”title”>
 <bindings>
 <binding dataPath=”Title” property=”text” />
 </bindings>
 </label>

 <label id=”publisher”>
 <bindings>
 <binding dataPath=”Publisher” property=”text” />
 </bindings>
 </label>

bapp06.indd 1416bapp06.indd 1416 8/20/07 9:01:07 PM8/20/07 9:01:07 PM

Appendix F: ListView

1417

 <label id=”price”>
 <bindings>
 <binding dataPath=”Price” property=”text” transform=”ToString”
 transformerArgument=”${0}” />
 </bindings>
 </label>

 </template>
 </itemTemplate>
 </listView>
 </components>
 </page>
 </script>
</body>
</html>

 As you can see, this page consists of two parts. The top part displays a drop-down list of available
authors. When you select an author from the list, you get to see the author’s books. This part is a
 <select> DOM element with the id HTML attribute value of authorList , which represents an
ASP.NET AJAX Selector client control. In other words, this <select> DOM element is the associated
DOM element of the Selector client control:

 <select id=”authorList” />

Figure F-1

bapp06.indd 1417bapp06.indd 1417 8/20/07 9:01:07 PM8/20/07 9:01:07 PM

Appendix F: ListView

1418

 The bottom part is a <div> DOM element with the id HTML attribute value of listView , which
 represents an ASP.NET AJAX ListView client control. In other words, this <div> HTML DOM element
is the associated DOM element of the ListView client control:

 <div id=”listView” />

 Recall that the associated DOM element of an ASP.NET AJAX client control normally encapsulates all
the other DOM elements that the client control uses to render its user interface. In other words, the
 associated DOM element of an ASP.NET AJAX client control is normally the outermost or containing
DOM element of the control.

 This raises the following question: what are the DOM elements that the ListView client control uses to
render its user interface and to display the data records of the data collection bound to the control? The
answer is that the ListView client control does not use a preset or pre-built set of DOM elements to ren-
der its user interface or to display the data records of the bound data collection. This enables you to bind
data collections with different numbers of records, different numbers of fields per record, and different
types of fields to the ListView client control.

 All the ListView client control expects from you is that you will provide it with a set of DOM elements
that it can use as templates to build the DOM elements that it needs to render its user interface and to
 display the data records of the data collection bound to the control. The key word is templates . In other
words, the ListView client control does not directly use these DOM elements to display the data
records. Instead it uses them to build the DOM elements that it uses to display the data records.

 These template DOM elements provide the ListView control with the following information:

 ❑ The type of DOM element that you want the ListView control to use to display each data
 record. For example, you can tell the ListView control that you want the control to display
each data record in a or <tr> DOM element.

❑ The type of DOM element that you want the ListView control to use as the container for the
DOM elements used to display the data records. For example, you can tell the ListView control
that you want the control to use a <div> or DOM element as the container for the DOM
 elements that display the data records. Normally, the type of this container DOM element is
 determined by the type of DOM elements used to display the data records. For example, if you
tell the ListView control that you want the control to display each data record in a DOM
element, the only thing that makes sense is to tell the control to use an DOM element as
the container for these DOM elements.

❑ The type of DOM elements that you want the ListView control to use to display different data
fields of a data record. For example, you can tell the ListView control that you want the control
to display a particular data field of a data record in an or DOM element. This
 enables you to specify different types of DOM elements for different types of data fields. For
 example, if the data records have a data field that contains image URL values and another data

bapp06.indd 1418bapp06.indd 1418 8/20/07 9:01:07 PM8/20/07 9:01:07 PM

Appendix F: ListView

1419

field that contains Boolean values, you can tell the ListView control to display the former
 data field in an DOM element and the latter in an <input type=”checkbox”/> DOM
element.

❑ The type of DOM elements that you want the ListView control to use for the overall layout of
the control. For example, you can tell the ListView control that you want the control to render
its user interface in a <table> DOM element with a particular header text as the header of
this table.

 The following excerpt from Listing F-1 shows the template DOM elements that the ListView control
uses to build the required DOM elements to display the data records:

 <div style=”display: none;”>
 <div id=”layout”>
 <table width=”100%”>
 <tr>
 <th style=”background-color: Tan”>
 Title, <i>Publisher</i>
 </th>
 </tr>
 <tr>
 <td>
 <ul id=”itemContainer”>
 <li id=”item”>
 ,
 <i></i>

 </td>
 </tr>
 </table>
 </div>
 </div>

 This raises the following question: how do you tell the ListView control that you want the control to
use the template DOM elements shown in this excerpt? Here is how:

 1. Set the itemTemplateParentElementId attribute on the <listView> element in the
xml-script to the id HTML attribute value of the DOM element that you want the ListView
control to use as a template for building the DOM element. This element will act as a container
for the DOM elements that display the data records, as shown in the boldface portion of the
 following excerpt from Listing F-1 :

 <listView id=”listView” itemTemplateParentElementId=”itemContainer”>
 . . .
 </listView>

bapp06.indd 1419bapp06.indd 1419 8/20/07 9:01:08 PM8/20/07 9:01:08 PM

Appendix F: ListView

1420

2. The boldface portion of this excerpt specifies the DOM element shown in the boldface portion of
the following excerpt from Listing F-1 as the template DOM element for building the DOM
 element that will act as the container for the DOM elements that display the data records:

 <div style=”display: none;”>
 <div id=”layout”>
 <table width=”100%”>
 <tr>
 <th style=”background-color: Tan”>
 Title, <i>Publisher</i>
 </th>
 </tr>
 <tr>
 <td>
 <ul id=”itemContainer”>
 <li id=”item”>
 ,
 <i></i>

 </td>
 </tr>
 </table>
 </div>
 </div>

3. First set the layoutElement attribute on the <template> subelement of the <layoutTemplate>
 subelement of the <listView> element in the xml-script. Set it to the id HTML attribute value of
the DOM element that you want the ListView control to use as a template for building the DOM
element that determines the overall layout of the constituent DOM elements of the ListView
control. See the following boldface portion of an excerpt from Listing F-1 :

 <listView id=”listView” itemTemplateParentElementId=”itemContainer”>
 <layoutTemplate>
 <template layoutElement=”layout” />
 </layoutTemplate>
 . . .
 </listView>

4. The boldface portion of this excerpt specifies the DOM element shown in the boldface portion of
the following excerpt from Listing F-1 as the template DOM element for building the DOM element
that will determine the overall layout of the constituent DOM elements of the ListView control:

 <div style=”display: none;”>
 <div id=”layout”>
 <table width=”100%”>
 <tr>
 <th style=”background-color: Tan”>
 Title, <i<Publisher</i>
 </th>
 </tr>

bapp06.indd 1420bapp06.indd 1420 8/20/07 9:01:08 PM8/20/07 9:01:08 PM

Appendix F: ListView

1421

 <tr>
 <td>
 <ul id=”itemContainer”>
 <li id=”item”>
 ,
 <i></i>

 </td>
 </tr>
 </table>
 </div>
 </div>

 5. Now set the layoutElement attribute on the <template> subelement of the <itemTemplate>
subelement of the <listView> element in the xml-script. Set it to the id HTML attribute value
of the DOM element that you want the ListView control to use as a template for building the
DOM elements that display the data records. See the boldface portion of the following excerpt
from Listing F-1 :

 <listView id=”listView” itemTemplateParentElementId=”itemContainer”>
 <layoutTemplate>
 <template layoutElement=”layout”/>
 </layoutTemplate>

 <itemTemplate>
 <template layoutElement=”item” >

 <label id=”title”>
 <bindings>
 <binding dataPath=”Title” property=”text” />
 </bindings>
 </label>

 <label id=”publisher”>
 <bindings>
 <binding dataPath=”Publisher” property=”text” />
 </bindings>
 </label>
 <label id=”price”>
 <bindings>
 <binding dataPath=”Price” property=”text” transform=”ToString”
 transformerArgument=”${0}” />
 </bindings>
 </label>

 </template>
 </itemTemplate>
 </listView>

bapp06.indd 1421bapp06.indd 1421 8/20/07 9:01:08 PM8/20/07 9:01:08 PM

Appendix F: ListView

1422

 6. The boldface portion of the preceding excerpt specifies the DOM element shown in the boldface
portion of the following excerpt from Listing F-1 as the template DOM element for building the
DOM elements that display the data records:

 <div style=”display: none;”>
 <div id=”layout”>
 <table width=”100%”>
 <tr>
 <th style=”background-color: Tan”>
 Title, <i>Publisher</i>
 </th>
 </tr>
 <tr>
 <td>
 <ul id=”itemContainer”>
 <li id=”item”>
 ,
 <i></i>

 </td>
 </tr>
 </table>
 </div>
 </div>

 7. Perform the following tasks for each data field:

 ❑ Declare the appropriate ASP.NET AJAX control between the opening and closing tags of
the template subelement of the itemTemplate subelement of the listView element
in the xml-script.

❑ Set the id attribute of this ASP.NET AJAX control to the id HTML attribute value of the
DOM element that you want the ListView control to use as a template for building
the DOM elements that display the values of this data field, as shown in the boldface
 portion of the following excerpt from Listing F-1 :

 <listView id=”listView” itemTemplateParentElementId=”itemContainer”>
 <layoutTemplate>
 <template layoutElement=”layout”/>
 </layoutTemplate>

 <itemTemplate>
 <template layoutElement=”item”>

 <label id=”title”>
 <bindings>
 <binding dataPath=”Title” property=”text” />
 </bindings>
 </label>

bapp06.indd 1422bapp06.indd 1422 8/20/07 9:01:08 PM8/20/07 9:01:08 PM

Appendix F: ListView

1423

 <label id=”publisher”>
 <bindings>
 <binding dataPath=”Publisher” property=”text” />
 </bindings>
 </label>
 <label id=”price”>
 <bindings>
 <binding dataPath=”Price” property=”text” transform=”ToString”
 transformerArgument=”${0}” />
 </bindings>
 </label>

 </template>
 </itemTemplate>
 </listView>

 ❑ The boldface portion of the preceding excerpt specifies the DOM elements shown in
the boldface portion of the following excerpt from Listing F-1 as the template DOM
 elements for building the DOM elements that display the values of the title and publisher
data fields:

 <div style=”display: none;”>
 <div id=”layout”>
 <table width=”100%”>
 <tr>
 <th style=”background-color: Tan”>
 Title, <i>Publisher</i>
 </th>
 </tr>
 <tr>
 <td>
 <ul id=”itemContainer”>
 <li id=”item”>
 ,
 <i> </i>,
 <i> </i>

 </td>
 </tr>
 </table>
 </div>
 </div>

bapp06.indd 1423bapp06.indd 1423 8/20/07 9:01:09 PM8/20/07 9:01:09 PM

Appendix F: ListView

1424

 ❑ Declare a bindings element between the opening and closing tags of this ASP.NET AJAX
control, as shown in the boldface portion of the following excerpt from Listing F-1 :

 <listView id=”listView” itemTemplateParentElementId=”itemContainer”>
 <layoutTemplate>
 <template layoutElement=”layout”/>
 </layoutTemplate>

 <itemTemplate>
 <template layoutElement=”item”>

 <label id=”title”>
 <bindings>
 <binding dataPath=”Title” property=”text” />
 </bindings>
 </label>

 <label id=”publisher”>
 <bindings>
 <binding dataPath=”Publisher” property=”text” />
 </bindings>
 </label>
 <label id=”price”>
 <bindings>
 <binding dataPath=”Price” property=”text” transform=”ToString”
 transformerArgument=”${0}” />
 </bindings>
 </label>

 </template>
 </itemTemplate>
 </listView>

❑ Declare a binding subelement between the opening and closing tags of the bindings sub-
element of this ASP.NET AJAX control, set the dataPath attribute on this binding
 subelement to the name of the data field, set the property attribute to the name of
the appropriate property of the ASP.NET AJAX control, set the transform attribute to the
name of the appropriate transformer, and set the transformerArgument attribute to spec-
ify the transformer argument. For example, the boldface portion of the following excerpt
from Listing F-1 sets the dataPath and property attributes on the binding subelement
of the bindings subelement of the label client control to the string value ” Price” . This
specifies that the text property of the associated DOM element of this client control
 displays the value of the Price data field. It also specifies that the transformer named
 ToString will be used to transform the value of the Price data field before the value is
assigned to the text property of this DOM element. This transformer takes an argument
that specifies how the transformer must format the value of this data field.

bapp06.indd 1424bapp06.indd 1424 8/20/07 9:01:09 PM8/20/07 9:01:09 PM

Appendix F: ListView

1425

 <listView id=”listView” itemTemplateParentElementId=”itemContainer”>
 <layoutTemplate>
 <template layoutElement=”layout”/>
 </layoutTemplate>

 <itemTemplate>
 <template layoutElement=”item”>

 <label id=”title”>
 <bindings>
 <binding dataPath=”Title” property=”text” />
 </bindings>
 </label>

 <label id=”publisher”>
 <bindings>
 <binding dataPath=”Publisher” property=”text” />
 </bindings>
 </label>
 <label id=”price”>
 <bindings>
 <binding dataPath=”Price” property=”text” transform=”ToString”
 transformerArgument=”${0}” />
 </bindings>
 </label>

 </template>
 </itemTemplate>
 </listView>

 The ListView client control is used to display data records. This raises the following question: where
do the data records come from? Obviously they come from the server, but how? The answer is that they
come through a Web service. Listing F-1 uses the Web service shown in Listing F-2 . As you can see, it
exposes the following two Web methods:

 1. GetBooks: Returns an array of Book objects of which each object contains the information about a
particular book of the specified author. The Book class exposes four properties named Title ,
 AuthorName , Publisher , and Price . This Web method retrieves the information about the books
of the specified author from the underlying database. The database consists of two tables named
 Authors and Books . The Authors table exposes two main data columns named AuthorID and
 AuthorName . The Books table exposes five main data columns named BookID , AuthorID , Title ,
 Publisher , and Price .

2. GetAuthors : Returns an array of Author objects of which each object contains the information
about a particular author. The Author class exposes two properties named AuthorID and
 AuthorName .

bapp06.indd 1425bapp06.indd 1425 8/20/07 9:01:09 PM8/20/07 9:01:09 PM

Appendix F: ListView

1426

 Note that this Web service is annotated with the ScriptService metadata attribute to allow the
 client-side code to use a Web service proxy to interact with the Web service:

 [WebService(Namespace = “http://tempuri.org/”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

[ScriptService]

public class MyWebService : System.Web.Services.WebService

 Technically speaking, it is not necessary for this Web service to derive from the WebService base class.
In general, deriving from this base class enables you to access typical ASP.NET objects such as Session ,
 Server , Response , and so on. Because this Web service is not accessing any of these objects it does not
have to derive from the Web service class. However, Visual Studio 2005 adds this derivation by default.
One scenario in which you may have to derive from this base class is when you need to maintain state
across two or more requests to the Web service. In general, it is not a good idea to maintain state across
different requests to a Web service because it degrades the scalability and performance: Web services are
fundamentally designed to be stateless, meaning that each request is on its own and has no recollection
of the previous requests. That said, there are times when you have no choice but to maintain state across
different requests of the same session. At these times you must derive your Web service from the
 WebService base class so you can use the ASP.NET Session object for session state management.

 Listing F-2: A Web Service Used by Listing F-1

 <%@ WebService Language=”C#” Class=”MyWebService” %>
using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Data;
using System.Data.SqlClient;
using System.Configuration;
using System.Web.Script.Services;
using System.Web.Script.Serialization;
using System.Collections;
public class Author
{
 private string authorName;
 public string AuthorName
 {
 get { return this.authorName; }
 set { this.authorName = value; }
 }
 private int authorID;
 public int AuthorID
 {
 get { return this.authorID; }
 set { this.authorID = value; }
 }
}

bapp06.indd 1426bapp06.indd 1426 8/20/07 9:01:10 PM8/20/07 9:01:10 PM

Appendix F: ListView

1427

public class Book
{
 private string title;
 public string Title
 {
 get { return this.title; }
 set { this.title = value; }
 }
 private string authorName;
 public string AuthorName
 {
 get { return this.authorName; }
 set { this.authorName = value; }
 }
 private string publisher;
 public string Publisher
 {
 get { return this.publisher; }
 set { this.publisher = value; }
 }
 private decimal price;
 public decimal Price
 {
 get { return this.price; }
 set { this.price = value; }
 }
}
[WebService(Namespace = “http://tempuri.org/”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[ScriptService]
public class MyWebService : System.Web.Services.WebService
{
 [WebMethod]
 public Book[] GetBooks(int authorID)
 {
 ConnectionStringSettings settings =
 ConfigurationManager.ConnectionStrings[“MyConnectionString”];
 string connectionString = settings.ConnectionString;

 string commandText = “Select Title, AuthorName, Publisher, Price “ +
 “From Books Inner Join Authors “ +
 “On Books.AuthorID = Authors.AuthorID “ +
 “Where Authors.AuthorID=@AuthorID”;
 DataTable dt = new DataTable();
 SqlDataAdapter ad = new SqlDataAdapter(commandText, connectionString);
 SqlParameter parameter = new SqlParameter();
 parameter.ParameterName = “@AuthorID”;
 parameter.Value = authorID;
 ad.SelectCommand.Parameters.Add(parameter);
 ad.Fill(dt);
 Book[] books = new Book[dt.Rows.Count];

(continued)

bapp06.indd 1427bapp06.indd 1427 8/20/07 9:01:10 PM8/20/07 9:01:10 PM

Appendix F: ListView

1428

Listing F-2 (continued)

 for (int i=0; i<dt.Rows.Count; i++)
 {
 books[i] = new Book();
 books[i].Title = (string)dt.Rows[i][“Title”];
 books[i].AuthorName = (string)dt.Rows[i][“AuthorName”];
 books[i].Publisher = (string)dt.Rows[i][“Publisher”];
 books[i].Price = (decimal)dt.Rows[i][“Price”];
 }
 return books;
 }
 [WebMethod]
 public Author[] GetAuthors()
 {
 ConnectionStringSettings settings =
 ConfigurationManager.ConnectionStrings[“MyConnectionString”];
 string connectionString = settings.ConnectionString;
 string commandText = “Select AuthorID, AuthorName From Authors”;
 DataTable dt = new DataTable();
 SqlDataAdapter ad = new SqlDataAdapter(commandText, connectionString);
 ad.Fill(dt);
 Author[] authors = new Author[dt.Rows.Count];
 for (int i = 0; i < dt.Rows.Count; i++)
 {
 authors[i] = new Author();
 authors[i].AuthorID = (int)dt.Rows[i][“AuthorID”];
 authors[i].AuthorName = (string)dt.Rows[i][“AuthorName”];
 }
 return authors;
 }
}

 Next, I’ll walk you through the implementation of those JavaScript functions shown in Listing F-1 that
contain the logic that the page shown in this code listing uses to retrieve the required data records from
the Web service shown in Listing F-2 . I’ll begin our discussions with the implementation of the
 pageLoad method. As the following excerpt from Listing F-1 shows, the pageLoad method first invokes
the findComponent method on the Application object that represents the current ASP.NET AJAX
application, thereby returning a reference to the Selector client control:

 var authorList = Sys.Application.findComponent(“authorList”);

 Next, it invokes the get_data method on the Selector client control to check whether the control has
already been populated. If not, it invokes the GetAuthors method on the MyWebService proxy to
invoke the GetAuthors method on the MyWebService Web service, thereby downloading the list of
authors:

 MyWebService.GetAuthors(onSuccess, onFailure, authorList);

 Note that the pageLoad method passes three parameters into the GetAuthors method of
the MyWebService proxy. The first parameter references a JavaScript function named onSuccess ; the
 MyWebService proxy invokes this JavaScript function when the server response successfully arrives.

bapp06.indd 1428bapp06.indd 1428 8/20/07 9:01:10 PM8/20/07 9:01:10 PM

Appendix F: ListView

1429

The second parameter references a JavaScript function named onFailure ; the MyWebService proxy
invokes this JavaScript function when something goes wrong and the request fails. The third parameter
references the Selector client control. The MyWebService proxy does not do anything with its third
parameter. It simply passes it as the second parameter into the onSuccess and onFailure JavaScript
functions when it invokes these functions. This enables you to pass contextual information into these
JavaScript functions.

 function pageLoad()
 {
 var authorList = Sys.Application.findComponent(“authorList”);

 if (!authorList.get_data())
 MyWebService.GetAuthors(onSuccess, onFailure, authorList);
 }

 Next I’ll walk you through the implementation of the onSuccess JavaScript function, as shown in the
following excerpt from Listing F-1 :

 function onSuccess(result, userContext, methodName)
 {
 userContext.set_data(result);
 if (firstTime)
 {
 firstTime = false;
 selectionChangedCallback(userContext);
 }
 }

 As you can see, when the MyWebService proxy invokes the onSuccess method it passes three parame-
ters into the method. The first parameter contains the data received from the Web service, which is the
list of authors in this case. The second parameter is the contextual information, which is the reference to
the Selector client control. The third parameter is the name of the Web method that was invoked,
which is the GetAuthors Web method. The onSuccess method first invokes the set_data method on
the context object, which is the Selector client control in this case, to bind the data returned from the
Web service to the specified client control, which is the Selector client control. Binding the data to
the Selector client control automatically triggers the re-rendering of the control, which means that the
 Selector client control is automatically populated with the fresh data:

 userContext.set_data(result);

 The onSuccess function then checks whether this is the first time this function has been invoked, which
is true here. If so, it calls a JavaScript function named selectionChangedCallback , passing in the ref-
erence to the Selector client control to populate the ListView client control. We’ll discuss this proce-
dure shortly.

 Listing F-1 registers the selectionChangedCallback JavaScript function as an event handler for the
 selectionChanged event of the Selector client control. This event handler, like any other ASP.NET
AJAX event handler, takes two parameters: the first references the client control that raises the event,

bapp06.indd 1429bapp06.indd 1429 8/20/07 9:01:10 PM8/20/07 9:01:10 PM

Appendix F: ListView

1430

which is the Selector client control in this case. The following excerpt from Listing F-1 presents the
implementation of the selectionChangedCallback function:

 function selectionChangedCallback(sender, eventArgs)
 {
 var authorID = sender.get_selectedValue();
 var listView = Sys.Application.findComponent(“listView”);
 MyWebService.GetBooks(authorID, onSuccess, onFailure, listView);
 }

 As you can see, selectionChangedCallback begins by calling the get_selectedValue method on
the Selector client control to return the selected value — that is, the selected author:

 var authorID = sender.get_selectedValue();

 Next, it invokes the findComponent method on the Application object that represents the current
ASP.NET AJAX application, to return a reference to the ListView client control:

 var listView = Sys.Application.findComponent(“listView”);

 Finally, it invokes the GetBooks method on the MyWebService proxy to invoke the GetBooks method
on the MyWebService Web service. The selectionChangedCallback function passes four parameters
into the GetBooks method of the proxy. The first is the author ID. The GetBooks method of the proxy
passes this parameter into the GetBooks method of the Web service. The second references the
 onSuccess JavaScript function we discussed earlier. The third references the onFailure JavaScript
function. Finally, the last parameter is the context object that references the ListView client control.

 MyWebService.GetBooks(authorID, onSuccess, onFailure, listView);

 When the server response arrives, the MyWebService proxy automatically invokes the onSuccess
 function, passing in the data received from the server:

 function onSuccess(result, userContext, methodName)
 {
 userContext.set_data(result);
 if (firstTime)
 {
 firstTime = false;
 selectionChangedCallback(userContext);
 }
 }

 Since this time around the context object references the ListView client control, the onSuccess function
ends up calling the set_data method on the ListView client control. This automatically binds the data
returned from the server to this control and consequently re-renders the control to display this data. The
end result is that every time the end user selects an author from the Selector client control, the infor-
mation about the author’s books is automatically downloaded from the Web service and displayed in the
 ListView client control.

bapp06.indd 1430bapp06.indd 1430 8/20/07 9:01:11 PM8/20/07 9:01:11 PM

Appendix F: ListView

1431

 Applying Styles
 Listing F-3 presents a version of the pageLoad method that shows how to apply styles in order to
 customize the appearance of different types of rows in the ListView control.

 function pageLoad()
 {
 var listView = Sys.Application.findComponent(“listView”);
 listView.set_itemCssClass(“itemCssClass”);
 listView.set_alternatingItemCssClass(“alternatingItemCssClass”);
 listView.set_selectedItemCssClass(“selectedItemCssClass”);

 var authorList = Sys.Application.findComponent(“authorList”);

 if (!authorList.get_data())
 MyWebService.GetAuthors(onSuccess, onFailure, authorList);
 }

 As you can see, this method invokes the set_itemCssClass , set_alternatingItemCssClass , and
 set_selectedItemCssClass methods on the ListView control to specify the CSS style classes named
 itemCssClass , alternatingItemCssClass , and selectedItemCssClass , respectively, as the style
classes for the even-numbered rows, odd-numbered rows, and selected row of the ListView control,
respectively. Note that the <style> HTML subelement of the <head> HTML element defines these three
CSS style classes:

 <style type=”text/css”>
 .itemCssClass { background-color: #eeeeee;}
 .alternatingItemCssClass { background-color: #bbbbbb;}
 .selectedItemCssClass { background-color: #777777;}
 </style>

 If you run the page shown in Listing F-3 , you’ll see the result shown in Figure F-2 .

 Listing F-3: A Page that Applies Styles to the ListView Control

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <style type=”text/css”>
 .itemCssClass { background-color: #eeeeee;}
 .alternatingItemCssClass { background-color: #bbbbbb;}
 .selectedItemCssClass { background-color: #777777; color: #ffffff}
 </style>
 <script language=”javascript” type=”text/javascript”>
 function onSuccess(result, userContext, methodName)
 {
 // Same as Listing 1
 }

(continued)

bapp06.indd 1431bapp06.indd 1431 8/20/07 9:01:11 PM8/20/07 9:01:11 PM

Appendix F: ListView

1432

Listing F-3 (continued)

 function onFailure(result, userContext, methodName)
 {
 // Same as Listing 1
 }

 function selectionChangedCallback(sender, eventArgs)
 {
 // Same as Listing 1
 }
 var firstTime = true;
 function pageLoad()
 {
 var listView = Sys.Application.findComponent(“listView”);
 listView.set_itemCssClass(“itemCssClass”);
 listView.set_alternatingItemCssClass(“alternatingItemCssClass”);
 listView.set_selectedItemCssClass(“selectedItemCssClass”);

 var authorList = Sys.Application.findComponent(“authorList”);

 if (!authorList.get_data())
 MyWebService.GetAuthors(onSuccess, onFailure, authorList);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <!- Same as Listing 1 ->
 </form>
 <script type=”text/xml-script”>
 <page xmlns=”http://schemas.microsoft.com/xml-script/2005”>
 <components>
 <!- Same as Listing 1 ->
 </components>
 </page>
 </script>
</body>
</html>

 Using Table Rows and Columns
 The previous examples used the following components:

 ❑ A DOM element, as the template for building the DOM element that contains the DOM
 elements that display the data records.

❑ A DOM element, as the template for building the DOM elements that display the data
records.

❑ DOM elements, as the template for building the DOM elements that display the data
fields.

bapp06.indd 1432bapp06.indd 1432 8/20/07 9:01:11 PM8/20/07 9:01:11 PM

Appendix F: ListView

1433

 Listing F-4 presents an example in which:

 ❑ A <tbody> DOM element is the template for building the DOM element that contains the DOM
elements that display the data records.

❑ A <tr> DOM element is the template for building the DOM elements that display the data
records.

❑ <td> DOM elements is the template for building the DOM elements that display the data fields.

 If you don’t use the <thead> and <tbody> elements, Internet Explorer won’t show the table. Internet
Explorer expects dynamically generated tables to include <thead> and <tbody> elements.

 If you run Listing F-4 , you’ll get the result shown in Figure F-3 . Note that Listing F-4 registers a
 JavaScript function named renderCompleteCallback as an event handler for the renderComplete
event of the ListView control. The control raises this event when it completes its rendering.

 Listing F-4: A Page that Uses <tr> and <td> as Templates

 <%@ Page Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
 <style type=”text/css”>
 .itemCssClass { background-color: #eeeeee;}
 .alternatingItemCssClass { background-color: #bbbbbb;}
 .selectedItemCssClass { background-color: #777777; color: #ffffff}
 </style>

(continued)

Figure F-2

bapp06.indd 1433bapp06.indd 1433 8/20/07 9:01:12 PM8/20/07 9:01:12 PM

Appendix F: ListView

1434

Listing F-4 (continued)

 <script language=”javascript” type=”text/javascript”>
 function renderCompleteCallback(sender, eventArgs)
 {
 alert(“Rendering is completed!”);
 }
 function onSuccess(result, userContext, methodName)
 {
 userContext.set_data(result);
 if (firstTime)
 {
 firstTime = false;
 selectionChangedCallback(userContext);
 }
 }

 function onFailure(result, userContext, methodName)
 {
 var builder = new Sys.StringBuilder();
 builder.append(“timedOut: “);
 builder.append(result.get_timedOut());
 builder.appendLine();
 builder.appendLine();
 builder.append(“message: “);
 builder.append(result.get_message());
 builder.appendLine();
 builder.appendLine();
 builder.append(“stackTrace: “);
 builder.appendLine();
 builder.append(result.get_stackTrace());
 builder.appendLine();
 builder.appendLine();
 builder.append(“exceptionType: “);
 builder.append(result.get_exceptionType());
 builder.appendLine();
 builder.appendLine();
 builder.append(“statusCode: “);
 builder.append(result.get_statusCode());
 builder.appendLine();
 builder.appendLine();
 builder.append(“methodName: “);
 builder.append(methodName);

 alert(builder.toString());
 }

 function selectionChangedCallback(sender, eventArgs)
 {
 var authorID = sender.get_selectedValue();
 var listView = Sys.Application.findComponent(“listView”);
 MyWebService.GetBooks(authorID, onSuccess, onFailure, listView);
 }

bapp06.indd 1434bapp06.indd 1434 8/20/07 9:01:13 PM8/20/07 9:01:13 PM

Appendix F: ListView

1435

 var firstTime = true;
 function pageLoad()
 {
 var listView = Sys.Application.findComponent(“listView”);
 listView.set_itemCssClass(“itemCssClass”);
 listView.set_alternatingItemCssClass(“alternatingItemCssClass”);
 listView.set_selectedItemCssClass(“selectedItemCssClass”);

 var authorList = Sys.Application.findComponent(“authorList”);

 if (!authorList.get_data())
 MyWebService.GetAuthors(onSuccess, onFailure, authorList);
 }
 </script>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”>
 <Services>
 <asp:ServiceReference InlineScript=”true” Path=”WebService.asmx” />
 </Services>
 <Scripts>
 <asp:ScriptReference Assembly=”Microsoft.Web.Preview”
 Name=”PreviewScript.js” />
 </Scripts>
 </asp:ScriptManager>
 <center>
 Select an author:
 <select id=”authorList”>
 </select>

 </center>
 <div id=”listView” />
 <div style=”display: none;”>
 <div id=”layout”>
 <table width=”100%”>
 <thead>
 <tr style=”background-color: Tan”>
 <th>
 Title</th>
 <th>
 Publisher</th>
 <th>
 Price</th>
 </tr>
 </thead>
 <tbody id=”itemContainer”>
 <tr id=”item”>
 <td id=”title”>
 </td>

(continued)

bapp06.indd 1435bapp06.indd 1435 8/20/07 9:01:14 PM8/20/07 9:01:14 PM

Appendix F: ListView

1436

Listing F-4 (continued)

 <td id=”publisher”>
 </td>
 <td id=”price”>
 </td>
 </tr>
 </tbody>
 </table>
 </div>
 </div>
 </form>
 <script type=”text/xml-script”>
 <page xmlns=”http://schemas.microsoft.com/xml-script/2005”>
 <components>
 <selector id=”authorList” textProperty=”AuthorName”
 valueProperty=”AuthorID” selectionChanged=”selectionChangedCallback” />

 <listView id=”listView” itemTemplateParentElementId=”itemContainer”
 renderComplete=”renderCompleteCallback”>
 <layoutTemplate>
 <template layoutElement=”layout”/>
 </layoutTemplate>

 <itemTemplate>
 <template layoutElement=”item”>

 <label id=”title”>
 <bindings>
 <binding dataPath=”Title” property=”text” />
 </bindings>
 </label>

 <label id=”publisher”>
 <bindings>
 <binding dataPath=”Publisher” property=”text” />
 </bindings>
 </label>

 <label id=”price”>
 <bindings>
 <binding dataPath=”Price” property=”text” transform=”ToString”
 transformerArgument=”${0}” />
 </bindings>
 </label>

 </template>
 </itemTemplate>
 </listView>
 </components>
 </page>
 </script>
</body>
</html>

bapp06.indd 1436bapp06.indd 1436 8/20/07 9:01:14 PM8/20/07 9:01:14 PM

Appendix F: ListView

1437

 Surrounding the ASP . NET AJAX Classes
and Interface

 The previous sections of this appendix showed you how to use the ListView control and its members in
your own Web applications. The rest of this appendix will dive into the internal implementation of the
 ListView templated client control, where you’ll discover how to:

 ❑ Extend the functionality of the ListView client control

❑ Implement templated client controls as complex as the ListView client control

 This section will discuss the surrounding ASP.NET AJAX classes and interface of the ListView client
control — that is, those classes and interface that a templated client control such as ListView uses
 internally. I’ll begin our discussions with the interface named ITask .

 ITask
 The ITask interface defines the API that every ASP.NET AJAX task must implement to execute a task.
A task could be anything. For example, as you’ll see later, the ListView client control uses a rendering
task named ListViewRenderTask to render its UI. As Listing F-5 shows, this interface exposes a single
method named execute that each subclass of this interface must override to include the logic that
 executes its associated task. For example, ListViewRenderTask implements this interface and
 its execute method where it includes the logic that renders the ListView templated data control.

Figure F-3

bapp06.indd 1437bapp06.indd 1437 8/20/07 9:01:14 PM8/20/07 9:01:14 PM

Appendix F: ListView

1438

 Listing F-5: The ITask Interface

 Sys.Preview.ITask = function Sys$Preview$ITask()
{
 throw Error.notImplemented();
}
function Sys$Preview$ITask$execute()
{
 throw Error.notImplemented();
}
Sys.Preview.ITask.prototype =
{
 execute: Sys$Preview$ITask$execute
}
Sys.Preview.ITask.registerInterface(‘Sys.Preview.ITask’);

 _TaskManager
 The ASP.NET AJAX client-side framework comes with an internal class named _TaskManager that
 manages all the tasks on the current page. Each ASP.NET AJAX page can contain only a single instance
of this class. As the boldface portion of Listing F-6 shows, the ASP.NET AJAX framework automatically
instantiates this single instance and assigns it to a global variable named Sys.Preview.TaskManager .
Therefore, you must use this global variable to access the current instance of the _TaskManager class as
opposed to instantiating a new one:

 Sys.Preview.TaskManager = new Sys.Preview._TaskManager();

 I’ll discuss the methods and properties of the _TaskManager class in the following sections.

 Listing F-6: The _TaskManager Class

 Sys.Preview._TaskManager = function Sys$Preview$_TaskManager()
{
 Sys.Application.registerDisposableObject(this);
 this._tasks = [];
}
Sys.Preview._TaskManager.prototype =
{
 _timeoutCookie: null,
 _timeoutHandler: null,
 addTask: Sys$Preview$_TaskManager$addTask,
 dispose: Sys$Preview$_TaskManager$dispose,
 _onTimeout: Sys$Preview$_TaskManager$_onTimeout,
 _startTimeout: Sys$Preview$_TaskManager$_startTimeout
}
Sys.Preview._TaskManager.registerClass(‘Sys.Preview._TaskManager’, null,
 Sys.IDisposable);
Sys.Preview.TaskManager = new Sys.Preview._TaskManager();

bapp06.indd 1438bapp06.indd 1438 8/20/07 9:01:15 PM8/20/07 9:01:15 PM

Appendix F: ListView

1439

 Constructor
 As Listing F-6 shows, this constructor performs two tasks:

 ❑ It invokes the registerDisposableObject method on the Application object that represents
the current ASP.NET AJAX application, thereby adding the current TaskManager instance
to the list of disposable objects that the Application object maintains internally.

 Sys.Application.registerDisposableObject(this);

 Recall that a disposable object is an object whose type implements the IDisposable interface.
This interface exposes a method named dispose . The Application object automatically
 invokes the dispose methods of these disposable objects to allow these objects to perform their
final cleanup before they’re disposed of.

 As Listing F-6 shows, the _TaskManager class implements this interface.

 Sys.Preview._TaskManager.registerClass(‘Sys.Preview._TaskManager’, null,
 Sys.IDisposable);

 ❑ It instantiates an array named _tasks . As you’ll see later, the current TaskManager instance
will store all tasks in this array:

 this._tasks = [];

 addTask
 Call the addTask method on the current TaskManager instance to add a new task to the _tasks array.
As you can see from Listing F-7 , this method first invokes the enqueue static method on the Array class
to enqueue the specified task:

 Array.enqueue(this._tasks, task);

 Next, it invokes the _startTimeout method to schedule the execution of the next task in the _tasks
array, as we’ll discuss in the next section:

 this._startTimeout();

 Listing F-7: The addTask Method

 function Sys$Preview$_TaskManager$addTask(task)
{
 /// <param name=”task” type=”Sys.Preview.ITask”></param>
 Array.enqueue(this._tasks, task);
 this._startTimeout();
}

bapp06.indd 1439bapp06.indd 1439 8/20/07 9:01:15 PM8/20/07 9:01:15 PM

Appendix F: ListView

1440

 _startTimeout
 As Listing F-8 shows, this method first checks whether the current TaskManager instance already has a
timeout cookie. If not, it first invokes the createDelegate static method on the Function class to
 create a delegate that represents the _onTimeout method:

 this._timeoutHandler = Function.createDelegate(this, this._onTimeout);

 Then it invokes the setTimeout method on the window object, passing in the delegate to create a new
timeout cookie:

 this._timeoutCookie = window.setTimeout(this._timeoutHandler, 0);

 Listing F-8: The _startTimeout Method

 function Sys$Preview$_TaskManager$_startTimeout()
{
 if (!this._timeoutCookie)
 {
 if (!this._timeoutHandler)
 this._timeoutHandler = Function.createDelegate(this, this._onTimeout);

 this._timeoutCookie = window.setTimeout(this._timeoutHandler, 0);
 }
}

 _onTimeout
 When the window object invokes the _timeoutHandler delegate, this delegate in turn invokes the
_onTimeout method. As you can see from Listing F-9 , the _onTimeout method invokes the dequeue
static method on the Array class to dequeue the next task in the _tasks collection. Recall that
dequeuing an item from an array removes the item from the array.

 var task = Array.dequeue(this._tasks);

 Then it invokes the execute method on this task to execute it:

 task.execute()

 If the execute method returns false , the _onTimeout method calls the enqueue static method on the
 Array class to enqueue the task back in the _tasks collection. This allows the task to be executed again:

 if (!task.execute())
 Array.enqueue(this._tasks, task);

 Finally, it checks whether the _tasks collection contains any more tasks. If so, it invokes the
_startTimeout method to schedule the execution of the next task:

 if (this._tasks.length)
 this._startTimeout();

bapp06.indd 1440bapp06.indd 1440 8/20/07 9:01:15 PM8/20/07 9:01:15 PM

Appendix F: ListView

1441

 As you can see, the current TaskManager instance executes the tasks in the order in which they’re
enqueued in the _tasks collection.

 Listing F-9: The _onTimeout Method

 function Sys$Preview$_TaskManager$_onTimeout()
{
 this._timeoutCookie = 0;
 var task = Array.dequeue(this._tasks);
 if (!task.execute())
 Array.enqueue(this._tasks, task);
 if (this._tasks.length)
 this._startTimeout();
}

 dispose
 As we discussed earlier, the _TaskManager class implements the IDisposable interface. Consequently,
the class implements the dispose method, as shown in Listing F-10 . The dispose method of the current
 TaskManager instance, like the dispose method of any other ASP.NET AJAX object, performs its final
cleanup before the instance is disposed of. The method begins by invoking the clearTimeout method
on the window object to release the timeout cookie:

 if (this._timeoutCookie)
 window.clearTimeout(this._timeoutCookie);

 Next, it iterates through the remaining tasks in the _tasks collection and invokes the dispose method
on each task to allow the task to perform its final cleanup before it is disposed of:

 if (this._tasks && this._tasks.length)
 {
 for (var i = this._tasks.length - 1; i >= 0; i--)
 {
 this._tasks[i].dispose();
 }
 }

 Finally, it invokes the unregisterDisposableObject method on the Application object that
 represents the current ASP.NET AJAX application, in order to remove the current TaskManager instance
from the list of disposable objects. Recall that the constructor of the TaskManager class added the
 current TaskManager instance to this list.

 Sys.Application.unregisterDisposableObject(this);

bapp06.indd 1441bapp06.indd 1441 8/20/07 9:01:15 PM8/20/07 9:01:15 PM

Appendix F: ListView

1442

 Listing F-10: The dispose Method

 function Sys$Preview$_TaskManager$dispose()
{
 if (this._timeoutCookie)
 window.clearTimeout(this._timeoutCookie);
 if (this._tasks && this._tasks.length)
 {
 for (var i = this._tasks.length - 1; i >= 0; i--)
 {
 this._tasks[i].dispose();
 }
 }
 this._tasks = null;
 this._timeoutHandler = null;
 Sys.Application.unregisterDisposableObject(this);
}

 ListViewRenderTask
 As you can see from Listing F-11 , ListViewRenderTask , like any other ASP.NET AJAX task, imple-
ments the ITask and IDisposable interfaces. The main responsibility of ListViewRenderTask is to
render the specified ListView templated data control.

 Sys.Preview.UI.Data.ListViewRenderTask.registerClass(
 ‘Sys.Preview.UI.Data.ListViewRenderTask’,
 null, Sys.Preview.ITask, Sys.IDisposable);

 I’ll discuss the methods and properties of ListViewRenderTask in the following sections.

 Listing F-11: The ListViewRenderTask Class

 Sys.Preview.UI.Data.ListViewRenderTask =
function Sys$Preview$UI$Data$ListViewRenderTask(listView, data, itemTemplate,
 itemTemplateParent,
 separatorTemplate, itemElements,
 separatorElements,
 itemClass, alternatingItemClass,
 separatorClass,
 itemFocusHandler, itemClickHandler)
{
 this._listView = listView;
 this._data = data;
 this._itemTemplate = itemTemplate;
 this._itemTemplateParent = itemTemplateParent;
 this._separatorTemplate = separatorTemplate;
 this._itemElements = itemElements;
 this._separatorElements = separatorElements;
 this._itemClass = itemClass;
 this._alternatingItemClass = alternatingItemClass;
 this._separatorClass = separatorClass;
 this._itemFocusHandler = itemFocusHandler;
 this._itemClickHandler = itemClickHandler;
 this._currentIndex = 0;
}

bapp06.indd 1442bapp06.indd 1442 8/20/07 9:01:16 PM8/20/07 9:01:16 PM

Appendix F: ListView

1443

function Sys$Preview$UI$Data$ListViewRenderTask$dispose()
{
 this._listView = null;
 this._data = null;
 this._itemTemplate = null;
 this._itemTemplateParent = null;
 this._separatorTemplate = null;
 this._itemElements = null;
 this._separatorElements = null;
 this._itemClass = null;
 this._alternatingItemClass = null;
 this._separatorClass = null;
 this._itemFocusHandler = null;
 this._itemClickHandler = null;
}

Sys.Preview.UI.Data.ListViewRenderTask.prototype =
{
 dispose: Sys$Preview$UI$Data$ListViewRenderTask$dispose,
 execute: Sys$Preview$UI$Data$ListViewRenderTask$execute
}
Sys.Preview.UI.Data.ListViewRenderTask.registerClass(
 ‘Sys.Preview.UI.Data.ListViewRenderTask’,
 null, Sys.Preview.ITask, Sys.IDisposable);

 Constructor
 As Listing F-12 shows, the constructor of the ListViewRenderTask class takes the parameters shown in
the following table:

 Parameter Description

 listView References the ListView templated data control that the current
 ListViewRenderTask is to render.

 Data References the data collection bound to the ListView .

 itemTemplate References the ASP.NET AJAX Template object that represents
the itemTemplate subelement of the ListView control.

 itemTemplateParent References the template DOM element for building the DOM
 element that acts as a container for the DOM elements that
 display data records.

 separatorTemplate References the ASP.NET AJAX Template object that represents
the separatorTemplate subelement of the ListView control.

 itemElements Contains the DOM elements that display data records. (Keep in
mind that the ListView control uses the associated DOM
 element of the item template as a template for building these
DOM elements.)

(continued)

bapp06.indd 1443bapp06.indd 1443 8/20/07 9:01:16 PM8/20/07 9:01:16 PM

Appendix F: ListView

1444

 Parameter Description

 separatorElements Contains the DOM elements that separate consecutive data
DOM elements. A data DOM element is a DOM element that
displays a data record.

 itemClass Specifies the name of the CSS style class that the execute
method of ListViewRenderTask must apply to even-numbered
data DOM elements.

 alternatingItemClass Specifies the name of the CSS style class that the execute
method of ListViewRenderTask must apply to the odd-
 numbered data DOM elements.

 separatorClass Specifies the name of the CSS style class that the execute
method of ListViewRenderTask must apply to the DOM
 elements that separate consecutive data DOM elements.

 itemFocusHandler Specifies the delegate that the execute method of
ListViewRenderTask must register as an event handler
for the focus event of the data DOM elements.

 itemClickHandler Specifies the delegate that the execute method of
ListViewRenderTask must register as an event handler
for the click event of the data DOM elements.

 Listing F-12: The Constructor of ListViewRenderTask

 Sys.Preview.UI.Data.ListViewRenderTask =
function Sys$Preview$UI$Data$ListViewRenderTask(listView, data, itemTemplate,
 itemTemplateParent,
 separatorTemplate, itemElements,
 separatorElements,
 itemClass, alternatingItemClass,
 separatorClass,
 itemFocusHandler, itemClickHandler)
{
 this._listView = listView;
 this._data = data;
 this._itemTemplate = itemTemplate;
 this._itemTemplateParent = itemTemplateParent;
 this._separatorTemplate = separatorTemplate;
 this._itemElements = itemElements;
 this._separatorElements = separatorElements;
 this._itemClass = itemClass;
 this._alternatingItemClass = alternatingItemClass;
 this._separatorClass = separatorClass;
 this._itemFocusHandler = itemFocusHandler;
 this._itemClickHandler = itemClickHandler;
 this._currentIndex = 0;
}

(continued)

bapp06.indd 1444bapp06.indd 1444 8/20/07 9:01:16 PM8/20/07 9:01:16 PM

Appendix F: ListView

1445

 execute
 ListViewRenderTask , like any other ASP.NET AJAX task, implements the execute method of the
 ITask interface as shown in Listing F-13 . This method first takes these steps to determine the total
 number of records in the data collection:

 ❑ If the data collection is a JavaScript array, the execute method uses the value of the length
property of the data collection.

❑ If the data collection is not a JavaScript array, but it supports a method named get_length ,
the execute method uses the return value of this method. Data collections that implement the
 IData interface support this method.

❑ If the data collection is neither a JavaScript array nor supports the get_length method, the
 execute method uses 0 as the total number of records because the ListView control supports
only these two types of data collections.

 var isArray = Array.isInstanceOfType(this._data);
 var itemLength = isArray ? this._data.length :
 (this._data ? (this._data.get_length ? this._data.get_length() : 0) : 0);

 Next, the execute method determines how many DOM elements are left to render. Keep in mind that
the execute method renders each data record in the data collection in a separate DOM element:

 var lastElementToRender = Math.min(itemLength, this._currentIndex + 5);

 Next, the execute method enters a for loop in which each iteration takes the following steps to render
the next record in the data collection. Each iteration begins by accessing the next data record in the data
collection, as follows:

 ❑ If the data collection is a JavaScript array, it uses the current index as an index into the data
 collection to return the reference to the current data record.

❑ If the data collection is not a JavaScript array, it assumes that the data collection supports a
method named getItem and consequently invokes this method, passing in the current index
to return a reference to the current data record.

 var item = isArray? this._data[this._currentIndex] :
 this._data.getItem(this._currentIndex);

 Next, the execute method performs the following tasks if the itemTemplate property of the ListView
templated data control has been set. (Page developers use a declarative approach to set the itemTemplate
property, adding a <template> subelement to the <itemTemplate> subelement of the ListView control
in xml-script and setting the layoutElement attribute on this <template> subelement to the id HTML
attribute of a DOM element on the current page. This tells the ListView control that they want the control
to use this DOM element as the template for building the DOM elements that display the data records.)

 ❑ The execute method invokes the createInstance method on the itemTemplate , passing in
two parameters: the first references the clone of the parent DOM element of the DOM element
whose id HTML attribute is specified in the layoutElement attribute of the <template>
 subelement of the <itemTemplate> element; the second references the current data record —
that is, the data record being displayed.

bapp06.indd 1445bapp06.indd 1445 8/20/07 9:01:17 PM8/20/07 9:01:17 PM

Appendix F: ListView

1446

 var itemTemplateInstance =
 this._itemTemplate.createInstance(this._itemTemplateParent, item);

❑ The boldface portion of the following excerpt from Listing F-4 shows an example of this
parent DOM element, in which the <tbody> DOM element with the id attribute value of
itemContainer is the parent DOM element of the <tr> DOM element with the id attribute
value of item . As the bottom boldface portion of this excerpt shows, the layoutElement attri-
bute on the <template> subelement of the <itemTemplate> subelement is set to the id
attribute value of this <tr> DOM element — that is, item . In this case, the execute method
passes the clone of the <tbody> DOM element with the id attribute value of itemContainer as
the first parameter of the createInstance method. You may be wondering who clones this
 <tbody> DOM element. I’ll answer that question when we discuss the render method of the
 ListView control. For now, suffice it to say that ListViewRenderTask receives the clone of
the <tbody> DOM element from the render method of the ListView control.

 <html>
 <body>
 . . .
 <div style=”display: none;”>
 <div id=”layout”>
 <table width=”100%”>
 <thead>
 . . .
 </thead>
 <tbody id=”itemContainer”>
 <tr id=”item”>
 <td id=”title” />
 <td id=”publisher” />
 <td id=”price” />
 </tr>
 </tbody>
 </table>
 </div>
 </div>
 . . .
 <script type=”text/xml-script”>
 <page xmlns=”http://schemas.microsoft.com/xml-script/2005”>
 <components>
 . . .
 <listView id=”listView” renderComplete=”renderCompleteCallback”
 itemTemplateParentElementId=”itemContainer”>
 . . .
 <itemTemplate>
 <template layoutElement=”item”>
 . . .
 </template>
 </itemTemplate>
 </listView>
 </components>
 </page>
 </script>
 </body>
</html>

bapp06.indd 1446bapp06.indd 1446 8/20/07 9:01:17 PM8/20/07 9:01:17 PM

Appendix F: ListView

1447

 ❑ The createInstance method takes these actions under the hood:

 ❑ Clones the DOM element whose id HTML attribute value is given by the layoutElement
attribute on the <template> subelement of the <itemTemplate> subelement of the
 ListView control. Keep in mind that cloning this DOM element also clones all its
 descendant DOM elements. For example, in the case of the excerpt from Listing F-4 , the
 createInstance method clones the <tr> DOM element with the id attribute value of
 item , including all its descendant DOM elements — that is, the <td> DOM elements with
the id attribute values of title , publisher , and price . In other words, all the DOM
 elements shown in the boldface portion of the following excerpt (which repeats that of the
one preceding) are cloned:

 <html>
 <body>
 . . .
 <div style=”display: none;”>
 <div id=”layout”>
 <table width=”100%”>
 <thead>
 . . .
 </thead>
 <tbody id=”itemContainer”>
 <tr id=”item”>
 <td id=”title”>
 </td>
 <td id=”publisher”>
 </td>
 <td id=”price”>
 </td>
 </tr>
 </tbody>
 </table>
 </div>
 </div>
 . . .
 </body>
</html>

 ❑ Adds this cloned DOM element, including its descendant elements, as the child element
to the cloned DOM element that ListViewRenderTask receives from the render method
of the ListView (as mentioned earlier). For example, in the case of this excerpt from
 Listing F-4 , the cloned <tr> DOM element with the id attribute value of item , including
its cloned <td> child elements, is added to the cloned <tbody> element that
 ListViewRenderTask receives from the render method.

❑ Instantiates a TemplateInstance object and stores a reference to this cloned DOM
 element in the instanceElement property of this object, and returns the object to
its caller.

 ❑ Accesses the cloned DOM element that the createInstance method has stored in the
 instanceElement property of the TemplateInstance object, as we just discussed. For
 example, in the case of the previous excerpt from Listing F-4 , this cloned DOM element is the
cloned <tr> DOM element with the id attribute value of item :

bapp06.indd 1447bapp06.indd 1447 8/20/07 9:01:17 PM8/20/07 9:01:17 PM

Appendix F: ListView

1448

 var element = itemTemplateInstance.instanceElement;

 ❑ If the current row is an even row, createInstance assigns the CSS style class associated
with the item template to the className property of the cloned DOM element. For example,
in the case of the previous excerpt from Listing F-4 , it assigns the CSS style class name to the
 className property of the cloned <tr> DOM element with an id attribute value of item . If
the current row is an alternating row, it assigns the alternating CSS style class name associated
with the item template to the className property of the cloned DOM element:

 if (this._itemClass)
 {
 if ((this._currentIndex % 2 === 1) && (this._alternatingItemClass))
 element.className = this._alternatingItemClass;

 else
 element.className = this._itemClass;
 }

 ❑ Uses the current index as an index into the _itemsElements collection to add the cloned DOM
element to this collection. For example, in the case of the previous excerpt from Listing F-4 , it
adds the cloned <tr> DOM element with the id attribute value of item to the _itemsElements
collection.

 this._itemElements[this._currentIndex] = element;

 ❑ Sets the dataIndex property of the cloned DOM element to the current index. As you can see,
each cloned DOM element in the _itemsElements collection exposes a property named
 dataIndex that specifies the index of the data record that the cloned DOM element displays.
This is the index of the data record in the data collection bound to the ListView control.

 element.tabIndex = -1;
 element.dataIndex = this._currentIndex;

 ❑ Registers the specified handlers as event handlers for the focus and click events of the cloned
DOM element.

 $addHandler(element, “focus”, this._itemFocusHandler);
 $addHandler(element, “click”, this._itemClickHandler);

 Next, if the page developer has specified the <separatorTemplate> element in the xml-script, the
 execute method performs the following tasks:

❑ Invokes the createInstance method on the separatorTemplate , passing in the reference to
the clone of the parent DOM element of the DOM element whose id HTML attribute is specified
in the layoutElement attribute of the <template> subelement of the <separatorTemplate>
element. This cloned parent DOM element is the same one that ListViewRenderTask passed
into the createInstance method of the itemTemplate .

 var separatorTemplateInstance =
 this._separatorTemplate.createInstance(this._itemTemplateParent);

bapp06.indd 1448bapp06.indd 1448 8/20/07 9:01:18 PM8/20/07 9:01:18 PM

Appendix F: ListView

1449

❑ The createInstance method takes these steps under the hood:

 ❑ Clones the DOM element whose id HTML attribute value is given by the layoutElement
attribute on the <template> subelement of the <separatorTemplate> subelement of the
 ListView control. Keep in mind that cloning this DOM element also clones all its descen-
dant DOM elements.

❑ Adds this cloned DOM element as the child element to the cloned DOM element that
 ListViewRenderTask receives from the render method of the ListView , as mentioned
earlier. For example, this cloned DOM element is added to the cloned <tbody> element
that ListViewRenderTask receives from the render method.

❑ Instantiates a TemplateInstance object and stores a reference to this cloned DOM
 element in the instanceElement property of this object, and returns the object to
its caller.

 ❑ Accesses the cloned DOM element that the createInstance method has stored in the
 instanceElement property of the TemplateInstance object, as just discussed.

 var sep = separatorTemplateInstance.instanceElement;

 ❑ Assigns the CSS style class associated with the separator template to the className property of
this cloned DOM element:

 if (this._separatorClass)
 sep.className = this._separatorClass;

 ❑ Uses the current index as an index into the _separatorElements array to store this cloned
DOM element into the array.

 this._separatorElements[this._currentIndex] = sep;

 As we discussed earlier, the execute method returns a Boolean value that specifies whether the method
is done with rendering all the data records. Recall from Listing F-9 that if the execute method returns
 false , the _onTimeout method calls the enqueue static method on the Array class to enqueue the task
back in the _tasks collection so that it can be executed again. Note that the execute method invokes
the _renderTaskComplete method on its associated ListView templated data control to inform the
control that the execute method has completed the rendering of all the data records in the data collec-
tion bound to the ListView control, and execute returns true to inform the _onTimeout method that
it has completed its execution:

 if (this._currentIndex === itemLength)
 {
 this._listView._renderTaskComplete(this);
 return true;
 }

bapp06.indd 1449bapp06.indd 1449 8/20/07 9:01:18 PM8/20/07 9:01:18 PM

Appendix F: ListView

1450

 Listing F-13: The execute Method

 function Sys$Preview$UI$Data$ListViewRenderTask$execute()
{
 var isArray = Array.isInstanceOfType(this._data);
 var itemLength = isArray ? this._data.length :
 (this._data ? (this._data.get_length ? this._data.get_length() : 0) : 0);
 var lengthm1 = itemLength - 1;
 var lastElementToRender = Math.min(itemLength, this._currentIndex + 5);
 for (; this._currentIndex < lastElementToRender; this._currentIndex++)
 {
 var item = isArray? this._data[this._currentIndex] :
 this._data.getItem(this._currentIndex);
 if (this._itemTemplate)
 {
 var itemTemplateInstance =
 this._itemTemplate.createInstance(this._itemTemplateParent, item);
 var element = itemTemplateInstance.instanceElement;
 if (this._itemClass)
 {
 if ((this._currentIndex % 2 === 1) && (this._alternatingItemClass))
 element.className = this._alternatingItemClass;

 else
 element.className = this._itemClass;
 }
 this._itemElements[this._currentIndex] = element;
 element.tabIndex = -1;
 element.dataIndex = this._currentIndex;
 $addHandler(element, “focus”, this._itemFocusHandler);
 $addHandler(element, “click”, this._itemClickHandler);
 }
 if (this._separatorTemplate && (this._currentIndex !== lengthm1) &&
 this._itemTemplateParent)
 {
 var separatorTemplateInstance =
 this._separatorTemplate.createInstance(this._itemTemplateParent);
 var sep = separatorTemplateInstance.instanceElement;
 if (this._separatorClass)
 sep.className = this._separatorClass;

 this._separatorElements[this._currentIndex] = sep;
 }
 }
 if (this._currentIndex === itemLength)
 {
 this._listView._renderTaskComplete(this);
 return true;
 }

 else
 return false;
}

bapp06.indd 1450bapp06.indd 1450 8/20/07 9:01:18 PM8/20/07 9:01:18 PM

Appendix F: ListView

1451

 ListView
 The ListView control, like any other ASP.NET AJAX data control, derives from the DataControl
base class:

 Sys.Preview.UI.Data.ListView.registerClass(‘Sys.Preview.UI.Data.ListView’,
 Sys.Preview.UI.Data.DataControl);

 Listing F-14 presents the implementation of the ListView control. I’ll discuss the members of this
 control in the following sections.

 Listing F-14: The ListView Control

 Sys.Preview.UI.Data.ListView =
function Sys$Preview$UI$Data$ListView(associatedElement)
{
 Sys.Preview.UI.Data.ListView.initializeBase(this, [associatedElement]);
 this._itemElements = [];
 this._separatorElements = [];
}
Sys.Preview.UI.Data.ListView.registerClass(‘Sys.Preview.UI.Data.ListView’,
 Sys.Preview.UI.Data.DataControl);

 Constructor
 As Listing F-15 shows, this constructor, like that of any other ASP.NET AJAX subclass, first invokes
the initializeBase method to invoke the constructor of its base class — that is, the DataControl
base class:

 Sys.Preview.UI.Data.ListView.initializeBase(this, [associatedElement]);

 Next, it instantiates the following two collections:

 ❑ _itemElements : This array contains all the cloned DOM elements of the DOM element whose
 id attribute value is given by the layoutElement attribute on the <template> subelement of
the <itemTemplate> subelement of the <listView> element in the xml-script. As we discussed
earlier, each DOM element in this array displays a data record. For example, in the case of the
following excerpt from Listing F-4 , the _itemElements array contains DOM elements that are
the clones of the <tr> DOM element with an id attribute value of item . Each cloned <tr>
DOM element in this example displays information about a particular book.

bapp06.indd 1451bapp06.indd 1451 8/20/07 9:01:18 PM8/20/07 9:01:18 PM

Appendix F: ListView

1452

 <html>
 <body>
 . . .
 <div style=”display: none;”>
 <div id=”layout”>
 <table width=”100%”>
 <thead>
 . . .
 </thead>
 <tbody id=”itemContainer”>
 <tr id=”item”>
 <td id=”title”>
 </td>
 <td id=”publisher”>
 </td>
 <td id=”price”>
 </td>
 </tr>
 </tbody>
 </table>
 </div>
 </div>
 . . .
 </body>
</html>

 ❑ _separatorElements : This array contains all the cloned DOM elements of the DOM element
whose id attribute value is given by the layoutElement attribute on the <template> subele-
ment of the <separatorTemplate> subelement of the <listView> element in the xml-script.
As we discussed earlier, each DOM element in this array displays the UI that separates two
 consecutive data DOM elements. The DOM elements in _itemElements are also known as data
DOM elements because they display data records.

 Listing F-15: The Constructor of the ListView Control

 Sys.Preview.UI.Data.ListView =
function Sys$Preview$UI$Data$ListView(associatedElement)
{
 Sys.Preview.UI.Data.ListView.initializeBase(this, [associatedElement]);
 this._itemElements = [];
 this._separatorElements = [];
}

 Style Properties
 In this section I’ll present and discuss the implementation of the style properties of the ListView
 control. These properties specify the CSS style class names for specific types of rows or items of the
 ListView control.

bapp06.indd 1452bapp06.indd 1452 8/20/07 9:01:19 PM8/20/07 9:01:19 PM

Appendix F: ListView

1453

 alternatingItemClass
 As Listing F-16 shows, the ListView control exposes a getter named get_alternatingItemCssClass
and a setter named set_alternatingItemCssClass that you can use to get and set the
 alternatingItemClass property of the ListView control. This property contains the CSS style
class name that will be applied to the alternating rows of the control — that is, to the alternating, or
odd, DOM elements in the _itemElements collection. Recall that the DOM elements in this collection
display data records.

 The set_alternatingItemCssClass setter takes effect only if the new value is different from the
 current value. As you can see from Listing F-16 , this setter first assigns the new value to the
 alternatingItemClass property:

 this._alternatingItemClass = value;

 Next, it invokes the render method to render the ListView control so this change will take effect
immediately:

 this.render();

 Finally, it invokes the raisePropertyChanged method to raise the propertyChanged event and
 consequently to invoke the event handlers registered for this event. The ListView control, like any
other, inherits this method from the Component base class.

 If you need to run some custom code when the value of the alternatingItemClass property
changes, you must wrap your code in a method and register the method as an event handler for the
 propertyChanged event of the ListView control.

 Listing F-16: The Getter and Setter Methods for Getting and Setting the
alternatingItemClass Property

 function Sys$Preview$UI$Data$ListView$get_alternatingItemCssClass()
{
 return this._alternatingItemClass;
}
function Sys$Preview$UI$Data$ListView$set_alternatingItemCssClass(value)
{
 if (value !== this._alternatingItemClass)
 {
 this._alternatingItemClass = value;
 this.render();
 this.raisePropertyChanged(‘alternatingItemCssClass’);
 }
}

bapp06.indd 1453bapp06.indd 1453 8/20/07 9:01:19 PM8/20/07 9:01:19 PM

Appendix F: ListView

1454

 itemClass
 Listing F-17 presents the implementation of the get_itemCssClass and set_itemCssClass methods
of the ListView control, which you can use to get and set the value of the itemCssClass property of
the ListView control. This value is applied to the non-alternating, or even, rows of the ListView
 control — that is, the even-numbered DOM elements in the _itemElements collection.

 Note that set_itemCssClass doesn’t do anything if the new value is the same as the current value. As
you can see, this setter first assigns the new value to the itemClass property:

 this._itemClass = value;

 Next, it invokes the render method to re-render the ListView control so this change will take effect
immediately:

 this.render();

 Finally, it calls the raisePropertyChanged method to raise the propertyChanged event:

 this.raisePropertyChanged(‘itemCssClass’);

 If you need to run some custom code when the value of the itemClass property changes, you must
wrap your code in a method and register the method as an event handler for the propertyChanged
event of the ListView control.

 Listing F-17: The Getter and Setter Methods for Getting and Setting the itemClass
Property

 function Sys$Preview$UI$Data$ListView$get_itemCssClass()
{
 return this._itemClass;
}
function Sys$Preview$UI$Data$ListView$set_itemCssClass(value)
{
 if (value !== this._itemClass)
 {
 this._itemClass = value;
 this.render();
 this.raisePropertyChanged(‘itemCssClass’);
 }
}

 selectedItemClass
 Use the get_selectedItemCssClass and set_selectedItemCssClass getter and setter methods to
get and set the CSS style class name for the selected row or item of the ListView control, as shown in
Listing F-18 .

bapp06.indd 1454bapp06.indd 1454 8/20/07 9:01:19 PM8/20/07 9:01:19 PM

Appendix F: ListView

1455

 Listing F-18: Getting and Setting the selectedItemClass Property

 function Sys$Preview$UI$Data$ListView$get_selectedItemCssClass()
{
 return this._selectedItemClass;
}
function Sys$Preview$UI$Data$ListView$set_selectedItemCssClass(value)
{
 if (value !== this._selectedItemClass)
 {
 this._selectedItemClass = value;
 this.render();
 this.raisePropertyChanged(‘selectedItemCssClass’);
 }
}

 separatorCssClass
 Use the get_separatorCssClass and set_separatorCssClass getter and setter methods to get
and set the CSS style class name for the separator row or item of the ListView control, as shown in
 Listing F-19 . A separator row or item is a row or item that separates two consecutive data rows or items.
In other words, the separatorCssClass is applied to the DOM elements in the _separatorElements
collection.

 Listing F-19: Getting and Setting the separatorClass Property

 function Sys$Preview$UI$Data$ListView$get_separatorCssClass()
{
 return this._separatorClass;
}
function Sys$Preview$UI$Data$ListView$set_separatorCssClass(value)
{
 if (value !== this._separatorClass)
 {
 this._separatorClass = value;
 this.render();
 this.raisePropertyChanged(‘separatorCssClass’);
 }
}

 Template Properties
 This section will describe the template properties of the ListView control.

 emptyTemplate
 Use the get_emptyTemplate and set_emptyTemplate getter and setter methods to get and set the
empty template. The page developer specifies the required markup text between the opening and
 closing tags of the <template> subelement of the <emptyTemplate> element in the xml-script. As
you’ll see later, the ListView control automatically renders this markup if the data collection bound to
the ListView control does not contain any data records.

bapp06.indd 1455bapp06.indd 1455 8/20/07 9:01:20 PM8/20/07 9:01:20 PM

Appendix F: ListView

1456

 As Listing F-20 shows, the set_emptyTemplate setter first invokes the dispose method on the current
 emptyTemplate . This allows the template to perform its final cleanup before it is disposed of:

 if (this._emptyTemplate)
 this._emptyTemplate.dispose();

 Next, it assigns the new template to the empty template:

 this._emptyTemplate = value;

 Then it invokes the render method to re-render the ListView control, if the ListView control is not
already updating:

 if (!this.get_isUpdating())
 this.render();

 Finally, it invokes the raisePropertyChanged method to raise the propertyChanged event and
 consequently to inform interested clients that the emptyTemplate property has changed its value.
 Clients express interest in this event by registering an event handler for it.

 Listing F-20: Getting and Setting the emptyTemplate Property

 function Sys$Preview$UI$Data$ListView$get_emptyTemplate()
{
 return this._emptyTemplate;
}
function Sys$Preview$UI$Data$ListView$set_emptyTemplate(value)
{
 if (this._emptyTemplate)
 this._emptyTemplate.dispose();

 this._emptyTemplate = value;
 if (!this.get_isUpdating())
 this.render();

 this.raisePropertyChanged(‘emptyTemplate’);
}

 itemTemplate
 Use the get_itemTemplate and set_itemTemplate getter and setter methods to get and set the
 itemTemplate property. The implementation of these two methods are very similar to that of
the getter and setter methods for the emptyTemplate property, as shown in Listing F-21 .

bapp06.indd 1456bapp06.indd 1456 8/20/07 9:01:20 PM8/20/07 9:01:20 PM

Appendix F: ListView

1457

 Listing F-21: Getting and Setting the itemTemplate Property

 function Sys$Preview$UI$Data$ListView$get_itemTemplate()
{
 return this._itemTemplate;
}
function Sys$Preview$UI$Data$ListView$set_itemTemplate(value)
{
 if (this._itemTemplate)
 this._itemTemplate.dispose();

 this._itemTemplate = value;
 if (!this.get_isUpdating())
 this.render();

 this.raisePropertyChanged(‘itemTemplate’);
}

 layoutTemplate
 Use the get_layoutTemplate and set_layoutTemplate getter and setter methods to get and set the
 layoutTemplate property. The implementation of these two methods are very similar to that of the
 getter and setter methods for the emptyTemplate property, as shown in Listing F-22 .

 Listing F-22: Getting and Setting the layoutTemplate Property

 function Sys$Preview$UI$Data$ListView$get_layoutTemplate()
{
 return this._layoutTemplate;
}
function Sys$Preview$UI$Data$ListView$set_layoutTemplate(value)
{
 if (this._layoutTemplate)
 this._layoutTemplate.dispose();

 this._layoutTemplate = value;
 if (!this.get_isUpdating())
 this.render();

 this.raisePropertyChanged(‘layoutTemplate’);
}

 separatorTemplate
 Use the get_separatorTemplate and set_separatorTemplate getter and setter methods to get and
set the separator template for the ListView control, as shown in Listing F-23 .

bapp06.indd 1457bapp06.indd 1457 8/20/07 9:01:20 PM8/20/07 9:01:20 PM

Appendix F: ListView

1458

 Listing F-23: Getting and Setting the separatorTemplate

 function Sys$Preview$UI$Data$ListView$get_separatorTemplate()
{
 return this._separatorTemplate;
}
function Sys$Preview$UI$Data$ListView$set_separatorTemplate(value)
{
 if (this._separatorTemplate)
 this._separatorTemplate.dispose();

 this._separatorTemplate = value;
 if (!this.get_isUpdating())
 this.render();

 this.raisePropertyChanged(‘separatorTemplate’);
}

 getItemElement
 The get_itemElement method returns the DOM element in the _itemElements collection with the
specified index, as shown in Listing F-24 .

 If you can, always use the style and template properties of the ListView control to customize the UI
that renders the data records. The problem with using style and template properties is that they are
 applied to all data rows or items of the ListView control. If you need to customize a specific data row
or item, call the getItemElement method to return a reference to the DOM element that contains the
UI that renders this row and performs your row-specific customization on this DOM element.

 Listing F-24: The getItemElement Method

 function Sys$Preview$UI$Data$ListView$getItemElement(index)
{
 return this._itemElements[index];
}

 set_dataIndex
 Listing F-25 contains the implementation of the set_dataIndex method of the ListView control. This
method begins by invoking the get_dataIndex method to return the current data index. The ListView
control inherits the get_dataIndex method from the DataControl base class. Recall that this method
returns the index of the current data record in the data collection bound to the ListView control:

 var oldIndex = this.get_dataIndex();

 Next, it calls the getItemElement method to return a reference to the DOM element that contains the UI
that renders the data record with the specified data index:

 var sel = this.getItemElement(oldIndex);

bapp06.indd 1458bapp06.indd 1458 8/20/07 9:01:20 PM8/20/07 9:01:20 PM

Appendix F: ListView

1459

 Then it removes the current CSS style class name from this DOM element. This is necessary because
we’re about to change the selected item and we need to deselect the current item:

 if (sel && this._selectedItemClass)
 Sys.UI.DomElement.removeCssClass(sel, this._selectedItemClass);

 Next, it invokes the set_dataIndex of its base class — that is, the DataControl class — to specify the
new index as the current data index:

 Sys.Preview.UI.Data.ListView.callBaseMethod(this, ‘set_dataIndex’, [value]);

 Then the set_dataIndex method invokes the getItemElement method to return a reference to the
DOM element that contains the UI that displays the new data record with the new data index:

 sel = this.getItemElement(value);

 Finally, it applies the selected style to this DOM element, because this DOM element is now the selected
item or row of the ListView control:

 if (sel && this._selectedItemClass)
 Sys.UI.DomElement.addCssClass(sel, this._selectedItemClass);

 Listing F-25: The set_dataIndex Method

 function Sys$Preview$UI$Data$ListView$set_dataIndex(value)
{
 var oldIndex = this.get_dataIndex();
 if (oldIndex !== value)
 {
 var sel = this.getItemElement(oldIndex);
 if (sel && this._selectedItemClass)
 Sys.UI.DomElement.removeCssClass(sel, this._selectedItemClass);

 Sys.Preview.UI.Data.ListView.callBaseMethod(this, ‘set_dataIndex’, [value]);
 sel = this.getItemElement(value);
 if (sel && this._selectedItemClass)
 Sys.UI.DomElement.addCssClass(sel, this._selectedItemClass);
 }
}

 itemTemplateParentElementId
 Use the get_itemTemplateParentElementId and set_itemTemplateParentElementId getter and
setter methods to get and set the itemTemplateParentElementId property, as shown in Listing F-26 .

bapp06.indd 1459bapp06.indd 1459 8/20/07 9:01:21 PM8/20/07 9:01:21 PM

Appendix F: ListView

1460

This property specifies the id HTML attribute value of the DOM element whose clone acts as a container
for the DOM elements in the _itemElements collection.

 Listing F-26: Getting and Setting the itemTemplateParentElementId Property

 function Sys$Preview$UI$Data$ListView$get_itemTemplateParentElementId()
{
 return this._itemTemplateParentElementId;
}
function Sys$Preview$UI$Data$ListView$set_itemTemplateParentElementId(value)
{
 this._itemTemplateParentElementId = value;
 this.raisePropertyChanged(‘itemTemplateParentElementId’);
}

 renderComplete
 The ListView control exposes an event named renderComplete , as shown in Listing F-27 . As the
name suggests, the ListView control fires this event when it is completely rendered. Use the
add_renderComplete method to add a new event handler to the list of those registered for the
 renderComplete event. Use the remove_renderComplet e method to remove an event handler from
the list of those registered for this event.

 Listing F-27: The renderComplete Event

 function Sys$Preview$UI$Data$ListView$add_renderComplete(handler)
{
 this.get_events().addHandler(“renderComplete”, handler);
}
function Sys$Preview$UI$Data$ListView$remove_renderComplete(handler)
{
 this.get_events().removeHandler(“renderComplete”, handler);
}

 Initialize
 The ListView control overrides the initialize method that it inherits from its base class, in which it
performs several tasks, as can be seen from Listing F-28 . First, it invokes the get_element method to
return a reference to the DOM element on the current page that represents the ListView control:

 var element = this.get_element();

 Next, it creates a delegate to represent the _onGotFocus method, and stores it in a private field named
 _focusHandler :

 this._focusHandler = Function.createDelegate(this, this._onGotFocus);

 Then it creates another delegate to represent the _onKeyDown method, and stores it in a private field
named _keyDownHandler :

bapp06.indd 1460bapp06.indd 1460 8/20/07 9:01:21 PM8/20/07 9:01:21 PM

Appendix F: ListView

1461

 this._keyDownHandler = Function.createDelegate(this, this._onKeyDown);

 Next, the ListView control creates a third delegate to represent the _onItemFocus method, and stores it
in a private field named _itemFocusHandler :

 this._itemFocusHandler = Function.createDelegate(this, this._onItemFocus);

 Then it creates the fourth delegate to represent the _onItemClick method, and stores it in a private field
named _itemClickHandler :

 this._itemClickHandler = Function.createDelegate(this, this._onItemClick);

 Next, it invokes the initialize method of its base class to allow the base class to perform its own
initialization:

 Sys.Preview.UI.Data.ListView.callBaseMethod(this, ‘initialize’);

 Then it registers the _keyDownHandler and _focusHandler delegates as event handlers for the
 keydown and focus events of the DOM element that represents the ListView control:

 $addHandler(element, “keydown”, this._keyDownHandler);
 $addHandler(element, “focus”, this._focusHandler);

 Next, it invokes the initialize method on the item template, if the page developer has specified this
template in xml-script:

 if (this._itemTemplate)
 this._itemTemplate.initialize();

 Next, ListView invokes the initialize method on the separator template, if the page developer has
specified this template in xml-script:

 if (this._separatorTemplate)
 this._separatorTemplate.initialize();

 Next, it invokes the initialize method on the empty template, if the page developer has specified this
template in the xml-script:

 if (this._emptyTemplate)
 this._emptyTemplate.initialize();

 Next, it invokes the initialize method on the layout template, if this template has been specified:

 if (this._layoutTemplate)
 this._layoutTemplate.initialize();

 Finally, it invokes the render method to render the ListView control:

 this.render();

bapp06.indd 1461bapp06.indd 1461 8/20/07 9:01:21 PM8/20/07 9:01:21 PM

Appendix F: ListView

1462

 Listing F-28: The initialize Method

 function Sys$Preview$UI$Data$ListView$initialize()
{
 var element = this.get_element();
 this._focusHandler = Function.createDelegate(this, this._onGotFocus);
 this._keyDownHandler = Function.createDelegate(this, this._onKeyDown);
 this._itemFocusHandler = Function.createDelegate(this, this._onItemFocus);
 this._itemClickHandler = Function.createDelegate(this, this._onItemClick);
 Sys.Preview.UI.Data.ListView.callBaseMethod(this, ‘initialize’);
 $addHandler(element, “keydown”, this._keyDownHandler);
 $addHandler(element, “focus”, this._focusHandler);
 if (this._itemTemplate)
 this._itemTemplate.initialize();

 if (this._separatorTemplate)
 this._separatorTemplate.initialize();

 if (this._emptyTemplate)
 this._emptyTemplate.initialize();

 if (this._layoutTemplate)
 this._layoutTemplate.initialize();
 if (!element.tabIndex)
 element.tabIndex = 0;
 this.render();
}

 _onGotFocus
 Recall from Listing F-28 that the initialize method registered the _focusHandler delegate that
 represents the _onGotFocus method as an event handler for the focus event of the associated DOM
 element of the ListView control. Recall that the associated DOM element of a control is the
DOM element that represents the control on the current page. When the associated DOM element
gains the focus, it automatically invokes the _focusHandler delegate, which in turn invokes the
_onGotFocus method. Listing F-29 presents the implementation of this method. This method invokes
the setFocus method, passing in the references to the ListView control and the DOM element that
 displays the selected row of the ListView control, thereby setting the focus on the selected row:

 this.setFocus(this, this.getItemElement(this.get_dataIndex()));

 Listing F-29: The _onGotFocus Method

 function Sys$Preview$UI$Data$ListView$_onGotFocus(ev)
{
 if (ev.target === this.get_element())
 this.setFocus(this, this.getItemElement(this.get_dataIndex()));
}

bapp06.indd 1462bapp06.indd 1462 8/20/07 9:01:21 PM8/20/07 9:01:21 PM

Appendix F: ListView

1463

 setFocus
 The setFocus method takes two parameters, as shown in Listing F-30 . The main responsibility of this
method is to set the focus to the DOM element referenced by its second parameter when the ASP.NET
AJAX control referenced by the first parameter gains the focus. The first parameter basically references
the owner control of the second parameter.

 As you can see, the setFocus method accesses the associated DOM element of the owner ASP.NET
AJAX control:

 var ownerElement = owner.get_element();

 Next, it calls the setTimeout method, passing in a reference to the focus method and specifying the
DOM element referenced by the second parameter of the setFocus as the argument of the focus. This
instructs the setTimeout method to invoke the focus method and pass this DOM element into it:

 setTimeout(Function.createCallback(this.focus, element), 0);

 Listing F-30: The setFocus Method

 function Sys$Preview$UI$Data$ListView$setFocus(owner, element)
{
 if (element.focus)
 {
 for(var i = owner.get_length() - 1; i >= 0; i--)
 {
 var sel = owner.getItemElement(i);
 if (sel)
 sel.tabIndex = -1;
 }

 var ownerElement = owner.get_element();
 var t = ownerElement.tabIndex;
 if (t === -1)
 t = ownerElement.__tabIndex;

 element.tabIndex = t;
 setTimeout(Function.createCallback(this.focus, element), 0);
 ownerElement.__tabIndex = t;
 ownerElement.tabIndex = -1;
 }
}

 focus
 The setTimeout method finally invokes the focus method, passing in the DOM element that needs to
grab the focus, as shown in Listing F-31 . As you can see, the focus method simply invokes the focus
method on this DOM element to set the focus on this DOM element.

bapp06.indd 1463bapp06.indd 1463 8/20/07 9:01:22 PM8/20/07 9:01:22 PM

Appendix F: ListView

1464

 Listing F-31: The focus Method

 function Sys$Preview$UI$Data$ListView$focus(element)
{
 try
 {
 element.focus();
 }
 catch(e) {}
}

 _onKeyDown
 Recall from Listing F-28 that the initialize method registered the _keyDownHandler delegate that
 represents the _onKeyDown method as an event handler for the keydown event of the associated DOM ele-
ment of the ListView control. Recall that the associated DOM element of a control is the DOM element
that represents the control on the current page. When the end user presses a key while the mouse is over
the associated DOM element, the DOM element automatically invokes the _keyDownHandler delegate,
which in turn invokes the _onKeyDown method.

 Listing F-32 presents the implementation of this method. When this method is invoked, a DomEvent
object is passed into it. The method begins by retrieving the key code from this DomEvent object:

 var k = ev.keyCode ? ev.keyCode : ev.rawEvent.keyCode;

 The value of the key code determines which key was pressed. The various codes are as follows:

 ❑ The value of Key.up or Key.left tells the _onKeyDown method that the end user wants to
move the focus to the previous row or item in the ListView control. Recall that each data item
or row in the ListView control is a DOM element in the _itemElements collection of the
 ListView control. Also recall that the ListView control maintains in a private field named
_focusIndex the index of the DOM element (data row or item) that has the focus. This means
that the index of the previous DOM element (data row or item) is nothing but
 _focusIndex - 1 .

 As you can see, the _onKeyDown method first invokes the getItemElement method, passing in
 _focusIndex - 1 to return a reference to the previous DOM element (data row or item):

 this.getItemElement(this._focusIndex - 1)

 Next, it invokes the setFocus method, passing in the reference to this DOM element to have
this method set the focus to it:

 this.setFocus(this, this.getItemElement(this._focusIndex - 1));

 If you’re wondering who sets the _focusIndex field of the ListView control, we need to study
what happens after the setFocus method is invoked. When the previous DOM element gains
the focus, it invokes its focus event. As you’ll see in the following sections, the render method
of the ListView control registers a delegate named _itemFocusHandler as an event handler
for the focus event of all data rows or items. This delegate represents a method named

bapp06.indd 1464bapp06.indd 1464 8/20/07 9:01:22 PM8/20/07 9:01:22 PM

Appendix F: ListView

1465

_onItemFocus , which assigns the data index associated with the DOM element that just gained
the focus to the _focusIndex field of the ListView control. Therefore, when the previous DOM
element raises its focus event, the _itemFocusHandler delegate — and consequently the
_onItemFocus method — is automatically invoked, which in turn sets the _focusIndex field
to the data index of the data row or item that just gained the focus.

 ev.preventDefault();

 ❑ The value of Key.down or Key.right tells the _onKeyDown method that the end user wants to
move the focus to the next data row or item in the ListView control. The _onKeyDown method
first invokes the getItemElement method, passing in the index of the next row or item — that
is, _focusIndex + 1 — to return a reference to the next DOM element.

 this.getItemElement(this._focusIndex + 1)

 Next, it invokes the setFocus method, passing in the reference to this DOM element to have
this method set the focus to this DOM element:

 this.setFocus(this, this.getItemElement(this._focusIndex + 1));

 Finally, it invokes the preventDefault method on the DomEvent object to prevent the default
behavior of the key from taking effect.

 ev.preventDefault();

 Listing F-32: The _onKeyDown Method

 function Sys$Preview$UI$Data$ListView$_onKeyDown(ev)
{
 if (ev.target === this.getItemElement(this._focusIndex))
 {
 var k = ev.keyCode ? ev.keyCode : ev.rawEvent.keyCode;
 if ((k === Sys.UI.Key.up) || (k === Sys.UI.Key.left))
 {
 if (this._focusIndex > 0)
 {
 this.setFocus(this, this.getItemElement(this._focusIndex - 1));
 ev.preventDefault();
 }
 }

 else if ((k === Sys.UI.Key.down) || (k === Sys.UI.Key.right))
 {
 if (this._focusIndex < (this.get_length() - 1))
 {
 this.setFocus(this, this.getItemElement(this._focusIndex + 1));
 ev.preventDefault();
 }
 }

(continued)

bapp06.indd 1465bapp06.indd 1465 8/20/07 9:01:22 PM8/20/07 9:01:22 PM

Appendix F: ListView

1466

 Listing F-32 (continued)

 else if ((k === Sys.UI.Key.enter) || (k === Sys.UI.Key.space))
 {
 if (this._focusIndex !== -1)
 {
 this.set_dataIndex(this._focusIndex);
 ev.preventDefaut();
 }
 }
 }
}

 render
 As the name suggests, the render method is responsible for rendering the ListView control, as shown
in Listing F-33 .

 Listing F-33: The render Method

 function Sys$Preview$UI$Data$ListView$render()
{
 var associatedElement = this.get_element();
 var i, element;
 for (i = this._itemElements.length - 1; i >= 0; i--)
 {
 element = this._itemElements[i];
 if (element)
 Sys.Preview.UI.ITemplate.disposeInstance(element);
 }

 this._itemElements = [];
 for (i = this._separatorElements.length - 1; i >= 0; i--)
 {
 element = this._separatorElements[i];
 if (element)
 Sys.Preview.UI.ITemplate.disposeInstance(element);
 }
 this._separatorElements = [];
 if (associatedElement.childNodes.length)
 {
 if (this._layoutTemplateElement)
 Sys.Preview.UI.ITemplate.disposeInstance(this._layoutTemplateElement);
 }

 associatedElement.innerHTML = ‘’;
 var tasksPending = false;
 var items = this.get_data();
 var itemLength = items ? (items.get_length ? items.get_length() :
 items.length) : (0);

bapp06.indd 1466bapp06.indd 1466 8/20/07 9:01:23 PM8/20/07 9:01:23 PM

Appendix F: ListView

1467

 if (itemLength && itemLength > 0)
 {
 var template = this.get_layoutTemplate();
 if (template)
 {
 var itemTemplate = this.get_itemTemplate();
 var separatorTemplate = this.get_separatorTemplate();
 var layoutTemplateInstance = template.createInstance(associatedElement, null,
 this.findItemTemplateParentCallback,
 this._itemTemplateParentElementId);
 var itemTemplateParent = layoutTemplateInstance.callbackResult;
 this._layoutTemplateElement = layoutTemplateInstance.instanceElement;
 tasksPending = true;
 this._pendingTasks++;
 var renderTask =
 new Sys.Preview.UI.Data.ListViewRenderTask(this, items, itemTemplate,
 itemTemplateParent,
 separatorTemplate,
 this._itemElements,
 this._separatorElements,
 this._itemClass,
 this._alternatingItemClass,
 this._separatorClass,
 this._itemFocusHandler,
 this._itemClickHandler);
 Sys.Preview.TaskManager.addTask(renderTask);
 }
 }

 else
 {
 var emptyTemplate = this.get_emptyTemplate();
 if (emptyTemplate)
 emptyTemplate.createInstance(associatedElement);

 var handler = this.get_events().getHandler(‘renderComplete’);
 if(handler) handler(this, Sys.EventArgs.Empty);
 }
}

 This method begins by invoking the get_element method to return a reference to the associated DOM
element of the ListView control. The ListView control, like any other ASP.NET AJAX control, inherits
the get_element method from the Control base class:

 var associatedElement = this.get_element();

 Next, the render method iterates through the DOM elements in the _itemElements collection of the
 ListView control, and invokes the disposeInstance static method on the ITemplate class for each

bapp06.indd 1467bapp06.indd 1467 8/20/07 9:01:23 PM8/20/07 9:01:23 PM

Appendix F: ListView

1468

enumerated DOM element. The disposeInstance method allows the template to perform a final
cleanup before the DOM element is disposed of:

 for (i = this._itemElements.length - 1; i >= 0; i--)
 {
 element = this._itemElements[i];
 if (element)
 Sys.Preview.UI.ITemplate.disposeInstance(element);
 }

 Next, the render method resets the _itemElements collection, which means that all DOM elements in
this collection are now disposed of. Such disposal is necessary, because we’re about to re-render the
entire ListView control and consequently re-create new data DOM elements:

 this._itemElements = [];

 Next, the render method iterates through the separator DOM elements in the _separatorElements
collection, and invokes the disposeInstance static method on the ITemplate interface for each enu-
merated separator DOM element in order to perform the final cleanup before the DOM element is dis-
posed of. (Recall that a separator DOM element is a DOM element that separates two consecutive data
DOM elements. Also recall that a data DOM element is a DOM element that displays a data record.)

 for (i = this._separatorElements.length - 1; i >= 0; i--)
 {
 element = this._separatorElements[i];
 if (element)
 Sys.Preview.UI.ITemplate.disposeInstance(element);
 }

 Then the render method resets the _separatorElements collection, which means that all separator
DOM elements are now disposed of. Again, such disposal is necessary because we’re about to re-render
the entire ListView control and consequently generate new separator DOM elements:

 this._separatorElements = [];
 if (associatedElement.childNodes.length)
 {
 if (this._layoutTemplateElement)
 Sys.Preview.UI.ITemplate.disposeInstance(this._layoutTemplateElement);
 }

 Next, the method resets the inner HTML of the associated DOM element of the ListView control,
because we’re about to regenerate this inner HTML:

 associatedElement.innerHTML = ‘’;

 Then it calls the get_data method to return a reference to the data collection bound to the ListView
control:

 var items = this.get_data();

bapp06.indd 1468bapp06.indd 1468 8/20/07 9:01:23 PM8/20/07 9:01:23 PM

Appendix F: ListView

1469

 Next, it takes one of the following steps to determine the total number of data records in the data
collection:

 ❑ If the data collection supports a method named get_length , it invokes this method to return
the total data record count in the collection. Data collections, such as DataTable , that
 implement the IData interface support the get_length method.

❑ If the data collection does not support the get_length method but does support the length
property, it invokes this property to return the total data record count in the collection. Data
 collections that are JavaScript arrays support the length property.

❑ If the data collection supports neither the get_length method nor the length property, it
 returns 0 as the total data record count because the ListView control supports only data
 collections that either implement the IData interface or are JavaScript arrays.

 var itemLength = items ? (items.get_length ? items.get_length() :
 items.length) : (0);

 Next, the render method invokes the get_layoutTemplate , get_itemTemplate , and
get_separatorTemplate methods to return references to the layout template, item template,
and separator template, respectively:

 var template = this.get_layoutTemplate();
 var itemTemplate = this.get_itemTemplate();
 var separatorTemplate = this.get_separatorTemplate();

 Then it invokes the createInstance method on the layout template. Recall that this method takes four
parameters:

 ❑ The first parameter references the container DOM element, which is the associated DOM
 element of the ListView control in this case.

❑ The second parameter references the data context — that is, the data record being displayed.
Since the layout template is not for displaying data records, the render method passes null for
this parameter.

❑ The third parameter references the JavaScript function or delegate that the createInstance
method automatically invokes after the call into the parseNodes method returns. In this case,
the render method passes a reference to the findItemTemplateParentCallback method,
which will be discussed later.

❑ The fourth parameter references the context object, which is the id HTML attribute value of the
parent DOM element of the layout DOM element. When the createInstance method finally
invokes the findItemTemplateParentCallback method, it passes this parameter as is into
this method.

 var layoutTemplateInstance = template.createInstance(associatedElement, null,
 this.findItemTemplateParentCallback,
 this._itemTemplateParentElementId);

bapp06.indd 1469bapp06.indd 1469 8/20/07 9:01:23 PM8/20/07 9:01:23 PM

Appendix F: ListView

1470

 The return value of the createInstance method is an instance of the TemplateInstance class, which
exposes two properties. The first is named callbackResult , and contains the return value of the call
into the findItemTemplateParantCallback method. As mentioned earlier, the createInstance
method internally invokes the findItemTemplateParentCallback method and stores its return value
in the callbackResult property of the TemplateInstance object:

 var itemTemplateParent = layoutTemplateInstance.callbackResult;

 The createInstance method internally clones the DOM element whose id HTML attribute value
is given in xml-script by the layoutElement attribute on the <template> subelement of the
<layoutTemplate> subelement of the <listView> element. The createInstance method assigns
this DOM element to the instanceElement property of the TemplateInstance object. The render
method uses this property to return the reference to this cloned DOM element.

 this._layoutTemplateElement = layoutTemplateInstance.instanceElement;

 Next, the render method increments the pending task count, because we’re about to create a new
 rendering task:

 this._pendingTasks++;

 Then it creates an instance of ListViewRenderTask . The main job of this task is to render the ListView
control. The render method passes all the required information into this task:

 var renderTask =
 new Sys.Preview.UI.Data.ListViewRenderTask(this, items, itemTemplate,
 itemTemplateParent,
 separatorTemplate,
 this._itemElements,
 this._separatorElements,
 this._itemClass,
 this._alternatingItemClass,
 this._separatorClass,
 this._itemFocusHandler,
 this._itemClickHandler);

 Next, it calls the addTask static method on the current TaskManager to add the new task. As you can
see, the render method does not immediately render the ListView control. Instead it schedules a
 render task with the current TaskManager . As we discussed earlier, the current TaskManager executes
each task in the order in which it is scheduled:

 Sys.Preview.TaskManager.addTask(renderTask);

 So far we have discussed the case in which the data collection bound to the ListView control contains
data records. Next, you’ll see what the render method does if the data collection is empty. The method
begins by calling the get_emptyTemplate method to return a reference to the empty template:

 var emptyTemplate = this.get_emptyTemplate();

bapp06.indd 1470bapp06.indd 1470 8/20/07 9:01:24 PM8/20/07 9:01:24 PM

Appendix F: ListView

1471

 Next, it invokes the createInstance method on the empty template to render the markup text that the
page developer has specified between the opening and closing tags of the <template> subelement of
the <emptyTemplate> element:

 if (emptyTemplate)
 emptyTemplate.createInstance(associatedElement);

 Finally, it calls the getHandler method on the EventHandlerList object that contains all the event
handlers registered for the events of the ListView control, in order to return a reference to the
 JavaScript function whose invocation automatically invokes all the event handlers registered for
the renderComplete event of the ListView control:

 var handler = this.get_events().getHandler(‘renderComplete’);
 if(handler) handler(this, Sys.EventArgs.Empty);

 _onItemFocus
 Recall that Listing F-33 passes the _itemFocusHandler delegate that represents the _onItemFocus
method into the ListViewRenderTask constructor. As we discussed earlier, ListViewRenderTask
 registers this delegate as event handler for the focus events of the DOM elements that display the data
records. When a DOM element raises this event, the _itemFocusHandler and consequently the
_onItemFocus method are automatically invoked. As Listing F-34 shows, this method simply assigns
the data index of the data record that the DOM displays to the _focusIndex field of the ListView
control:

 this._focusIndex = ev.target.dataIndex;

 This ensures that the _focusIndex field is updated when a DOM element gains a focus, so you know
which DOM element has the focus.

 Listing F-34: The _onItemFocus Method

 function Sys$Preview$UI$Data$ListView$_onItemFocus(ev)
{
 if (typeof(ev.target.dataIndex) !== “undefined”)
 this._focusIndex = ev.target.dataIndex;
}

 _onItemClick
 Recall that Listing F-33 passes the _itemClickHandler delegate that represents the _onItemClick
method into the ListViewRenderTask constructor. As we discussed earlier, ListViewRenderTask
 registers this delegate as event handler for the click events of the DOM elements that display the data
records. When a DOM element raises this event, the _itemClickHandler and consequently the
_onItemClick method are automatically invoked. When this method is invoked, a DomEvent object is
passed into it. (Recall that this object is an ASP.NET AJAX wrapper around the event object that the
browser creates.) As Listing F-35 shows, the _onItemClick method first invokes the target property
on this DomEvent to return a reference to the DOM element that raised the click event:

 var s = ev.target;

bapp06.indd 1471bapp06.indd 1471 8/20/07 9:01:24 PM8/20/07 9:01:24 PM

Appendix F: ListView

1472

 Next, it invokes the tagName to return a string that contains the name of the DOM element that raised
the event:

 var srcTag = s.tagName.toUpperCase();

 Next, it walks up the containment hierarchy of the DOM element, searching for the first DOM element
that supports the dataIndex property. This property contains the index of the data record that the DOM
element displays. It’s necessary to walk up the containment hierarchy because the DOM element that
raises the click event could be the child element of the DOM element that displays the record. For
example, the DOM element that displays the record may contain a button DOM element that raises the
 click event. Obviously the button DOM element does not support the dataIndex . It is the DOM
 element that contains the button DOM element that supports the dataIndex property.

 while (s && (typeof(s.dataIndex) === ‘undefined’))
 s = s.parentNode;

 Next, the _onItemClick method calls the dataIndex property on the DOM element in the containment
hierarchy that supports this property, in order to determine the index of the data record that this DOM
element displays:

 var idx = s.dataIndex;

 Next, it invokes the getItemElement , passing in this data index to return a reference to DOM element:

 sel = this.getItemElement(idx);

 Then it invokes the set_dataIndex method to set the data index of this DOM element to the preceding
data index:

 this.set_dataIndex(idx);`

 Next, it invokes the setFocus method to set the focus to the specified element, if the element is an input,
text area, select, button, or link:

 if ((srcTag !== “INPUT”) && (srcTag !== “TEXTAREA”) &&
 (srcTag !== “SELECT”) && (srcTag !== “BUTTON”) && (srcTag !== “A”))
 this.setFocus(this, sel);

 Listing F-35: The _onItemClick Method

 function Sys$Preview$UI$Data$ListView$_onItemClick(ev)
{
 var s = ev.target;
 var srcTag = s.tagName.toUpperCase();
 while (s && (typeof(s.dataIndex) === ‘undefined’))
 s = s.parentNode;

bapp06.indd 1472bapp06.indd 1472 8/20/07 9:01:24 PM8/20/07 9:01:24 PM

Appendix F: ListView

1473

 if (s)
 {
 var idx = s.dataIndex;
 sel = this.getItemElement(idx);
 if (sel)
 {
 this.set_dataIndex(idx);
 if ((srcTag !== “INPUT”) && (srcTag !== “TEXTAREA”) &&
 (srcTag !== “SELECT”) && (srcTag !== “BUTTON”) && (srcTag !== “A”))
 this.setFocus(this, sel);
 }
 }
}

 findItemTemplateParentCallback
 Recall that Listing F-33 passes the findItemTemplateParentCallback method and the
_itemTemplateParentElementId field into the createInstance method of the layout template.
After invoking the parseNodes method, the createInstance method invokes the
findItemTemplateParentCallback method, passing the value of the _itemTemplateParentElementId
field into it, and stores the return value of this method in the callbackResult property of the
 TemplateInstance method that the createInstance method returns to its caller. As Listing F-36
shows, the findItemTemplateParentCallback method invokes the findElement method on the cur-
rent MarkupContext and passes the value of the _itemTemplateParentElementId field into it to return
a reference to the DOM element whose id HTML attribute is given by this field.

 Listing F-36: The findItemTemplateParentCallback Method

 function Sys$Preview$UI$Data$ListView$findItemTemplateParentCallback(
 instanceElement, markupContext, id)
{
 return markupContext.findElement(id);
}

 The best way to understand the significance of the findItemTemplateParentCallback method is to
revisit the internal implementation of the createInstance method of the Template class. I’ll discuss
the implementation of this method in the context of an example — the example presented in Listing F-4 .

 Recall from Listing F-33 that the render method of the ListView control calls the get_layoutTemplate
method on the ListView control to return a reference to the layout template.

 var template = this.get_layoutTemplate();

 Then it calls the createInstance method on the layout template, passing in four parameters:

 var layoutTemplateInstance = template.createInstance(associatedElement, null,
 this.findItemTemplateParentCallback,
 this._itemTemplateParentElementId);

bapp06.indd 1473bapp06.indd 1473 8/20/07 9:01:25 PM8/20/07 9:01:25 PM

Appendix F: ListView

1474

 The first parameter references the associated DOM element of the ListView control, which is the DOM
element shown in the top highlighted portion of the following excerpt from Listing F-4 :

 <%@ Page Language=”C#” %>
<html xmlns=”http://www.w3.org/1999/xhtml”>
. . .
<body>
 <form id=”form1” runat=”server”>
 . . .

 <div id=”listView” />

 <div style=”display: none;”>
 <div id=”layout”>
 <table width=”100%”>
 . . .
 <tbody id=”itemContainer”>
 <tr id=”item”>
 <td id=”title” />
 <td id=”publisher” />
 <td id=”price” />
 </tr>
 </tbody>
 </table>
 </div>
 </div>
 </form>
 <script type=”text/xml-script”>
 <page xmlns=”http://schemas.microsoft.com/xml-script/2005”>
 <components>
 . . .

 <listView id=”listView” itemTemplateParentElementId=”itemContainer”

 renderComplete=”renderCompleteCallback”>
 . . .
 </listView>
 </components>
 </page>
 </script>
</body>
</html>

 The third parameter passed into the createInstance method of the layout template is a reference to the
 findItemTemplateParentCallback method of the ListView control. The fourth parameter is the id
HTML attribute value of the <tbody> DOM element, shown in the highlighted portion of the following
excerpt from Listing F-4 :

bapp06.indd 1474bapp06.indd 1474 8/20/07 9:01:25 PM8/20/07 9:01:25 PM

Appendix F: ListView

1475

 <%@ Page Language=”C#” %>
<html xmlns=”http://www.w3.org/1999/xhtml”>
. . .
<body>
 <form id=”form1” runat=”server”>
 . . .
 <div id=”listView” />
 <div style=”display: none;”>
 <div id=”layout”>
 <table width=”100%”>
 . . .

 <tbody id=”itemContainer”>

 <tr id=”item”>
 <td id=”title” />
 <td id=”publisher” />
 <td id=”price” />
 </tr>
 </tbody>
 </table>
 </div>
 </div>
 </form>
 <script type=”text/xml-script”>
 <page xmlns=”http://schemas.microsoft.com/xml-script/2005”>
 <components>
 . . .
 <listView id=”listView” itemTemplateParentElementId=”itemContainer”
 renderComplete=”renderCompleteCallback”>
 . . .
 </listView>
 </components>
 </page>
 </script>
</body>
</html>

 Now let’s walk through the implementation of the createInstance method of the layout template, as
shown in Listing F-37 .

 Listing F-37: The createInstance Method of the Template

 function Sys$Preview$UI$Template$createInstance(containerElement, dataContext,
 instanceElementCreatedCallback,
 callbackContext)
{
 var result = new Sys.Preview.UI.TemplateInstance();
 result.instanceElement = this._layoutElement.cloneNode(true);
 var documentFragment = document.createDocumentFragment();
 documentFragment.appendChild(result.instanceElement);

(continued)

bapp06.indd 1475bapp06.indd 1475 8/20/07 9:01:25 PM8/20/07 9:01:25 PM

Appendix F: ListView

1476

 Listing F-37 (continued)

 var markupContext =
 Sys.Preview.MarkupContext.createLocalContext(documentFragment,
 this._parentMarkupContext, dataContext);
 markupContext.open();
 Sys.Preview.MarkupParser.parseNodes(this._scriptNode.childNodes, markupContext);
 if (instanceElementCreatedCallback)
 result.callbackResult = instanceElementCreatedCallback(result.instanceElement,
 markupContext, callbackContext);
 result.instanceElement.markupContext = markupContext;
 containerElement.appendChild(result.instanceElement);
 markupContext.close();
 return result;
}

 This method begins by creating an instance of the TemplateInstance class:

 var result = new Sys.Preview.UI.TemplateInstance();

 Next, it invokes the cloneNode method on the DOM element shown in the highlighted portion of the
following excerpt from Listing F-4 :

 <%@ Page Language=”C#” %>
<html xmlns=”http://www.w3.org/1999/xhtml”>
. . .
<body>
 <form id=”form1” runat=”server”>
 . . .
 <div id=”listView” />
 <div style=”display: none;”>

 <div id=”layout”>

 <table width=”100%”>
 . . .
 <tbody id=”itemContainer”>
 <tr id=”item”>
 <td id=”title” />
 <td id=”publisher” />
 <td id=”price” />
 </tr>
 </tbody>
 </table>

 </div>

 </div>
 </form>

bapp06.indd 1476bapp06.indd 1476 8/20/07 9:01:25 PM8/20/07 9:01:25 PM

Appendix F: ListView

1477

 <script type=”text/xml-script”>
 <page xmlns=”http://schemas.microsoft.com/xml-script/2005”>
 <components>
 . . .
 <listView id=”listView” itemTemplateParentElementId=”itemContainer”
 renderComplete=”renderCompleteCallback”>
 . . .
 </listView>
 </components>
 </page>
 </script>
</body>
</html>

 The cloneNode method clones this DOM element and creates the following subtree of DOM elements:

 <div id=”layout”>
 <table width=”100%”>
 <tbody id=”itemContainer”>
 </tbody>
 </table>
 </div>

 Keep two important things in mind. First, the cloneNode method creates a new subtree, which is not
part of the current document. This means that you cannot call the getElementById method on
the document object to return a reference to any of the DOM elements in the new subtree. Second, the
 cloneNode method clones the id attribute values as well. This means that all the DOM elements in
the new subtree have the same id attribute values as the DOM elements from which they were cloned.

 As Listing F-37 shows, the createInstance method stores the root node of this new subtree in the
 instanceElement property of the newly instantiated TemplateInstance object:

 result.instanceElement = this._layoutElement.cloneNode(true);

 Next, the createInstance method creates a new document fragment:

 var documentFragment = document.createDocumentFragment();

 Then it adds the new subtree — that is, the cloned subtree — to this document fragment:

 documentFragment.appendChild(result.instanceElement);

 Again, keep in mind that this document fragment is not part of the current document. It is sitting in
memory on its own. Therefore, if you need to access a DOM element in the new cloned subtree you must
search for it in this document fragment, not in the document object.

bapp06.indd 1477bapp06.indd 1477 8/20/07 9:01:25 PM8/20/07 9:01:25 PM

Appendix F: ListView

1478

 Next, the createInstance method creates a new local MarkupContext to represent this document
fragment. While the global MarkupContext represents the document object, a local MarkupContext
represents a document fragment, which is not part of the document object.

 var markupContext =
 Sys.Preview.MarkupContext.createLocalContext(documentFragment,
 this._parentMarkupContext, dataContext);

 Next, the createInstance method invokes the parseNodes method to parse the nodes within the
 <template> subelement of the <layoutTemplate> subelement of the <listView> element in xml-
script. The parseNodes method does not do anything in the case of Listing F-4 because the <template>
subelement of the <layoutTemplate> subelement in this case does not contain any child nodes:

 Sys.Preview.MarkupParser.parseNodes(this._scriptNode.childNodes, markupContext,
 this._prefixNamespaceMapping);

 Next, the createInstance method invokes the findItemTemplateParentCallback method of
the ListView control, passing in three parameters. The second parameter references the local
 MarkupContext that represents the document fragment that contains the cloned subtree. The third
parameter contains the id HTML attribute value of the <tbody> element:

 result.callbackResult = instanceElementCreatedCallback(result.instanceElement,
 markupContext, callbackContext);

 As you saw from Listing F-36 , the findItemTemplateParentCallback method invokes the
 findElement method on this local MarkupContext to search the cloned subtree for the <tbody>
DOM element.

 function Sys$Preview$UI$Data$ListView$findItemTemplateParentCallback(
 instanceElement, markupContext, id)
{
 return markupContext.findElement(id);
}

 The findElement method returns a reference to the <tbody> DOM element in the cloned subtree. If you
were to call the getElementById method on the document object instead, you would get a reference to
the original <tbody> element in the current document, which is the <tbody> element shown in the
 highlighted portion of the following excerpt from Listing F-4 :

 <%@ Page Language=”C#” %>
<html xmlns=”http://www.w3.org/1999/xhtml”>
. . .
<body>
 <form id=”form1” runat=”server”>
 . . .
 <div id=”listView” />
 <div style=”display: none;”>
 <div id=”layout”>
 <table width=”100%”>
 . . .

 <tbody id=”itemContainer”>

bapp06.indd 1478bapp06.indd 1478 8/20/07 9:01:26 PM8/20/07 9:01:26 PM

Appendix F: ListView

1479

 <tr id=”item”>
 <td id=”title” />
 <td id=”publisher” />
 <td id=”price” />
 </tr>

 </tbody>

 </table>
 </div>
 </div>
 </form>
 <script type=”text/xml-script”>
 <page xmlns=”http://schemas.microsoft.com/xml-script/2005”>
 <components>
 . . .
 <listView id=”listView” itemTemplateParentElementId=”itemContainer”
 renderComplete=”renderCompleteCallback”>
 . . .
 </listView>
 </components>
 </page>
 </script>
</body>
</html>

 _renderTaskComplete
 Recall from Listing F-10 that the execute method of ListViewRenderTask invokes the
_renderTaskComplete method on the ListView control after it renders the control. As Listing F-38
shows, this method first decrements the pending task count, because the current ListViewRenderTask
has completed its execution:

 this._pendingTasks--;

 If no tasks are pending, the _renderTaskComplete method raises the renderComplete event and con-
sequently invokes all the event handlers registered for this event:

 var handler = this.get_events().getHandler(‘renderComplete’);
 if(handler)
 handler(this, Sys.EventArgs.Empty);

 Listing F-38: the _renderTaskComplete Method

 function Sys$Preview$UI$Data$ListView$_renderTaskComplete(renderTask)
{
 this._pendingTasks--;
 if(this._pendingTasks <= 0)
 {
 this._pendingTasks = 0;
 var handler = this.get_events().getHandler(‘renderComplete’);
 if(handler)
 handler(this, Sys.EventArgs.Empty);
 }
}

bapp06.indd 1479bapp06.indd 1479 8/20/07 9:01:26 PM8/20/07 9:01:26 PM

Appendix F: ListView

1480

 descriptor
 The ListView control, like any other ASP.NET AJAX class, exposes a static property named descriptor ,
shown in Listing F-39 , to enable its clients to inspect its members generically using the ASP.NET AJAX
type inspection facilities discussed throughout this book. For example, the ASP.NET AJAX client-side
framework uses the ASP.NET AJAX type inspection mechanism to initialize in xml-script the properties
and events of the ListView control with the values specified on the attributes and child nodes of the
 <listView> element.

 Listing F-39: The descriptor Property

 Sys.Preview.UI.Data.ListView.descriptor =
{
 properties: [{ name: ‘alternatingItemCssClass’, type: String },
 { name: ‘layoutTemplate’, type:
 Sys.Preview.UI.ITemplate },
 { name: ‘itemCssClass’, type: String },
 { name: ‘itemTemplate’, type: Sys.Preview.UI.ITemplate },
 { name: ‘itemTemplateParentElementId’, type: String },
 { name: ‘selectedItemCssClass’, type: String },
 { name: ‘separatorCssClass’, type: String },
 { name: ‘separatorTemplate’, type: Sys.Preview.UI.ITemplate },
 { name: ‘emptyTemplate’, type: Sys.Preview.UI.ITemplate }],
 events: [{name: ‘renderComplete’}]
}

bapp06.indd 1480bapp06.indd 1480 8/20/07 9:01:26 PM8/20/07 9:01:26 PM

In
de

x

A
abort method

WebRequest class, 506–508
WebRequestExecutor class, 467
XMLHttpExecutor, 485–487
XMLHttpRequest, 7

Action class
example of, 1337–1339
methods, 1334–1335
using SetPropertyAction, 1336–1337

actions
Action class, 1334–1339
descriptor property, 1341–1342
execute method, 1333, 1339–1341
IAction interface, 1333
InvokeMethodAction, 1342–1344
PostBackAction, 1347–1348
setOwner method, 1333
SetPropertyAction, 1345–1346

ActualValue property,
ArgumentOutOfRangeException, 58

add function
instantiating WebServiceProxy, 552–553
local vs. remote implementations of, 597–598

add method
addItem method, 1359
array types, 28
UpdatePanelTriggerCollection, 1003–1004

addAttribute method, TypeDescriptor
class, 403

add_beginRequest method, 1099, 1103
add_click method

Button client control, 328
HyperLink client control, 316–317

add_completed method,
WebRequestExecutor, 461

add_completedRequest method,
WebRequestManager, 471

addComponent method
adding behaviors to applications, 672

_Application class methods, 240–241
IContainer class, 238
MarkupContext class, 1268–1269
parseFromMarkup invoking, 1287

AddComponentProperty method,
 ScriptComponentDescriptor, 727

AddContainer method,
 BaseMasterDetailControl, 900

addContent method, Mover class methods, 213
addCssClass method

Control class, 288
DomElement class, 166–167

add_disposing method
behaviors, 666–667
INotifyDisposing interface, 224
Monitor class implementing, 226

AddElementProperty method,
ScriptComponentDescriptor, 727–728

addEvent method
ScriptComponentDescriptor, 728
TypeDescriptor, 402–403

_addEventName method, initializeObject
method, 1305–1306

addHandler method
beginRequest event, 1099
DomEvent class, 189–193
implementing pageLoaded event, 1053
Sys.EventHandlerList class, 134
System.ComponentModel.

EventHandlerList, 131
addHandlers method

DomEvent class, 194–197
System.ComponentModel.

EventHandlerList, 131
add_initializeRequest method, 1091, 1096
add_invokingRequest method,

 WebRequestManager, 470
addItem method, DataControl, 1358–1360
addMethod method, TypeDescriptor, 401–402
add_pageLoaded method, 1053, 1055–1062
add_pageLoading method, 1235–1244

Index

bindex.indd 1481bindex.indd 1481 8/21/07 2:13:43 AM8/21/07 2:13:43 AM

1482

addProperty method
ScriptComponentDescriptor, 728
TypeDescriptor, 400–401

add_propertyChanged method
behaviors, 667
INotifyPropertyChanged interface, 228, 233

addRange method, array types, 29
addReference method, 1299
Address.js file, CustomTable client control,

396–397
AddScriptProperty method,

ScriptComponentDescriptor, 728–729
AddScriptReferencesForScriptControls method,

ScriptManager, 743–744
addShoppingCartItem method,

ShoppingCartItem, 143–144, 156–157
addTable method, TableProvider, 216–217
addTask method, TaskManager, 1431
add_transform method, BindingBase class, 1326
addUpdatePanel method,

pageLoadedHandler, 1067
ADO.NET, metadata and, 349
AJAX (Asynchronous JavaScript And XML), 1–26

AJAX engine components, 3
AJAX-enabled components, 1–2
framework, 24–25
installing ASP.NET AJAX extensions and ASP.NET

Futures, 25
JavaScript base type extensions. See base types
JSON and, 21–24
overview, 1
summary, 25
XML format and, 16–20
XMLHttpRequest code listing, 6–10
XMLHttpRequest deserialize function, 14–15
XMLHttpRequest instantiation, 4
XMLHttpRequest methods and properties, 5–6
XMLHttpRequest serialize function, 12–14
XMLHttpRequest submitCallback function, 11–12

AjaxControlToolkit namespace, 680
alert function, initializeRequest event, 1099
alt property (alternate text), Image client

controls, 300
alternatingItemClass property, ListView control

styles, 1445
Amazon Web services. See Web services,

Amazon E-commerce
AmazonSearch2.asbx, 819, 838–839, 847–848,

851, 855
AmazonSearchScriptControl server control

code listing, 790–794
GetScriptDescriptors method, 795–796
GetScriptReferences method, 796
overview of, 789
properties, 794–795
RenderContents method, 796–798

AmazonService class, 778–780, 813–817
AmazonService2 class, 829–832
AmazonService3.cs, 844–847
AmazonService4 class, 852–854
AmazonService.cs file, 812
App_Code directory, MasterDetailControl server

control, 916, 925
appearance properties, MasterDetailField data

control, 939–940
append method

StringBuilder, 387
TypeDescriptor, 371–374

AppendScript method,
ScriptComponentDescriptor, 729–730

applendLine method, StringBuilder, 387
Application class

addComponent method, 240–241
application lifecycle, 243–248, 257
constructor, 244–245
disposable objects, 260–263
dispose method, 264–266
_doinitialize method, 246–248
endCreateComponents method, 253–256
events, 258
findComponents method, 242–243
getComponents method, 242
get_events method, 271–272
id method, 269–270
init event, 258–259
initialize method, 246, 267–269
INotifyDisposing interface, 272–280
INotifyPropertyChanged interface, 272
load event, 259
_loadHandler method, 245–246
overview, 239–240
raiseLoad method, 256
raisePropertyChanged method, 270–271
removeComponent method, 241
unload event, 260

application lifecycle
behaviors, 662–663
benefits of ASP.NET, 24
overview, 243–244
summarized, 257

addProperty method

bindex.indd 1482bindex.indd 1482 8/21/07 2:13:43 AM8/21/07 2:13:43 AM

1483

In
de

x

application logic, 564
Application objects, addComponent method, 672
apply method, JavaScript Function type, 79
_applyWatermark method,

TextBoxWatermarkBehavior, 694–695
App_Themes folder, 918–919
App_Web_amazonsearch.asbx.cdcab7d2.

rxua8pbv.0.cs, 813–814
argument property

Button client control, 326
CommandEventArgs class, 324
JavaScript Function type, 78

ArgumentException, 53–56
ArgumentNullException, 56–58
ArgumentOutOfRangeException, 58–60
arguments, WSDL, 514–515
ArgumentTypeException, 60–63
ArgumentUndefinedException, 64–66
array types, 28–37

add, 28
addRange, 29
clear, 29
clone, 30
contains, 30
enqueue and dequeue, 31–33
forEach, 33–34
indexOf, 34–35
insert, 35
overview, 28
parse, 36
remove, 36
removeAt, 37

arrayDeclaration string, 1180
arrayDeclarationNodes array, 1189
arrays, JSON, 21
.asbx files

AmazonSearch2.asbx, 819
AmazonSearch3.asbx code listing, 847
AmazonSearch4.asbx, 851
AmazonSearch.asbx file, 778
invoking server side methods from client

side, 583
Math custom class described by, 565–567
ScriptHandlerFactory and, 571
transformers, 821–823

.asmx files
invoking server side methods from client

side, 583
page method calls and, 561
ScriptHandlerFactory and, 571

ASP.NET AJAX control toolkit. See control toolkit
ASP.NET AJAX, overview, 24–25
ASP.NET Futures, 25
AspNetAjaxAmazonSearch client control

code listing, 781–786
initialize method, 787
_onNextButtonClick method, 789
_onPreviousButtonClick method, 788
_onSearchButtonClick method, 788
_onSuccess method, 789
properties, 786–787

.aspx files
AmazonSearch2.aspx, 838–839
AmazonSearch3.aspx, 847–848
AmazonSearch4.aspx, 855
invoking server side methods from client

side, 583
Page class and, 966
page method calls and, 561

Asynchronous JavaScript And XML. See AJAX
(Asynchronous JavaScript And XML)

asynchronous partial page rendering. See partial
page rendering

asyncPostBackControlIDs
checking type property, 1181
_getPostBackSettings method, 1074

asyncPostBackTimeout, checking type
property, 1181

AsyncPostBackTrigger class, 1007–1011
_attachNewDoPostBack method, _

initializeInternal method, 1043–1044
attributes collection, initializeObject method,

1298–1299
automatic generation, of proxy classes, 607–608
AWSECommerceService

adding .asbx file, 778
AmazonSearch.asbx file, 778
AmazonSearchScriptControl component. See

AmazonSearchScriptControl server control
AmazonService class, 778–780
AspNetAjaxAmazonSearch component. See

AspNetAjaxAmazonSearch client control
creating proxy class for, 777–778
HtmlGenerator client control. See HtmlGenerator

client control
HtmlGeneratorScriptControl. See

HtmlGeneratorScriptControl server control
Image class, 775
ItemAttributes class, 776
Item/Items classes, 775

AWSECommerceService

bindex.indd 1483bindex.indd 1483 8/21/07 2:13:44 AM8/21/07 2:13:44 AM

1484

AWSECommerceService (continued)
ItemSearch class, 774
ItemSearchRequest class, 774
ItemSearchResponse class, 775
Offer/Offers/OfferListing classes, 776
overview, 773
Price class, 776

B
base classes

behaviors. See BehaviorBase class
binding. See BindingBase class
components. See Component class
controls. See Control class
event programming and, 138–141
EventArgs, 324
ExtenderControl, 710–713
ScriptControl, 714–716

base types, 27–52
array types. See array types
boolean types, 37
callBaseMethod method, 104–110
date types, 38
error types. See error types
getBaseMethod function, 110–113
getBaseType method, 100–102
initializeBase method, 102–103
object types, 38–39
overview, 27–28
string types, 39–41
summary, 41–52

BaseMasterDetailControl server control,
882–905

AddContainer method, 900
applying style to container controls, 896
child controls, 883
choosing child controls, 890
choosing layout for child controls, 890
code listing, 883–889
CompositeControl features inherited, 904
container for child controls (TableCell), 891–892
Control collection, overriding, 904–905
ControlStyle method, overriding, 902
CreateChildControls method, 900–902
CreateContainer method, 892–893
CreateContainerChildControls method, 893–896
CreateControlStyle method, overriding, 902
CreateDetail method, 895
deriving from CompositeControl class, 890

detail server control update conditions, 895
exposing properties of child controls, 903–904
INamingContainer interface, 891, 905–906
master server control update conditions, 893
overview of actions in, 883
RenderContainer method, 900
RenderContents method, overriding, 902–903
state management methods, 897–900
summary, 910
TagKey property, overriding, 902

BaseMasterDetailControl2 server control
code listing, 906–908
CreateDetail method, 909
CreateMaster method, 908
properties, 910
RegisterDetailEventHandlers method, 909

beginRequest event
_onFormSubmit method, 1089
PageRequestManager, 1099–1104

beginRequestEventArgs class, 1100
beginRequestHandler function, 1103–1104
beginUpdate method

behaviors, 663
component methods, 250

Behavior class
element methods, 669
id methods, 671–672
instance methods, 672–674
name methods, 669–671
overview, 661–668
properties, 668
static methods, 674–675

BehaviorBase class
ClientState property, 682–683
ClientStatefieldID property, 682
dispose method, 686–687
initialize method, 681–682
overview, 681
_partialUpdateBeginRequest method, 685
_partialUpdateEndRequest method, 685–686
registerPartialUpdateEvents method, 683–684

BehaviorID property, custom extender
control, 754

behaviors
Behavior class. See Behavior class
BehaviorBase class. See BehaviorBase class
overview, 659–661
summary, 706
TextBoxWatermarkBehavior class. See

 TextBoxWatermarkBehavior class

AWSECommerceService (continued)

bindex.indd 1484bindex.indd 1484 8/21/07 2:13:44 AM8/21/07 2:13:44 AM

1485

In
de

x

binding, 1317–1331
Binding class, 1330–1331
BindingBase class, 1319–1325
example of, 1317–1319
execute method, 1340
transformers, 1325–1329

Binding class, 1330–1331
BindingBase class

Binding class, 1330–1331
defined, 1319
descriptor property, 1325
evaluate method, 1321
evaluateIn method, 1321–1323
evaluateOut method, 1324
initialize method, 1324–1325
methods of, 1319–1321

BindingEventArgs
defining custom transformer, 1326–1327
evaluateIn method instantiating, 1322–1323

bindings elements, ListView using, 1416
blur events, _onBlur method, 693–694
body

HTTP messages, 520
SOAP messages, 521
WebRequest class, 459

Boolean types, 37
Boolean values

implementsInterface function, 113–118
inheritsFrom function, 118–120
isImplementedBy function, 121–123

BoundField, MasterDetailField data control, 932
Bounds type, DomElement getBounds method,

175–176
bridge element

example page using, 565–567
XML document elements, 565–567

BridgeBuildProvider, 593, 815
BridgeTransformData class, 820–822
browsers

HttpBrowserCapabilities, 302–303
name=value format, 491

build providers
BridgeBuildProvider, 815
file types and, 593

BuildTemplate method, 992–993
Button client controls, 323–348

add_click method, 328
argument property, 326
command property, 326–327
CommandEventArgs and, 323–324

CommandEventArgs class, 323
constructor, 325
descriptor property, 330
dispose method, 329
event bubbling. See event bubbling
features, 325
initialize method, 327
_onClick method, 328–329
overview, 323
prototype property, 325–326
summary, 348

Button server control, 325

C
C#

base syntax, 102
interface implementation patterns, 711
Manager constructors in, 98
virtual methods, 104

call methods
initializeObject method, 1306–1307, 1313
initializeObject method of xml-script, 1301
invoking from client-side code, 561–563
JavaScript Function type, 79
transforming return value of, 817–818
Web service custom page calls, 564–570

callback methods, WebServiceProxy class, 536
callBaseMethod method, JavaScript OOP/type

reflection extensions, 104–110
CancelEventArgs class, 132–133
Cascading Style Sheets. See CSS (Cascading

Style Sheets)
child controls, BaseMasterDetailControl

container for, 891–892
CreateChildControls method, 900–902
CreateContainerChildControls method, 893–896
exposing properties of, 903–904
initializing for Controls collection, 896
layout of, 890
overview, 883, 890

child elements, WSDL documents, 514
ChildrenAsTriggers property, UpdatePanel server

controls, 863–864
childUpdatePanelIDs, 1182, 1184
classes

adding new events to, 135–138
inheritance and, 96–100
JavaScript OOP/type reflection extensions,

79–80

classes

bindex.indd 1485bindex.indd 1485 8/21/07 2:13:44 AM8/21/07 2:13:44 AM

1486

clear method
array types, 29
StringBuilder class, 387

clearHandlers method, DomEvent class
methods, 197

clearText method, TextBoxWatermarkBehavior,
692–693

_clearTimer method, XMLHttpExecutor, 477
click events

Button client control, 328–329
ClickBehavior class, 677
HyperLink client controls, 316–318

ClickBehavior class
click events, 677
descriptor property, 676–677
initialize method, 677–678
overview, 675–676
page example using, 678–680

ClickCallback method, Page_Load method, 1062
client controls, 281–321

AspNetAjaxAmazonSearch. See
AspNetAjaxAmazonSearch client control

base class. See Control class
custom, 290–291
HyperLink. See HyperLink client controls
Image. See Image client controls
Label. See Label client controls
overview, 281
summary, 321

ClientProxyGenerator class
DetermineServiceFullName method, 637
DetermineServiceType method, 636
GenerateConstructor method, 638–639
GenerateNamespace method, 638
GeneratePrototype method, 639
GenerateRegisterClass method, 643
GenerateStaticInstance method, 643–645
GenerateStaticMethods method, 645–647
GenerateWebMethodProxy method, 639–642
GetClientProxyScript, 634–636
PopulateMethodInfos method, 637
PopulateParameterInfos method, 637–638
replica of, 629–634

client-server communication, 457–510
aborting Web requests, 506–508
completedCallback function, 494–495, 498
completion of Web request, 494
DialogResult and MessageBoxStyle

enumerators, 508
invokingRequestCallback function, 503–506

message box and input box methods, 509–510
overview, 457
page using WebRequest, 487–490
page using WebRequestExecutor, 497–498
pageLoad function, 496, 502–503
submitCallback function, 491–492
Web request methods, 492
Web requests. See WebRequest class
WebRequestExecutor class. See

WebRequestExecutor class
WebRequestManager class. See

WebRequestManager class
Window class, 509
XMLDOM class, 474–475
XMLHttpExecutor class. See XMLHttpExecutor

class
XMLHttpRequest, 474

client-side code
client controls and, 290
invoking server side methods from, 570
WSDL documents and, 524

ClientState property
BehaviorBase class, 682–683
custom extender control, 754

ClientStateFieldID property
BehaviorBase class, 682
custom extender control, 754

clone, array types, 30
cloneNode method, createInstance method,

1377–1378
close method

createInstance method, 1379
processDocumentScripts, 1276

code reuse, behaviors providing, 660
collections, .NET generics, 733
CollectScripts method, ScriptManager, 742–743
columns, applying to ListView control,

1424–1429
Command events, Button server control, 325
command property, Button client control,

326–327
CommandArgument, Button server control, 325
CommandEventArgs, Button client controls,

323–324
commandName property, CommandEventArgs

class, 324, 325
communication patterns, AJAX, 2
communication protocol, WSDL documents,

516–517, 519
Compare transformer, 1329

clear method

bindex.indd 1486bindex.indd 1486 8/21/07 2:13:45 AM8/21/07 2:13:45 AM

1487

In
de

x

CompareInverted transformer, 1329
CompiledTemplateBuilder class, 989
completed events, WebRequest, 461–462
completed method, WebRequestExecutor, 462
completedCallback function

client-server communication, 494–495
parsing strings containing server data, 495
Web requests and, 492–494

complex properties, control states and, 898
Component class

beginUpdate method, 250
Behavior class deriving from, 661–662
Control and Behavior classes and, 281
create method, 249–253
dispose method, 264–266
get_events method, 271–272
id method, 269–270
IDisposable, INotifyDisposing, and

INotifyPropertyChange interfaces and,
235–238

initialize method, 267–269
INotifyDisposing interface, 272–280
INotifyPropertyChanged interface, 272
overview, 235–237, 248–249
properties, 351–352
raisePropertyChanged method, 270–271

ComponentModel class, 131
components, 219–280. See also client controls

Application class component. See Application
class

Component class. See Component class
creation phase of application lifecycle,

257–258
defined, 219
IContainer class component, 238–239
IDisposable interface, 220–224
INotifyDisposing interface, 224–228
INotifyPropertyChanged interface, 228–235
interfaces, 220
overview, 219
processDocumentScripts searching for, 1276
properties, 727

composite controls
CompositeControl class, 890
delegation to child controls, 883

composite server controls
for asynchronous partial page rendering,

881–882
BaseMasterDetailControl. See

BaseMasterDetailControl server control

BaseMasterDetailControl2. See
BaseMasterDetailControl2 server control

defined, 882
drop down list examples. See

MasterDetailControl2 server control;
MasterDetailControl3 server control

grid view example. See MasterDetailControl
server control

list box example. See MasterDetailControl3
server control

CompositeControl class, 890, 904
conditional updates, 860–863, 878–881
constructor

_Application class, 244–245
Button client control, 325
client-side PageRequestManager, 1037–1039
CommandEventArgs class, 324
DataColumn class, 453
DataControl class, 1349–1350
DomEvent class, 186–187
GridView control, 331
GridViewCommandEventArgs class, 342–343
GridViewRow control, 339
HyperLink control, 314
Image client controls, 298, 306–307
Label client controls, 291
ListView control, 1442–1444
ListViewRenderTask class, 1435–1436
_ScriptLoader class, 1210
_ScriptLoaderTask class, 1211
StringBuilder class, 387
TaskManager class, 1431
Template class, 1375
TemplateField custom template, 1381
TypeDescriptor class, 350
UpdatePanelTriggerCollection, 1001
WebRequest class, 457–458
WebRequestManager class, 468–469
WebServiceError class, 555–556
WebServiceProxy class, 535
XMLHttpExecutor, 475–476

constructor property, JavaScript Function
type, 78

containers, BaseMasterDetailControl
applying style to container controls, 896
for child controls, 891–892
CreateContainer method, 892–893
CreateContainerChildControls method, 893–896

ContainerType, BaseMasterDetailControl, 891
contains, array types, 30

contains, array types

bindex.indd 1487bindex.indd 1487 8/21/07 2:13:45 AM8/21/07 2:13:45 AM

1488

containsCssClass method, DomElement
methods, 167

content pages
disabling partial page rendering for, 876
UpdatePanel server control and, 871–874

ContentType property, RenderPageCallback
method, 1117

Control class, 1350
addCssClass method, 288
Component base class derived from, 352
CreateChildControls method, 900–902
definition of, 281–283
dispose method, 288–289
get_element method, 283
get_id method, 283–284
get_parent method, 285
get_visibility method, 286
get_visible method, 286
GridViewRow class as subclass of, 339
InitRecursive method, 971–972
LoadRecursive method, 995
onBubbleEvent method, 289, 330
overview of, 281
parent property, 336
property types, 898
raiseBubbleEvent method, 290, 329, 330
removeCssClass method, 288
Render method of, 1114
RenderChildren method of, 1114–1115
ScriptManager deriving from, 734
set_id method, 284
set_parent method, 284
set_visibilityMode method, 286–287
set_visible method, 287
themes, 918–919
toggleCssClass method, 288
TypeDescriptor event exposed by, 364
TypeDescriptor methods exposed by, 359

control toolkit, 680
Controls collection

BaseMasterDetailControl overriding,
904–905

initializing child control before adding to, 896
ControlStyle

BaseMasterDetailControl overriding, 902
MasterDetailField data control, 939–940
WebControl class, 896

ControlTemplate property, UpDatePanel, 987
create $ function, JavaScript, 721–722
create function, error types, 41–45

create method, Component base class,
249–253, 662

CreateBaseDataBoundControlMaster method,
913, 923

CreateChildControls method,
BaseMasterDetailControl, 900–902

CreateClientStateField property, custom
extender control, 754

CreateContainer method,
BaseMasterDetailControl, 892–893

CreateContainerChildControls method,
 BaseMasterDetailControl, 893–896

CreateContents method, UpDatePanel, 984–987
CreateControlStyle method

BaseMasterDetailControl overriding, 902
HtmlGeneratorScriptControl, 808

createDelegate method
JavaScript function, 178–179
_onFormSubmit method, 1087
pageLoadedHandler, 1066–1067

CreateDetail method
BaseMasterDetailControl, 895
BaseMasterDetailControl2, 909

createDocumentFragment method, document
objects, 1378

createGlobalContext method
MarkupContext class, 1272
processing xml-script XML document,

1272–1273
CreateHandler method, RestHandler, 590–591
createInstance method

findItemTemplateParentCallback, 1467–1471
ITemplate interface, 1373, 1377–1380
render method, CustomTable control, 1389
TemplateInstance class, 1374

createLocalContext method, MarkupContext
class, 1272, 1378

CreateMaster method,
BaseMasterDetailControl2, 908

_createPageRequestManagerInstance
method, 1034

_createPageRequestManagerParserError
method, 1255

_createPageRequestManagerServerError
method, 1255

_createPageRequestManagerTimeoutError
method, 1254

createParameter method, TypeDescriptor, 402
_createPostBackSettings method,

PageRequestManager, 1071–1072, 1079

containsCssClass method, DomElement methods

bindex.indd 1488bindex.indd 1488 8/21/07 2:13:45 AM8/21/07 2:13:45 AM

1489

In
de

x

_createQueryString method, WebRequest,
544–545

_createScriptElement method, _ScriptLoader, 1209
_createUrl method, WebRequest, 543
CSS (Cascading Style Sheets)

addCssClass method of Control class, 288
addCssClass method of DomElement class,

166–167
characteristics of AJAX-enabled components,

1–2
containsCssClass method of DomElement

class, 167
removeCssClass method of Control class, 288
removeCssClass method of DomElement class,

167–169
toggleCssClass method of Control class, 288
toggleCssClass method of DomElement class,

169–171
WatermarkCssClass method, 702–703

custom attributes, xml-script not supporting, 1306
custom classes, 607
custom client controls, 290–291
custom exception types

clickCallback function, 75–76
example of, 71–75
implementing, 70–71
validateInput function, 76

CustomErrorHandler, 1256–1264
CustomTable client control, 389–399

Address.js file for Address type, 396–397
controlling display of product records, 397–398
CustomTable.js file, 389–391
dataBind method, 446–447, 450–451
dataSource property, 392
developing custom data control, 1366–1370
methods, 392–394, 1373
pageLoad function, 398–399
Product.js file for Product type, 394–395
revised implementation of, 452–453
StringBuilder class and, 394

CustomTable template data control, 1383–1399
descriptor property, 1391
fields property, 1387
JavaScript file for, 1384–1387
overview, 1383–1384
render method, 1387–1390
style properties, 1387
_toggleCssClass method, 1391
using, 1391–1393

CustomTable.js file, 389–391, 448–449

D
data classes, 407–456

DataColumn, 409–412
DataRow. See DataRow class
DataTable. See DataTable class
example using DataColumn, DataRow, and

DataTable, 446–456
IData, 407–408
overview, 407

data context, 1318
data control fields. See MasterDetailField data

control
dataBind method, CustomTable client control,

391–393, 446–447, 450–451
DataBinding event, MasterDetailField data

control, 938–939
DataColumn class

constructor, 453
example using, 446–456

DataControl class, 1349–1372
addItem method, 1358–1360
constructor, 1349–1350
deleteCurrentItem method, 1360–1361
descriptor property, 1365
developing custom data control, 1366–1372
get_canMoveNext property, 1352
get_canMovePrevious property, 1352–1353
get_data method, 1353
get_dataContext method, 1358
get_dataIndex method, 1356
get_dataItem method, 1357–1358
getItem method, 1362
get_length method, 1355–1356
moveNext method, 1362–1363
movePrevious method, 1363–1364
onBubbleEvent method, 1364–1365
onDataChanged method, 1357
overview of, 1349
prepareChange method, 1350
set_data method, 1353–1355
set_dataIndex method, 1356–1357
triggerChangeEvents method, 1350–1351

data-interchanged formats, XML and
JSON, 20

dataItem string, checking type property, 1182
dataItemJsonNodes array, client-side page

postbacks, 1182, 1186
_dataItems collection, client-side page

postbacks, 1185–1186

_dataItems collection, client-side page postbacks

bindex.indd 1489bindex.indd 1489 8/21/07 2:13:46 AM8/21/07 2:13:46 AM

1490

DataKeyNames property, MasterDetailControl
server control, 916

DataRow class, 412–422
adding DataRow objects to DataTable, 454
constructor, 412–413
descriptor property, 413–414
example using, 446–456
getProperty method of ICustomTypeDescriptor,

415–416
ICustomTypeDescriptor interface implemented

by, 414
INotifyPropertyChange interface implemented by,

420–422
invokeMethod method of

ICustomTypeDescriptor, 419
overview of, 412
referencing DataTable object, 419–420
setProperty method of ICustomTypeDescriptor,

416–419
DataRow type, ICustomTypeDescriptor,

404–405
dataSource property, CustomTable client

control, 392
DataTable class

add method, 425–427
adding DataRow objects, 454
clear method, 428–429
constructor, 422
createRow method, 439–441
descriptor property, 432–434
example using, 446–456
getChanges method, 441–442
getColumn method, 442–443
get_length method, 429
getRow method, 429–430
IData interface, 424–425
INotifyCollectionChanged, 436–439
INotifyPropertyChange, 434–436
internal fields, 423–424
overview of, 422
parseFromJson method, 443–445
raiseRowChanged method, 443
Remove method, 430–432

date types, ASP.NET AJAX, 38
declarative approach, proxy classes, 608–618
default event behavior, preventDefault method,

198–201
default executor type, WebRequestManager, 469
default failed callback methods,

WebServiceProxy, 536

default succeeded callback methods,
WebServiceProxy, 536

default timeout, WebRequestManager, 469
definition, Control base class, 281–283
<definitions> element, WSDL documents, 514
Delegate class

AsyncPostBackTrigger class, 1010
createDelegate method, 178–179
decoupling callers of methods from

methods, 178
defining delegates with delegate

keyword, 178
Delegates namespace, 183
isolating Mover class from movable content,

180–183
Delegates.js file

content of, 1068–1069
Delegate namespace, 183–184
ImageProvider class, 185
Mover class, 184
TextProvider class, 184–185

deleteCurrentItem method, DataControl class,
1360–1361

dequeue, array types, 31–33
descriptor, GridViewCommandEventArgs class,

343–344
descriptor property

Action class, 1341–1342
Binding class, 1331
BindingBase class, 1325
Button client control, 330
ClickBehavior class, 676–677
CommandEventArgs class, 324
CustomTable template data control, 1391
DataControl class, 1365
GridViewRow control, 341
HyperLink client controls, 318
InvokeMethodAction exposing,

1343–1344, 1346
Label client controls, 294
ListView control, 1472
PostBackAction exposing, 1348
type description and, 371

deserialize function
XML, 18–20
XMLHttpRequest, 14–15

_destroyTree method, client-side page postbacks,
1201–1202, 1231–1233

_detachAndStoreOriginalDoPostBack
method, 1043

DataKeyNames property, MasterDetailControl server control

bindex.indd 1490bindex.indd 1490 8/21/07 2:13:46 AM8/21/07 2:13:46 AM

1491

In
de

x

_detachAndStoreOriginalFormOnSubmit
method, 1043

detail forms. See master/detail forms
detail server control

CreateDetail method, 909
update conditions, 895

DetailsView control
as composite control, 328
in custom composite user control, 946, 956
deleting a message, 959–960
displaying details of a message, 958
MasterDetailControl server control, 918
MasterDetailField data control, 943–944
replying to a message, 961–962
starting new thread, 963–964
updating a message, 960–961
XPath and, 959

DetermineServiceFullName method,
ClientProxyGenerator, 637

DetermineServiceType method,
ClientProxyGenerator, 636

DialogResult enumerators, client-server
communication, 508

dictionary, 599
displayEvents, TypeDescriptor, 367–369
displayMethod function, TypeDescriptor, 362–363
displayProperties function, TypeDescriptor, 357
disposable objects, component development,

260–263
_disposableObjects array, component

development, 260–263
dispose method

Behavior class instance methods, 673–674
BehaviorBase class, 686–687
behaviors, 667
Button client control, 329
component development, 264–266
Control class, 288–289
HyperLink client controls, 318
IDisposable interface and, 220–224
IHttpModule interface, 584
Image client controls, extending, 312
INotifyDisposing interface and, 224–228
TaskManager class, 1433–1434
TextBoxWatermarkBehavior class, 700–702

disposeInstance method, ITemplate, 1373
<div> HTML element, attaching ClickBehavior

to, 678
document element

<Envelope> element, 518

XML, 19
xml-script XML document, 1267

Document Object Model. See DOM (Document
Object Model)

document objects, createDocumentFragment
method, 1378

_doinitialize method, _Application class,
246–248

DOM (Document Object Model)
elements. See DomElement class
events. See DomEvent class
overview, 1–2
overview of, 161

DOM extensions
delegates, 178–183
Delegates namespace, 183
DomElement. See DomElement class
DomEvent. See DomEvent class
ImageProvider, 185
Key, 176–177
MouseButton, 176
Mover. See Mover class
overview of, 161
summary, 217
TableProvider class, 216–217
TextProvider, 184–185

DomElement class
addCssClass method, 166–167
behaviors attached to, 659
client controls and, 290
containsCssClass method, 167
Control instances and, 282–283
_doPostBack method, 1079–1080
getBounds method, 175
getElementById method, 161–166
getLocation method, 171–172
ListView using template, 1409–1417
overview of, 161
removeCssClass method, 167–169
searching XML documents using

MarkupContext, 1267
setLocation method, 172–175
toggleCssClass method, 169–171

DomEvent class
addHandler method, 189–193
addHandlers method, 194–197
clearHandlers method, 197
constructor of, 186–187
example using, 203–209
instance methods, 198

DomEvent class

bindex.indd 1491bindex.indd 1491 8/21/07 2:13:47 AM8/21/07 2:13:47 AM

1492

DomEvent class (continued)
overview of, 185–186
preventDefault method, 198–201
properties, 187–189
removeHandler method, 193–194
static methods, 189
stopPropagation method, 201–203

_doPostBack function, JavaScript
_initializeInternal method, 1043
page postback via, 1040–1042
PostBackAction invoking, 1347

_doPostBack method
page postbacks via, 1051
PageRequestManager, 1043–1044, 1077–1081
using helper methods, 1071–1076

DropDownList server control
MasterDetailControl2. See MasterDetailControl2

server control
MasterDetailField data control, 943
page containing TextBox and, 1098–1099

DuplicateItemExceptions, 71–75
duration property, Image client controls, 309

E
E-Commerce Web services. See Web services,

Amazon E-commerce
element methods, Behavior class, 669
element parameter, create method of Component

base class, 663
<element> element, WSDL documents, 515–516
elements

DOM. See DomElement class
WSDL documents, 514

elements parameter
Component class, 249, 277
HyperLink client controls, 321
Image client controls, 302, 314

emptyTemplate property, ListView control,
1447–1448

EnablePartialRendering property,
PageRequestManager, 975, 976

EncodeString method
page postbacks server side, 1115–1116,

1156–1161
ProcessFocus method, 1159
ProcessScriptRegistration method, 1157–1158
RenderPageCallback method, 1118–1121,

1155–1156, 1159–1161
server response text on client-side, 1164–1170

UpdatePanel server control, 1156
endCreateComponents method, _Application

class, 253–256
_endPostBack method

client-side page postbacks, 1173, 1216–1222
ending current postback request, 1184
raising endRequest event, 1247–1248
server response text arriving on client-side, 1179

endRequest event
EndRequestEventArgs class, 1248–1249
firing endRequest event. See endRequest event
InvalidOperationException, 1255–1264
PageRequestManagerParserErrorException,

1255
PageRequestManagerServerErrorException,

1254–1255
PageRequestManagerTimeoutException, 1254
using, 1249–1253

EndRequestEventArgs class, 1248–1249
endsWith function, string types, 39
endUpdate method

behaviors, 663–664
components, 253

enqueue, array types, 31–33
_ensureSinglePageRequestManagerInstance

method, 1034
enumeration

isEnum method, 129
isFlags method, 129–130
registerEnum method, 127–128

<Envelope> element, XML, 518
error handling, 978–979
error string, checking type property, 1183
error types, 41–52

create, 41–45
overview, 41
popStackFrame, 45–52

eval JavaScript function, _processNamespaceURI
method, 1283

evaluate method, BindingBase class, 1321
evaluateIn method, BindingBase class,

1321–1323
evaluateOut method, BindingBase class, 1324
_evaluatePath method, TypeDescriptor, 376
_evaluateValue method, TypeDescriptor, 380
event bubbling

GridView control, 330–337, 344–348
GridViewCommandEventArgs, 341–344
GridViewRow control, 334, 339–341
summary, 348

DomEvent class (continued)

bindex.indd 1492bindex.indd 1492 8/21/07 2:13:47 AM8/21/07 2:13:47 AM

1493

In
de

x

event data classes
NetworkRequestEventArgs class, 473–474
ShoppingCartItemAddedEventArgs event,

153–154
ShoppingCartItemAdding event, 152
Sys.CancelEventArgs, 132
System.EventArgs class, 132

event handlers. See also Sys.EventHandlerList
class

addHandler method, 134, 189–193
addHandlers method, 194–197
adding, 158–159
clearHandlers method, 197
_getEvent method, 133–134
getHandler method, 135–138
initialization with parseFromMarkup method,

1284–1287
overview of, 133
removeHandler method, 134–135, 193–194
removing, 158–159

event programming, 131–159
addHandler method, 134
addShoppingCartItem, 143–144
base classes, 138–141
classes facilitating, 131–132
DOM. See DomEvent class
EventHandler list, 133
_getEvent method, 133–134
getHandler method, 135–138
get_shoppingCartItems, 143
initialize method, 143
namespaces, 141
removeHandler method, 134–135
ShoppingCart class, 142–143
ShoppingCartItem class, 141–142
summary, 159
Sys.CancelEventArgs, 132–133
Sys.EventArgs class, 132

EventArgs class
base event data class, 132
event programming and, 131
overview, 324

EventHandlerList class
addHandler method, 134
_getEvent method, 133–134
getHandler method, 135–138
overview of, 133
removeHandler method, 134–135

events
adding event handlers, 158–159

adding new events to classes, 135–138
addShoppingCartItem method of ShoppingCart

class, 156–157
Application class, 258–260
click events, 677
DOM. See DomEvent class
_getEvent method, 133–134
get_events method of ShoppingCart class, 155
initialize method of ShoppingCart class, 155
onShoppingcartInitialized method of

ShoppingCart class, 155–156
onShoppingCartItemAdded method of

ShoppingCart class, 158
onShoppingCartItemAdding method of

ShoppingCart class, 158
overview, 144–152
propagation of, 201–203
removing event handlers, 159
ShoppingCart class, 154
ShoppingCartItemAddedEventArgs event,

153–154
ShoppingCartItemAdding event, 152
WebRequestManager class, 470–471

_events, TypeDescriptor class, 364–368
events parameter

create method of Component base class, 249,
277, 662

HyperLink client controls, 321
Image client controls, 301, 314

exception handling, error types and, 41
exception types, 53–76

ArgumentException, 53–56
ArgumentNullException, 56–58
ArgumentOutOfRangeException, 58–60
ArgumentTypeException, 60–63
ArgumentUndefinedException, 64–66
clickCallback function in custom exception,

75–76
implementing custom exception type, 70–75
InvalidOperationException, 66, 1255–1264
NotImplementedException, 66–68
overview, 53
ParameterCountException, 68–70
summary, 76
validateInput function in custom exception

example, 76
execute method

Action class, 1333, 1339–1341
ListViewRenderTask class, 1437–1442
_ScriptLoaderTask class, 1212–1213

execute method

bindex.indd 1493bindex.indd 1493 8/21/07 2:13:47 AM8/21/07 2:13:47 AM

1494

executeRequest method
WebRequestExecutor class, 467
WebRequestManager class, 471–473
XMLHttpExecutor, 479–482

executor methods
default executor type, 469
WebRequest class, 460

expando attributes, xml-script not
supporting, 1306

expando string, 1180
expandoScript string, 1189
extender control

example using, 761–762
ExtenderControl base class, 710–713
IExtenderControl interface, 709–710
overview, 708, 709
script controls vs., 769–770
summary, 771
why they are needed, 707–709

extender control, custom
BehaviorID property, 754
ClientState property, 754
ClientStateFieldID property, 754
CreateClientStateField property, 754
GetScriptDescriptors method, 755–757
GetScriptReferences method, 755
OnInit method, 757
OnLoad method, 758–759
OnPreRender method, 760–761
overview, 749–754
Page_PreLoad method, 757–758
Render method, 761
WatermarkCssClass method, 754
WatermarkText methods, 754

ExtenderControl base class, 710–713
ExtenderControls collection, ScriptManager

class, 740
eXtensible Markup Language. See XML

(eXtensible Markup Language)
ExtractValuesFromCell method,

MasterDetailField data control, 939

F
false values, JSON, 21–22
fields property, CustomTable template data

control, 1387
file types, build providers and, 593
findComponent method

_Application class, 242–243

IContainer class, 238
ListView control, 1422
MarkupContext class, 1269, 1271

findElement method
initializeObject method, 1300–1301
MarkupContext class, 1270
parseFromMarkup, 1286, 1376
TemplateField custom template, 1382

findItemTemplateParentCallback method,
ListView control, 1465–1471

_findNearestElement method,
PageRequestManager, 1072–1073

_findText method, _onFormSubmitCompleted
method, 1177–1178

focus method, ListView control, 1455–1456
focus string, checking type property, 1184
forEach, array types, 33–34
foreign keys, editing, 932
formAction string, checking type property, 1182
formActionNode local variable, 1187
formatting

date types, 38
string types, 41

Function class, JavaScript
getBaseMethod function, 110–113
overview, 78–79
Type class and, 80

G
GenerateConstructor method,

ClientProxyGenerator, 638–639
generateDescriptor method, TypeDescriptor,

370–371
generateHtml method

HtmlGenerator client control, 802–803
HtmlGenerator2 client control, 827–828

GenerateNamespace method,
ClientProxyGenerator class, 638

GeneratePrototype method, ClientProxyGenerator
class, 639

GenerateRegisterClass method,
ClientProxyGenerator class, 643

GenerateStaticInstance method,
ClientProxyGenerator class, 643–645

GenerateStaticMethods method,
ClientProxyGenerator class, 645–647

GenerateWebMethodProxy method,
ClientProxyGenerator class, 639–642

get_aborted method

executeRequest method

bindex.indd 1494bindex.indd 1494 8/21/07 2:13:48 AM8/21/07 2:13:48 AM

1495

In
de

x

WebRequestExecutor class, 465, 494
XMLHttpExecutor, 479

getAllResponseHeaders method
WebRequestExecutor class, 468
XMLHttpExecutor, 483
XMLHttpRequest, 7

GetAllUpdatePanelIDs method, page postback,
1132–1133

get_alternateText method, Image client
controls, 300

get_argument method
Button client control, 326
onBubbleEvent method, 1364

GetAsyncPostBackControlIDs method,
 PageRequestManager, 1025, 1131

GetAsyncPostBackTimeout method,
PageRequestManager, 1026–1027

getAttribute method
CustomTable client control, 394
TypeDescriptor class, 376–377

_get_attributes, TypeDescriptor class, 350
GetAuthors Web method

defined, 1417
displaying data records with ListView, 1421

getBaseMethod function, JavaScript OOP and
type reflection extensions, 110–113

getBaseType method, JavaScript OOP and type
reflection extensions, 100–102

getBehaviorByName method, Behavior class
static methods, 674

getBehaviorByType method, Behavior class static
methods, 675

getBehaviors method, Behavior class static
methods, 674–675

get_bindings method, 1340
get_body method

beginRequest event, 1103
initializeRequest event, 1099
WebRequest class, 459

GetBooks web method
defined, 1417
displaying data records with ListView, 1422

getBounds method, DomElement
methods, 175

get_canMoveNext property, DataControl class,
1352

get_canMovePrevious property, DataControl
class, 1352–1353

GetChildUpdatePanelIDs method, page postback,
1133–1134

GetClientProxyScript method,
ClientProxyGenerator class, 634–636

get_command method, Button client control,
326–327

get_command source method,
GridViewCommandEventArgs class, 343

get_commandName method, 1364
getComponents method

_Application class methods, 242
IContainer class, 238
MarkupContext class, 1270

GetControlIDsFromList method,
PageRequestManager, 1025–1026,
1131–1132

GetCurrent method, ScriptManager, 741
get_data method

DataControl class, 1353
developing custom data control, 1366
displaying data records with ListView, 1420
render method, CustomTable control, 1388

get_dataContext method, DataControl
class, 1358

get_dataIndex method, DataControl
class, 1356

get_dataItem method, DataControl class,
1357–1358

get_default failed callback method,
WebServiceProxy class, 536

get_default succeeded callback method,
WebServiceProxy class, 536

_getDefaultNamespaces method, 1282, 1283
get_direction method, 1340
get_element method

Behavior class, 669
Control class, 283
CustomTable client control, 394

getElementById method
DomElement, 161–166
_doPostBack method, 1079

getElementsByTagName method,
processDocument, 1274

_getEvent method, Sys.EventHandlerList class,
133–134

get_eventHandlerList method
beginRequest event, 1099
implementing pageLoaded event, 1053
initializeRequest event, 1091

_get_eventHandlerList method
_pageLoaded method, 1050–1051
WebRequestManager class, 470

_get_eventHandlerList method

bindex.indd 1495bindex.indd 1495 8/21/07 2:13:48 AM8/21/07 2:13:48 AM

1496

get_eventHandlerList method, page
postback, 1186

_get_events, TypeDescriptor class, 364–368
getEvents method, initializeObject method of

xml-script, 1298, 1304–1305
get_events method

behaviors, 665–666
component development, 271–272
Monitor class implementing, 226
ShoppingCart class, 155
WebRequestExecutor class, 461

getHandler method
client-side page postbacks, 1186
_onFormSubmit method, 1087, 1089
_pageLoaded method, 1050–1051
ScriptHandlerFactory, 571, 573
Sys.EventHandlerList class, 135–138

get_headers method
initializeRequest event, 1098
WebRequest class, 492
WebRequestExecutor class, 460

get_height method, Image client controls, 299
get_httpVerb method, WebRequest class, 458
get_id method

behaviors, 666, 671
controls, 283–284
INotifyPropertyChanged interface, 233

get_imageURI method, Image client
controls, 299

get_imageURL method, Image client controls,
307–308

get_index method, onBubbleEvent
method, 1364

getInstance method
beginRequest event, 1103
executing application-specific logic, 1055–1062
initializeRequest event, 1096
PageRequestManager, 1034, 1036–1037
_ScriptLoader class, 1203

getInterfaces method, JavaScript OOP and type
reflection extensions, 92–94

get_isUpdating method, behaviors, 666
getItem method

DataControl class, 1362
get_dataItem method, 1357

getItemElement method, ListView control, 1450
get_length method, DataControl class,

1355–1356
_getLoadedScripts method, _ScriptLoader

class, 1205

getLocation method, DomElement class,
171–172

_get_methods, TypeDescriptor class, 358–364
get_mouseOverCallback method, Image client

controls, 308
get_mouseOverImageURL methods, Image client

controls, 308
get_name method, Behavior class, 670–671
getName method, JavaScript OOP and type

reflection extensions, 83–84
getNamedItem method

parseFromMarkup, 1286, 1376
TemplateField custom template, 1382

get_navigateURL property, HyperLink client
controls, 315

getNodeName method
initializeObject method, 1306
invoking from _getTagType method, 1279

get_object method, WebRequestExecutor class,
466–467

_getPageLoaded method, PageRequestManager,
1246–1247

_getPageLoadedEventArgs method, page load
events, 1051, 1054–1055

_getPageLoadingEventArgs method, page
postback, 1186–1187, 1233–1234

get_panelsCreated method, pageLoadedHandler,
1062, 1065–1067

get_panelsDeleting method, 1224, 1236,
1241, 1244

get_panelsUpdated method, 1062, 1065–1066
get_panelsUpdating method, 1224, 1236,

1240, 1244
get_parent method, Control class, 285
get_path, WebServiceProxy class, 537
GetPostBackControlIDs method,

PageRequestManager, 1026, 1132
get_postBackElement method, 1097
_getPostBackSettings method, 1073–1076, 1079
_get_properties, TypeDescriptor class, 351–358
getProperties method, initializeObject

method, 1298
_getProperties method, initializeObject

method, 1306
getProperty method

CustomTable client control, 393
TypeDescriptor class, 374–376, 451

getPropertyType method
invoking from evaluateIn method, 1321–1322
TypeDescriptor class, 384–385

get_eventHandlerList method, page postback

bindex.indd 1496bindex.indd 1496 8/21/07 2:13:48 AM8/21/07 2:13:48 AM

1497

In
de

x

GetRefreshingUpdatePanelIDs method, page
postback, 1134

GetRender method, RenderChildren method,
1114–1115

get_request method
beginRequest event, 1103
initializeRequest event, 1097

get_responseAvailable method
WebRequestExecutor class, 464–465
XMLHttpExecutor, 479

get_responseData method
client-side page postbacks, 1176
WebRequestExecutor class, 465, 494
XMLHttpExecutor, 483

getResponseHeader method
WebRequestExecutor class,

467–468
XMLHttpExecutor, 482–483
XMLHttpRequest, 7

getRootNamespaces, JavaScript OOP and type
reflection extensions, 123–124

get_row method, GridView class, 343
get_rowIndex method, GridViewRow

control, 339
GetSchema method, IXmlSerializable

interface, 839
GetScript method

ScriptComponentDescriptor class,
720–724

ScriptDescriptor class, 716–717
GetScriptDescriptors method

AmazonSearchScriptControl, 795–796
custom extender control, 755–757
HtmlGeneratorScriptControl, 808–809
IExtenderControl interface, 709
IScriptControl interface, 713

GetScriptReferences method
AmazonSearchScriptControl, 796
custom extender control, 755
HtmlGeneratorScriptControl, 809
IExtenderControl interface, 710
IScriptControl interface, 713–714

get_selectedValue method, displaying data
records with ListView, 1422

get_shoppingCartItems, ShoppingCartItem
class, 143

_getSourceValue method, 1322
get_started method

WebRequestExecutor class, 464
XMLHttpExecutor, 479

get_statusCode method
client-side page postbacks, 1175
WebRequestExecutor class, 466, 494
XMLHttpExecutor, 484

get_statusText method
WebRequestExecutor class, 466
XMLHttpExecutor, 484

_getTagType method
invoking with parseNode method, 1278
processing xml-script XML document,

1279–1281
get_target method, Action class, 1339
getter/setter methods

AspNetAjaxAmazonSearch client control,
786–787

HtmlGenerator client control, 801–802
get_text method, Label client controls, 292–293
get_timedOut method, XMLHttpExecutor, 478
get_timeOut method

initializeRequest event, 1098
WebRequest class, 459
WebRequestExecutor class, 465, 494
WebServiceProxy class, 535–536

GetType method, object types, 38–39
getTypeDescriptor method

initializeObject method, 1298
TypeDescriptor class, 369–370, 1287

GetUpdatePanelIDsFromList method,
 PageRequestManager, 1133

get_url method
initializeRequest event, 1098
WebRequest class, 458

get_visibilityMode method, Control class, 286
get_visible method, Control class, 286
get_WatermarkText method, 702
get_webRequest method, WebRequestExecutor

class, 463–464
get_width method, Image client controls, 299
get_xml method

WebRequestExecutor class, 466
XMLHttpExecutor, 484–485

global markup context
creating, 1272–1273
defined, 1268
processDocumentScripts invoking open method

on, 1276
global namespaces

compared with local, 123
_rootNamespaces array, 87

Google Suggest, 1–2

Google Suggest

bindex.indd 1497bindex.indd 1497 8/21/07 2:13:49 AM8/21/07 2:13:49 AM

1498

GridView client control, 344–348
as composite control, 328
constructor, 331
example of page using, 346–347
metadata information and, 349
onBubbleEvent, 332–337
overview, 330–331

GridView server control. See MasterDetailControl
server control

GridViewCommandEventArgs class
constructor, 342–343
descriptor for, 343–344
get_command source method, 343
get_row method of, 343
overview, 341–342

GridViewCommandEventArgs.js file, 341–342
GridView.js file, 330, 344–348
GridViewRow control

constructor, 339
descriptor property, 341
onBubbleEvent, 339–340
overview, 334

GridViewRow.js file, 337–338

H
HandlerWrapper, 582–583
headers

HTTP messages, 520
SOAP messages, 521
WebRequest class, 460

headerText property, custom template,
1381–1382

height property, Image client controls, 299–300
HelperMethods class, ScriptComponentDescriptor

class, 725–726
hiddenField string, 1180
hiddenFieldNodes array, 1188
hierarchical path, XPath, 955
HTML

AJAX-enabled components and, 1–2
page postback and, 1099–1100

htmlEnclode method, Label client controls,
291–292

HtmlForm server control, 1127–1132
HtmlGenerator client control

code listing, 798–801
generateHtml method, 802–803
properties, 801–802
XmlBridgeTransformer, 826–827

HtmlGeneratorScriptControl server control
code listing, 803–807
CreateControlStyle method, 808
GetScriptDescriptors method, 808–809
GetScriptReferences method, 809
properties, 807
state management methods, 809–811

HTTP handler factories
HandlerWrapper, 582–583
RestHandler replica, 577–582
RestHandlerFactory, 574–577
ScriptHandlerFactory, 571–574
ScriptModule, 583–591
using replicas of, 593–595
WebServiceHandlerFactory, 572–573

HTTP modules
overview, 584
ScriptModule, 583–591

HTTP request messages
client-side code and, 524
SOAP and, 518–521

HTTP response messages
client-side code and, 524
SOAP and, 519–521

HTTP verb, 458–459
HttpApplication object, 24
HttpBrowserCapabilities, 302
HyperLink client controls

add_click method, 316–317
constructor, 314
descriptor property, 318
dispose method, 318
example using, 319–321
initialize method, 315–316
navigateURL property, 315
_onClick method, 317–318
overview, 314
prototype property, 315
remove_click method, 317

I
IAction interface

execute method, 1339–1341
overview, 1333

IBridgeResponseTransformer interface, 819–820
IContainer class component, 238–239
ICustomTypeDescriptor class, 403–405

data row implementing, 451
getProperty method and, 375

GridView client control

bindex.indd 1498bindex.indd 1498 8/21/07 2:13:49 AM8/21/07 2:13:49 AM

1499

In
de

x

methods, 403–404
page using DataRow type, 404–405

ICustomTypeProvider interface, 1288
id methods

behaviors, 671–672
components, 269–270

IData interface, 1360
idHTML attribute, DOM elements, 161
IDisposable interface, 220–224, 235
IE4, event propagation model, 202
IExtenderControl interface, 709–710
IHttpHandlerFactory interface, 571
IHttpModule interface, 584
IIS, ISAPI extension and, 568–569
Image class, AWSECommerceService, 775
Image client controls

alt property (alternate text), 300
constructor, 298
example using, 300–302
height property, 299–300
imageURI, 299
overview of, 297–298
prototype property, 298
width property, 299

Image client controls, extending
constructor, 306–307
dispose method, 312
duration property, 309
example using, 312–314
imageURL methods, 307–308
initialize method, 311–312
mouseOutCallback method, 309
mouseOverCallback method, 308
mouseOverImageURL methods, 308
overview of, 302–306
prototype property, 307
transition property, 310–311

image DOM element, 297
Image server controls, 297
ImageProvider, DOM extensions, 185
imageURI property, Image client controls, 299
imageURL methods, Image client controls,

307–308
imperative approach, proxy classes, 618–620
imperative updates, UpdatePanel, 878–881
implementsInterface function, JavaScript OOP

and type reflection extensions, 113–118
INamingContainer interface, 891, 905–906
indexOf, array types, 34–35
inheritance

inheritsFrom function, 118–120
JavaScript OOP and type reflection extensions,

96–100
resolveInheritance method, 103–104

inheritsFrom function, JavaScript OOP and type
reflection extensions, 118–120

init events
Application class, 258–259
application lifecycle and, 257
handling, 979–980

Init method
IHttpModule interface, 584
ScriptModule, 586–587

_initHandler method, 1273
initialization phase, application lifecycle, 257
initialize method

Application class, 246
AspNetAjaxAmazonSearch client control, 787
Behavior class, 673
BehaviorBase class, 681–682
behaviors, 664
BindingBase class, 1324–1325
Button client control, 327
ClickBehavior class, 677–678
component development, 267–269
HyperLink client controls, 315–316
Image client controls, 311–312
initializeObject method, 1306
ITemplate interface, 1373
ListView control, 1452–1454
PageRequestManager, 1035–1036
ShoppingCart class, 155
ShoppingCartItem class, 143
TextBoxWatermarkBehavior class, 688–691
UpdatePanel, 998
UpdatePanelTrigger, 1000, 1004–1011
UpdatePanelTriggerCollection, 998–1000
XsltBridgeTransformer, 848

initializeBase method, JavaScript OOP and type
reflection extensions, 102–103

InitializeDataCell method, 937–938
_initializeInternal method, PageRequestManager,

1042–1043
initializeObject method, 1287–1315

accessing attributes collection, 1298–1299
accessing properties collection, 1299–1300
_addEventName, 1305
addReference method, 1299
call method, 1301, 1306–1307, 1313
example of implementing, 1288–1293

initializeObject method

bindex.indd 1499bindex.indd 1499 8/21/07 2:13:49 AM8/21/07 2:13:49 AM

1500

initializeObject method (continued)
findElement method, 1300–1301
getEvents method, 1298, 1304–1305
getNodeName method, 1306
getProperties method, 1298
_getProperties method, 1306
getTypeDescriptor method, 1298
implementing, 1293–1298
initialize method, 1306
initializing binding object, 1318–1319
myArrayProperty, 1301–1302
myEnumProperty, 1302
overview, 1287
parse method, 1302–1303
parseFromMarkup method invoking,

1284–1287, 1338–1339
parseNode method, 1312–1313
parseNodes method, 1308, 1313, 1315
set_eventSource method, 1314
setting value of property, 1303
toUpperCase method, 1314
TypeDescriptor class, 1287–1288

_initializePageRequestManagerInstance
method, 1034

initializeRequest event, PageRequestManager
overview, 1090–1092
using, 1092–1099

InitializeRequestEventArgs class
initializeRequest event, 1097–1099
overview, 1091–1092

initializeRequestHandler JavaScript function,
1097–1099

InitRecursive method
life cycle phase, 971–972
page postbacks, 1103–1105

INotifyDisposing interface, 224–228, 235,
272–280

INotifyPropertyChange interface, 235
INotifyPropertyChanged interface, 228–235, 272
input box methods, in client-server

communication example, 509–510
<input> element, WSDL documents, 516
insert, array types, 35
Insert method, adding new element to tree

hierarchy, 962
insertCell method, TypeDescriptor class, 364
insertRow method, TypeDescriptor class,

357–358
instance methods, Behavior class, 672–674
instance methods, DomEvent class

overview, 198
preventDefault method, 198–201
stopPropagation method, 201–203

instantiation
application lifecycle phases, 257
behaviors, 663

interface implementation patterns, C#, 711
interfaces

defining, 90
extender controls, 709–710
getInterfaces method, 92–94
IAction, 1333, 1339–1341
IBridgeResponseTransformer, 819–820
ICustomTypeProvider, 1288
IData, 1360
IDisposable, 220–224
IDisposable interface, 235
IExtenderControl, 709–710
IHttpHandlerFactory, 571
IHttpModule, 584
implementsInterface function, 113–118
INamingContainer, 891, 905–906
INotifyDisposing, 224–228, 272–280
INotifyDisposing interface, 235
INotifyPropertyChange interface, 235
INotifyPropertyChanged, 228–235, 272
IPostBackDataHandler, 1109
IScriptControl, 713–714
isInterface function, 95–96
ITask, 1429–1430
ITemplate, 1373–1374
IXmlSerializable. See IXmlSerializable interface
overview, 220
registerInterface method, 89–92
script controls, 713–714

InvalidOperation method, errors, 1256
InvalidOperationException, exception types, 66,

1255–1264
Invert transformer, 1328–1329
Invoke method, transformers, 819
invoke method, WebServiceProxy class,

537–538, 539–542
invokeMethod method

CustomTable client control, 394
InvokeMethodAction invoking, 1342
TypeDescriptor class, 382–384

InvokeMethodAction, Action class, 1342–1344
invoking Web requests, 462–463
invokingRequestCallback function, in client-

server communication example, 503–506

initializeObject method (continued)

bindex.indd 1500bindex.indd 1500 8/21/07 2:13:50 AM8/21/07 2:13:50 AM

1501

In
de

x

IPostBackDataHandler, 1109
ISAPI extension, 568–569
isClass method, JavaScript OOP and type

reflection extensions, 84–85
IScriptControl interface, 713–714
IsEmpty method, StringBuilder class, 388
isEnum method, JavaScript OOP and type

reflection extensions, 129
isFlags method, JavaScript OOP and type

reflection extensions, 129–130
isImplementedBy function, JavaScript OOP and

type reflection extensions, 121–123
isInterface function, JavaScript OOP and type

reflection extensions, 95–96
isNamespace method, JavaScript OOP and type

reflection extensions, 88
isScriptLoaded method, ScriptLoader class, 1204
ITask interface, 1429–1430
ItemAttributes class,

AWSECommerceService, 776
itemClass property, ListView styles, 1446
Item/Items classes,

AWSECommerceService, 775
ITemplate interface, 1373–1374
ItemSearch class, AWSECommerceService, 774
ItemSearch method, AWSECommerceService,

774–781
ItemSearchRequest class,

AWSECommerceService, 774
ItemSearchResponse class,

AWSECommerceService, 775
itemTemplate property, ListView control,

1448–1449
itemTemplateParentElementId property, ListView

control, 1409–1417, 1451–1452
IXmlSerializable interface, 839–848

AmazonSearch3.asbx code listing, 847
AmazonSearch3.aspx code listing, 847–848
AmazonService3.cs code listing, 844–847
ResultsSchema method, 842–844
WriteXml method, 842

J
JavaScript

AJAX-enabled components and, 1–2
Manager constructors, 98

JSON (JavaScript Object Notification), 21–24
AJAX-enabled components and, 2
arrays, 21

code listing, 22–23
null, true, and false values, 21–22
numbers, 21–22
objects, 21
REST requests for ScriptHandlerFactory, 573
REST requests processed by

RestHandlerFactory, 574–577
string specification in, 725
strings, 21–22
WebServiceProxy class and, 535

JSON/XML Serializer, AJAX engine
components, 3

K
Key, DOM extensions, 176–177
key parameter, getProperty method, 375–376
keyboards, DOM Key enumeration, 176–177
keypress events, _onKeyPress method, 695

L
Label client controls

constructor, 291
descriptor property, 294
example using, 295–297
htmlEnclode method, 291–292
overview, 291
prototype property, 294
text property, 292–293

layoutTemplate property, ListView control, 1449
leftButton value, MouseButton class, 176
ListBox server control. See MasterDetailControl3

server control
ListView control, 1401–1472

applying styles, 1423–1424
constructor, 1443–1444
descriptor property, 1472
displaying data records, 1417–1422
DOM template elements and, 1409–1417
example of, 1405–1409
findItemTemplateParentCallback method,

1465–1471
getItemElement method, 1450
implementing, 1443
initialize method, 1452–1454
ITask interface, 1429–1430
itemTemplateParentElementId property,

1451–1452
ListView RenderTask class, 1434–1442

ListView control

bindex.indd 1501bindex.indd 1501 8/21/07 2:13:50 AM8/21/07 2:13:50 AM

1502

ListView control (continued)
_onGotFocus method, 1454
_onItemClick method, 1463–1465
_onItemFocus method, 1463
_onkeyDown method, 1456–1458
overview of, 1401–1405
render method, 1458–1463
renderComplete event, 1452
_renderTaskComplete method, 1471
set_dataIndex method, 1450–1451
setFocus method, 1455–1456
style properties, 1444–1447
table rows and columns used with, 1424–1429
_TaskManager, 1430–1434
template properties, 1447–1450

ListView RenderTask class, ListView control,
1434–1442

load event, Application class, 259
load phase, application lifecycle, 258
Load Post Data phase, page postbacks,

1105–1112
_loadHandler method, _Application class,

245–246
LoadPostData method

PageRequestManager class, 1110–1112
ScriptManager class, 1109

LoadRecursive method, 995–997
loadScripts method, _ScriptLoader class,

1205–1206
LoadScriptsBeforeUI property, ScriptManager

class, 740
_loadScriptsInternal method, _ScriptLoader

class, 1207–1209
LoadScrollPosition phase, page postbacks,

1101–1103
LoadViewState method

BaseMasterDetailControl, 900
HtmlGeneratorScriptControl, 810

local markup context, 1267–1272
local namespaces, 123
localeFormat method, date types, 38
location path, XPath, 955
logic, code reuse, 660

M
Manager constructors, in JavaScript and C#, 98
MarkupContext class, 1267–1272

addComponent method of, 1268–1269
ASP.NET AJAX, 1267–1272

close method, 1271
constructor of, 1268
createGlobalContext method, 1272–1273
createInstance method, 1378
createLocalContext method, 1272, 1378
findComponent method, 1269, 1271
findElement method, 1270
getComponents method, 1270
information contained in, 1267
__initHandler method, 1273
open method, 1272
_pendingReferences collection, 1270–1272
TemplateField custom template, 1382
types of, 1268

MarkupParser class, 1378
master pages, UpdatePanel server control,

871–874
master server control

CreateMaster method, 908
GridView as, 911
update conditions, 893

Master_DataBound method
MasterDetailControl server control, 915–916
MasterDetailControl2 server control, 923–924

master/detail forms, 881–882. See also
BaseMasterDetailControl server control

MasterDetailContainer
ControlStyle method, 896
derived, from TableCell, 891

MasterDetailControl server control
code listing, 911–913
CreateBaseDataBoundControlMaster,

overriding, 913
properties, 916
RegisterMasterEventHandlers method, 914
SelectedIndex property, 914–916
using in Web page, 916–921

MasterDetailControl2 server control
code listing, 921–923
CreateBaseDataBoundControlMaster, 923
example using, 924–927
Master_DataBound method, 923–924
Master_SelectedIndexChanged, 923
properties, 924
RegisterMasterEventHandlers method, 923

MasterDetailControl3 server control
code listing, 927–928
example using, 928–930

MasterDetailControl4 server control, 930–931
MasterDetailField data control

ListView control (continued)

bindex.indd 1502bindex.indd 1502 8/21/07 2:13:50 AM8/21/07 2:13:50 AM

1503

In
de

x

appearance properties, 939–940
BoundField, extending, 932
code listing, 933–937
DataBinding event, handling, 938–939
example using, 940–945
ExtractValuesFromCell method, 939
InitializeDataCell method, overriding,

937–938
overview, 931–932

Master_ResetSelectedValue method,
MasterDetailControl server control, 915

Master_SelectedIndexChanged
MasterDetailControl server control, 914–915
MasterDetailControl2 server control, 923

_matchesParentIDInList helper method,
 PageRequestManage, 1073

Math class, Divide method, 565–567
message box methods, in client-server

communication example, 509–510
<message> element

in custom composite user control, 954
WSDL documents, 515–516

MessageBoxStyle enumerators, in client-server
communication example, 508

metadata information. See also TypeDescriptor
class

dynamic injection with type description,
399–400

exposed by descriptor static property of a type,
371–372

methods for inspecting, 349
methods

calls. See call methods
characteristics of, 178
JavaScript Function type, 79
.NET class, 177
overriding inherited, 699
page methods, 564, 583, 605–607
protected virtual methods, 900
remote method invocation, 600
ways for client-side code to invoke server side

methods, 570
WSDL documents, 518

_methods, TypeDescriptor class, 358–364
Microsoft ASP.NET Futures, 297
middleButton value, MouseButton class, 176
Monitor.js file, 220–223
MouseButton class, 176
mousedowncb method, Mover class, 213–214
mousemovecb method, Mover class, 215

mouseOutCallback method, Image client
controls, 309

mouseOverCallback method, Image client
controls, 308

mouseOverImageURL methods, Image client
controls, 308

mouseupcb method, Mover class, 214–215
moveNext method, DataControl class,

1362–1363
movePrevious method, DataControl class,

1363–1364
Mover class

addContent method, 213
defining and registering, 184
enhancements to, 209–213
mousedowncb method, 213–214
mousemovecb method, 215
mouseupcb method, 214–215

myArrayProperty, initializeObject method of
xml-script, 1301–1302

myEnumProperty, initializeObject method of
xml-script, 1302

N
name methods, Behavior class, 669–671
name property, ArgumentException, 54
name=value format, browsers following, 491
names, custom exception, 71
namespaces

Delegates namespace, 183
event programming, 141
getRootNamespaces method, 123–124
global, 87
isNamespace method, 88
Preview.UI namespace, 291
registerNamespace method, 85–87

navigateURL property, HyperLink client
controls, 315

.NET class, 177

.NET Framework
base types, 27
benefits of, 24
component development, 219
delegates, 178
exception types, 53
generics, 733
interfaces, 220
methods for inspecting metadata, 349
programming capabilities, 77

.NET Framework

bindex.indd 1503bindex.indd 1503 8/21/07 2:13:51 AM8/21/07 2:13:51 AM

1504

Netscape Navigator 4, 202
NetworkRequestEventArgs class,

WebRequestManager class, 473–474
new, JavaScript operator, 1286
NotImplementedException, exception types,

66–68
null values, JSON, 21–22
numbers, JSON, 21–22

O
object composition, 763, 1306
object oriented programming. See OOP and type

reflection extensions
objects

ASP.NET AJAX, 38–39
JSON, 21
Page objects. See Page objects

OfferListing class, AWSECommerceService, 776
Offer/Offers classes,

AWSECommerceService, 776
offsetLeft property, DOM elements, 171
offsetParent property, DOM elements, 171
offsetTop property, DOM elements, 171
_onBlur method, TextBoxWatermarkBehavior

class, 693–694
onBubbleEvent method

Control base class, 289
DataControl class, 1364–1365
GridView control, 332–337, 345
GridViewRow control, 339–340
inherited from Control class, 330

_onClick method
Button client control, 328–329
HyperLink client controls, 317–318

onComplete function
as event handler for completed event of

WebRequest class, 545–549
Web service errors and, 553–554

onDataChanged method, DataControl class, 1357
onFailure function, Web service errors and, 553,

559–560
_onFocus method, TextBoxWatermarkBehavior

class, 691–692
_onFormSubmit method

_doPostBack method and, 1081
overview, 1081–1090
page postbacks via Submit button, 1043, 1051
PageRequestManager, 1171

_onFormSubmitCompleted method, 1172–1199

arrayDeclarationNodes array, 1189
calling _findText method, 1177–1178
calling _updateControls method, 1185
checking formActionNode local variable, 1187
checking type property, 1179–1184
client-side page postbacks, 1193–1199
_dataItems collection, 1185–1186
expandoScript string, 1189
get_eventHandlerList method, 1186
getHandler method, 1186
_getPageLoadingEventArgs method, 1186
hiddenFieldNodes array, 1188
invoking _endPostBack method, 1179
iterating through objects in updatePanelNodes

array, 1187–1188
PageRequestManager, 1172–1176
of PageRequestManager, 1193–1198,

1219–1222
_registerDisposeScript method, 1187–1188
_ScriptLoader class, 1189–1192
_splitNodeIntoArray method, 1185
updating UpdatePanel server controls, 1184

_onGotFocus method, ListView control, 1454
OnInit method

extender control, 757
PageRequestManager, 975–977, 1104–1105
ScriptManager, 741, 972–975, 1103
UpDatePanel, 980–982

_onItemClick method, ListView control,
1463–1465

_onItemFocus method, ListView control, 1463
_onkeyDown method, ListView control,

1456–1458
_onKeyPress method,

TextBoxWatermarkBehavior class, 695
OnLoad method

extender control, 758–759
page lifecycle and, 995

_onNextButtonClick method,
AspNetAjaxAmazonSearch client
control, 789

OnPostAcquireRequestState method,
ScriptModule, 586

OnPreRender method
Control class, 712
extender control, 760–761
PageRequestManager, 1113–1114

_onPreviousButtonClick method,
AspNetAjaxAmazonSearch client
control, 788

Netscape Navigator

bindex.indd 1504bindex.indd 1504 8/21/07 2:13:51 AM8/21/07 2:13:51 AM

1505

In
de

x

_onPropertyChanged method,
TextBoxWatermarkBehavior class,
696–697

_onReadyStateChange method,
XMLHttpExecutor, 476–477

onreadystatechange property,
XMLHttpRequest, 6

_onSearchButtonClick method,
AspNetAjaxAmazonSearch client control,
788

onShoppingcartInitialized method, ShoppingCart
class, 155–156

onShoppingCartItemAdded method,
ShoppingCart class, 158

onShoppingCartItemAdding method,
ShoppingCart class, 158

_onsubmit method, postback methods, 1081
_onSubmit method, TextBoxWatermarkBehavior

class, 700
onSubmit string, checking type property, 1180
_onSuccess method, AspNetAjaxAmazonSearch

client control, 789
_onTimeout method

Task Manager, 1432–1433
XMLHttpExecutor, 477–478

OOP and type reflection extensions, 77–130
callBaseMethod method, 104–110
classes, 79–80
Function type and properties, 78–79
getBaseMethod function, 110–113
getBaseType method, 100–102
getInterfaces method, 92–94
getName method, 83–84
getRootNamespaces, 123–124
implementsInterface function, 113–118
inheritance, 96–100
inheritsFrom function, 118–120
initializeBase method, 102–103
isClass method, 84–85
isEnum method, 129
isFlags method, 129–130
isImplementedBy function, 121–123
isInterface function, 95–96
isNamespace method, 88
overview, 77
parse method, 125–127
registerClass, 81–83
registerEnum method, 127–128
registerInterface method, 89–92
registerNamespace method, 85–87

resolveInheritance method, 103–104
summary, 130
Type class, 80

open method
createInstance method and, 1378
MarkupContext class, 1272
processDocumentScripts invoking, 1276
XMLHttpRequest, 6

<operation> element, WSDL documents,
516–517

_originalDoPostBack method, 1081
<output> element, WSDL documents, 516
overrideMimeType property, XMLHttpRequest, 7
overriding, inherited methods, 699
owner property, UpdatePanelTriggerCollection,

1002–1003

P
Page class

.aspx files and, 966
Init life cycle phase, 971–972
ProcessRequest method, 969–971
redendering phase, 1019

page lifecycle
benefits of ASP.NET, 24
Init life cycle phase, 971–972
LoadRecursive method, 995
OnLoad method and, 995
partial page rendering, 969–971
redendering phase, 1019

page methods
invoking server side methods from client

side, 583
proxy classes associated with, 605–607
wrapper methods as, 564

Page objects
InitRecursive phase of, 1103
LoadScrollPosition phase of, 1101–1103
ProcessPostData method of, 1105–1108
RetrievePostData phase of, 1097–1101

page postbacks, asynchronous
enabling partial page rendering, 857–859
user controls, 945–955

page postbacks, asynchronous client-side
arrival of server response text, 1171–1192
beginRequest event, 1099–1100
beginRequest event, using, 1101–1104
_createPostBackSettings method, 1071–1072
_destroyTree method, 1201–1202, 1231–1233

page postbacks, asynchronous client-side

bindex.indd 1505bindex.indd 1505 8/21/07 2:13:51 AM8/21/07 2:13:51 AM

1506

page postbacks, asynchronous (continued)
_doPostBack method, 1077–1081
_endPostBack method, 1216–1222
endRequest event, 1247–1265
_findNearestElement method, 1072–1073
_getPageLoadingEventArgs method, 1233–1234
_getPostBackSettings method, 1073–1076
initializeRequest event, 1090–1099
_matchesParentIDInList method, 1073
_onFormSubmit method, 1081–1090
_onFormSubmitCompleted method, 1193–1199
pageLoaded event, 1245–1247
_pageLoaded method, 1215–1216
pageLoading event, 1223–1228
PageRequestManager and, 1071
registerDisposeScript method, 1201
_ScriptLoader class. See _ScriptLoader class
_ScriptLoaderTask class, 1211–1213
_scriptsLoadComplete method, 1213–1215
_updateControls method, 1228–1230
_updatePanel method, 1199–1200,

1230–1231
using pageLoading event, 1234–1244

page postbacks, asynchronous server side,
1097–1170

EncodeString method, 1115–1116, 1156–1161
GetAllUpdatePanelIDs method, 1132–1133
GetChildUpdatePanelIDs method, 1133–1134
GetRefreshingUpdatePanelIDs method, 1134
InitRecursive phase, 1103–1105
Load Post Data phase, 1105–1112
LoadScrollPosition phase, 1101–1103
PreRender phase, 1113–1114
ProcessFocus method, 1152–1154
ProcessScriptRegistration method, 1138–1152
ProcessUpatePanels method, 1121–1127
Raise Post Data Changed Event phase,

1112–1113
Render children method of Control class,

1114–1115
Render method of Control class, 1114
RenderControl method of HtmlForm,

1127–1132
RenderDataItems method, 1134–1138, 1157
RenderPageCallback method, 1116–1121,

1155–1156
RetrievePostData phase, 1097–1101
what text looks like, 1161–1170

page postbacks, synchronous, 1019
PageHandlerFactory, 571

pageLoad function, 502–503
adding DataRow objects to DataTable, 454
beginRequest event, 1102–1103
Button client controls, 336
in client-server communication example, 496
CustomTable client control, 398–399
initializeRequest event, 1091–1099
instantiating instance of Control base

class, 367
instantiating ShoppingCart objects, 151
overview of, 27–28

pageLoad method
displaying data records with ListView, 1420
using pageLoading event, 1234–1244

Page_Load method, beginRequest event, 1104
pageLoad method, ListView control,

1423–1424
pageLoaded event, 1055–1071

client-side page postbacks, 1245–1247
Delegates.js JavaScript file, 1068–1070
at end of instantiation/initialization

process, 1055
executing application-specific logic with,

1055–1062
invoking createDelegate method, 1055
overview of, 1052–1055
pageLoadedHandler, 1062–1067
Render method of ScriptManager server control,

1070–1071
_pageLoaded method

client-side page postbacks, 1215–1216
implementing pageLoaded event, 1053
PageRequestManager, 1050–1052, 1245–1246

PageLoadedEventArgs class, 1053–1055
pageLoadedHandler function, 1062–1067
_pageLoadedInitialLoad method,

PageRequestManager, 1044, 1050
pageLoading event, client-side page postbacks,

1223–1228, 1234–1244
PageMethods proxy object, 606
Page_PreLoad method, extender control,

757–758
Page_PreRenderComplete method,

ScriptManager class, 741–742
pageRedirect string, 1183
PageRequestManager, client-side, 1033–1104

beginRequest event, 1099–1104
constructor, 1037–1039
_createPostBackSettings helper method,

1071–1072

page postbacks, asynchronous (continued)

bindex.indd 1506bindex.indd 1506 8/21/07 2:13:52 AM8/21/07 2:13:52 AM

1507

In
de

x

_createPostBackSettings method,
1071–1072, 1079

_destroyTree method, 1201–1202
_doPostBack method, 1043–1044, 1077–1081
_endPostBack method, 1173, 1216–1222
_findNearestElement helper method,

1072–1073
getInstance method, 1036–1037
_getPageLoaded method, 1246–1247
_getPageLoadingEventArgs method, 1233–1234
_getPostBackSettings helper method,

1073–1076
_initialize method, 1035–1036
_initializeInternal method, 1042–1043
initializeRequest event, 1090–1092
initializeRequest event, using, 1092–1099
making asynchronous page postback, 1071
_matchesParentIDInList helper method, 1073
_onFormSubmit method, 1081–1090, 1172
_onFormSubmitCompleted method, 1193–1199,

1219–1222
overview of, 1033–1034
page postback via _doPostBack function,

1040–1042
page postback via Submit button, 1040–1042
pageLoaded event, 1052–1071
_pageLoaded method, 1050–1052, 1245–1246
_pageLoadedInitialLoad method, 1050
registerDisposeScript method, 1201
server response arriving on client-side, 1034
server-side vs. client side partial page

rendering, 965
_uniqueIDToClientID method, 1049
_updateControls method, 1046–1049
_updatePanel method, 1199–1200
using pageLoading event, 1234–1244

PageRequestManager, server-side
EncodeString method, 1115–1116
focus-related methods, 1152–1153
GetAllUpdatePanelIDs method, 1132–1133
GetAsyncPostBackControlIDs method,

1025, 1131
GetAsyncPostBackTimeout method, 1026–1027
GetChildUpdatePanelIDs method, 1133–1134
GetControlIDsFromList method, 1025–1026,

1131–1132
GetPostBackControlIDs method, 1026, 1132
GetRefreshingUpdatePanelIDs method, 1134
GetUpdatePanelIDsFromList method, 1133
IsAsnycPostBackRequest method, 1103–1104

LoadPostData method, 1110–1112
LoadScrollPosition phase, 1101–1103
OnInit method, 975–977, 979, 1104–1105
OnPreRender method, 1113–1114
ProcessFocus method, 1154
ProcessScriptRegistration method, 1138–1152
ProcessUpatePanels method, 1121–1127
RegisterAsyncPostBackControl method,

1012–1014
RegisterDataItem method, 1137
RegisterUpdatePanel method, 984
Render method, 1020
RenderDataItems method, 1134–1138, 1157
RenderFormCallback method, 1128–1129
RenderPageCallback method, 1116–1121,

1155–1156
RenderPageRequestManagerScript method,

1021–1024
RenderUpdatePanelIDsFromList method,

1024–1025
script block arriving on client-side from,

1033–1034
server-side vs. client side partial page

rendering, 965
submitting data to server, 1099–1100

PageRequestManagerParserErrorException,
1255

PageRequestManagerServerErrorException,
1254–1255

PageRequestManagerTimeoutException, 1254
PageSize property, MasterDetailControl server

control, 916
pageTitle string, checking type property, 1183
_panelsToRefreshIDs array, 1184–1185
panelsToRefreshIDs string, 1182
ParameterCountException, exception types,

68–70
paramName property

ArgumentException, 54
ArgumentOutOfRangeException, 58

parent property, Control class, 336
parent/child pages, proxy classes and, 621–623
parse, array types, 36
parse method

Boolean types, 37
_getTagType method invoking, 1280
initializeObject method of xml-script,

1302–1303
JavaScript OOP and type reflection extensions,

125–127

parse method

bindex.indd 1507bindex.indd 1507 8/21/07 2:13:52 AM8/21/07 2:13:52 AM

1508

parseFromMarkup method
Action class, 1338–1339
ASP.NET AJAX, 1284–1287
parseNode method invoking, 1278
processing xml-script XML document,

1284–1287
Template class, 1376–1377
TemplateField custom template, 1382–1383

parseNode method, processing xml-script XML
document, 1278–1279

parseNodes method
createInstance method, 1378
initializeObject method, 1308, 1313, 1315
processDocumentScripts invoking, 1276
processing xml-script XML document,

1276–1277
partial page rendering

characteristics of, 857
data control. See MasterDetailField data control
disabling on content pages, 876
enabling, 857–859
master/detail forms and, 882
server-side vs. client side, 965–966
updates. See UpdatePanel
user controls. See user controls, partial-

rendering enabled
partial page rendering, client-side

arrival of server response text, 1171–1192
beginRequest event, 1099–1100
beginRequest event, using, 1101–1104
compared with server-side, 965–966
_createPostBackSettings method, 1071–1072
_destroyTree method, 1201–1202, 1231–1233
_doPostBack method, 1077–1081
_endPostBack method, 1216–1222
endRequest event, 1247–1265
_findNearestElement method, 1072–1073
_getPageLoadingEventArgs method, 1233–1234
_getPostBackSettings method, 1073–1076
initializeRequest event, 1090–1099
_matchesParentIDInList method, 1073
_onFormSubmit method, 1081–1090
_onFormSubmitCompleted method, 1193–1199
pageLoaded event, 1245–1247
_pageLoaded method, 1215–1216
pageLoading event, 1223–1228
PageRequestManager. See

PageRequestManager, client-side
PageRequestManager and, 1071
registerDisposeScript method, 1201

_ScriptLoader class. See _ScriptLoader class
_ScriptLoaderTask class, 1211–1213
_scriptsLoadComplete method, 1213–1215
_updateControls method, 1228–1230
_updatePanel method, 1199–1200,

1230–1231
using pageLoading event, 1234–1244

partial page rendering, server-side
add method of UpdatePanelTriggerCollection,

1003–1004
BaseMasterDetailControl. See

BaseMasterDetailControl server control
BaseMasterDetailControl2. See

BaseMasterDetailControl2 server control
compared with client-side, 965–966
composite server control for, 881–882
constructor of UpdatePanelTriggerCollection,

1001
CreateContents method of UpDatePanel,

984–987
custom UpdatePanelTrigger, 1014–1018
error handling, 978–979
Init event handling, 979–980
Initialize method of UpdatePanel, 998
Initialize method of UpdatePanelTrigger, 1000,

1004–1011
Initialize method of

UpdatePanelTriggerCollection, 998–1000
InitRecursive method, 971–972
LoadRecursive method, 995–997
MasterDetailControl. See MasterDetailControl

server control
MasterDetailControl2. See MasterDetailControl2

server control
MasterDetailControl3. See MasterDetailControl3

server control
MasterDetailControl4, 930–931
OnInit method of PageRequestManager,

975–977
OnInit method of ScriptManager, 972–975
OnInit method of UpDatePanel, 980–982
owner property of UpdatePanelTriggerCollection,

1002–1003
page lifecycle, 969–971
RegisterAsyncPostBackControl method of

PageRequestManager, 1012–1014
RegisterAsyncPostBackControl method of

ScriptManager, 1011–1012
RegisterPanel method of UpDatePanel,

982–983

parseFromMarkup method

bindex.indd 1508bindex.indd 1508 8/21/07 2:13:52 AM8/21/07 2:13:52 AM

1509

In
de

x

RegisterUpdatePanel method of
PageRequestManager, 984

RegisterUpdatePanel method of
ScriptManager, 983

Render method of ScriptManager, 1020–1027
Render method of UpdatePanel, 1028–1029
rendering, 1019–1020
request processing, 966–969
subclasses of UpdatePanelTrigger, 1001
summary, 1029–1031
templated controls, 987–994
visiting partial-page-rendering enabled Web

page, 971
_partialUpdateBeginRequest method,

BehaviorBase class, 685
_partialUpdateEndRequest method,

BehaviorBase class, 685–686
_partialUpdateEndRequest method,

TextBoxWatermarkBehavior class,
698–700

_parts collection, StringBuilder class, 385,
387–388

path methods, WebServiceProxy class, 537
_pendingReferences collection

initializeObject method of xml-script, 1299
MarkupContext class, 1270–1272
processDocumentScripts invoking, 1276

performAction method
execute method invoking, 1340
InvokeMethodAction invoking, 1342
PostBackAction invoking, 1347
SetPropertyAction invoking, 1345

popStackFrame, error types, 45–52
code listing, 49–51
how it worked, 45–48
properties, 45

PopulateMethodInfos method,
ClientProxyGenerator class, 637

PopulateParameterInfos method,
ClientProxyGenerator class, 637–638

<port> element, WSDL documents, 517
<portType> element, WSDL documents, 516–517
PostAcquireRequestState method, ScriptModule,

586–589
PostBackAction, Action class, 1347–1348
postBackControlIDs, 1181
prepareChange method

DataControl class, 1350
deleteCurrentItem method, 1360
moveNext method, 1362–1363

set_data method, 1353
PreRender method, custom script control,

767–768
PreRender phase, page postbacks, 1113–1114
preventDefault method

DomEvent class instance methods, 198–201
_onFormSubmit method, 1089

PreviewScript.js, 1272
Preview.UI namespace, 291
Price class, AWSECommerceService, 776
processDocument method, processing xml-script

XML document, 1273–1275
processDocumentScripts method, 1274–1276
ProcessFocus method

EncodeString method calls triggered by, 1159
rendering page postbacks server side,

1152–1154
_processNamespaceURI method, 1281–1283
ProcessPostData method, Page objects,

1105–1108
ProcessRequest method, Page class, 969–971
ProcessScriptRegistration method, 1138–1152

EncodeString method triggered by, 1157–1158
internal collections of

ScriptRegistrationManager, 1139–1142
overview of, 1138–1139
script registration methods, 1142–1146
ScriptManager, 1146–1149
script-rendering with ScriptRegistrationManager,

1149–1152
ProcessUpatePanels method, 1121–1127

PageRequestManager, 1123–1124
RenderPageCallback method of, 1116–1117
RequiresUpdate method of UpdatePanel,

1124–1126
SetAsyncPostBackMode method of

UpdatePanel, 1126–1127
Update method of UpdatePanel, 1122
when to update, 1121–1122

Product.js file, 394–395
programming

declarative programming in ASP.NET, 25
.NET Framework programming capabilities, 77

properties
accessing properties collection, 1299–1300
AmazonSearchScriptControl server control,

794–795
appearance properties, 939–940
AspNetAjaxAmazonSearch client control,

786–787

properties

bindex.indd 1509bindex.indd 1509 8/21/07 2:13:53 AM8/21/07 2:13:53 AM

1510

properties (continued)
BaseMasterDetailControl server control,

903–904
BaseMasterDetailControl2 server control, 910
Behavior class, 668
Component class, 351–352
components, 727
control states and, 898
DomEvent class, 187–189
getProperties method, 1298
_getProperties method, 1306
HtmlGenerator client control, 801–802
HtmlGeneratorScriptControl server control, 807
INotifyPropertyChanged interface, 228–233
MasterDetailControl server control, 916
MasterDetailControl2 server controls, 924
OOP and type reflection extensions, 78–79
popStackFrame, error types, 45
Result/Results classes, 833–835
ShoppingCartItem class, 141–144
style properties, 1387, 1401–1402,

1444–1447
template properties, 1447–1450
TypeDescriptor class, 351–358
XMLHttpRequest class, 5–6

properties collection, 1299–1300
properties parameter

create method of Component base class, 249,
276–277, 662

HyperLink client controls, 320
in Image client control example, 301
Image client controls, extending, 313–314

PropertyChangedEventArgs, 235
protected virtual methods, 900
prototype property

Button client control, 325–326
HyperLink client controls, 315
Image client controls, 298
Image client controls, extending, 307
JavaScript Function type, 78
Label client controls, 294
Type class, 80

proxy classes, 597–657
associated with custom classes, 607
associated with page methods, 605–607
associated with Web services, 600–605
automatic generation of, 607–608
client proxy REST requests, 576
ClientProxyGenerator class. See

ClientProxyGenerator class

declarative approach, 608–618
deriving from Sys.Net.WebServiceProxy

class, 602
EnablePageMethods, 626
imperative approach, 618–620
methods for creating, 777
OnInit method, 626–627
overview, 597–599
Page_PreRenderComplete, 627
parent/child pages, 621–623
proxy objects acting as a proxy for remote

objects, 599–600
RestClientProxyHandler, 647–649
ScriptManager replica, 624–625
ServiceReference replica, 627–629
Services collection replica, 625–626
types of, 600
using, 649–657

public methods
ScriptComponentDescriptor class, 726–728
wrapper methods as, 564

Q
queueCustomScriptTag method, _ScriptLoader

class, 1204
queues, enqueue and dequeue array methods,

31–33
queueScriptBlock method, _ScriptLoader class,

1204
queueScriptReference method, _ScriptLoader

class, 1205
QuoteString method, HelperMethods class, 725

R
Raise Post Data Changed Event phase, page

postbacks, 1112–1113
raiseBubbleEvent method

Control base class, 290
in custom client control, 337
inherited from Control class, 329–330

raiseLoad method, Application class, 256
RaisePostDataChangedEvent method

Raise Post Data Changed Event phase,
1112–1113

ScriptManager class, 1109
raise_propertyChanged method,

INotifyPropertyChanged interface, 233
raisePropertyChanged method

properties (continued)

bindex.indd 1510bindex.indd 1510 8/21/07 2:13:53 AM8/21/07 2:13:53 AM

1511

In
de

x

behaviors, 667–668
component development, 270–271
set_data method, 1354
triggerChangeEvents method, 1351

readLoadedScripts method, _ScriptLoader class,
1202–1203

ReadXml method, IXmlSerializable interface, 839
readyState property, XMLHttpRequest, 6
references parameter

create method of Component base class, 249,
277, 663

HyperLink client controls, 321
in Image client control example, 301–302
Image client controls, extending, 314

RegisterAsyncPostBackControl method
PageRequestManager, 1012–1014
ScriptManager, 1011–1012

registerClass method
defining classes before registering, 90–92
JavaScript OOP and type reflection extensions,

81–83
RegisterDataItem method

PageRequestManager, 1137–1138
ScriptManager, 1136–1137

RegisterDetailEventHandlers method,
BaseMasterDetailControl2, 909

RegisterDisposeForDescriptor method,
ScriptDescriptor class, 717

registerDisposeScript method, postback
methods, 1187–1188, 1201

registerEnum method, JavaScript OOP and type
reflection extensions, 127–128

RegisterExtenderControl method, ScriptManager
class, 712, 740

_registerHandlerForFormSubmitEvent method,
_initializeInternal method, 1043

_registerHandlerFormClickEvent method,
_initializeInternal method, 1044

_registerHandlerForWindowLoadEvent method,
_initializeInternal method, 1044

_registerHandlerForWindowUnloadEvent method,
_initializeInternal method, 1044–1045

registering classes, JavaScript, 81–83
registerInterface method, JavaScript OOP and

type reflection extensions, 89–92
RegisterMasterEventHandlers method

MasterDetailControl server control, 914
MasterDetailControl2 server control, 923

registerNamespace method, JavaScript OOP and
type reflection extensions, 85–87

RegisterPanel method, UpDatePanel,
982–983

registerPartialUpdateEvents method,
BehaviorBase class, 683–684

registerPropertyChanged method,
TextBoxWatermarkBehavior class,
695–696

RegisterScriptControl method, ScriptManager
class, 740

RegisterScriptDescriptors method,
ScriptManager class, 744–746

RegisterUpdatePanel method
PageRequestManager, 984
ScriptManager, 983

ReleaseHandler method,
ScriptHandlerFactory, 571

remote objects, proxy objects for, 599–600
remove, array types, 36
remove method, deleteCurrentItem method,

1360–1361
removeAt, array types, 37
remove_beginRequest method, 1099
remove_click method, HyperLink client

controls, 317
remove_completed method,

WebRequestExecutor class, 461
remove_completedRequest method, 471
removeComponent method

Application class, 241
IContainer class component, 238

removeCssClass method
Control base class, 288
DomElement methods, 167–169

remove_disposing method
behaviors, 667
INotifyDisposing interface, 224
Monitor class implementing, 227

removeHandler method
DomEvent class, 193–194
Sys.EventHandlerList class, 134–135
System.ComponentModel.EventHandlerList

class, 131
remove_initializeRequest method, 1091
remove_invokingRequest method, 471
remove_pageLoaded method, 1053
remove_propertyChanged method

behaviors, 667
INotifyPropertyChanged interface, 229, 233

Render children method, page postback,
1114–1115

Render children method, page postback

bindex.indd 1511bindex.indd 1511 8/21/07 2:13:53 AM8/21/07 2:13:53 AM

1512

render method
CustomTable template data control, 1387–1390
developing custom data control, 1366
ListView control, 1458–1463
rendering page postbacks server side, 1114
ScriptManager, 1020–1027
of ScriptManager server control, 1070–1071
set_data method, 1354
UpdatePanel, 1028–1029

Render method
Control class, 1114
extender control, 761
script control, 768

RenderChildren method
Control class, 1114–1115
HtmlForm server control, 1128
UpdatePanel server control, 1130–1131, 1156

renderComplete event, ListView control, 1452
RenderContainer method,

BaseMasterDetailControl, 900
RenderContents method

AmazonSearchScriptControl, 796–798
BaseMasterDetailControl, 902–903

RenderControl method
HtmlForm, 1127–1132
RenderChildren method and, 1114–1115
RenderPageCallback method and, 1118

RenderDataItems method, page postback, 1134–
1138, 1157

Renderer, AJAX engine components, 3
RenderFormCallback method,

PageRequestManager, 1128–1129
rendering aspect, partial page rendering

overview of, 1019–1020
Render method of ScriptManager, 1020–1027
Render method of UpdatePanel, 1028–1029

RenderMethod, RenderPageCallback
method, 1117

RenderPageCallback method
EncodeString method calls triggered by,

1159–1161
OnPreRender method, 1113–1114
page postbacks server response, 1155–1156
rendering page postbacks server side,

1116–1121
_renderTaskComplete method, ListView

control, 1471
RenderUpdatePanelIDsFromList method,

PageRequestManager, 1024–1025
request messages, WSDL documents, 515–516

request processing, partial page rendering,
966–969

request processing pipeline, In ASP.NET,
587–588

RequiresUpdate method, UpdatePanel server,
1124–1126

resolveInheritance method, JavaScript OOP and
type reflection extensions, 103–104

ResolveScriptReference event, ScriptManager
class, 746–748

response messages, WSDL documents,
515–516

responseText property, XMLHttpRequest, 7
responseXML property, XMLHttpRequest, 7
REST method calls, 576
REST requests, JSON

ASP.NET AJAX framework supported, 576
RestHandlerFactory and, 574–576
ScriptHandlerFactory and, 573

RestClientProxyHandler, proxy classes,
647–649

RestHandlerFactory
CreateHandler method, 590–591
implementation of, 574–577
instantiating instances of, 572–573
replica of, 577–582

Result.cs file, 837
Result/Results classes

AmazonSearch2.aspx page code listing,
838–839

code listing, 835–836, 840–841
definition and annotation of, 832–835
implementing IXmlSerializable interface. See

IXmlSerializable interface
properties, 833–835
xsd.exe utility for generating, 837

ResultsSchema method, IXmlSerializable
interface, 842–844

RetrievePostData method, Page object, 1098,
1101

RetrievePostData phase, page postbacks,
1097–1101

return value types, WSDL documents, 515
revealTrans filter

exposing duration property, 309
exposing transition property, 310

rightButton value, MouseButton class, 176
_rootNamespaces array, 87
rowIndex property, GridViewRow control, 339
rows. See DataRow class

render method

bindex.indd 1512bindex.indd 1512 8/21/07 2:13:54 AM8/21/07 2:13:54 AM

1513

In
de

x

S
SaveViewState method

BaseMasterDetailControl, 899
HtmlGeneratorScriptControl, 810

scheduler, AJAX engine components, 3
script controls

AmazonSearchScriptControl server control. See
AmazonSearchScriptControl server control

extender controls compared with, 769–770
IScriptControl interface, 713–714
overview of, 708, 713
ScriptBehaviorDescriptor class, 730–732
ScriptComponentDescriptor class. See

ScriptComponentDescriptor class
ScriptControl base class, 714–716
ScriptControlDescriptor class, 730
ScriptDescriptor class, 716–717
ScriptManager class. See ScriptManager class
ScriptReference class, 732–733
ScriptReferenceCollection class, 733–734
summary, 771
why they are needed, 707–709

script controls, custom, 763–769
example using, 768–769
overview, 763–767
PreRender method, 767–768
Render method, 768

script HTML elements, 1274
ScriptBehaviorDescriptor class, 730–732
scriptBlock string, 1180
ScriptComponentDescriptor class

AppendScript method, 729–730
GetScript method, 720–724
HelperMethods class and, 725–726
public methods, 726–728
replica of, 717–720

ScriptControl base class, 714–716
ScriptControlDescriptor class, 730
ScriptControls collection, 740
ScriptDataItem class, 1137
ScriptDataItemCollection class, 1138
ScriptDescriptor class, 716–717
scriptDispose string, 1183
ScriptHandlerFactory, 571–574
_ScriptLoader class, 1202–1211

constructor, 1210
_createScriptElement method, 1209
getInstance method, 1203
_getLoadedScripts method, 1205

isScriptLoaded method, 1204
loadScripts method, 1205–1206
_loadScriptsInternal method, 1207–1209
queueCustomScriptTag method, 1204
queueScriptBlock method, 1204
queueScriptReference method, 1205
readLoadedScripts method, 1202–1203
_scriptLoaderHandler method, 1210–1211
server response to page postback,

1189–1191
_scriptLoaderHandler method, 1210–1211
_ScriptLoaderTask class

constructor method of, 1211
execute method, 1212–1213
_scriptLoadHandler method, 1213
_scriptsLoadComplete method, 1213–1215

_scriptLoadHandler method, 1213
ScriptManager class

AddScriptReferencesForScriptControls method,
743–744

CollectScripts method, 742–743
declarative approach to adding proxy classes,

608–618
ExtenderControls collection, 740
GetCurrent method, 741
imperative approach to adding proxy classes,

618–620
imperative approach to adding ServiceReference

object to Services collection, 618
implementing IPostBackDataHandler, 1109
LoadScriptsBeforeUI property, 740
OnInit method, 741, 972–975, 1103
OnLoad method, 997
Page_PreRenderComplete method, 741–742
parent/child pages and, 621–623
RegisterAsyncPostBackControl method,

1011–1012
RegisterAsyncPostBackTrigger class, 1009
RegisterDataItem method, 1136–1137
RegisterExtenderControl method, 740
RegisterScriptControl method, 740
RegisterScriptDescriptors method for extender

controls, 744–746
RegisterUpdatePanel method, 983
Render method, 1020–1027
replica, 624–625, 649–657, 734–739
ResolveScriptReference event, 746–748
ScriptControls collection, 740
Scripts collection property, 740
server control, 27–28

ScriptManager class

bindex.indd 1513bindex.indd 1513 8/21/07 2:13:54 AM8/21/07 2:13:54 AM

1514

ScriptManager class (continued)
ServiceReference object added to Services

collection, 608
ScriptManager server controls

BaseMasterDetailControl server control
example. See BaseMasterDetailControl
server control

master pages and content pages and, 874
partial page rendering and, 857
public registration methods of, 1146–1149
Render method of, 1070–1071
SetFocus method overloads of, 1152

ScriptManagerProxy server control, 621–623
ScriptModule, 583–591

.aspx file requests and, 583–584
bypassing ASP.NET request processing pipeline,

587–589
IHttpModule interface and, 584
Init method, 586–587
OnPostAcquireRequestState method, 586

ScriptReference class, 732–733
ScriptReferenceCollection class, 733–734
ScriptRegistrationManager class, 1142–1146

internal collections of current, 1139–1142
script registration methods, 1142–1146
script-rendering methods of, 1149–1152

Scripts collection property, ScriptManager
class, 740

_scriptsLoadComplete method, page postback,
1213–1215

SelectedIndex property, MasterDetailControl
server control, 914–916

selectedItemClass property, ListView control,
1446–1447

selectionChangedCallback function, ListView
control, 1421–1422

send method, XMLHttpRequest, 7
separatorCssClass property, ListView

control, 1447
separatorTemplate property, ListView control,

1449–1450
<sequences> element, WSDL documents, 515
serialize function

XML, 16
XMLHttpRequest, 12–14

server controls
AmazonSearchScriptControl server control. See

AmazonSearchScriptControl server control
benefits of ASP.NET, 24–25
Button server control, 325

client controls emulating, 290–291
composite. See composite server controls
extender controls. See extender control
GridView, 349
HyperLink, 315
master/detail forms, 881–882
script controls. See script controls
TypeDescriptor, 350
UpdatePanel. See UpdatePanel server controls
Web service bridges. See

AmazonSearchScriptControl server control
server response text, arriving on client-side,

1171–1192. See also
_onFormSubmitCompleted method

appearance of, 1161–1170
checking type property, 1179–1184
completed method, 1172–1176
example of, 1176
_onFormSubmit method, 1171–1172
_onReadyStateChange method, 1172
parsing substrings, 1177–1179

server side methods
client-side code for invoking, 570
static limitation of, 589

<service> element, WSDL documents, 518
ServiceReference class

automatic generation of proxy classes, 608
declarative approach to adding proxy classes,

608–618
imperative approach to adding proxy classes,

618–620
parent/child pages and, 621–623
replica of, 627–629
using Service Reference replica, 649–657

Services collection
adding ServiceReference object to, 608,

621–623
imperative approach to adding ServiceReference

object to, 618
parent/child pages and, 621
replica of, 625–626

set_alternateText method, Image client
controls, 300

set_argument method, Button client control, 326
set_body method

beginRequest event, 1104
WebRequest class, 459

set_command method, Button client control,
326–327

set_data method, DataControl class, 1353–1355

ScriptManager class (continued)

bindex.indd 1514bindex.indd 1514 8/21/07 2:13:54 AM8/21/07 2:13:54 AM

1515

In
de

x

set_dataIndex method
DataControl class, 1356–1357
ListView control, 1450–1451
onBubbleEvent method, 1364–1365

set_default failed callback method,
WebServiceProxy class, 536

set_default succeeded callback method,
WebServiceProxy class, 536

set_element method, Behavior class, 669
set_events method, WebRequestExecutor

class, 461
set_eventSource method, initializeObject

method, 1314
setFocus method, ListView control, 1455–1456
SetFocus method, PageRequestManager,

1152–1154
set_headers method, WebRequestExecutor

class, 460
set_height method, Image client controls,

299–300
set_httpVerb method, WebRequest class, 458
set_id method

Behavior class, 671
Control base class, 284
INotifyPropertyChanged interface, 233–234

set_imageURI method, Image client controls,
299

set_imageURL method, Image client
controls, 307–308

setLocation method, DomElement, 172–175
set_mouseOverImageURL methods, Image client

controls, 308
set_name method, Behavior class, 669–670
set_navigateURL property, HyperLink client

controls, 315
SetNoServerCaching method,

RenderPageCallback method, 1117
setOwner method, actions, 1333
set_parent method, Control base class, 284
set_path, WebServiceProxy class, 537
_setPath method, TypeDescriptor class, 379–380
setProperty method

SetPropertyAction, 1345
TypeDescriptor class, 377–382

SetPropertyAction
Action class, 1345–1346
example using, 1336–1339

SetRenderMethodDelegate method, 1117
setRequestHeader method, XMLHttpRequest, 7
set_rowIndex method, GridViewRow control, 339

set_target method, Action class, 1339
set_text method, Label client controls,

292–293
set_Text method, TextBoxWatermarkBehavior

class, 697–698
setTimeout method, 1455–1456
set_timeout method

WebRequest class, 459, 492
WebServiceProxy class, 535–536

set_url method, WebRequest class, 458, 492
set_visibilityMode method, Control base class,

286–287
set_visible method, Control base class, 287
set_WatermarkText method, 702
set_webRequest method, WebRequestExecutor

class, 464
set_width method, Image client controls, 299
ShoppingCart class, 142–143

adding event handlers, 158–159
addShoppingCartItem method, 156–157
event programming base classes, 138
get_events method, 155
implementation of, 142–143
initialize method of ShoppingCart class, 155
methods, 154
onShoppingcartInitialized method, 155–156
onShoppingCartItemAdded method, 158
onShoppingCartItemAdding method, 158
removing event handlers, 159
supporting events, 144–152

ShoppingCartItem class, 141–142
event programming base classes, 138
properties and methods, 141–144

ShoppingCartItemAddedEventArgs event, event
data class, 153–154

ShoppingCartItemAdding event, event data
class, 152

simple properties, control states and, 898
SkinID property, MasterDetailField data control,

940
SOAP messages, 518–533

client-side code and, 518
example of page exchanging SOAP messages

with Web service, 525–528
HTTP request message, 518–521
HTTP response message, 519–521
overview, 518
submitCallback function and, 528–533
WSDL documents determining methods,

parameters, and return value of, 522–525

SOAP messages

bindex.indd 1515bindex.indd 1515 8/21/07 2:13:55 AM8/21/07 2:13:55 AM

1516

 HTML element
example page containing, 660–661
Label client controls and, 291

_splitNodeIntoArray method, page postback, 1185
startsWith, string types, 40
_startTimeout method, TaskManager class,

1432–1433
state management methods

BaseMasterDetailControl, 897–900
HtmlGeneratorScriptControl, 809–811

static methods
array types, 28
Behavior class, 674–675
Component base class, 661–662
server side and, 589

static methods, DomEvent class, 189
addHandler method, 189–193
addHandlers method, 194–197
clearHandlers method, 197
removeHandler method, 193–194

status property, XMLHttpRequest, 6
statusText property, XMLHttpRequest, 7
stopPropagation method, DomEvent class,

201–203
_storeOriginalFormAction method, 1045
string types, 39–41

& symbol separating, 492
creating custom exceptions, 71
endsWith, 39
formatting, 41
overview, 39
startsWith, 40
trim, 40–41

StringBuilder class
append method, 387
applendLine method, 387
clear method, 387
constructor, 387
CustomTable client control, 394
CustomTable client control and, 394
example of page using, 388–389
IsEmpty method, 388
overview, 385–387
pageLoadedHandler, 1063
toString method, 388–389

strings, JSON, 21–22
style

applying to container controls, 896
ControlStyle property, 939–940
CustomTable template data control, 1387

styles, BaseMasterDetailControl
overriding ControlStyle method, 902
overriding CreateControlStyle method, 902

styles, ListView control, 1401–1402, 1423–
1424, 1444–1447

subclasses, UpdatePane, 1001
Submit button, page postback via, 1040–1041
submit method, _doPostBack function

invoking, 1041
submitCallback function

in client-server communication example,
491–492

HTTP request message and, 528–533
Web requests using, 491–492
XMLHttpRequest, 11–12

Sys.CancelEventArgs class, 132–133
Sys.EventHandlerList class. See EventHandlerList

class
Sys.IDisposable interface. See IDisposable

interface
Sys.INotifyDisposing interface. See

INotifyDisposing interface
Sys.INotifyPropertyChange interface. See

INotifyPropertyChanged interface
Sys.Net.WebServiceProxy class. See

WebServiceProxy class
Sys.Preview.UI namespace. See Preview.UI

namespace
System.ComponentModel.CancelEventArgs

class. See ComponentModel class
System.EventArgs class. See EventArgs class
Sys.UI.Behavior, 281
Sys.UI.Control, 281

T
table rows

applying to ListView control, 1424–1429
GridViewRow control, 337

TableCell, MasterDetailContainer derived
from, 891

TableProvider class, DOM extensions, 216–217
tables

custom control. See CustomTable client control
data tables. See DataTable class

TagKey property, BaseMasterDetailControl
overriding, 902

target server control, of extender control,
711, 740

target URL, WebRequest class, 458

 HTML element

bindex.indd 1516bindex.indd 1516 8/21/07 2:13:55 AM8/21/07 2:13:55 AM

1517

In
de

x

_TaskManager, ListView control, 1430–1434
<tbody> DOM element, 1425
<td> DOM element, 1425–1429
Template class

constructor, 1375
ITemplate interface, 1375

template containers, 987
template properties, ListView control,

1402–1403, 1447–1450
templated controls, 1373–1399

constructor, 1375
createInstance method, 1377–1380
developing custom template, 1380–1383
developing custom templated data control,

1383–1393
ITemplate interface, 1373–1374
methods, 1373
parseFromMarkup method, 1376–1377
partial page rendering, 987–994
Template type, 1375
TemplateInstance class, 1374

TemplateField custom template, 1380–1383
constructor, 1381
headerText property, 1381–1382
JavaScript file for, 1380–1381
parseFromMarkup method, 1382–1383
using, 1391–1393

TemplateInstance class, ITemplate
interface, 1374

text
Label client controls, 292–293
server response, 1161–1170
set_Text method, 697–698
WatermarkText methods, 702

TextBox control
editing foreign key fields, 932
page containing DropDownList server control

and, 1098–1099
TextBoxWatermarkBehavior class

_applyWatermark method, 694–695
clearText method, 692–693
dispose method, 700–702
example page using, 703–706
initialize method, 688–691
_onBlur method, 693–694
_onFocus method, 691–692
_onKeyPress method, 695
_onPropertyChanged method, 696–697
_onSubmit method, 700
overview, 687–688

_partialUpdateEndRequest method,
698–700

registerPropertyChanged method, 695–696
set_Text method, 697–698
WatermarkCssClass method, 702–703
WatermarkText method, 702

TextBoxWatermarkExtenderControl. See
extender control, custom

TextBoxWatermarkScriptControl. See script
controls, custom

TextProvider, DOM extensions, 184–185
themes

applying to controls, 918–919
MasterDetailField data control, 940

timeout methods
default timeout in WebRequestManager

class, 469
WebRequest class, 459
WebServiceProxy class, 535–536

toggleCssClass method
Control class, 288
CustomTable template data control, 1391
DomElement methods, 169–171
InvokeMethodAction, 1343–1344
render method, 1388–1389

toolkit. See control toolkit
toString method, StringBuilder class, 388–389
ToString transformer, 1327–1328
toUpperCase method

_getTagType method using, 1280
initializeObject method, 1314

<tr> DOM element, 1425–1429
TrackViewState method

BaseMasterDetailControl, 899
HtmlGeneratorScriptControl, 810–811

Transform method, XmlBridgeTransformer,
824–825

Transform method, XsltBridgeTransformer,
848–849

transformers, 1325–1326
BridgeTransformData class, 820–822
code listing, 813–814
Compare transformer, 1329
CompareInverted transformer, 1329
IBridgeResponseTransformer interface,

819–820
Invert transformer, 1328–1329
Invoke method instantiating, 819
steps in adding for specific method, 818–819
summary, 855

transformers

bindex.indd 1517bindex.indd 1517 8/21/07 2:13:55 AM8/21/07 2:13:55 AM

1518

transformers (continued)
tasks performed for each transform element in .

asbx files, 821–823
ToString transformer, 1327–1328
transformation of return value of method calls,

817–818
XmlBridgeTransformer. See

XmlBridgeTransformer
XsltBridgeTransformer. See

XsltBridgeTransformer
transition property, Image client controls,

310–311
TreeView server control

in custom composite user control,
946, 956

displaying all messages, 957
triggerChangeEvents method

addItem method, 1359
DataControl class, 1350–1351
deleteCurrentItem method, 1361
moveNext method, 1363
movePrevious method, 1363–1364
set_data method, 1354

triggers, UpdatePanel
ChildrenAsTriggers property, 863–864
triggers causing asynchronous page postback,

877–878
UpdatePanelTrigger, 1000, 1004–1011,

1014–1018
UpdatePanelTriggerCollection, 998–1000

trim, string types, 40–41
true values, JSON, 21–22
try-catch-finally blocks, 41
Type class

isClass method, 84
JavaScript OOP and type reflection

extensions, 80
parse method, 125

type description
dynamic injection of metadata information with,

399–400
ICustomTypeDescriptor class, 403–405
StringBuilder class in implementation of, 385
TypeDescriptor. See TypeDescriptor class

type parameter
create method of Component base class, 249,

276, 662
HyperLink client controls, 320
Image client control, 301, 313

type property, 1179–1184

type reflection extensions, JavaScript. See OOP
and type reflection extensions

TypeDescriptor class
addAttribute method, 403
addEvent method, 402–403
addMethod method, 401–402
addProperty method, 400–401
append method, 371–374
constructor, 350
CustomTable client control, 389–399
_events, 364–368
generateDescriptor method, 370–371
getAttributed method, 376–377
getProperty method, 374–376
getPropertyType method, 384–385
getTypeDescriptor method, 369–370
initializeObject method, 1287–1288, 1298
invokeMethod method, 382–384
InvokeMethodAction invoking, 1342–1343
_methods, 358–364
overview, 349
_properties, 351–358
setProperty method, 377–382
SetPropertyAction invoking, 1345

<types> element, WSDL documents, 514–515

U
UI.Behavior, Component class, 281
UI.Control, Component class, 281
UniqueID properties, server controls, 1098
_uniqueIDToClientID method

_doPostBack method, 1079
PageRequestManager, 1049

unload event, Application class, 260
Update method, Update Panel server, 1122
_updateControls method

page postbacks, 1185, 1228–1230
PageRequestManager, 1046–1049

updated method, behaviors, 664
UpdatePanel

add method for UpdatePanelTriggerCollection,
1003–1004

constructor of UpdatePanelTriggerCollection,
1001

ControlTemplate property, 987
CreateContents method, 984–987
Initialize method, 998
Initialize method of UpdatePanelTrigger, 1000,

1004–1011

transformers (continued)

bindex.indd 1518bindex.indd 1518 8/21/07 2:13:56 AM8/21/07 2:13:56 AM

1519

In
de

x

Initialize method of
UpdatePanelTriggerCollection, 998–1000

OnInit method, 980–982
OnLoad method, 996–997
owner property of UpdatePanelTriggerCollection,

1002–1003
RegisterPanel method, 982–983
Render method, 1028–1029
subclasses of UpdatePanelTrigger, 1001
TreeView and DetailView as children of, 946
UpdatePanelControlTrigger class, 1004

_updatePanel method
page postbacks, 1199–1200, 1230–1231
server response text arriving on

client-side, 1187
UpdatePanel server controls

attaching movers to, 1066–1067
BaseMasterDetailControl2. See

BaseMasterDetailControl2 server control
checking type property, 1179–1184
children as triggers, 863–864
code listing for page using conditional updates,

862–863
code listing for page using two UpdatePanel

server controls, 860–861
direct inclusion of one UpdatePanels in another

UpdatePanel, 864–867
EncodeString method call triggered by, 1156
imperative updates, 878–881
implementing IPostBackDataHandler, 1109
indirect inclusion of one UpdatePanels in

another UpdatePanel via content page,
871–876

indirect inclusion of one UpdatePanels in
another UpdatePanel via user control,
868–871

master server control contained in, 893
partial page rendering and, 857
RenderControl method of, 1129–1131
triggers causing asynchronous page postback,

877–878
_updatePanel method, 1199–1200
updating, 1184

UpdatePanelControlTrigger class, 1004
updatePanelIDs, 1181
updatePanelNodes array, 1187
UpdatePanelTrigger

custom, 1014–1018
Initialize method, 1000, 1004–1011
subclasses, 1001

UpdatePanelTriggerCollection
add method, 1003–1004
constructor, 1001
Initialize method, 998–1000
owner property, 1002–1003
triggers causing asynchronous page

postback, 877
updates. See UpdatePanel
URLs

<port> element for specifying, 517
target URL for Web requests, 537

user controls
UpdatePanel server control as parent of,

869–871
UpdatePanel server control encapsulated

in, 868
user controls, partial-rendering enabled, 945

code listing, 947–952
deleting a message, 959–960
displaying all messages, 957–958
displaying details of a message, 958–959
overview, 945–946
replying to a message, 961–962
starting new thread, 963–964
updating a message, 960–961
XML document that stores message, 953–957

V
_value collection, StringBuilder class, 385,

387–388
virtual methods, C#, 104
VisibilityMode properties, Control class,

286–287

W
W3C, event propagation model, 202
WatermarkCssClass method

custom extender control, 754
TextBoxWatermarkBehavior class, 702–703

watermarks. See TextBoxWatermarkBehavior
class

WatermarkText methods
custom extender control, 754
TextBoxWatermarkBehavior class, 702

Web methods
.asmx file extension for, 564
invoking, 537–538
wrapper methods as, 564

Web methods

bindex.indd 1519bindex.indd 1519 8/21/07 2:13:56 AM8/21/07 2:13:56 AM

1520

Web pages
MasterDetailControl server control used in,

916–921
visiting partial-page-rendering enabled Web

page, 971
Web service bridges

client control component. See
AspNetAjaxAmazonSearch client control

defined, 564
demystified, 591–593
HtmlGenerator client component. See

HtmlGenerator client control
HtmlGenerator server component. See

HtmlGeneratorScriptControl server control
overview of, 781
server control component. See

AmazonSearchScriptControl server control
steps in using, 564–565
using bridge-enabled script server components,

811–812
wrapper methods and, 570

Web services
building, 511–512
calling custom methods, 564–570
calling page methods, 561–563
client-side code for invoking server side

methods, 570
consuming via JSON messages, 535
example of page exchanging SOAP messages

with Web service, 525–528
example page using WebServiceError class,

557–561
HandlerWrapper, 582–583
obtaining data records from, 1417–1422
overview, 511
proxy classes associated with, 600–605
RestHandler, 577–582
RestHandlerFactory, 574–577
ScriptHandlerFactory, 571–574
ScriptModule, 583–591
SOAP messages. See SOAP messages
transformers. See transformers
using replicas of HTTP handler factories,

593–595
WebServiceError class, 553–556
WebServiceProxy class. See WebServiceProxy

class
wrapping a custom class, 591–592
WSDL documents. See WSDL documents

Web services, Amazon E-commerce

ItemSearch, 774–781
overview of, 773–774

web.config file, 573–574, 583–584
WebControl class, 896
WebRequest class

abort method, 506–508
body of request, 459
in client-server communication

example, 492
client-side code for downloading WSDL

documents and loading into XMLDOM
documents, 524

completed event, 461–462
completion of Web request, 494
constructor, 457–458
example page using, 487–490
executor methods, 460
headers, 460
HTTP verb, 458–459
invoking Web requests, 462–463
overview, 457
submitCallback function instantiating, 492
target URL, 458
timeout methods, 459
WebServiceProxy class encapsulating logic

of, 535
WebRequest object, 1172–1176
WebRequestExecutor class

abort method, 467
client-side code for downloading WSDL

documents and loading into XMLDOM
documents, 524

completion of Web requests, 494
constructor, 463
example page using, 497–498
executeRequest method, 467
get_aborted method, 465
getAllResponseHeaders method, 468
get_object method, 466–467
get_responseAvailable method, 464–465
get_responseData method, 465
getResponseHeader method, 467–468
get_started method, 464
get_statusCode method, 466
get_statusText method, 466
get_timeOut method, 465
get_xml method, 466
overview, 463
referencing WebRequest object, 463–464
requestCompleted event, 493

Web pages

bindex.indd 1520bindex.indd 1520 8/21/07 2:13:56 AM8/21/07 2:13:56 AM

1521

In
de

x

WebRequestExecutor object, 1172–1176
WebRequestManager class, 498–502

client-side code for downloading WSDL
documents and loading into XMLDOM
documents, 524

constructor, 468–469
default executor type, 469
default timeout, 469
events, 470–471
executing Web request, 471–473
NetworkRequestEventArgs class, 473–474
overview, 468
single instance of, 498–502
WebServiceProxy class encapsulating logic

of, 535
WebServiceError class

code listing, 555
constructor, 555–556
example page using, 557–561
onComplete method and, 553–554

WebServiceHandlerFactory, 572–573
WebServiceProxy class

add function for instantiating, 552–553
constructor, 535
_createQueryString method of WebRequest

class, 544–545
_createUrl method of WebRequest class, 543
default failed callback methods, 536
default succeeded callback methods, 536
example page using, 549–551
_invoke method, 537–538
invoke method, 539–542
onComplete method, 545–549
overview, 535
path methods, 537
proxy classes deriving from, 602
timeout methods, 535–536
Web service used by example page, 551–552

width property, Image client controls, 299
Window class, client-server communication, 509
wrapper methods

choices for placing, 564
Web service bridges and, 570
Web service wrapping a custom class, 591–592

WriteXml method, IXmlSerializable interface,
839, 842

WSDL documents, 512–518. See also SOAP
messages

argument names, types, and order, 514–515
client-side code and, 524

communication protocol determined by, 519
communication protocol used by method,

516–517
<definitions> element, 514
describing XML Web service, 513–514
information about XML Web service methods,

512–513
method, parameters, and return value of SOAP

messages determined by, 522
request and response messages in method,

515–516
return value types and order, 515
site for method access, 517–518
specifying method class, 518

X
x and y coordinates

DomElement getBounds method, 175–176
DomElement getLocation method, 171
DomElement setLocation method, 172–175

XHTML, 1–2
XML (eXtensible Markup Language)

AJAX-enabled components and, 2
code listing, 16–18
deserialize function, 18–20
serialize and deserialize functions in, 16
transformer. See XmlBridgeTransformer

XML documents
bridge element, 565–567
SOAP messages and, 518
user controls, partial-rendering enabled,

953–957
XML namespace

_getTagType method, 1279–1281
_processNamespaceURI method, 1281–1283

XML Schema, serializing. See XmlSerializer
XML Web services

SOAP messages. See SOAP messages
WSDL documents. See WSDL documents

XmlAttribute, metadata attribute, 833
XmlBridgeTransformer, 823–848

code listing, 823–824
example (HtmlGenerator2 client control),

826–827
overview of, 823
provided by ASP.NET AJAX framework, 818
serializing XML Schema correctly. See

XmlSerializer
Transform method, 824–825

XmlBridgeTransformer

bindex.indd 1521bindex.indd 1521 8/21/07 2:13:57 AM8/21/07 2:13:57 AM

1522

XmlDataSource control, 954–957
XMLDOM class, 474–475, 524
XMLDOM document, 1274
XMLHttpExecutor class, 475–487

abort method, 485–487
_clearTimer method, 477
constructor, 475–476
default executor type, 469
executeRequest method, 479–482
get_aborted method, 479
getAllResponseHeaders method, 483
get_responseAvailable method, 479
get_responseData method, 483
getResponseHeader method, 482–483
get_started method, 479
get_statusCode method, 484
get_statusText method, 484
get_timeOut method, 478
get_xml method, 484–485
_onReadyStateChange method, 476–477
_onTimeout method, 477–478
overview, 475
page using WebRequestExecutor, 497–498
WebServiceProxy class encapsulating logic

of, 535
XMLHttpRequest class, 4–15

characteristics of AJAX-enabled
components, 2

in client-server communication, 474
code listing, 6–10
deserialize function, 14–15
instantiation process, 4
methods and properties, 5–6
serialize function, 12–14
submitCallback function, 11–12

XMLHttpRequest methods and properties,
AJAX, 5–6

XmlSchemaProvider, 839

xml-script, 1272–1315
binding in. See binding
_getDefaultNamespaces method, 1283
_getTagType method, 1279–1281
__initHandler method, 1273
initializeObject method, 1287–1315
MarkupContext class, 1267–1272
overview of, 1267
parseFromMarkup method, 1284–1287
parseNode method, 1278–1279
parseNodes method, 1276–1277
processDocument method, 1273–1275
processDocumentScripts method, 1275–1276
_processNamespaceURI method, 1281–1283
starting script, 1272–1273

XmlSerializer, 828–848
code listing for AmazonService2 class,

829–832
IXmlSerializable interface as approach to

communication with, 839–848
methods for communicating with, 828
Results and Result classes as approach to

communication with, 832–839
XPath

DetailsView control and, 959
hierarchical or location path for identifying tree

nodes, 955
xsd.exe utility, 837
XsltBridgeTransformer, 848–855

AmazonSearch4.asbx code listing, 851
AmazonSearch4.aspx code listing, 855
AmazonService4 class, 852–854
code listing, 850–851
overview of, 840

Y
y coordinates. See x and y coordinates

XmlDataSource control

bindex.indd 1522bindex.indd 1522 8/21/07 2:13:57 AM8/21/07 2:13:57 AM

badvert.indd 1523badvert.indd 1523 8/21/07 9:49:12 AM8/21/07 9:49:12 AM

badvert.indd 1524badvert.indd 1524 8/21/07 9:49:12 AM8/21/07 9:49:12 AM

	ASP.NET AJAX Programmer’s Reference with ASP.NET 2.0 or ASP.NET 3.5
	About the Author
	Credits
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	What You Need To Use This Book
	Conventions
	Source Code
	Errata
	P2P.WROX.COM

	Chapter 1: AJAX Technologies
	Google Suggest
	XML HttpRequest
	XML
	JSON
	ASP.NET AJAX
	Installing the ASP.NET AJAX Extensions and ASP.NET Futures
	Summary

	Chapter 2: JavaScript Base Type Extensions
	ASP.NET AJAX Array Type Extensions
	ASP.NET AJAX Boolean Type Extensions
	ASP.NET AJAX Date Type Extensions
	ASP.NET AJAX Object Type Extensions
	ASP.NET AJAX String Type Extensions
	ASP.NET AJAX Error Type Extensions
	Summary

	Chapter 3: Built-In and Custom Exception Types
	ASP.NET AJAX Built-In Exception Types
	Implementing Custom Exception Types
	Summary

	Chapter 4: JavaScript Object-Oriented Programming and Type Reflection Extensions
	JavaScript Functions
	JavaScript Classes
	Type
	registerClass
	getName
	isClass
	registerNamespace
	isNamespace
	registerInterface
	getInterfaces
	isInterface
	inheritance
	getBaseType
	initializeBase
	resolveInheritance
	callBaseMethod
	getBaseMethod
	implementsInterface
	inheritsFrom
	isImplementedBy
	getRootNamespaces
	parse
	registerEnum
	isEnum
	isFlags
	Summary

	Chapter 5: Event Programming Extensions
	Event Programming
	Using Event Programming
	Summary

	Chapter 6: DOM Extensions
	DomElement
	MouseButton
	Key
	Delegates
	DomEvent
	Using the DomEvent Class
	Summary

	Chapter 7: Component Development Infrastructure
	Interfaces
	Component
	I Container
	Application
	Application Lifecycle
	Component
	Continuing the Application Journey
	Application Level Events
	Disposable Objects
	Using the Application Object and Component Base Class
	Summary

	Chapter 8: Developing Client Controls
	Control
	Developing Custom Client Controls
	Label Client Control
	Using Label Client Control
	Image Client Control
	Using the Image Client Control
	Extending Image Client Control
	Using Image2 Client Control
	HyperLink Client Control
	Using the HyperLink Client Control
	Summary

	Chapter 9: Event Bubbling and Button Client Control
	CommandEventArgs
	Button Client Control
	Using Button Client Control
	Summary

	Chapter 10: Type Description Extensions
	TypeDescriptor
	Invoke Method
	get PropertyType
	Using the ASP.NET AJAX Type Description Capabilities
	Dynamic Injection of Metadata Information
	ICustomTypeDescriptor
	Summary

	Chapter 11: Data Classes
	I Data
	DataColumn
	DataRow
	DataTable
	Using DataColumn, DataRow, and DataTable
	Summary

	Chapter 12: Client-Server Communications
	WebRequest
	WebRequestExecutor
	WebRequestManager
	XMLHttpRequest
	XMLDOM
	XMLHttpExecutor
	Using WebRequest, WebRequestManager, and XMLHttpExecutor
	Summary

	Chapter 13: Consuming Web Services Via Soap Messages
	Building the Web Service
	WSDL Documents
	SOAP Messages
	Summary

	Chapter 14: Consuming Web Services Via JSON Messages
	WebServiceProxy
	Using WebServiceProxy
	WebServiceError
	Using WebServiceError
	Calling Page Methods
	Calling Custom Methods
	Under the Hood
	Summary

	Chapter 15: Proxy Classes
	What’s a Proxy, Anyway?
	Proxy Class
	Automatic Proxy Class Generation
	Under the Hood
	Using the Replicas
	Summary

	Chapter 16: Behaviors
	What is a Behavior, Anyway?
	The Behavior Class
	ClickBehavior
	The ASP.NET AJAX Control Toolkit
	Summary

	Chapter 17: Script and Extender Server Controls
	Why You Need Script and Extender Server Controls
	Extender Server Controls
	Script Server Controls
	ScriptDescriptor
	ScriptReference
	ScriptReferenceCollection
	ScriptManager
	ResolveScriptReference Event
	Putting it All Together
	Developing a Custom Extender Server Control
	Developing a Script Control
	Script Server Controls versus Extender Server Controls
	Summary

	Chapter 18: Web Services Bridges and Transformers
	Amazon Web Services
	Developing Web Services Bridge-Enabled Script Server Controls
	Transformers
	Using Transformers
	Summary

	Chapter 19: UpdatePanel and ScriptManager
	Enabling Asynchronous Partial Page Rendering
	Conditional Updates
	Developing Partial-Rendering Enabled Custom Composite Server Controls
	Summary

	Chapter 20: Using UpdatePanel in User Controls and Custom Controls
	MasterDetailControl
	Using MasterDetailControl in a Web Page
	MasterDetailControl2
	Using MasterDetailControl2
	MasterDetailControl3
	Using MasterDetailControl3
	MasterDetailControl4
	Developing Partial-Rendering-Enabled Data Control Fields
	Developing Partial-Rendering-Enabled User Controls
	Summary

	Chapter 21: Page Life Cycle and Asynchronous Partial Page Rendering
	Processing a Request
	The Page Life Cycle
	The First Visit to a Par tial-Page-Rendering-Enabled Web Page
	InitRecursive
	LoadRecursive
	Rendering
	Summary

	Chapter 22: ASP.NET AJAX Client-Side PageRequestManager
	Instantiating and Initializing the Client-Side PageRequestManager
	The page Loaded Event
	Making an Asynchronous Page Postback
	The initialize Request Event
	The begin Request Event
	Summary

	Chapter 23: Asynchronous Partial Page Rendering: Server Side Processing
	RetrievePostData
	LoadScrollPosition
	InitRecursive
	Load Post Data
	The Raise Post Data Changed Event
	PreRender
	Rendering
	Server Response
	Summary

	Chapter 24: Asynchronous Partial Page Rendering: Client-Side Processing
	Arrival of the Server Response Text
	The _updatePanel Method of PageRequestManager
	The registerDisposeScript Method of PageRequestManager
	_destroyTree
	_ScriptLoader
	_ScriptLoaderTask
	_scriptsLoadComplete
	_endPostBack
	pageLoading
	pageLoaded
	end Request
	Summary

	Appendix A: XML Script
	MarkupContext
	Processing the xml-script XML Document
	parseNodes

	Appendix B: Binding
	BindingBase
	Transformers
	Binding

	Appendix C: Actions
	Action
	InvokeMethodAction
	SetPropertyAction
	PostBackAction

	Appendix D: Data Control
	Constructor
	prepareChange
	triggerChangeEvents
	get_canMoveNext
	get_canMovePrevious
	get_data
	set_data
	get_length
	get_dataIndex
	set_dataIndex
	onDataChanged
	get_dataItem
	get_dataContext
	addItem
	deleteCurrentItem
	getItem
	moveNext
	movePrevious
	onBubbleEvent
	descriptor
	Developing a Custom Data Control

	Appendix E: Templated Controls
	TemplateInstance
	Template
	Developing a Custom Template
	Developing a Custom Templated Data Control

	Appendix F: ListView
	Overview of ListView
	Using ListView
	Surrounding the ASP.NET AJAX Classes and Interface
	ListView

	Index

